
Controls Tutorial (BC-CI)

H
E

L
P

.B
C

C
IC

T
U

T

Re lease 4 .6C

Controls Tutorial (BC-CI) SAP AG

2 April 2001

Copyright

© Copyright 2001 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose
without the express permission of SAP AG. The information contained herein may be changed
without prior notice.

Some software products marketed by SAP AG and its distributors contain proprietary software
components of other software vendors.

Microsoft®, WINDOWS®, NT®, EXCEL®, Word®, PowerPoint® and SQL Server® are registered
trademarks of
Microsoft Corporation.

IBM®, DB2®, OS/2®, DB2/6000®, Parallel Sysplex®, MVS/ESA®, RS/6000®, AIX®, S/390®,
AS/400®, OS/390®, and OS/400® are registered trademarks of IBM Corporation.

ORACLE® is a registered trademark of ORACLE Corporation.

INFORMIX®-OnLine for SAP and Informix® Dynamic Server
TM

 are registered trademarks of
Informix Software Incorporated.

UNIX®, X/Open®, OSF/1®, and Motif® are registered trademarks of the Open Group.

HTML, DHTML, XML, XHTML are trademarks or registered trademarks of W3C®, World Wide
Web Consortium,
Massachusetts Institute of Technology.

JAVA® is a registered trademark of Sun Microsystems, Inc.

JAVASCRIPT® is a registered trademark of Sun Microsystems, Inc., used under license for
technology invented and implemented by Netscape.

SAP, SAP Logo, R/2, RIVA, R/3, ABAP, SAP ArchiveLink, SAP Business Workflow, WebFlow,
SAP EarlyWatch, BAPI, SAPPHIRE, Management Cockpit, mySAP.com Logo and mySAP.com
are trademarks or registered trademarks of SAP AG in Germany and in several other countries
all over the world. All other products mentioned are trademarks or registered trademarks of their
respective companies.

 SAP AG Controls Tutorial (BC-CI)

April 2001 3

Icons

Icon Meaning

Caution

Example

Note

Recommendation

Syntax

Controls Tutorial (BC-CI) SAP AG

4 April 2001

Contents

Controls Tutorial (BC-CI) ... 5
BC - Component Integration: Controls Tutorial .. 6
Notes to the User.. 6
Prerequisites... 7
System Configuration ... 7
Architecture .. 9
Lesson 1: Creating a Custom Control.. 12
Introduction... 13
Exercise 1: Reserving an Area for a Control.. 14
Exercise 2: Creating a Control and its Container ... 16
Exercise 3: Calling Methods of the Control .. 19
Summary .. 20
Lesson 2: Event Handling ... 21
Introduction... 24
Exercise 1: Writing an Event Handler Method ... 26
Exercise 2: Registering an Application Event .. 28
Exercise 3: Registering a System Event .. 29
Exercise 4: Responding to an Event .. 31
Summary .. 33
Lesson 3: Flush Optimization ... 34
Introduction... 35
Exercise 1: Using Imported Values .. 38
Exercise 2: Value Passing Between Methods.. 42
Exercise 3: Control Methods in Subroutines .. 46
Exercise 4: Using Multiple Controls ... 47
Summary .. 49
Lesson 4: Testing and Error Handling ... 50
Introduction... 51
Exercise 1: Activating the Trace Mode... 52
Exercise 2: Synchronous Method Processing.. 54
Summary .. 55
Additional Sources of Information ... 55

 SAP AG Controls Tutorial (BC-CI)

Controls Tutorial (BC-CI)

April 2001 5

Controls Tutorial (BC-CI)
What are Controls?
Controls are independent binary software components that can be reused. Developers can build
controls into their applications and use the functions they provide. Typically, controls are used for
designing the user interface. However, using controls is not restricted to visible components.

Who Has to Deal With Controls?
Users...
...do not see the individual components that make up an application. This is why the integration
of controls is transparent to them. They see a single application with which they work.

Application Developers...
...use controls in their applications. They are not interested in technical details. When
programming their application, they access a logical wrapper class that helps them with the
integration of the control.

Developers of the Wrapper Class...
...program the logical wrapper of individual controls. Therefore, they must have extensive
technical know-how of controls and SAP's Control Framework.

Control Developers...
...create controls themselves. Reusing controls requires that a standardized interface is in place
with which control developers must comply.

Whom Helps this Tutorial?
This documentation is designed for application developers who want to build controls into their
ABAP programs.

Controls Tutorial (BC-CI) SAP AG

BC - Component Integration: Controls Tutorial

6 April 2001

BC - Component Integration: Controls Tutorial
The BC - Component Integration: Controls Tutorial contains introductory information for
developers who want to use wrapped controls in their ABAP programs. However, the tutorial only
covers custom controls that developers can use to integrate modern interface elements into their
applications.

The Notes to the User [Page 6] section lists the technical requirements and tells you which
programming know-how you need in order to be able to work through the tutorial. In addition, this
section gives you a short overview of how controls are integrated with the R/3 System.

Each exercise of the tutorial builds on information learned in previous exercises. The exercises
are grouped together in lessons that each cover a specific subject:

Lesson 1: Creating a Custom Control [Page 10]

Lesson 2: Event Handling [Page 19]

Lesson 3: Flush Optimization [Page 30]

Lesson 4: Testing and Error Handling [Page 44]

For each subject covered, there is an introductory section that provides you with background
information.

Notes to the User
Read the following notes before working through the tutorial:

Prerequisites [Page 7]

System Configuration [Page 7]

Architecture [Page 9]

 SAP AG Controls Tutorial (BC-CI)

Prerequisites

April 2001 7

Prerequisites
The tutorial is designed to acquaint you step by step with the concepts of control programming.
You should have practical knowledge of ABAP programming and be familiar with the tools
contained in the ABAP Workbench. For information on this, see:

BC - ABAP Workbench Tutorial [Ext.]

BC - ABAP Workbench Tools [Ext.]

Controls are accessed through classes of ABAP Objects – which is the object-oriented extension
of ABAP. However, a general introduction to object-oriented programming would have been
beyond the scope of this tutorial. Nevertheless, the Basics sections of several lessons explain
those ABAP Objects concepts that are necessary to understand controls programming. If you are
familiar with these concepts, you can skip the corresponding sections.

For introductory information on object-oriented ABAP programming, see ABAP
Objects [Ext.] in BC - ABAP Programming [Ext.].

System Configuration
As of Release 4.0A, controls programming is supported through function modules. Starting with
Release 4.5A, ABAP Objects is available for object-oriented programming with ABAP. An object-
oriented version of the Control Framework is available as of Release 4.6A. The programming
examples provided in this tutorial require that you have installed this release.

There are two other factors which are of importance:

� The operating system used on the frontend computer

� The control version installed on the frontend computer

Frontend Platform
Controls are addressed through a standardized interface. The system supports two of the
common standards that are available on the market: ActiveX and JavaBeans.

Until Release 4.5B, you must use function modules in your ABAP program to check if the
frontend system supports the relevant standard. As of Release 4.6A, the Control Framework
performs this check automatically and triggers an exception if an error occurs. You use the
function modules to respond individually to such an error, for example, if there is no JavaBean
implementation of the control yet.

Interface Standards Supported

Controls Tutorial (BC-CI) SAP AG

System Configuration

8 April 2001

Windows95 (32 Bit)
WindowsNT

Other platforms

Standard used ActiveX JavaBeans

Function module that checks if the standard is
available on the frontend (only required until
Release 4.5B)

HAS_GUI_ACTIVEX HAS_GUI_JAVABEAN

Controls Version
When you install a local SAPGUI on your machine, the system also installs the appropriate
controls. If you install a new local SAPGUI, you should first uninstall the old version to ensure
consistency.

 SAP AG Controls Tutorial (BC-CI)

Architecture

April 2001 9

Architecture
R/3 Architecture

Controls Tutorial (BC-CI) SAP AG

Architecture

10 April 2001

 SAP AG Controls Tutorial (BC-CI)

Architecture

April 2001 11

SAPGUI HTML

Tree

C
us tom

 C
o ntrolsRFC

Database

R/3Application Server

Event

FIND_AND_SELECT_TEXT

HIGHLIGHT_SELECTION

Textedit

CREATE

CREATE

(Client)

Explanation
When you program controls, interaction between the application server (backend) and the
SAPGUI (frontend) is of central importance. By calling ABAP methods, you can create the
controls installed on the frontend, modify the control properties, and affect the behavior of these
controls. The application server transfers these methods to the frontend by means of a Remote
Function Call (RFC) and executes them.

