
SAP Control Framework

H
E

L
P

.B
C

C
IG

O
F

Re lease 4 .6C

SAP Control Framework SAP AG

2 April 2001

Copyright

© Copyright 2001 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose
without the express permission of SAP AG. The information contained herein may be changed
without prior notice.

Some software products marketed by SAP AG and its distributors contain proprietary software
components of other software vendors.

Microsoft®, WINDOWS®, NT®, EXCEL®, Word®, PowerPoint® and SQL Server® are registered
trademarks of
Microsoft Corporation.

IBM®, DB2®, OS/2®, DB2/6000®, Parallel Sysplex®, MVS/ESA®, RS/6000®, AIX®, S/390®,
AS/400®, OS/390®, and OS/400® are registered trademarks of IBM Corporation.

ORACLE® is a registered trademark of ORACLE Corporation.

INFORMIX®-OnLine for SAP and Informix® Dynamic Server
TM

 are registered trademarks of
Informix Software Incorporated.

UNIX®, X/Open®, OSF/1®, and Motif® are registered trademarks of the Open Group.

HTML, DHTML, XML, XHTML are trademarks or registered trademarks of W3C®, World Wide
Web Consortium,
Massachusetts Institute of Technology.

JAVA® is a registered trademark of Sun Microsystems, Inc.

JAVASCRIPT® is a registered trademark of Sun Microsystems, Inc., used under license for
technology invented and implemented by Netscape.

SAP, SAP Logo, R/2, RIVA, R/3, ABAP, SAP ArchiveLink, SAP Business Workflow, WebFlow,
SAP EarlyWatch, BAPI, SAPPHIRE, Management Cockpit, mySAP.com Logo and mySAP.com
are trademarks or registered trademarks of SAP AG in Germany and in several other countries
all over the world. All other products mentioned are trademarks or registered trademarks of their
respective companies.

 SAP AG SAP Control Framework

April 2001 3

Icons

Icon Meaning

Caution

Example

Note

Recommendation

Syntax

SAP Control Framework SAP AG

4 April 2001

Contents

SAP Control Framework .. 6
Control Framework Architecture .. 8
Event Handling ... 10

Registering and Processing Events .. 13
Context Menu.. 15
Drag and Drop... 17

Process Flow of a Drag and Drop Operation... 18
Drag and Drop Events ... 20
Example of Drag and Drop Programming.. 22
Drag and Drop in WAN Environments ... 27

Lifetime Management... 28
Automation Queue ... 30

Synchronizing the Automation Queue .. 32
Error Handling in Synchronization... 34
Automation Queue Services ... 36

Using Controls in a WAN... 42
Creating a Control: SAP Picture Example ... 44
Methods of Class CL_GUI_CFW ... 46
dispatch... 47
flush ... 48
get_living_dynpro_controls .. 49
set_new_ok_code... 50
update_view.. 51
Methods of Class CL_GUI_OBJECT... 52
is_valid .. 53
free ... 54
Methods of Class CL_GUI_CONTROL ... 55
constructor.. 56
finalize ... 58
set_registered_events ... 59
get_registered_events ... 60
is_alive... 61
set_alignment ... 62
set_position .. 63
set_visible ... 64
get_focus... 65
set_focus... 66
get_height ... 67
get_width... 68
Methods of the Class CL_DRAGDROP .. 69
constructor.. 70
add ... 71

 SAP AG SAP Control Framework

April 2001 5

clear ... 73
destroy... 74
get .. 75
get_handle... 77
modify.. 78
remove... 80
Methods of the Class CL_DRAGDROPOBJECT.. 81
set_flavor... 82
abort... 83

SAP Control Framework SAP AG

SAP Control Framework

6 April 2001

SAP Control Framework
Purpose
In the R/3 System, you can use ABAP to control desktop applications (custom controls). The
application logic runs on the R/3 application server (automation client), which drives the custom
control (automation server) at the frontend.

The SAPgui (SAPGUI.APPLICATION) functions as a container for custom controls at the
frontend. A custom control can be either an ActiveX control or a JavaBean.

The following graphic illustrates an SAP Tree Control in use together with an SAP Textedit
Control:

Features
The Control Framework supports controls (ActiveX and JavaBeans) that are implemented within
the SAPgui.

The Automation Controller communicates with a single control (SAPGUI.APPLICATION), which
itself is a container for further controls.

The Automation Controller is run from ABAP using the classes CL_GUI_CFW, CL_GUI_OBJECT,
and CL_GUI_CONTROL. These allow you to create and destroy custom controls, set and get their
attributes, and call their methods.

 SAP AG SAP Control Framework

SAP Control Framework

April 2001 7

To assure adequate performance in the client/server environment, the system provides a buffer
mechanism called the automation queue, which buffers a series of method calls to different
instances of custom controls before sending them all to the frontend in a single step.

Events that are triggered in a custom control are processed in two steps:

� Irrelevant events are filtered out.

� Relevant events are forwarded to the application server. An ABAP Objects event is then
triggered, returning control to the ABAP program, which can then react to the event.

The lifetime of a control is regulated by the lifetime management. Lifetime management
automatically destroys controls at the frontend when they are no longer needed. However, you
can, of course, destroy a control explicitly in your application program.

Constraints
Certain methods and events in some of the individual controls are not supported in the SAPGUI
for HTML environment. Others are only available in a restricted form. For precise details, refer to
the individual control documentation.

SAP Control Framework SAP AG

Control Framework Architecture

8 April 2001

Control Framework Architecture
In the R/3 System, you can use ABAP to control desktop applications (custom controls). The
application server is the automation client, which drives the custom controls (automation server)
at the frontend. The SAPgui (SAPGUI.APPLICATION) serves as a container for the custom
controls.

The following graphic illustrates the elements and the communication channels between them:

SAPgui

Application server

Custom Control 1

Custom Control 2
Instances

EventsAutomation
Controller

GUI RFCOK_CODE

Application
program

OO Control
Framework

Events

Instances

Automation Queue

Automation Queue

Automation Controller
The automation controller is the central instance at the frontend. It administers all instances of
custom controls.

The Automation Controller also contains a list of the events that a custom control can trigger (see
Event Handling [Page 10]).

All communication between the controls at the frontend and the application program at the
backend runs through the Automation Controller.

ABAP Objects Control Framework
The ABAP Objects Control Framework has a similar function at the backend to that of the
Automation Controller at the frontend. All method calls from an application program to a custom
control run through the Control Framework. In order to avoid each method call establishing a
separate connection to the frontend, the method calls are buffered in the automation queue. The
automation queue is not sent to the frontend until you reach a synchronization point (see
Automation Queue [Page 30]).

 SAP AG SAP Control Framework

Control Framework Architecture

April 2001 9

Like the Automation Controller, the Control Framework has a list of control events. This list also
contains the corresponding handler methods that need to be called when the event occurs (see
Event Handling [Page 10]).