The user of an application program triggers control events by performing specific actions (for
example, double-clicking a node in a tree structure). You can decide which events you want to
catch in your ABAP program and then register these events for the relevant control. A triggered
event is transferred from the SAPGUI to the application server. In response to this event, you can
then affect the behavior of the control with additional method calls.

Controls Tutorial (BC-CI) SAP AG

Lesson 1: Creating a Custom Control

12 April 2001

Lesson 1: Creating a Custom Control
Task
In this lesson, you first of all create the prerequisites for integrating a control into an ABAP
program. Next, you create a control for editing texts whose functions you will enhance step by
step later on.

Overview: Objectives
In this lesson, you learn:

� How to integrate a visible control into a screen

� How to create a control

� Which functions are automatically supported by the textedit control

Basics
Controls are wrapped through ABAP Objects classes. Creating a control is consequently
equivalent to instantiating an object, that is, generating an instance.

Basically, you generate objects using a constructor that determines the initial properties of the
object. Each class that allows you to generate objects has such a constructor.

When you generate an object, you do not explicitly call the constructor. Instead, you create an
instance using the CREATE OBJECT statement that implicitly executes the constructor.

To Continue
Lesson 2: Event Handling [Page 19] describes how to catch and further process events of a
control.

 SAP AG Controls Tutorial (BC-CI)

Introduction

April 2001 13

Introduction
R/3 Architecture

R/3
Application Server

RFC Call Container Placed On Screen

SAPGUI

CREATE OBJECT Custom_container
 EXPORTING container_name = ‘MYCONTAINER‘.
CREATE OBJECT editor
 EXPORTING parent = Custom_container.

ABAP Program
DATA:
Custom_container TYPE REF TO
custom_container_control,

editor TYPE REF TO
cl_gui_textedit.

Explanation
You must assign each control that you want to display on a screen to a container control. The
graphic above shows how a textedit control is integrated into a screen by means of a custom
container control. Using a container created in the Screen Painter, you must determine an area
that the custom container control is to fill.

A container control organizes the representation of one or more controls. Depending on the type
of container control, you can:

� Place a control on the screen at a fixed position, for example, on a subscreen (custom
container control)

� Embed several controls into a container control that is divided into areas (splitter container
control and easy splitter container control)

� Represent a control in a modeless dialog box that can be moved freely (dialog box container
control)

� Dock a control with a selected screen margin (docking container control).

For a detailed description on the individual container controls, see SAP Container
[Ext.].

Controls Tutorial (BC-CI) SAP AG

Exercise 1: Reserving an Area for a Control

14 April 2001

It is also possible to nest container controls. For example, you can specify a container control for
the parent parameter of a container control. This way, you can arrange controls on the screen
in many different ways.

Once you have created a container control, you can also display it on another screen. To do this,
you must reassign the control, in other words, link it to another screen. All controls that have
specified this container control as their parent, are also reassigned. If you have a nested
container control, you can only reassign that control which contains all other controls.

Each screen is assigned to a popup level of 0 to 9. During their lifetime, container
controls cannot be assigned to any other level than the one that was specified when
they were created. If you want to display a control at a different popup level, you
must create a new container control for this level.

Conclusions
Based on the architecture, we can derive the following steps for creating a control:

1. To display a control in a specific screen area, you create a container in the Screen Painter.

2. Using the CREATE OBJECT statement, you create a container control at PBO time that you
assign to the screen.

3. Using the CREATE OBJECT statement, you create a control instance at PBO time that you
assign to the container control.

Exercise 1: Reserving an Area for a Control
Prerequisites
You have created an executable program as a local object.

Procedure
1. Add the following lines to the source code of your main program:

START-OF-SELECTION.
SET SCREEN '100'.

Then create the screen with the following attributes:

� Screen type: Normal

 SAP AG Controls Tutorial (BC-CI)

Exercise 1: Reserving an Area for a Control

April 2001 15

� Next screen: 100

2. Edit the layout of your screen in the Screen Painter and mark an area for your custom
control.

If you use the alphanumeric mode of the Screen Painter, follow these steps:

a. Place your cursor on a line of the screen and choose Edit � Create element � Custom
control.

b. To select the bottom right corner of the area, you can either double-click the
corresponding line and column, or choose the Mark end of ctrl pushbutton. The system
displays a dialog box for the element attributes.

c. Enter the name MYCONTAINER1 and copy your settings.

If you use the graphical mode of the Screen Painter, follow these steps:

a. Choose the custom control icon (which you can recognize by the letter 'C') and mark an
area on the screen.

b. Enter the name MYCONTAINER1 in the Name field. You can also define the name on the
attributes dialog box that is displayed when you double-click the element you have
created.

3. To be able to exit the screen after the program has started, add a pushbutton to your screen
and determine the function code in the PAI module:

a. In the Layout editor of the Screen Painter, define a pushbutton with function code EXIT
and place it on the screen.

b. In the element list, enter the name OK_CODE for the element of type OK.

c. Create PAI module user_command_0100 and use it to determine the function code of
the pushbutton:
MODULE USER_COMMAND_0100 INPUT.
 CASE OK_CODE.
 WHEN 'EXIT'.
 LEAVE TO SCREEN 0.
 ENDCASE.
ENDMODULE. " USER_COMMAND_0100 INPUT

d. Declare OK_CODE as a global data field by double-clicking it and adding the following line
to your main program:
DATA ok_code LIKE sy-ucomm.

4. Save your settings, and activate all your objects.

Check Your Work
When you start your program, the system displays your screen with one pushbutton. The
container for the custom control is not displayed. If you click the pushbutton, the system returns
you to your main program.

Controls Tutorial (BC-CI) SAP AG

Exercise 2: Creating a Control and its Container

16 April 2001

Exercise 2: Creating a Control and its Container
Prerequisites
In Exercise 1, you created a screen for your main program on which you placed an area for a
custom container control. In the next step, you create this control and link it to a Textedit Control
[Ext.] [Ext.].

Procedure
1. Declare the following variables in your main program:

� a reference variable to the class of the custom container control

� a reference variable to the class of the textedit control, and

� a variable that contains the ID of the current report:
DATA: custom_container TYPE REF TO cl_gui_custom_container,
 editor TYPE REF TO cl_gui_textedit,
 repid LIKE sy-repid.

2. Create constant line_length that determines the length of lines in the text window of the
textedit control:
CONSTANTS: line_length TYPE I VALUE 256.

3. Create PBO module status_100 in the flow logic of screen 100.

4. In the PBO module, instantiate the custom container control and link it to the MYCONTAINER1
custom control area:

IF EDITOR IS INITIAL.
 repid = sy-repid.
 CREATE OBJECT custom_container
 EXPORTING
 CONTAINER_NAME = 'MYCONTAINER1'
 EXCEPTIONS
 CNTL_ERROR = 1
 CNTL_SYSTEM_ERROR = 2
 CREATE_ERROR = 3
 LIFETIME_ERROR = 4
 LIFETIME_DYNPRO_DYNPRO_LINK = 5.

5. In the PBO module, instantiate the textedit control and specify the container control you have
just created as the parent parameter:

 SAP AG Controls Tutorial (BC-CI)

Exercise 2: Creating a Control and its Container

April 2001 17

 CREATE OBJECT editor
 EXPORTING
 parent = custom_container
 WORDWRAP_MODE = CL_GUI_TEXTEDIT=>WORDWRAP_AT_FIXED_POSITION
 WORDWRAP_POSITION = line_length
 WORDWRAP_TO_LINEBREAK_MODE = CL_GUI_TEXTEDIT=>TRUE.
ENDIF. "editor is initial

6. Activate your main program.

Check Your Work
Start your program. You can now see a text editor at the screen position where you created the
container. Nine icons are displayed above the input field of the editor:

If you do not see all these icons on your screen, you must enlarge the container in the Screen
Painter.

The textedit control provides basic functions for editing text. You can:

� Cut, copy and paste text

� Undo actions

� Search and replace text

� Load and save local files

You can access these functions either via the tool bar or via the context menu (by clicking the
right mouse button). Drag and drop functions are also available. You can:

� Load texts by dragging text file icons (no shortcuts) into the text window

� Move text selected in the text window with the right mouse button.

Discussion
Attributes
The CREATE OBJECT statement calls the constructor of class cl_gui_textedit. The
constructor determines some initial properties of the instantiated object when it is created. In this
exercise, you set two attributes using constants of the class. The WORDWRAP_MODE attribute
determines if and how words are wrapped. The WORDWRAP_TO_LINEBREAK_MODE attribute
determines if the system converts automatic wrapping into an actual line break when the text is
saved in the R/3 System.