The Control Framework also maintains a list of the control instances you have created. This list
is the basis for the lifetime management of controls (see Lifetime Management [Page 28]).

SAP Control Framework SAP AG

Event Handling

10 April 2001

Event Handling
Use
In an application program, the user can trigger events in a custom control. Control then returns
to the application program, which can react to the events.

Typical events are, for example, double-clicking and dragging and dropping.

Integration
As already mentioned in the Control Framework Architecture [Page 8] section, both the
Automation Controller and the ABAP Objects Control Framework administer tables of control
events. These tables have to be constructed by the application program. The event table at the
frontend contains control instances and events. The event table at the backend also contains the
ABAP handler method registered for the events.

You construct the tables using a special ABAP Objects Control Framework method (control-
>set_registered_events). When you register the event, you must specify whether the
event is to be processed as a system event or as an application event.

� System event: A system event is triggered before any automatic field checks (for example,
required fields) have taken place on the screen, and before any field transport. The PAI and
PBO events are not triggered. Consequently, you cannot access any values that the user
has just changed on the screen. Furthermore, there is no field transport back to the screen
after the event, so values that you have changed in the event handling are not updated on
the screen.

The handler method that you defined for the event is called automatically by the system.
However, you can use the method set_new_ok_code [Page 49] to set a new value for
the OK_CODE field. This then triggers the PAI and PBO modules, and you can evaluate
the contents of the OK_CODE field as normal in a PAI module.

� Application event: This event is processed in the PAI event. Consequently, all field checks
and field transport has taken place. If you want the event handler method to be called at a
particular point in your application program, you must process the event using the static
method CL_GUI_CFW=>DISPATCH.

You must set a handler method for the event in your application program using the ABAP
statement SET HANDLER. You define the handler method in your program as a method of a
(local) class. It is up to you whether you define the handler method as an instance method or a
static method.

 SAP AG SAP Control Framework

Event Handling

April 2001 11

SAPgui

Application server

Control

Automation Controller

OO Control Framework
Events:
Event Control Behandler
Double-click Control DoubleClick

Application program
CALL METHOD

control->set_registered_events

Events:
Event Control
Double-click Control

SET HANDLER handler->DoppelKlick
FOR control.

Features
When an event is triggered on a custom control, the Automation Controller checks whether the
event is registered in its events table. If the event is not registered, the Automation Controller
ignores it. If, on the other hand, it is registered, the Automation Controller generates an
OK_CODE that it then passes to the ABAP Objects Control Framework.

The registered handler method for the event is then called - either directly (for a system event) or
when you call the static method CL_GUI_CFW=>DISPATCH (for an application event). The
handler method receives the event parameter sender. This contains the object reference of the
control that triggered the event.

To process an application event, you must call the static method CL_GUI_CFW=>DISPATCH
within a PAI module.

The OK_CODE of an event is "spent" after the method CL_GUI_CFW=>DISPATCH has
been called. Consequently, you cannot trigger the handler method for a second time
by calling the dispatch method twice.

You can find out whether the event was successfully passed to a handler method by
querying the parameter RC of the method CL_GUI_CFW=>DISPATCH [Page 46].

SAP Control Framework SAP AG

Event Handling

12 April 2001

SAPGUI

Application server

Control

Automation Controller

OO Control Framework
Events:
Event Control Behandler
Double-click Control DoubleClick

Application program
CLASS lcl_handler IMPLEMENTATION.

Events:
Event Control
Double-click Control

METHOD DoubleClick.
* DO SOMETHING
ENDMETHOD.
ENDCLASS.

Event
double-click

of control
Control

 SAP AG SAP Control Framework

Registering and Processing Events

April 2001 13

Registering and Processing Events
Purpose
The event mechanism of the Control Framework allows you to use handler methods in your
programs to react to events triggered by the control (for example, a double-click).

Prerequisites
The following description has been generalized to apply to all custom controls. For more
information specific to a particular control, refer to that control's documentation.

Process Flow
1. Assume you are working with a custom control that has the ABAP wrapper cl_gui_xyz.

DATA my_control TYPE REF TO cl_gui_xyz.

Registering Events with the Control Framework
2. Define an internal table (type cntl_simple_events) and a corresponding work area (type

cntl_simple_event).

DATA events TYPE cntl_simple_events.
DATA wa_events TYPE cntl_simple_event.

3. Now fill the event table with the relevant events. To do this, you need the event ID
(event_id field). You can find this information in the Class Browser by looking at the
attributes of the class cl_gui_xyz. You must also decide whether the event is to be a
system event (appl_event = ' ') or an application event (appl_event = 'X').

wa_events-eventid = event_id.
wa_events-appl_event = appl_event.
APPEND wa_events TO events.

4. You must now send the event table to the frontend so that it knows which events it has to
direct to the backend.

CALL METHOD my_control->set_registered_events
 events = events.

To react to the events of you custom control, you must now specify a handler method for it. This
can be either an instance method or a static method.

Processing an Event Using an Instance Method
5. Define the (local) class definition for the event handler. To do this, specify the name of the

handler method (Event_Handler). You need to look at the class for the custom control
cl_gui_xyz in the Class Browser to find out the name of the event (event_name) and its
parameters (event_parameter). There is also a default event parameter sender, which is
passed by all events. This contains the reference to the control that triggered the event.

CLASS lcl_event_receiver DEFINITION.
PUBLIC SECTION.
METHODS Event_Handler
 FOR EVENT event_name OF cl_gui_xyz

SAP Control Framework SAP AG

Registering and Processing Events

14 April 2001

 IMPORTING event_parameter
 sender.
ENDCLASS.

6. Register the handler methods with the ABAP Objects Control Framework for the events.

DATA event_receiver TYPE REF TO lcl_event_receiver.
CREATE OBJECT event_receiver.
SET HANDLER event_receiver->Event_Handler
 FOR my_control.

Processing an Event Using a Static Method
7. Define the (local) class definition for the event handler. To do this, specify the name of the

handler method (Event_Handler). You need to look at the class for the custom control
cl_gui_xyz in the Class Browser to find out the name of the event (event_name) and its
parameters (event_parameter).

CLASS lcl_event_receiver DEFINITION.
PUBLIC SECTION.
CLASS-METHODS Event_Handler
 FOR EVENT event_name OF cl_gui_xyz
 IMPORTING event_parameter
 sender.
ENDCLASS.

8. Register the handler methods with the ABAP Objects Control Framework for the events.

SET HANDLER lcl_event_receiver=>Event_Handler
 FOR my_control.

Processing Control Events
9. You define how you want the system to react to an event in the implementation of the

handler method.

CLASS lcl_event_receiver IMPLEMENTATION.
METHOD Event_Handler.
* Event processing
ENDMETHOD
ENDCLASS.

10. If you registered your event as an application event, you need to process it using the method
CL_GUI_CFW=>DISPATCH. For further information, refer to Event Handling [Page 10].

 SAP AG SAP Control Framework

Context Menu

April 2001 15

Context Menu

Context menus are not supported within SAPGUI for HTML.

Use
The context menu (right-hand mouse button or SHIFT+F10) allows you to display a context-
sensitive menu. The context is defined by the position of the mouse pointer when the user
requests the menu.

A context menu allows the user to choose functions that are relevant to the current context.

Features
If you want to provide a context menu in a custom control, you must register the event that is
triggered when the user clicks the right mouse button (context_menu). The event triggered
when the user chooses an entry from the context menu (context_menu_selected) is either
registered directly by the control wrapper (for example, SAP Tree), or must be registered
explicitly (SAP Picture).

If the user requests a context menu for an object, the application program is called using the
normal event mechanism [Page 10]. In the event handler method for the context_menu event,
the program receives a menu reference as an event parameter. The program uses the menu
reference to construct the required menu. You can either predefine a context menu using the
Menu Painter, or construct one dynamically in your program. The context menu is displayed
automatically after the event handler method.

The above description does not apply to the SAP Picture. In the SAP Picture, the
menu reference is not passed as an event parameter.

When the user chooses an entry from the context menu, a further event is triggered, which is
passed to the application program. Accordingly, you must register a further handler method for
this event. Use the handler method to analyze the function code. This is passed to the method
as an event parameter.

Activities
� You register for the event context_menu and context_menu_selected using the

set_registered_events [Page 58] method. The identification of the event depends on the
control that you are using. This is described in the relevant control documentation.

� You must also define event handler methods for both events in your application.

The SAP Tree is an exception in terms of registering events. In the SAP Tree, you
only have to register the event context_menu. The event
context_menu_selected is automatically registered by the control wrapper.

SAP Control Framework SAP AG

Context Menu

16 April 2001

Constructing a Context Menu
When you implement the handler method for the event context_menu, you must assign the
menu to the control. You may need to check the particular context in which the user requested
the context menu.

You construct the context menu using class CL_CTMENU. Almost all control wrappers pass a
context menu object as an event parameter of the context_menu event. If this is not the case
(for example, SAP Picture), you must create an object of the class CL_CTMENU.

You can use the following methods with the context menu object:

Method Description

LOAD_GUI_STATUS Loads a context menu that you have already defined in the Menu
Painter (see below)

ADD_FUNCTION Adds a function

ADD_MENU Adds a menu that you defined in the Menu Painter

ADD_SUBMENU Adds a menu that you defined in the Menu Painter as a submenu

ADD_SEPARATOR Adds a separator

RESET Reset to initial value

HIDE FUNCTIONS Hides a function

SHOW_FUNCTIONS Shows a function

DISABLE_FUNCTIONS Inactivates a function

ENABLE_FUNCTIONS Activates a function

The context menu is displayed automatically after the event handler method. The SAP Picture
Control and SAP Toolbar Control are an exception to this. With these controls, you must display
the context menu explicitly using the method display_context_menu [Ext.].

Evaluating the Function Code
You interpret the user's choice from the context menu in the handler method for the event
context_menu_selected. You can identify and react to this choice using the function code.

 SAP AG SAP Control Framework

Drag and Drop

April 2001 17

Drag and Drop
Use
Drag and drop allows the user to select an object from one part of a custom control (source) and
drop it on another part of a custom control (target). An action occurs in the second part that
depends on the object type. Source and target may be either the same control or different
controls.

Prerequisites
For a control to support drag and drop, the control wrapper must provide drag and drop events.
You must then write handler methods for these events in your program. The events are
registered automatically by the relevant control wrapper.

Features
A particular drag and drop behavior is set for each custom control. This behavior may be set
globally for all elements of the control (for example, SAP Textedit), or you may be able to define
a different behavior for each component (for example SAP Tree). Each behavior consists of one
or more descriptions.

A description has the following attributes:

� DragSrc: Object is the source of a drag and drop procedure

� DropTarget: Object is the target of a drag and drop procedure

� Flavor: The flavor describes the type of a drag and drop description. In a drag and drop
operation, you can only drop an object onto another if both have at least one common
description.

� Effect: Specifies whether the drag and drop operations copies or moves the object.

� Effect_In_Ctrl: The drop effect used when you copy or move data within the same control.

As soon as a drag event is triggered, you must use the corresponding handler method to find out
the affected object.

You must also define the action that is to be carried out on the drop event. The action usually
depends on the object that you drop in the control.

If you assign more than one flavor to an object, you must define which flavor is to be used. You
do this in the handler for another event.

Once the drop event is finished, you can use a further event to implement additional actions.
This is particularly useful for deleting the dropped object from the source after a move operation.

Activities
Whenever you provide a drag and drop function to move objects, you should always provide an
Undo function as well. You must implement this yourself in the application.

SAP Control Framework SAP AG

Process Flow of a Drag and Drop Operation

18 April 2001

Process Flow of a Drag and Drop Operation
Prerequisites
The following section explains how a drag and drop operation works, examining into the roles of
the application server and frontend, and going on to identify the individual steps required to
program drag and drop in an application.

Process Flow
Application Server
1. You create the custom control [Page 43].

2. You register the drag and drop events [Page 20].

3. You define the drag and drop behavior for the individual custom controls or their
components. To do this, you create an instance [Page 69] of the class CL_DRAGDROP
[Page 68]. You then assign one or more flavors [Page 70] to this instance. These describe
the drag and drop behavior of the relevant custom control. During the program, you can
change [Page 77], delete [Page 79], and query [Page 74] the flavors in your program. You
can also initialize [Page 72] or destroy [Page 73] the entire instance.

4. You assign flavors to the custom control using specific methods of the relevant control. For
further information, refer to the corresponding control documentation.

Frontend
The following steps are performed by the system at the frontend. They are only listed here so
that you can understand what happens during a drag and drop operation.

5. Once the use has selected an object with the left mouse button, the drag and drop service
starts.

6. The drag and drop service checks whether a drag and drop behavior has been defined for
the object, and whether the object can be dragged (DragSource attribute).

7. If, according to the DragSource attribute, the object can be dragged, the drag and drop
operation starts. The mouse pointer then changes automatically.

8. As long as the left mouse button remains pressed, the system continually checks whether the
mouse pointer is positioned over an object in a custom control that can receive a dropped
object (DropTarget attribute), and whether the flavor of that object is the same as the flavor of
the source. If this is the case, the mouse pointer changes again to inform the user.

9. If the user now drops the object, an event is triggered to inform the application server.

This concludes the drag and drop operation for the frontend. However, there has not
yet been any change to the contents of the custom control.