You can display methods (including constructors), attributes, and events of a class in
the Class Builder [Ext.] (by using transaction se24 or choosing Development �
Class Builder from within the initial screen of the ABAP Workbench).

Controls Tutorial (BC-CI) SAP AG

Exercise 2: Creating a Control and its Container

18 April 2001

Time of Creation
All methods that operate on a control must be transferred to the frontend by means of a Remote
Function Call (RFC). By calling method CL_GUI_CFW=>FLUSH, you can explicitly determine
when this takes place.

At the end of each PBO module, this method is implicitly called after the screen
fields are transported. This ensures that the methods are transferred to the frontend
before the screen is set up (see also Synchronization of the Automation Queue [Ext.]
in the Control Framework documentation).

The actual parameters of control methods must be valid at the time of transfer. The values of
global system variables change frequently since they are also used in methods and function
modules called. Consequently, they are not suitable as actual parameters.

This is why the repid variable rather than the sy-repid system variable was passed in the
constructor method after it was assigned the current value of the system field. The repid
variable is only visible in the main program and thus remains stable.

Lifetime
All statements are included in an IF block to ensure that the control is instantiated only once and
not each time the PBO module is called.

The lifetime of a control depends on the mode that you can specify in the constructor using
parameter LIFETIME.

In the default setting (IMode mode), controls that you create persist until:

� The internal mode is destroyed in which it was created.

� The container control is destroyed in which it is embedded.

� You call the FREE method of the instance created.

For more information on the lifetime of controls, see Lifetime Management [Ext.] in
the Control Framework documentation.

 SAP AG Controls Tutorial (BC-CI)

Exercise 3: Calling Methods of the Control

April 2001 19

Exercise 3: Calling Methods of the Control
Usage
Once you have created an instance of a control, you affect its behavior by means of methods.
These methods help you to use the functions of the control and determine its properties. In order
to execute control methods, you must normally transfer them to the frontend.

In this exercise, you implement a function that loads a text from an internal table into the text
window.

Procedure
1. To generate a text, declare an internal table and a work area globally in your main program.

Declare also global flag g_loaded:

TYPES: begin of mytable_line,
 line(line_length) type C,
 end of mytable_line.
DATA: MYTABLE TYPE TABLE OF MYTABLE_LINE,
 TEXTSTRUCT TYPE MYTABLE_LINE,
 g_loaded TYPE C.

The line length of the internal table was intentionally set to the position of the line
break in the textedit control (see Exercise 2: Creating a Control and its Container
[Page 14]).

2. Define a text element and have your internal table filled with text in the PBO module. As the
system should do this only once, include your statements in the IF block for creating the
control:

DO 20 TIMES.
 WRITE TEXT-001 TO TEXTSTRUCT-LINE.
 APPEND TEXTSTRUCT TO MYTABLE.
ENDDO.

3. To make the new function accessible, define another pushbutton on screen 100 that has the
following properties:

� Function code: IMP

� Text: Import

� Icon: ICON_IMPORT

4. In the PAI module, determine the function code in the existing CASE statement, and create
subroutine LOAD_TAB:

WHEN 'IMP'.
 PERFORM LOAD_TAB.

5. To load the text of the internal table into the editor, call method set_text_as_r3table in
your subroutine. Flag g_loaded tells you that the text has been loaded:

Controls Tutorial (BC-CI) SAP AG

Summary

20 April 2001

FORM LOAD_TAB.
 call method editor->set_text_as_r3table
 exporting table = mytable
 exceptions
 others = 1.
 if sy-subrc ne 0.
 CALL FUNCTION 'POPUP_TO_INFORM'
 EXPORTING
 TITEL = repid
 TXT2 = ' '
 TXT1 = 'Error in set_text_as_r3table'(600).
 else.
 g_loaded = 'X'.
 endif.
 CALL METHOD CL_GUI_CFW=>FLUSH.
 IF SY-SUBRC NE 0.
 CALL FUNCTION 'POPUP_TO_INFORM'
 EXPORTING
 TITEL = REPID
 TXT2 = sy-subrc
 TXT1 = 'Form LOAD_TAB: Error in FLUSH'(601).
 ENDIF.
ENDFORM. " LOAD_TAB

6. Activate your new objects, and start your program.

Check Your Work
If you click the Import pushbutton you created, twenty lines appear that display the text of text
element TEXT-001. If not, you probably have forgotten to create the text element.

In this exercise, you called a control method within a subroutine. For a discussion of
this subject, see Exercise 3: Control Methods in Subroutines [Page 39].

Summary
In this lesson, you learned that you use a specific class of controls - referred to as container
controls - to integrate controls on a screen. Container controls manage one or more control
instances and represent the link between the control and the screen.

Depending on the control container type, you must define an area in the Screen Painter where
you want to place the container. To instantiate an instance of a control, you must use method
CREATE OBJECT to instantiate an object of the class of the control.

 SAP AG Controls Tutorial (BC-CI)

Lesson 2: Event Handling

April 2001 21

All methods that operate on a control are transferred to the frontend by means of a Remote
Function Call (RFC). You use method FLUSH to determine when this is to be done. In this
context, you must ensure that all actual parameters are still valid at flush time. System fields
must not be passed since they often change at runtime.

Lesson 2: Event Handling
Task
You previously added a function to your editor that allows you to load the contents of an internal
table into the text window. Now, you implement a function that converts a text line into a
comment line when you double-click the line.

Overview: Objectives
In this lesson, you learn how to:

� Register events for a control that you want to catch

� Assign events caught to event handler methods in the ABAP program

� Write event hander methods and declare them to the control.

Basics
The event handling of controls is based on that of ABAP Objects. Generally, you use events in
ABAP Objects to inform objects that a specific state has occurred.

For example, an object may use an event to indicate that:

� The user has clicked an image.

� The user has navigated to a new page in a Web browser.

� The object is ready to output a table on the screen.

The following graphic shows how you can use events in your programs:

Controls Tutorial (BC-CI) SAP AG

Lesson 2: Event Handling

22 April 2001

Instances

A
B

A
P O

bjects
(R

untim
e Environm

ent)

Instantiation
handler

thing

CREATE OBJECT thing.
CREATE OBJECT handler.

SET HANDLER handler->catch_e1
FOR thing.

c_handler

METHODS: catch_e1
FOR EVENT e1 OF c_thing.

c_thing

EVENTS:
e1

DATA:
thing TYPE REF TO c_thing,
handler TYPE REF TO c_handler.

Class Definition

Data Declaration

 SAP AG Controls Tutorial (BC-CI)

Lesson 2: Event Handling

April 2001 23

An event is a component of a class or an interface. Within the methods of the class, you can
trigger defined events using RAISE EVENT.

To be able to respond to an event, you must define a method and link it to the event. It is then
sufficient to trigger the event in order to handle it. These methods are also called event handler
methods. By defining a second class, you can separate these methods from the object that
triggers the event. This way, you can also group together handler methods of a specific type in a
class.

In the above graphic, the event handler method is defined as an instance method. In
this case, you must first instantiate an object of the class to enable the system to call
the method. You can also define the method as a static method of the class. In this
case, you do not need to generate the handler object.

Once the objects have been instantiated, you use the SET HANDLER statement to link the event
handling method to the object in which the event is defined. The runtime environment then
ensures that the method implemented is automatically called at this event.

For more information on event handling, see ABAP Objects [Ext.].

To Continue
Lesson 3: Flush Optimization [Page 30] describes how you use flush calls and how methods are
buffered before they are transferred to the frontend.

Controls Tutorial (BC-CI) SAP AG

Introduction

24 April 2001

Introduction
R/3 Architecture

C
on

tr
ol

 F
ra

m
ew

or
k

Ok Code

Events

Event1

Event2

EventN

...

SAPGUI
Control

REGISTER_EVENT2

Application Server

Class

Method1

Method2

MethodN

...
(Event
Handling)

ABAP Objects
Runtime
Environment

R
A
I
S
E

E
V
E
N
T

E
V
E
N
T
2
.

Explanation
When the control is set to its initial state, the SAPGUI filters all events triggered by the control on
account of user actions. This prevents the connection to the application server from being
excessively strained by permanent events such as mouse movements. Events can only be

 SAP AG Controls Tutorial (BC-CI)

Introduction

April 2001 25

handled if you register selected events using methods of the instance created. The standard
method used is SET_REGISTERED_EVENTS.

For information on which events you can catch on the frontend, see the class
definition of the relevant control in the Class Builder [Ext.].

Once an event is triggered, the SAPGUI encodes this event in the OK code which is transferred
by the frontend to the application server. An event triggered on the frontend first of all has nothing
to do with ABAP Objects events. In order to initiate event handling for this event, the Control
Framework must assign the event to the relevant instance and trigger the event.