Application Server
10. The drag and drop service of the application server creates an instance of the class

CL_DRAGDROPOBJECT [Page 80]. You can use this instance (for example,

 SAP AG SAP Control Framework

Process Flow of a Drag and Drop Operation

April 2001 19

drag_drop_object) in all events of the drag and drop process as an event parameter. You
can use it to find out the context between the events.

11. The drag and drop service checks whether the drag object and drop object have more than
one flavor in common. If this is the case, the event ONGETFLAVOR is triggered. In the
corresponding handler method, you must decide which flavor to use. You do this using the
method set_flavor [Page 81].

12. Now, the drag and drop event ONDRAG is triggered. It has event parameters that tell you
which object the user has dragged. Within the handler routine, you must pass the context
(information about the source object) to the instance of the drag and drop data object created
in step 9.
drag_drop_object->object = mydragobject.

13. Next, the ONDROP event is triggered. The corresponding handler method serves to process
the drag and drop data object. Here, you have to implement the changes that are to be
made to the target object based on the drag and drop operation.

14. The last event of the drag and drop operation is ONDROPCOMPLETE. This is where you can
make your last changes to the drag and drop object. In particular, you should use this event
to delete the source object from the DragSource control and the corresponding data
structures if you have used the drag and drop operation to move the object.

The Example of Drag and Drop Programming [Page 22] contains an example of a
drag and drop operation between a SAP Tree and a SAP Textedit.

SAP Control Framework SAP AG

Drag and Drop Events

20 April 2001

Drag and Drop Events
This section only describes those properties of drag and drop events that apply to all controls.
The individual control wrappers may augment them. You should therefore consult the relevant
control documentation to see if that control has any peculiarities.

Use
There are four standard events in a drag and drop operation at which control is returned to the
application program. You use the event handler methods for these events to implement the
actions that should be performed during the operation.

Some control wrappers offer additional drag and drop events. For further
information, refer to the documentation of the individual controls.

Prerequisites
To be able to react to an event, you must first register it. Unlike normal event handling, you do
not register drag and drop events with the Control Framework using the set_registered_events
[Page 58] method Instead, they are registered automatically by the wrapper of the control that
you are using.

However, you still have to specify handler methods for the events.

DATA tree TYPE REF TO cl_gui_simple_tree.
SET HANDLER dragdrop=>on_drag FOR tree.

The events are always registered as system events.

Features
In a drag and drop operation, the Control Framework does not pass any events to the application
server until the object is dropped. At the application server, it is separated into up to four
standard events that can occur within a drag and drop operation, as described in Process Flow of
a Drag and Drop Operation [Page 18]. All events have a drag and drop data object as an event
parameter. You use this parameter to manage the context of the drag and drop operation. The
particular control wrapper that you are using also provides further information about the drag and
drop context. For further information, refer to the documentation of the relevant control wrapper.

� ONGETFLAVOR: This event is only triggered if the source and target objects have more than
one flavor in common. In the handler method, you must then specify which flavor should be
used. To do this, use the set_flavor [Page 81] method on the drag and drop object.
The event is triggered by the target object of the drag and drop operation.

� ONDRAG: This event is triggered when the drag and drop operation is complete at the
frontend. When you handle this event, you must determine the context of the target object.
You then pass this context to the instance of the class CL_DRAGDROPOBJECT that you
received as an event parameter.
The event is triggered by the source object of the drag and drop operation.

� ONDROP: When you handle this event, you define what should be done to the target object.
To do this, use the event parameter for the context that you filled in the ONDRAG event. In
this event, you must remember the following:

 SAP AG SAP Control Framework

Drag and Drop Events

April 2001 21

� Within the ONDROP event, you must make a dynamic typecast. You must catch all
possible exceptions of the typecast. In the exception handling you must include handling
for the case where you try to assign an invalid object. In this case, you must use the
abort [Page 82] method to terminate the drag and drop processing.

� You should select the flavor you want to use so that it is possible to assign the drag and
drop object to the right TypeCast.

The event is triggered by the target object of the drag and drop operation.

� ONDROPCOMPLETE: Use this event to perform any further processing necessary after the end
of the drag and drop operation. For example, this would be necessary following a move
operation.
The event is triggered by the source object of the drag and drop operation.

SAP Control Framework SAP AG

Example of Drag and Drop Programming

22 April 2001

Example of Drag and Drop Programming
This example program uses a SAP Simple Tree Control and a SAP Textedit Control. The aim is
to enable the user to move texts from the tree control into the textedit control.

The example has the program name RSDEMO_DRAG_DROP_EDIT_TREE.

&---
*& Report RSDEMO_DRAG_DROP_EDIT_TREE *&
--
REPORT rsdemo_drag_drop_edit_tree .
DATA ok_code TYPE sy-ucomm.
DATA node_itab LIKE node_str OCCURS 0.
DATA node LIKE node_str.
DATA container TYPE REF TO cl_gui_custom_container.
DATA splitter TYPE REF TO cl_gui_easy_splitter_container.
DATA right TYPE REF TO cl_gui_container.
DATA left TYPE REF TO cl_gui_container.
DATA editor TYPE REF TO cl_gui_textedit.
DATA tree TYPE REF TO cl_gui_simple_tree.
DATA behaviour_left TYPE REF TO cl_dragdrop.
DATA behaviour_right TYPE REF TO cl_dragdrop.
DATA handle_tree TYPE i.
--
* CLASS lcl_treeobject DEFINITION
* container class for drag object
--
CLASS lcl_drag_object DEFINITION.
 PUBLIC SECTION.
 DATA text TYPE mtreesnode-text.
ENDCLASS.

* CLASS dragdrop_receiver DEFINITION
* event handler class for drag&drop events

CLASS lcl_dragdrop_receiver DEFINITION.
 PUBLIC SECTION.
 METHODS:
 flavor_select FOR EVENT on_get_flavor OF cl_gui_textedit
 IMPORTING index line pos flavors dragdrop_object,
 left_drag FOR EVENT on_drag OF cl_gui_simple_tree
 IMPORTING node_key drag_drop_object,
 right_drop FOR EVENT ON_DROP OF cl_gui_textedit
 IMPORTING index line pos dragdrop_object,
 drop_complete FOR EVENT on_drop_complete OF cl_gui_simple_tree
 IMPORTING node_key drag_drop_object.
ENDCLASS.
START-OF-SELECTION.
 CALL SCREEN 100.
&---
*& Module START OUTPUT
&---
MODULE start OUTPUT.

 SAP AG SAP Control Framework

Example of Drag and Drop Programming

April 2001 23

 SET PF-STATUS 'BASE'.
 IF container is initial.
 CREATE OBJECT container
 EXPORTING container_name = 'CONTAINER'.
 CREATE OBJECT splitter
 EXPORTING parent = container
 orientation = 1.
 left = splitter->top_left_container.
 right = splitter->bottom_right_container.
 CREATE OBJECT editor
 EXPORTING parent = right.
 CREATE OBJECT tree
 EXPORTING parent = left
 node_selection_mode = tree->node_sel_mode_single.
* Definition of drag drop behaviour for tree
 CREATE OBJECT behaviour_left.
 CALL METHOD behaviour_left->add
 EXPORTING
 flavor = 'Tree_move_to_Edit'
 dragsrc = 'X'
 droptarget = ' '
 effect = cl_dragdrop=>copy.
 CALL METHOD behaviour_left->add
 EXPORTING
 flavor = 'Tree_copy_to_Edit'
 dragsrc = 'X'
 droptarget = ' '
 effect = cl_dragdrop=>copy.
 CALL METHOD behaviour_left->get_handle
 IMPORTING handle = handle_tree.
* Drag Drop behaviour of tree control nodes are defined in the node
* structure
 PERFORM fill_tree.
 CALL METHOD tree->add_nodes
 EXPORTING node_table = node_itab
 table_structure_name = 'NODE_STR'.
* Definition of drag drop behaviour for tree
 CREATE OBJECT behaviour_right.
 CALL METHOD behaviour_right->add
 EXPORTING
 flavor = 'Tree_move_to_Edit'
 dragsrc = ' '
 droptarget = 'X'
 effect = cl_dragdrop=>copy.
 CALL METHOD behaviour_right->add
 EXPORTING
 flavor = 'Tree_copy_to_Edit'
 dragsrc = ' '
 droptarget = 'X'
 effect = cl_dragdrop=>copy.
 CALL METHOD editor->set_dragdrop
 EXPORTING dragdrop = behaviour_right.

SAP Control Framework SAP AG

Example of Drag and Drop Programming

24 April 2001

* registration of drag and drop events

 SET HANDLER dragdrop=>flavor_select FOR editor.
 SET HANDLER dragdrop=>left_drag FOR tree.
 SET HANDLER dragdrop=>right_drop FOR editor.
 SET HANDLER dragdrop=>drop_complete for TREE.
 ENDIF.
ENDMODULE. " START OUTPUT
&---
*& Module EXIT INPUT
&---
MODULE exit INPUT.
 LEAVE PROGRAM.
ENDMODULE. " EXIT INPUT
&---
*& Form fill_tree
&---
FORM fill_tree.
 DATA: node LIKE mtreesnode.
 CLEAR node.
 node-node_key = 'Root'.
 node-isfolder = 'X'.
 node-text = 'Text'.
 node-dragdropid = ' '.
 APPEND node TO node_itab.
 CLEAR node.
 node-node_key = 'Child1'.
 node-relatkey = 'Root'.
 node-relatship = cl_gui_simple_tree=>relat_last_child.
 node-text = 'DragDrop Text 1'.
 node-dragdropid = handle_tree. " handle of behaviour
 APPEND node TO node_itab.
 CLEAR node.
 node-node_key = 'Child2'.
 node-relatkey = 'Root'.
 node-relatship = cl_gui_simple_tree=>relat_last_child.
 node-text = 'DragDrop Text 2'.
 node-dragdropid = handle_tree. " handle of behaviour
 APPEND node TO node_itab.
ENDFORM. " fill_tree
&---
*& Module USER_COMMAND_0100 INPUT
&---
MODULE user_command_0100 INPUT.
 CALL METHOD cl_gui_cfw=>dispatch.
ENDMODULE. " USER_COMMAND_0100 INPUT
--
* CLASS DRAGDROP_RECEIVER IMPLEMENTATION
--
CLASS lcl_dragdrop_receiver IMPLEMENTATION.
 METHOD flavor_select. " set the right flavor
 IF line > 5.
 SEARCH flavors FOR 'Tree_move_to_Edit'.

 SAP AG SAP Control Framework

Example of Drag and Drop Programming

April 2001 25

 IF sy-subrc = 0.
 CALL METHOD dragDROP_OBJECT->SET_FLAVOR

 EXPORTING newflavor = 'Tree_move_to_Edit'.
 ELSE.
 CALL METHOD dragdrop_object->abort.
 ENDIF.
 ELSE.
 SEARCH flavors FOR 'Tree_copy_to_Edit'.
 IF sy-subrc = 0.
 CALL METHOD dragdrop_object->set_flavor
 EXPORTING newflavor = 'Tree_copy_to_Edit'.
 ELSE.
 CALL METHOD dragdrop_object->abort.
 ENDIF.
 ENDIF.
 ENDMETHOD.
 METHOD left_drag. " define drag object
 DATA drag_object TYPE REF TO lcl_drag_object.
 READ TABLE node_itab WITH KEY node_key = node_key
 INTO node.
 CREATE OBJECT drag_object.
 drag_object->text = node-text.
 drag_drop_object->object = drag_object.
ENDMETHOD.
 METHOD right_drop. " action in the drop object
 DATA textline(256).
 DATA text_table LIKE STANDARD TABLE OF textline.
 DATA drag_object TYPE REF TO lcl_drag_object.
 CATCH SYSTEM-EXCEPTIONS move_cast_error = 1.
 drag_object ?= dragdrop_object->object.
 ENDCATCH.
 IF sy-subrc = 1.
 " data object has unexpected class
 " => cancel Drag & Drop operation
 CALL METHOD dragdrop_object->abort.
 EXIT.
 ENDIF.
 CALL METHOD editor->get_text_as_stream
 IMPORTING text = text_table.
* Synchronize Automation Queue after Get Methods
 CALL METHOD cl_gui_cfw=>flush.
 textline = drag_object->text.
* Insert text in internal table
 INSERT textline INTO text_table INDEX 1.
* Send modified table to frontend
 CALL METHOD editor->set_text_as_stream
 EXPORTING text = text_table
 EXCEPTIONS error_dp = 1
 error_dp_create = 2.
 ENDMETHOD.
 METHOD drop_complete. " do something after drop
 IF drag_drop_object->flavor = 'Tree_move_to_Edit'.

SAP Control Framework SAP AG

Example of Drag and Drop Programming

26 April 2001

 CALL METHOD tree->delete_node
 EXPORTING node_key = node_key.
 delete node_itab where node_key = node_key.

 ENDIF.
 ENDMETHOD.
ENDCLASS.

 SAP AG SAP Control Framework

Drag and Drop in WAN Environments

April 2001 27

Drag and Drop in WAN Environments
In a drag and drop operation, each flavor of each instance of the class CL_DRAGDROP brings a
communication overhead of between 20 and 70 bytes. As long as you do not have too many
instances of the class CL_DRAGDROP (<100), this is not a problem. Furthermore, this
communication overhead occurs only once.

The Only Rule You Must Observe:
You must not create a separate instance of the class CL_DRAGDROP for each drag and drop-
enabled object. Instead, all objects with the same behavior should share a single instance.