There are two ways of processing the triggered event in the ABAP program:

� The Control Framework triggers the event irrespective of the screen flow logic, that is,
without processing the PAI and PBO events. These events are called system events. This
type of event processing is the default setting.

� The Control Framework processes the PAI module after an event. In this case, you must call
method CL_GUI_CFW=>DISPATCH to initiate the event handling of ABAP Objects. These
events are called application events.

You must determine if you need system events or application events for your
application. See Exercise 2: Registering an Application Event [Page 24] and
Exercise 3: Registering a System Event [Page 26] for a discussion of the advantages
and disadvantages.

The method that you linked to the event is then called automatically.

Conclusions
To process events triggered by a control, you must:

� Register the events for the control instance to ensure they are not withheld by the SAPGUI.

� Call static method DISPATCH in the PAI module for application events. This identifies the
events transferred for processing and calls the appropriate event handler methods, if they
exist.

� Define a class with event handler methods. In the methods, you can get additional event
information and affect control behavior.

� Link the events of your control instance to the relevant event handler method. To do this, you
use method SET HANDLER.

Controls Tutorial (BC-CI) SAP AG

Exercise 1: Writing an Event Handler Method

26 April 2001

Exercise 1: Writing an Event Handler Method
Usage
Control events triggered by the user on the frontend are processed on the backend using ABAP
Objects event processing. For each event to which you want to respond you must implement an
event handler method.

Procedure
1. Define a local class before the START-OF-SELECTION event. Implement a method for this

class that is called at the DBLCLICK event. This method only displays the event type in a text
element:

DATA: EVENT_TYPE(20) TYPE C.
CLASS lcl_event_handler DEFINITION.
 PUBLIC SECTION.
 CLASS-METHODS: CATCH_DBLCLICK FOR EVENT DBLCLICK OF CL_GUI_TEXTEDIT.
 IMPORTING SENDER.
ENDCLASS.

DATA: event_handler TYPE REF TO lcl_event_handler.

CLASS lcl_event_handler IMPLEMENTATION.
 METHOD CATCH_DBLCLICK.
 event_type = text-002.
 ENDMETHOD.
ENDCLASS.

Do not forget to define a text such as doubleclick for text element text-002.

2. Create an input/output field on screen 100 in which the event type can be output:

� Name: EVENT_TYPE

� Element type: Input/output field

3. Link the method to the event. To do this, insert the following line of code in the IF block of
the PBO module (the editor object must already have been created):

SET HANDLER lcl_event_handler=>catch_dblclick FOR editor.

4. Activate and start your program.

Check Your Work
The input/output field is not updated when you double-click somewhere in the text window. This
means that the ABAP Objects event is not yet triggered.

Discussion
The steps in this exercise only represent event handling in ABAP Objects and therefore describe
event handling on the backend. Since when the control is set to its initial state all events are

 SAP AG Controls Tutorial (BC-CI)

Exercise 1: Writing an Event Handler Method

April 2001 27

filtered by the SAPGUI, the ABAP event for the double-click cannot be triggered on the backend.
The reason is that the event has not yet been registered on the frontend (see Exercise 2:
Registering an Application Event [Page 24]).

Event Parameter sender
In the definition of the event handler method, event parameter sender is imported. You can
access this parameter at any ABAP Objects event although it is not listed as an event parameter
in the Class Builder. This parameter imports a reference to the instance that has triggered the
event. This reference can then be used directly to call methods of this instance.

The Event Handler Method
Defining the Handler Method as a Static Method

In this exercise, you used the CLASS addition to define the event handler method as a static
method of class CL_GUI_TEXTEDIT. This means that you do not need to instantiate an object of
class lcl_event_handler to be able to call the method.

You use statement SET HANDLER to link static method
lcl_event_handler=>catch_dblclick to event DBLCLICK for instance editor. You can
create additional instances of the textedit control and link them to this method at this event. All
instances registered with SET HANDLER then use the same method that exists only once at
runtime.

Event parameter sender contains a reference to the triggering instance that you can
use to call methods of this instance.

Defining the event handler method as a static method makes sense if all instances of a class
should behave identically at an event.

Defining the Handler Method as an Instance Method
Instance methods offer the advantage that you can create more than one object of your local
class. This is necessary if you want to retain a state (for example, for a static variable) within the
event handler method. If the method is used by several control instances, conflicts may arise if
only one instance of the event handler class exists. In such a case, you should use different
instance methods for different control instances of the same class.

Controls Tutorial (BC-CI) SAP AG

Exercise 2: Registering an Application Event

28 April 2001

Exercise 2: Registering an Application Event
Usage
So that you can respond to events, you must first register the events for the control instance and
consequently on the frontend. When the control is set to its initial state, the SAPGUI filters all
events.

In this exercise, you register event DBLCLICK in the textedit control as an application event.
Initially, you only want to display a text for the event triggered on the screen.

Procedure
1. Declare the following variables in your main program: a) An internal table for the events you

want to register, and b) a structure for one line of this table:
DATA events TYPE cntl_simple_events.
DATA wa_events TYPE cntl_simple_event.

Insert the following lines of code into the IF block of the PBO module after the control is created.

2. Assign the static attribute for event DBLCLICK to field eventid:
wa_events-eventid = cl_gui_textedit=>event_double_click.

3. Using field appl_event, define the event as an application event:
wa_events-appl_event = 'X'.

4. Append this line to your internal table events, and pass this table to the textedit control using
method set_registered_events:

APPEND wa_events TO events.
CALL METHOD editor->set_registered_events
 EXPORTING events = events.

This method is provided by all controls. Depending on the control, there may be
additional methods that you can use to register individual events.

5. In the PAI module, call method DISPATCH in the last query of the CASE statement:

WHEN OTHERS.
 CALL METHOD CL_GUI_CFW=>DISPATCH.

6. Activate and start your program.

Check Your Work
If you double-click in the text window of the editor, the text of text element text-002 is displayed
on the screen.

Discussion
Registering event DBLCLICK means that the frontend transfers double-clicks of the user to the
backend by means of the OK code. Since you registered this event as an application event, the
Control Framework processes the PAI module of the screen concerned. You use method

 SAP AG Controls Tutorial (BC-CI)

Exercise 3: Registering a System Event

April 2001 29

DISPATCH to determine when the event is triggered by ABAP Objects. The runtime environment
then executes method CATCH_DBLCLICK and continues processing after the DISPATCH call.

The DISPATCH call is globally valid for all control instances of the main program
created.

Advantages
� You determine yourself when the event handler method is to be called. To do this, you use

method DISPATCH.

� Since the system processes the PAI module, the field transport between the screen and the
application server has already taken place. This means you can access screen fields in the
event handler method.

Disadvantages
When you use application events, you may encounter problems when you check entries using
the FIELD or CHAIN statement. If entries are not correct, the user may be forced to re-enter the
data. However, in doing this, the user may trigger other events in the control. This way, events
could be lost.

Using method DISPATCH several times does not provide a solution to this problem
since the event handler methods are designed to be called only once.

Exercise 3: Registering a System Event
Usage
System events are passed on irrespective of the flow logic of the relevant screen.

In the previous exercise, you have registered event DLBCLICK as an application event. You now
register this event as a system event.

Procedure
1. Change the value of field wa_events-appl_event in the PBO module:

Controls Tutorial (BC-CI) SAP AG

Exercise 3: Registering a System Event

30 April 2001

wa_events-appl_event = SPACE.

2. Comment out the call of method DISPATCH in the PAI module.

3. Activate and start your program.

Check Your Work
Double-click in the text window. No text is displayed since the flow logic of the screen and the
field transport are ignored.

Discussion
For system events, the PAI/PBO modules are not processed. This has the following
consequences:

Advantages
� Method DISPATCH is called automatically.

� Events cannot be lost, since the flow logic of the screen is not processed. Field checks and
any re-entries that may be required are eliminated and do not conflict with event handling.

Disadvantages
No field transport takes place when the event is triggered. This has the following consequences
for accessing screen fields in event handler methods:

� During read access, obsolete values are accessed. To be more precise: The values of the
last field transport are accessed.

� Write access to input/output fields is lost completely. During the subsequent field transport,
the system overwrites input with the content of the screen field.

This problem does not occur for output-only fields.

This means that as long as you do not access screen fields in read or write mode in an event
handler method, this disadvantage has no effect.

Solution
The Control Framework provides method SET_NEW_OK_CODE. With this method, you can set an
application-specific OK_CODE in an event handler method. After the event handler method, the
Control Framework processes the PAI event in which you can access current screen fields in
read and write mode.