SAP Control Framework SAP AG

Lifetime Management

28 April 2001

Lifetime Management
Use
The lifetime management controls the lifetime of a custom control at the frontend. When a
control reaches the end of its lifetime, the R/3 System automatically destroys it at the frontend.
The methods free [Page 53] and finalize [Page 57] are called by the system for the control.
However, you can also destroy a control yourself by calling these methods in your program.

Features
You set the lifetime of a control when you create the control instance. There are two possible
settings:

� my_control->lifetime_imode: The control remains alive for the lifetime of the internal
session (that is, until a statement such as leave program or leave to transaction)
The statements set screen 0. leave screen. only destroy the internal session if no
more screen instances exist (for example, created using call screen). After this, the
finalize [Page 57] method is called.

� my_control->lifetime_dynpro: The control remains alive for the lifetime of the screen
instance, that is, for as long as the screen remains in the stack. After this, the free [Page 53]
method is called.

Using this mode automatically regulates the visibility of the control. Controls are only
displayed when the screen on which they were created is active. When other screens are
active, the controls are hidden.

� my_control->lifetime_default: If you create the control in a container, it inherits the
lifetime of the container. If you do not create the control in a container (for example, because
it is a container itself), the lifetime is set to my_control->lifetime_imode.

When you specify the lifetime of a control, it may be shorter, but never longer, than
that of its container.

An instance of a screen is defined as follows:

An instance is created when a screen is placed on the screen stack (for example,
using call screen 100 (starting at…), or call transaction), or when it
is the defined next screen in a screen sequence (whether set statically or
dynamically).

An instance is destroyed when the next screen is a screen other than that of the
current instance (set screen 200 or set screen 0).

The lifetime of a control is specified in the attribute my_control->lifetime.

You can use the method is_alive [Page 60] to find out if an instantiated control still exists at the
frontend. The method get_living_dynpro_controls [Page 48] returns a list of all controls that
currently exist on the frontend.

 SAP AG SAP Control Framework

Lifetime Management

April 2001 29

SAP Control Framework SAP AG

Automation Queue

30 April 2001

Automation Queue
Use
 Communication between the Automation Controller and the ABAP Objects Control Framework
uses GUI RFC calls.

SAPgui

Application server

Custom Control 1

Custom Control 2
Instances

EventsAutomation
Controller

GUI RFCOK_CODE

Application
program

OO Control
Framework

Events

Instances

Automation Queue

Automation Queue

To minimize the network load between the backend and frontend, calls from the backend to the
frontend are buffered and sent to the frontend in a single batch at defined synchronization points.
A synchronization point occurs when you use a method call that is not buffered or explicitly call
the generic synchronization method (CALL METHOD cl_gui_cfw=>flush). For further
information, refer to Synchronizing the Automation Queue [Page 32].

Communication is based on Remote Function Call. It is synchronous, which means that there is a
Remote Function Call at each synchronization point. Due to the architecture of the R/3 System,
these RFC calls may not exceed a certain length, otherwise the connection between the
presentation server and the application server will be automatically terminated.

 Buffering operations improves performance considerably, since every non-buffered operation
results opens a new RFC communication with the frontend. However, you should use buffered
operations with care, particularly buffered read operations, since mistakes can lead to runtime
errors. For further information, refer to Error Handling [Page 34].

Performance Notes
In analyzing performance, you should above all consider the number of synchronization points.
In the screen flow logic, the automation queue is always synchronized after the PBO.

 SAP AG SAP Control Framework

Automation Queue

April 2001 31

However, since you can only handle errors after the synchronization point, you need to strike a
balance between optimal performance and ensuring that you handle errors adequately.

If you are working with large quantities of data, you must also be careful that the connection
between the application server and presentation server is not terminated due to a timeout. If the
connection does time out, you must build additional synchronization points into your application.

For information about tools to support your performance optimization, refer to Automation Queue
Services [Page 36].

Prerequisites
 There are three kinds of control wrapper methods:

� Methods that always synchronize the automation queue before they end.

� Methods that never synchronize the automation queue. In this case, the programmer is
responsible for synchronizing the buffer.

� Methods in which you can specify whether the buffer should be synchronized by passing a
parameter value.

Features
 Buffered operations are collected in the automation queue. Each internal session has a single
automation queue for all of its custom controls. When you synchronize the automation queue, its
contents are passed to the frontend and executed there. The result is then returned to the
backend.

Suppose you call a method of the SAP Tree control to set the selected node.

The method places two operations in the automation queue: Op_Tree_1 and
Op_Tree_2.

You then call a method of a SAP Textedit Control to display the selected text (without
flushing). The method places the operation Op_Textedit_1 in the queue.

The queue now looks like this:

Op_Tree_1

Op_Tree_2

Op_TextEdit_1

If you now synchronize the automation queue, it is transferred to the frontend, and
the method calls are executed on the appropriate controls.

SAP Control Framework SAP AG

Synchronizing the Automation Queue

32 April 2001

Synchronizing the Automation Queue
Purpose
The automation queue plays a central part in communication between the OO Control
Framework and the Automation Server. It contains the buffered automation calls, and sends
them from the backend to the frontend at special synchronization points. Once the automation
queue has been processed at the frontend, the result is sent back to the backend.

The number of synchronization points is critical for the performance of your application. You can
use the Automation Trace and the Performance Monitor to track this. Both tools are described in
the Automation Queue Services [Page 36] section.

Process Flow
At certain points, the automation queue is automatically synchronized by the system:

� At the end of every PBO event:

The synchronization does not take place until after field transport to the screen.
Consequently, the results of method calls that are processed by the automatic
synchronization do not appear on the screen.

� After a handler event for a system event [Page 10] has been processed.

You can also synchronize the automation queue manually, using the method flush [Page 47] of
class CL_GUI_CFW.

If you program carefully, you can allow the last explicit synchronization to be carried
out implicitly by the system.

Using Buffered Operations to Improve Performance
 In general, you can improve the performance of your controls by applying the following
processing sequence. Its aim is to split the calls to all existing controls into two groups for each
PBO/PAI step:

� Get control attributes

� Buffered method calls to get all control attributes that you require

� Synchronize the automation queue

� Processing / calculations

� Set control attributes

� Buffered method calls to set the control attributes

� Synchronize the automation queue

As a result of this, you only need two synchronizations for all of your controls. However, you may
need to repeat the "Get control attributes" part. For example, if you need a piece of information

 SAP AG SAP Control Framework

Synchronizing the Automation Queue

April 2001 33

before you can decide what other information you require, you would need to get the information
in two stages.

Buffered Method Calls to Get Control Attributes
When you use buffered method calls to get control attributes, you must note the following: The
addresses of the ABAP variables into which the values are to be written are noted in the
automation queue. The values are not passed to the variables until the synchronization. The
addresses of the variables must remain valid up to this point. If a local variable no longer exists
(for example, a local variable in a subroutine), the synchronization will cause a runtime error.
The problem with this kind of error is that it does not show up in the Debugger, even when you
select the setting Automation Controller: Always process requests synchronously.

Using global variables does not solve the problem either. Firstly, it is not good programming
style. Secondly, if you synchronize too late, the application will not be working with up-to-date
values.

The safe solution is to query the control attributes in a subroutine that synchronizes
the automation queue at the end and at every exit.
When you process events, it is a good idea to get the attributes of the control that
triggered the event and then to synchronize the automation queue.

(Pseudosyntax): Suppose you want to read the selected node of a tree control and
the selected text of a textedit control.

FORM GET_CONTROL_PROPERTIES.
DATA: tree_selected_node, combobox_selected_node.
CALL METHOD tree->GET_SELECTED_NODE

IMPORTING
NODE_KEY = tree_selected_node

 <Error handling>
CALL METHOD textedit-> GET_SELECTION_POS

IMPORTING
FROM_LINE = from_line

 FROM_POS = from_pos
 TO_LINE = to_line
 TO_POS = to_pos.
<Error handling>

CALL METHOD CL_GUI_CFW=>FLUSH
<Error handling>
ENDFORM.

SAP Control Framework SAP AG

Error Handling in Synchronization

34 April 2001

Error Handling in Synchronization
Purpose
You cannot analyze an error in an automation call until after the synchronization point. The
following example illustrates the problems that this can cause:

1. Suppose you call the methods set_registered_events, add_column,
add_nodes_and_items, and expand_nodes one after the other.
The method call for add_nodes_and_items contains an error.

2. Now you synchronize the automation queue using the method cl_gui_cfw=>flush.
This sends the automation queue to the frontend and processes it.

3. The first two methods are processed with no problems.

4. However, in the third method, an error occurs. Once the error occurs, the automation queue
processing is terminated, and an error is returned to the backend.

5. The exception cntl_error of method cl_gui_cfw=>flush is triggered.
Consequently, you cannot immediately identify the method in which the error occurred.

In this case, you should use the Debugger [Page 36] and select the setting
Automation Controller: Always process requests synchronously. You will then be
able to see that the error is triggered in the method add_nodes_and_items.

This is particularly critical when the system synchronizes the automation queue. To
allow you to handle the error in your program, the system triggers the system event
flush_error. You should always register this event. If you do not, an error log is
displayed.

Process Flow
To register the event flush_error, you must:

1. Create a (local) class for event handling.

2. Define an event handler method for the event flush_error of class cl_gui_cfw. The
event returns information about the context in which the error occurred.
Example (implemented as a static method):

--
* CLASS lcl_event_handler DEFINITION
--
CLASS lcl_event_handler DEFINITION.
 PUBLIC SECTION.
 class-METHODS
 error FOR EVENT flush_error OF cl_gui_cfw
 IMPORTING DYNPRO_PROGRAM DYNPRO_NUMBER SITUATION.

 SAP AG SAP Control Framework

Error Handling in Synchronization

April 2001 35

ENDCLASS.

Event Parameters

Parameters Description

DYNPRO_PROGRA
M

Name of the program in which the error occurred

DYNPRO_NUMBER Number of the screen on which the error occurred

SITUATION Error in automation queue synchronization triggered by the system
occurred in:

cl_gui_cfw=>flush_situation_pbo: Synchronization after the
PBO

cl_gui_cfw=>flush_situation_system_events:
Synchronization after a system event

3. Implement the event handler method. In it, you should analyze the context information:

--
* CLASS lcl_event_handler IMPLEMENTATION
- --
CLASS lcl_event_handler IMPLEMENTATION.
 METHOD error.
<do something>
 ENDMETHOD.
ENDCLASS.

4. Register the event at the OO Control Framework:

SET HANDLER lcl_event_handler=>error.

Once the event has been triggered, you should never try to continue working with the
controls, since further errors could occur. You should therefore end your program
with a controlled termination.

SAP Control Framework SAP AG

Automation Queue Services

36 April 2001

Automation Queue Services
Use
The following services are available to help you use controls in your applications:

Debugger: For identifying errors

Performance display: Performance optimization

Automation Trace: Finding synchronization points

Features
Debugger
If you use buffered operations on your controls, an error in a method call will not become visible
until you synchronize the automation queue. Therefore, when you are debugging a program, it
makes sense to synchronize the automation queue after every method call. You can do this by
selecting the option Automation Controller: Always process requests synchronously in the
Debugger. This calls the generic method CALL METHOD cl_gui_cfw=>flush after every
automation method.

 SAP AG SAP Control Framework

Automation Queue Services

April 2001 37

 If the error no longer occurs when the method is called directly, you have called the method
CL_GUI_CFW=>FLUSH in the wrong place in your program.

Include error handling after every method call (query the value of SY-SUBRC).
Remember, however, that the error handling is normally only processed when you
are debugging.

SAP Control Framework SAP AG

Automation Queue Services

38 April 2001

Performance Display
There are two ways in which you can check the number of round trips within your program:

� Switch on the round trip display in the status bar:

� Activate the performance display. (Choose System � Utilities � Performance display.)

 SAP AG SAP Control Framework

Automation Queue Services

April 2001 39

Automation Trace
 You can create a trace for the automation queue. To do this, select Automation in the Trace
group of the SAPgui settings. Now, all automation queue calls and their parameters (create
object, call method, set/get property, free object) are logged in a trace file.

 If an error occurs, it is logged in the trace file (HRESULT error_code).

 You can also see how many flushes are required in each PBO/PAI round trip and eliminate those
that are redundant.

SAP Control Framework SAP AG

Automation Queue Services

40 April 2001

 When you analyze the method calls to the control using the trace, remember that the ABAP
methods often do not correspond to the method names in the trace. This is because the method
names in the trace are those of the automation calls to the control. Remember, too, that one
method call in ABAP may lead to more than one automation method being called.

The method call to load an image into the SAP Picture has the following form in an
ABAP program:

CALL METHOD picture->load_picture_from_url
 EXPORTING url = 'http://www.sap-ag.de/germany/images/sapag.gif'

In the Automation Trace, the following would appear:

 SAP AG SAP Control Framework

Automation Queue Services

April 2001 41

SAP Control Framework SAP AG

Using Controls in a WAN

42 April 2001

Using Controls in a WAN
When you use controls in your programs, you place an extra load on the communication channel
between the frontend and backend. In a LAN, and particularly in a WAN environment, this can
be a critical factor.

The problem is alleviated somewhat by buffering mechanisms (see also Automation Queue
[Page 30]). Use these points as a guideline to using controls in a WAN.

The documentation for the individual controls also contains more specific notes about using that
control in a WAN.