Modify your program as follows:

1. In the event handler method, comment out the line event_type = text-002..

2. In the event handler method, set application-specific OK code SHOW:

CALL METHOD cl_gui_cfw=>set_new_ok_code
 exporting new_code = 'SHOW'.

3. Read the OK code in the PAI module. To do this, add the following lines to your CASE query:

 SAP AG Controls Tutorial (BC-CI)

Exercise 4: Responding to an Event

April 2001 31

when 'SHOW'.
 event_type = 'Doubleclick' (555).

4. Activate and start your program.

The PAI event is now processed after the event handler method, and the text is displayed again.

Exercise 4: Responding to an Event
Usage
In the previous exercise, you have registered an event. You have used the SET HANDLER
statement to link the event handler method to the event. To respond to this event, you only need
to extend the event handler method.

In this exercise, you implement a function that converts a line into a comment line when the line
is double-clicked. If the line is a comment line already, the comment marker at the beginning of
the line is deleted. Implement this function by retrieving additional control information in the event
handler method and using methods to trigger control actions.

Procedure
Add the following code blocks to method catch_dblclick before set_new_ok_code is
called:

1. Read the position of the double-click, and define corresponding local variables in advance:
DATA: FROM_LINE TYPE I,
 FROM_POS TYPE I,
 TO_LINE TYPE I,
 TO_POS TYPE I.
CALL METHOD SENDER->GET_SELECTION_POS
 IMPORTING
 FROM_LINE = FROM_LINE
 FROM_POS = FROM_POS
 TO_LINE = TO_LINE
 TO_POS = TO_POS.

2. Since the text in the text buffer of the editor may have changed, first reload it into your
internal table mytable. Using flag g_loaded, you can determine if any text at all has been
loaded into the text buffer:

IF NOT g_loaded IS INITIAL.
 CALL METHOD SENDER->GET_TEXT_AS_R3TABLE
 importing

Controls Tutorial (BC-CI) SAP AG

Exercise 4: Responding to an Event

32 April 2001

 TABLE = MYTABLE.
ENDIF.

3. Read the line of the internal table that was clicked. Depending on whether the line is marked
as a comment line or not, insert an asterisk or remove it.

READ TABLE MYTABLE INDEX FROM_LINE INTO TEXTSTRUCT.
IF SY-SUBRC = 0.
 IF TEXTSTRUCT+0(1) CS '*'.
 SHIFT TEXTSTRUCT.
 ELSEIF TEXTSTRUCT+0(1) NS '*'.
 SHIFT TEXTSTRUCT RIGHT.
 TEXTSTRUCT+0(1) = '*'.
 ENDIF.

4. Reload the text of the internal table into the editor.
MODIFY MYTABLE FROM TEXTSTRUCT INDEX FROM_LINE.
 CALL METHOD SENDER->SET_TEXT_AS_R3TABLE
 EXPORTING TABLE = MYTABLE
 EXCEPTIONS
 OTHERS = 1.
ENDIF.

5. Transfer the methods to the frontend using command FLUSH.

CALL METHOD cl_gui_cfw=>FLUSH.
IF SY-SUBRC NE 0.
 CALL FUNCTION 'POPUP_TO_INFORM'
 EXPORTING
 TITEL = REPID
 TXT2 = sy-subrc
 TXT1 = 'Method CATCH_DBLCLICK: Error in Flush!'(602).
ENDIF.

6. Activate and start your program.

Check Your Work
To display the generated text of the internal table in the text window, click on pushbutton
Import. If you now double-click a line, an asterisk ('*') appears at the beginning of that line, and
the text is indented to the right. If you double-click the line again, the asterisk is removed.

Discussion
Method get_text_as_r3table loads the text in the text window of the control into internal
table mytable. In the next step, this table is modified. However, from a chronological point of
view, the method should not be executed before flush time. This would mean that the
modification is carried out prematurely. Why does the program behave correctly nevertheless?

The reason is that another control is used when large volumes of data are transferred by control
methods. This control is the Data Provider. Currently, the Data Provider implicitly triggers another
flush to transfer the data.

 SAP AG Controls Tutorial (BC-CI)

Summary

April 2001 33

You can detect any implicit flush in the trace mode. This mode is described in lesson
4 in Exercise 1: Activating the Trace Mode [Page 46].

However, it is not to your disadvantage to define another flush after method
get_text_as_r3table. If a flush is called and no control methods are called before, the
Control Framework does not perform an RFC.

SAP recommends you to use an additional flush call and not to rely on an implicit
flush. This ensures that your programs are more robust. If the implicit flush is
eliminated in later versions of the Data Provider, this will not effect your existing
programs.

The next lesson describes in detail how flush calls are used correctly.

Summary
In lesson 2, you learned how to catch and respond to events of a control. To do this, you must:

� Register the event for the SAPGUI. To do this, you use method set_registered_events.

� Determine if you want to register the event as a system event or an application event.

� Define an event handler method. To do this, you can define a local class in your program, for
example.

� Link the event to the event handler method. To do this, you use statement SET HANDLER.

� Call static method cl_gui_cfw=>DISPATCH in the PAI module for application events.

Controls Tutorial (BC-CI) SAP AG

Lesson 3: Flush Optimization

34 April 2001

Lesson 3: Flush Optimization
Task
In this lesson, you add a function to the text editor that allows you to write-protect text lines in the
editor window.

Overview: Objectives
Optimizing the number of flush calls simply means that you should build as few flush calls as
possible into your programs. However, this implies that you must know at which points in your
program synchronization is absolutely essential.

In the exercises, we therefore present the 'simple' solution first, discuss it with regard to the flush
issue and make suggestions for improvement. If you are aware of the consequences of applying
the "as few flush calls as possible" rule, then you can reduce their number.

In this lesson, you learn:

� In which cases errors might occur if flush calls are used wrongly

� How to reduce the number of flush calls

� How the actual parameters of control methods are handled implicitly.

To Continue
Lesson 4: Testing and Error Handling [Page 44] describes what you must consider when
troubleshooting control programs.

 SAP AG Controls Tutorial (BC-CI)

Introduction

April 2001 35

Introduction
R/3 Architecture

Application Server

SAPGUI
Control

ABAP Program
CALL METHOD inst->m1

...

CALL METHOD inst->m2

...

CALL METHOD inst->m3

CALL METHOD inst->flush Automation Queue
m1 1m2 2m3 3

Explanation
At its interface, the control wrapper class provides methods for operating on the control.
However, calling a method does not imply that the method is automatically executed at runtime.
Initially, the system buffers methods in a queue, referred to as the Automation Queue, when they

Controls Tutorial (BC-CI) SAP AG

Introduction

36 April 2001

are called in the ABAP program. The execution sequence of the methods therefore remains
unchanged. However, the methods are only executed if they are transferred to the frontend via
Remote Function Call (RFC) using method FLUSH. This means that the Automation Queue is
used to reduce the number of RFC calls required.

Due to the buffering of control methods in the Automation Queue, the method calls and the
remaining ABAP code are executed at different times. Method FLUSH thus determines a
synchronization point.

For reasons of optimization, the Control Framework may not transfer the Automation
Queue although you have called method FLUSH. This makes sense, for example, if
the queue is empty or contains only methods with EXPORTING parameters. For more
information, see Using Controls in the WAN [Ext.] in the Control Framework
documentation.

Type of Parameter Passing
Robust control programming depends on the Automation Queue concept. If a method is added to
the queue, there are two ways how the Control Framework can save the method parameters:

� The values of the actual parameters are added to the queue (call by value).

� The references to the actual parameters are added to the queue (call by reference).

You cannot influence how actual parameters are buffered. In most cases, you pass
actual parameters of control methods by reference. The Control Framework then
decides on the buffering type using optimization aspects as a basis. Actual
parameters declared as value parameters at the method interface are generally
passed by value.

Call by Reference
The Framework stores the reference to an actual parameter in the queue if the variable was
imported during the method call, that is, returned to the program. If more methods with the same
parameter are added to the queue, they are also stored by reference.

The Framework recognizes identical references in the queue and links them by a parameter
reference:

 SAP AG Controls Tutorial (BC-CI)

Introduction

April 2001 37

Automation QueueABAP Program
 CALL METHOD
 inst->method1
 IMPORTING M1_PAR1 = VAR1.

 CALL METHOD
 inst->method2
 EXPORTING M2_PAR1 = VAR1.

CALL METHOD editor->flush

...

method1 value1

method2 value1

Parameter
Reference

...

This means: Values of variables imported in the program during a method call can be exported
within the queue during subsequent method calls. It is not necessary to return control to the
backend. Due to this mechanism, the number of RFC calls can be reduced, improving
performance.

Call by Value
In all other cases, the Control Framework stores the values of the actual parameters in the
Automation Queue. The value that is passed is determined before the flush call.

Conclusions
An RFC call represents a bottleneck in the connection to the frontend. Consequently, you should
keep the number of flush calls in your programs to a minimum.

Since the method calls and the remaining chunks of source code are executed at different times,
wrong synchronization might have the following consequences:

� The values of imported variables are not current (which affects conditional queries) or are
modified prematurely (so that any changes are overwritten). This is the case if the
Automation Queue is processed too late by a flush call.

� A change made to a variable becomes ineffective between two method calls if the first
method imports and the second method exports the change. The reason is that the variable
is passed within the Automation Queue.

Controls Tutorial (BC-CI) SAP AG

Exercise 1: Using Imported Values

38 April 2001

� Actual parameters passed by reference are no longer valid. This is the case if the method
was called in a subroutine and the FLUSH method was only called after the end of the
subroutine.

The exercises in this lesson serve as a basis for discussing the flush issue.

Exercise 1: Using Imported Values
Usage
Before you respond to user actions, you usually check the current status of the control. To do
this, you use control methods that pass values to your program. If you change or read these
values, you must be sure to use the current values after the method call. This depends on the
correct flush time.

In this exercise, you implement a function that allows the user to protect selected lines. To do
this, you determine the selected area using method GET_SELECTION_POS and then protect this
area using method PROTECT_LINES.

Procedure
1. Create a pushbutton on your screen with the following properties:

� Function code: PROTECT

� Icon name: ICON_LOCKED

In the next steps, you add more lines to the CASE block in the PAI module:

2. Declare global variables for the selection area, and a run index:
WHEN 'PROTECT'.
 DATA: FROM_IDX TYPE I,
 TO_IDX TYPE I,
 INDEX TYPE I.

3. Determine the area selected by the user with the mouse:
CALL METHOD EDITOR->GET_SELECTION_POS
 IMPORTING
 FROM_LINE = FROM_IDX
 TO_LINE = TO_IDX

 SAP AG Controls Tutorial (BC-CI)

Exercise 1: Using Imported Values

April 2001 39

exceptions
 ERROR_CNTL_CALL_METHOD = 1.

4. Synchronize execution in the control with your ABAP program:
CALL METHOD cl_gui_cfw=>FLUSH.
IF SY-SUBRC NE 0.
 CALL FUNCTION 'POPUP_TO_INFORM'
 EXPORTING
 TITEL = REPID
 TXT2 = sy-subrc
 TXT1 = 'PAI USER_COMMAND_100(1): Error in
Flush!'(603).
ENDIF.

Without this synchronization, variables FROM_IDX and TO_IDX have obsolete values
in the following IF query (initial value of both is 0).

5. Protect the lines selected by means of a loop. To do this, add one method call for each line to
the Automation Queue and flush them afterwards:

LOOP AT MYTABLE INTO TEXTSTRUCT.
 IF (SY-TABIX >= FROM_IDX AND SY-TABIX <= TO_IDX).
 INDEX = SY-TABIX.
 CALL METHOD EDITOR->PROTECT_LINES
 EXPORTING
 FROM_LINE = INDEX
 TO_LINE = INDEX
 ENABLE_EDITING_PROTECTED_TEXT = cl_gui_textedit=>true.
 endif.
ENDLOOP.
CALL METHOD cl_gui_cfw=>FLUSH.
IF SY-SUBRC NE 0.
 CALL FUNCTION 'POPUP_TO_INFORM'
 EXPORTING
 TITEL = REPID
 TXT2 = sy-subrc
 TXT1 = 'PAI USER_COMMAND_100(2): Error in
Flush!'(604).
ENDIF.

Using method PROTECT_LINES is rather naive. It would be easier to just use a
method call where you pass from_idx and to_idx. The example is designed to
make you aware of the special effects involved in control programming.

6. Activate your new objects, and start your program.

Controls Tutorial (BC-CI) SAP AG

Exercise 1: Using Imported Values

40 April 2001

Check Your Work
Import your internal table by choosing the pushbutton you created in a previous exercise. If you
place your cursor on a line and click your new pushbutton, the line is highlighted in gray and can
no longer be modified. Using the left mouse button, you can select an entire area to write-protect
multiple lines.

Discussion
Synchronization after method call GET_SELECTION_POS is absolutely essential for this solution.
As a test, comment out the FLUSH statement and check the values of the from_idx and
to_idx variables in the debugger. The runtime behavior is as follows (due to space restrictions,
the graphic does not show parameter ENABLE_EDITING_PROTECTED_TEXT of method
PROTECT_LINES):

 SAP AG Controls Tutorial (BC-CI)

Exercise 1: Using Imported Values

April 2001 41

ABAP Program

 LOOP AT mytable INTO textstruct.
 IF (SY-TABIX >= FROM_IDX
 AND SY-TABIX <= TO_IDX).
 INDEX = SY-TABIX.

 CALL METHOD
 EDITOR->GET_SELECTION_POS
 IMPORTING FROM_LINE = FROM_IDX
 TO_LINE = TO_IDX.

 CALL METHOD
 EDITOR->PROTECT_LINES
 EXPORTING FROM_LINE = INDEX
 TO_LINE = INDEX.

CALL METHOD editor->flush

 ENDIF.

ENDLOOP.

Runtime Behavior

Time

...

Point of

Synchronization

Controls Tutorial (BC-CI) SAP AG

Exercise 2: Value Passing Between Methods

42 April 2001

If there is no FLUSH after GET_SELECTION_POS is called, the values of from_idx and to_idx
are checked prematurely. When the PAI module is processed for the first time, both variables are
initial. Due to the loop condition, no PROTECT_LINES method call is added to the Automation
Queue. If the function is called again afterwards, the loop condition is always checked against
obsolete values. In this case, although lines are protected, these are only those of the most
recent call.

You can eliminate the second flush in this exercise, if you use method
PROTECT_SELECTION. This way, you do not need to read the line numbers of the
selected area.

Values in the Automation Queue
There is no method in this example that is called before PROTECT_LINES in the same queue and
imports actual parameter INDEX. This is why the Control Framework buffers the actual
parameters of the methods as values in the queue. The next exercise provides an example
where the Framework stores actual parameter references in the Automation Queue.

Exercise 2: Value Passing Between Methods
Usage
Method parameters that are passed by reference (call by reference) can be passed on in the
Automation Queue. Thus methods can use return values of preceding methods in the queue.

For this exercise, we have designed an example in which this option is not desired. You
implement a query that disallows users to protect the first visible line in the text window. If they
attempt to do this, users should get an error message.

Procedure
In the PAI module, insert the following lines of code before the LOOP AT mytable INTO
textstruct line, and create the text element with an appropriate error message:

CALL METHOD EDITOR->GET_FIRST_VISIBLE_LINE
 IMPORTING
 LINE = INDEX
 EXCEPTIONS

 SAP AG Controls Tutorial (BC-CI)

Exercise 2: Value Passing Between Methods

April 2001 43

 ERROR_CNTL_CALL_METHOD = 1.
IF FROM_IDX = INDEX.
 MESSAGE i208(00) WITH TEXT-003.
 EXIT.
ENDIF.

Check Your Work
Start your program, import the internal table and select any area you like on the text window.
However, rather than displaying an error message, the system protects the first visible line.

Discussion
There are two reasons for this wrong behavior: First, the INDEX variable is used multiple times,
and second, the methods are executed at different times (due to space restrictions, the graphic
does not show parameter ENABLE_EDITING_PROTECTED_TEXT of method PROTECT_LINES):

Controls Tutorial (BC-CI) SAP AG

Exercise 2: Value Passing Between Methods

44 April 2001

ABAP Program

IF FROM_IDX = INDEX.
 MESSAGE E208(00) WITH TEXT-003.
ENDIF.

LOOP AT mytable INTO textstruct.
 IF (SY-TABIX >= FROM_IDX
 AND SY-TABIX <= TO_IDX).

 CALL METHOD
 EDITOR->get_first_visible_line
 IMPORTING LINE = index.

 CALL METHOD
 EDITOR->PROTECT_LINES
 EXPORTING FROM_LINE = INDEX
 TO_LINE = INDEX.

CALL METHOD editor->flush

 ENDIF.
ENDLOOP.

Runtime Behavior

Time

...

Point of

Synchronization

index=0

index=2

index=2

index=2

index=2

 INDEX = SY-TABIX.

index=1

index=2

…

index=n

 SAP AG Controls Tutorial (BC-CI)

Exercise 2: Value Passing Between Methods

April 2001 45

Reading the Imported Value
The fact that the error message fails to appear has the following reason: In the IF query, INDEX
still has its initial value of 0 since the get_first_visible_line method is only executed at
flush time. This is why the error message is not displayed. Any time the user retries to protect
lines, INDEX always has the value of the most recent CASE branch processing run. This effect
has been described in the previous exercise.

Passing Parameters Within the Automation Queue
The fact that the wrong lines are protected has the following reason: In the loop, one or more
PROTECT_LINES method calls are added to the Automation Queue, depending on the values of
the FROM_IDX and TO_IDX variables. The actual parameters are stored as references since the
get_first_visible_line method has previously imported the same INDEX parameter. At
runtime, INDEX is then passed on to the actual parameters of the PROTECT_LINES method.

The Automation Queue does not adopt the reference parameter values until flush time. This is
why the INDEX = SY-TABIX assignment does not have any practical effect. In addition, the
actual parameters of method PROTECT_LINES are overwritten after
get_first_visible_line returns the value of LINE.

Generally, the capability of the Automation Queue to pass on reference parameters
reduces the number of flush calls. We recommend that you use this feature as
comprehensively as possible to enhance performance.

Solution
If you do not want to pass on the return value of a method within the Automation Queue, you can:

� Introduce another variable, or

� Use another flush.

The get_selection_pos and get_first_visible_line method calls are independent of
each other. Therefore, add both to the Automation Queue. To do this, move the flush call that
comes after the GET_SELECTION_POS method before the IF block for displaying the message.

Then, the selected lines are protected, and the error message created is displayed as a dialog
box for the first visible line.

Controls Tutorial (BC-CI) SAP AG

Exercise 3: Control Methods in Subroutines

46 April 2001

Exercise 3: Control Methods in Subroutines
Usage
You can also call the methods of a control in a subroutine or in a method. This way, you can
isolate a specific function and improve the program structure.

In this exercise, you combine method calls for checking the control status in a subroutine.

Procedure
1. In the PAI module, call subroutine get_lines in branch CASE in which you determine

function code PROTECT. Pass parameters from_idx, to_idx and index by reference:

WHEN 'PROTECT'.
 DATA: FROM_IDX TYPE I,
 TO_IDX TYPE I,
 INDEX TYPE I.
 PERFORM GET_LINES CHANGING FROM_IDX TO_IDX INDEX.

2. Create the subroutine, and move the GET_SELECTION_POS and
GET_FIRST_VISIBLE_LINE method calls into this subroutine.

Ensure that the formal parameters of get_lines are identical to the actual
parameters of the methods copied.

Check Your Work
The behavior of your program does not change, but the code structure of your program has
improved.

Discussion
Methods GET_SELECTION_POS and GET_FIRST_VISIBLE_LINE import values into actual
parameters from_idx, to_idx and index. The Control Framework stores references to these
parameters when it buffers the methods in the Automation Queue.

Reference Parameters of the Subroutine
The values are assigned to the actual parameters at flush time. In our example, this does not
take place within the subroutine. This is rather astonishing since the actual parameters of the
methods must be valid at flush time. However, the reference of a parameter in the subroutine
turns invalid after the program has ended. Nevertheless, no runtime error occurs.

The reason is that the reference parameters of subroutines are passed on to the Automation
Queue (if USING and CHANGING are used). This means that the references are still known when
the Automation Queue is flushed.

 SAP AG Controls Tutorial (BC-CI)

Exercise 4: Using Multiple Controls

April 2001 47

Using global variables as actual parameters of control methods is another feasible
solution. However, you are not recommended to do this since programs with global
variables are more complex.

Value Parameters of Subroutines
Actual parameters from_idx, to_idx and index are reused in the PAI module after the
subroutine has been processed. In our example, we could therefore not pass the subroutine
parameters by call by value - in this case, the return values of methods GET_SELECTION_POS
and GET_FIRST_VISIBLE_LINE would be lost.

As a test, we will nevertheless pass one of these parameters by value. To do this, change the
form definition as follows:
FORM GET_LINES CHANGING VALUE(FROM_IDX) TO_IDX INDEX.

Start your program and try to protect a line. The program terminates with a runtime error. The
reason is that method GET_SELECTION_POS uses local variable FROM_IDX in the form which is
not valid at flush time - that is, outside the form.

This problem occurs only if the actual parameters of the control methods are stored
as references in the Automation Queue.

This means: If you use use local variables in a subroutine that are held as references in the
Automation Queue, a flush call is required in the subroutine.

Exercise 4: Using Multiple Controls
Usage
You can create multiple controls of the same type or of a different type in your program. In this
exercise, you create a second editor window that is designed to be used as a clipboard for short
texts.

For a detailed description on creating controls, see Exercise 2: Creating a Control
and its Container [Page 14] in the first lesson.

Controls Tutorial (BC-CI) SAP AG

Exercise 4: Using Multiple Controls

48 April 2001

Procedure
1. Create a new reference variable scratch to the class of the textedit control, and reference

variable custom_container2 for the custom container control in your main program:

DATA: scratch TYPE REF TO cl_gui_textedit,
 custom_container2 TYPE REF TO cl_gui_custom_container.

2. Create a new container MYCONTAINER2 for a custom control on your screen.

3. Create the control (including the custom container control) at PBO time and hide the status
bar. To do this, insert the following lines of code into IF block IF EDITOR IS INITIAL:

 CREATE OBJECT custom_container2
 EXPORTING
 CONTAINER_NAME = 'MYCONTAINER2'
 EXCEPTIONS
 CNTL_ERROR = 1
 CNTL_SYSTEM_ERROR = 2
 CREATE_ERROR = 3
 LIFETIME_ERROR = 4
 LIFETIME_DYNPRO_DYNPRO_LINK = 5.

 CREATE OBJECT SCRATCH
 EXPORTING
 parent = custom_container2
 WORDWRAP_MODE = CL_GUI_TEXTEDIT=>WORDWRAP_AT_WINDOWBORDER
 WORDWRAP_TO_LINEBREAK_MODE = CL_GUI_TEXTEDIT=>TRUE.
 CALL METHOD SCRATCH->SET_STATUSBAR_MODE
 exporting
 STATUSBAR_MODE = CL_GUI_TEXTEDIT=>FALSE.

4. Activate your new objects, and start your program.

Check Your Work
In the second container, the system displays a text editor without a status bar. Using the Copy
function of the first editor and the Paste function of the second editor, you can copy text into the
second window.

Discussion
In the PBO module, you create multiple controls and call additional control methods. Transferring
methods to the frontend only requires synchronization at PBO end. This means the methods of
two different instances use the same Automation Queue.

Basically, there is one Automation Queue for each internal mode. In this queue, the
system buffers method calls of all control instances that were created in the same
internal mode.

 SAP AG Controls Tutorial (BC-CI)

Summary

April 2001 49

Theoretically, you can buffer as many method calls in the queue as you like. However, the
system limits the runtime for RFC calls. If this limit is exceeded, you must introduce additional
points of synchronization, since otherwise the backend terminates the connection. Generally, this
is not due to the number of RFC calls, but to the data volume to be transferred in such a call
(long texts, for example).

Strategy
Especially if you use multiple controls, you can apply a certain strategy to reduce the number of
flush calls. In many cases, you must retrieve the control properties with GET methods before you
can determine control behavior with SET methods. Since you need the current values in your
ABAP program after a GET method, a flush is indispensable (see also Exercise 1: Using Imported
Values [Page 34]). In case of several GET calls independent of each other, you best proceed as
follows:

1. Bundle all GET calls in your source code.

2. Call method FLUSH to transfer the methods to the frontend, and import the values of the GET
calls.

3. Read these values, and call all SET methods in a second block.

Grouping calls thus allows you to optimize performance.

Summary
In this lesson, you have learned that the control methods are buffered in an Automation Queue.
Basically, the queue has the following properties:

� The Control Framework transfers the queue to the frontend if you call method
CL_GUI_CFW=>FLUSH.

� There is one Automation Queue for each internal mode. This means that you can buffer
methods of different control instances in a queue.

� The Control Framework stores the actual parameters as references or values in the
Automation Queue.

� Actual parameters are stored as references in the queue if the method has return values or if
the actual parameter was returned before in a previous call of the queue. In all other cases,
the Framework stores the actual parameters as values in the queue.

The last two points are important for determining the correct flush time and reusing variables that
are used as actual parameters:

Controls Tutorial (BC-CI) SAP AG

Lesson 4: Testing and Error Handling

50 April 2001

� If you have used variables for the return values of control methods, you should only reuse
these as actual parameters for the succeeding control methods.

� Do not use system variables as actual parameters.

� If you determine control values in subroutines, you must absolutely perform a flush when you
use local variables. The following table gives you a short summary:

Essential Synchronization Before Exiting Subroutines

Type of storage in
Automation Queue:

Local variable in subroutine
or
Pass by value()

Global variable in
subroutine
or
Pass by reference

As value Flush not absolutely required. Flush not absolutely required.

As reference Flush absolutely required
before subroutine is exited
and before EXIT.

Flush not absolutely required.

Lesson 4: Testing and Error Handling
Task
Display the methods that are transferred in the Automation Queue.

Overview: Objectives
In this lesson you learn what you must be aware of when debugging programs that use controls,
and which features and options the ABAP Workbench provides for troubleshooting.

See also Automation Queue Services [Ext.] in the Control Framework documentation.

 SAP AG Controls Tutorial (BC-CI)

Introduction

April 2001 51

Introduction
R/3 Architecture

Application Server

SAPGUI
Control

ABAP Program
CALL METHOD inst->m1

...

CALL METHOD inst->m2

...

CALL METHOD inst->m3

CALL METHOD inst->flush

Automation
Queue

m1

m2

m3

Terminated

Completed
successfully

Explanation
After the Control Framework has transferred the methods via Remote Function Call (RFC) to the
SAPGUI, they are executed one after the other. If a method causes a runtime error on the

Controls Tutorial (BC-CI) SAP AG

Exercise 1: Activating the Trace Mode

52 April 2001

frontend, method processing terminates. This means that both the method that caused the error
and all subsequent methods stop executing.

From the backend point of view, an error does not occur until the FLUSH method is called since
the control methods are only buffered but not executed before.

The section on Error Handling in Case of Synchronization [Ext.] in the Control
Framework documentation provides more detailed information on error handling in
connection with implicit flush calls.

Conclusion
If a flush call triggers an exception, it is not yet obvious which method in the Automation Queue
caused the error. This is why you cannot catch these runtime errors dynamically and respond to
them. At flush time, you only know that an error has occurred, but not where it occurred.

Exercise 1: Activating the Trace Mode
Usage
To keep track of the method calls added to the Automation Queue, you can use the trace mode.
All Automation calls are written to a file with their parameters and result values and displayed on
a dialog box. For example, this helps you analyze which queue method called has caused an
error.

Procedure
1. Choose Options in the configuration menu:

 SAP AG Controls Tutorial (BC-CI)

Exercise 1: Activating the Trace Mode

April 2001 53

The system displays a screen with tabs for the general options.

2. Choose the Trace tab.

3. To set the trace mode, choose Disable first.

4. Select the Automation checkbox, and choose a display level using one of the Trace Level
radio buttons.

If you choose level 1, the system displays all Automation calls including parameters
and result values. If you choose level 2, the tables of the Automation Queue are
additionally displayed.

5. Enter a name for the trace file where you want to save the information.

The file is created on your local PC in directory C:\sappcadm.

6. To track trace information during program execution, select Show Window.

7. Choose Enable.

The system opens an additional window to display Automation calls.

8. Save your data by choosing OK.

Check Your Work
Start your program. In the trace window, you see how your method calls are passed on via the
Automation Queue to the Automation Controller. If you have specified a file name, you can find
the same text there.

Controls Tutorial (BC-CI) SAP AG

Exercise 2: Synchronous Method Processing

54 April 2001

Transfer of the methods listed is indicated by a horizontal line in the trace run. This
means that a flush has been triggered for these methods. You can also use the trace
run for flush optimization.

Exercise 2: Synchronous Method Processing
Usage
As a result of the delay between control method call and control method execution, any error on
the frontend only occurs at flush time. However, if synchronization takes place after each control
method, you can determine which method terminates processing.

The debugger settings allow you to enable automatic synchronization after each control method.
In debugging mode, the system then executes a flush call after each control call. If a runtime
error occurs, the call is displayed that caused the error.

Yet the debugger setting for synchronous method processing is not only relevant to determining
the termination point. If you track the flow of your program in the debugger without synchronous
processing, the control methods are only buffered, but not yet executed. As a result, you lose Sy-
Subrc. What is more, variables imported through the methods do not yet have current values.

In some cases, your program may not run correctly with synchronous processing.
Frequently, the reason is a missing explicit flush call.

Procedure
1. In the ABAP Debugger, choose Settings.

2. In the debugger settings section, select Automation Controller: Always process requests
synchronously.

3. Activate the trace mode (see Exercise 1: Activating the Trace Mode [Page 46]).

Check Your Work
In the trace run, you see that a flush is performed after each control method.

 SAP AG Controls Tutorial (BC-CI)

Summary

April 2001 55

Summary
The ABAP Workbench provides the following capabilities for debugging programs that use
controls:

� The trace mode allows you to keep track of the control methods transferred in the
Automation Queue, and check if they were executed successfully. The synchronization
points are identified by a horizontal line.

� By setting an indicator in the debugger, you can process Automation calls synchronously. If a
runtime error occurs, the relevant control method is specified as the termination point.

Additional Sources of Information
General documentation:

� SAP Control Framework [Ext.]

� SAP Container [Ext.]

Class documentation for Basis controls:

� SAP HTML Viewer Control [Ext.]

� SAP Picture Control [Ext.]

� SAP TextEdit Control [Ext.]

� SAP Tree Control [Ext.]

	Copyright
	Icons
	Contents
	Controls Tutorial (BC-CI)
	What are Controls?
	Who Has to Deal With Controls?
	Users...
	Application Developers...
	Developers of the Wrapper Class...
	Control Developers...

	Whom Helps this Tutorial?

	BC - Component Integration: Controls Tutorial
	Notes to the User
	Prerequisites
	System Configuration
	Frontend Platform
	Controls Version

	Architecture
	R/3 Architecture
	Explanation

	Lesson 1: Creating a Custom Control
	Task
	Overview: Objectives
	Basics
	To Continue

	Introduction
	R/3 Architecture
	Explanation
	Conclusions

	Exercise 1: Reserving an Area for a Control
	Prerequisites
	Procedure
	Check Your Work

	Exercise 2: Creating a Control and its Container
	Prerequisites
	Procedure
	Check Your Work
	Discussion
	Attributes
	Time of Creation
	Lifetime

	Exercise 3: Calling Methods of the Control
	Usage
	Procedure
	Check Your Work

	Summary
	Lesson 2: Event Handling
	Task
	Overview: Objectives
	Basics
	To Continue

	Introduction
	R/3 Architecture
	Explanation
	Conclusions

	Exercise 1: Writing an Event Handler Method
	Usage
	Procedure
	Check Your Work
	Discussion
	Event Parameter sender
	The Event Handler Method
	Defining the Handler Method as a Static Method
	Defining the Handler Method as an Instance Method

	Exercise 2: Registering an Application Event
	Usage
	Procedure
	Check Your Work
	Discussion
	Advantages
	Disadvantages

	Exercise 3: Registering a System Event
	Usage
	Procedure
	Check Your Work
	Discussion
	Advantages
	Disadvantages
	Solution

	Exercise 4: Responding to an Event
	Usage
	Procedure
	Check Your Work
	Discussion

	Summary
	Lesson 3: Flush Optimization
	Task
	Overview: Objectives
	To Continue

	Introduction
	R/3 Architecture
	Explanation
	Type of Parameter Passing
	Call by Reference
	Call by Value

	Conclusions

	Exercise 1: Using Imported Values
	Usage
	Procedure
	Check Your Work
	Discussion
	Values in the Automation Queue

	Exercise 2: Value Passing Between Methods
	Usage
	Procedure
	Check Your Work
	Discussion
	Reading the Imported Value
	Passing Parameters Within the Automation Queue
	Solution

	Exercise 3: Control Methods in Subroutines
	Usage
	Procedure
	Check Your Work
	Discussion
	Reference Parameters of the Subroutine
	Value Parameters of Subroutines

	Exercise 4: Using Multiple Controls
	Usage
	Procedure
	Check Your Work
	Discussion
	Strategy

	Summary
	Lesson 4: Testing and Error Handling
	Task
	Overview: Objectives

	Introduction
	R/3 Architecture
	Explanation
	Conclusion

	Exercise 1: Activating the Trace Mode
	Usage
	Procedure
	Check Your Work

	Exercise 2: Synchronous Method Processing
	Usage
	Procedure
	Check Your Work

	Summary
	Additional Sources of Information