Using CL_GUI_CFW=>FLUSH
The method CL_GUI_CFW=>FLUSH [Page 47] synchronizes the automation queue and the
ABAP variables in it. Calling it often generates a synchronous RFC call from the application
server to the frontend. To optimize the performance of your application, you should call this
method as little as possible.

It is often a good idea to read all control attributes in a single automation queue (for example, at
the beginning of the PAI) and retrieve them in a single synchronization. You should, in particular,
do this when you read attributes that are not necessary in your event handlers or the PAI/PBO
cycle.

You do not need to include a "safety flush" at the end of the PBO to ensure that all method calls
are transported to the frontend. A flush at the end of the PBO is guaranteed. Consequently, you
cannot construct an automation queue spread over several screens.

There is no guarantee that an automation queue will be sent when you call
CL_GUI_CFW=>FLUSH. The queue recognizes whether it contains any return values. If this
is not the case, it is not sent.
If you have a queue with no return values, and want to ensure that it is synchronized, you can
use the Control Framework method CL_GUI_CFW=>UPDATE_VIEW [Page 50]. You should only
use this method if you absolutely need to update the GUI. For example, you might have a long-
running application in which you want to provide the user with regular updates on the status of an
action.

After you have read the attributes of a control, the contents of the corresponding ABAP variables
are not guaranteed until after the next flush. The contents of the ABAP variables remain
undefined until this call occurs. In the future, there will be cases in which this flush is
unnecessary. They will be recognized by the automation queue and the corresponding flush call
will be ignored.

Creating Controls and Passing Data
Creating controls and passing data to them is normally a one-off procedure, which in comparison
to using normal screen elements can be very runtime-intensive. You should therefore not use
any unnecessary controls, or pass unnecessary data to the controls that you are using.

A typical example is a tabstrip control with several tab pages. If the pages contain controls, you
should consider using application server scrolling instead of local scrolling, and not loading the
controls until the corresponding page is activated by the user. The same applies to passing data
to the controls on tab pages.

If you want to differentiate between LAN and WAN environments when you pass data to a
control, you can use the function module SAPGUI_GET_WANFLAG. In some applications, you may

 SAP AG SAP Control Framework

Using Controls in a WAN

April 2001 43

need to pass different amounts of data or use a complete fallback in a WAN application. The
environment affects, for example, the number of same-level nodes that you can transfer to a tree
control without having to introduce artificial intermediate levels.

Unlike screen elements, controls only have to be created and filled with data once. From a
performance point of view, this means that they become more profitable the longer they exist. In
applications that are called repeatedly, and therefore initialized repeatedly, controls can have a
negative effect on performance. In applications that use the same screen for a long time, on the
other hand, you may find that using controls results in improved performance.

You can always use the performance tools [Page 36] to check the advantages and
disadvantages in terms of network load that using a control brings.

Storing Documents, Picture, and Other Data
Release 4.6A sees the introduction of a frontend cache for accessing documents from the
Business Document Service (BDS). You are strongly recommended to store desktop documents,
images, and other data in the BDS and not in the R/3 database. Documents from the BDS can
be cached at the frontend, and therefore only have to be loaded over the network once.

SAP Control Framework SAP AG

Creating a Control: SAP Picture Example

44 April 2001

Creating a Control: SAP Picture Example
Prerequisites
The following process applies to all SAP custom controls. The programming examples use the
SAP Picture Control. However, to apply the example to other controls, you would only have to
change the name of the control class.

The example also assumes that you are using the custom control in a Custom Container. The
SAP Container documentation contains details of further scenarios.

Process Flow
Create the Instance
1. Define a reference variable for the Custom Container in which you want to place the custom

control (see SAP Container [Ext.]).

DATA container TYPE REF TO cl_gui_custom_container.

2. Define a reference variable for the SAP Picture:

DATA picture TYPE REF TO cl_gui_picture.

3. Create the Custom Container. You must already have created the area 'CUSTOM' for the
Custom Container in the Screen Painter. When you create the container, you must also
specify its lifetime [Page 28] (see constructor [Page 55]).

CREATE OBJECT container
 EXPORTING container_name = 'CUSTOM'

 lifetime = lifetime.

4. Create the SAP Picture Control. You can also specify a lifetime for the SAP Picture, but it
must not be longer than that of its container.

CREATE OBJECT picture
 EXPORTING parent = container

 lifetime = lifetime.

Register the Events
5. There are three steps: Registering the events with the Control Framework, defining a handler

method, and registering the hander method. These steps are explained under Registering
and Processing Events [Page 13].

Use the Control
6. These steps are control-specific and therefore not described here.

Destroy the Control
The lifetime management [Page 28] is normally responsible for destroying any controls you use.
However, the following two steps allow you to destroy the control yourself:

7. Use the method free [Page 53] to destroy the Custom Control at the frontend. If you no
longer need the control container, release it as well:

 SAP AG SAP Control Framework

Creating a Control: SAP Picture Example

April 2001 45

CALL METHOD picture->free
 EXCEPTIONS cntl_error = 1
 cntl_system_error = 2.
CALL METHOD container->free
 EXCEPTIONS cntl_error = 1
 cntl_system_error = 2.

Pay careful attention to the sequence in which you destroy controls at the frontend.
When you destroy a container, all controls in it are automatically destroyed as well.
If you have already destroyed a control and try to destroy it again, an error occurs.
You can check whether a control has already been destroyed using the method
is_alive [Page 60].

8. Delete the reference variables to the custom control and the control container.

FREE PICTURE.
FREE CONTAINER.

SAP Control Framework SAP AG

Methods of Class CL_GUI_CFW

46 April 2001

Methods of Class CL_GUI_CFW
The class CL_GUI_CFW contains static methods that apply to all instantiated custom controls
when you call them.

 SAP AG SAP Control Framework

dispatch

April 2001 47

dispatch
Use this method to dispatch application events (see Event Handling [Page 10]) to the event
handlers registered for the events. If you do not call the method within the PAI event of your
application program, it is called automatically by the system after the PAI has been processed.
The method returns a return code from which you can tell if the call was successful.

CALL METHOD cl_gui_cfw=>dispatch
 IMPORTING return_code = return_code.

Parameters Description

return_code cl_gui_cfw=>rc_found: The event was successfully directed to a handler
method.

cl_gui_cfw=>rc_unknown: The event was not registered in the event list.

cl_gui_cfw=>rc_noevent: No event was triggered in a control. The function
code was therefore a normal one (for example, from a menu entry).

cl_gui_cfw=>rc_nodispatch: No handler method could be assigned to the
event.

An event can only be dispatched once. After that, it is "spent". Consequently,
attempting to dispatch the events a second time does not trigger the handler events
again.

SAP Control Framework SAP AG

flush

48 April 2001

flush
Use this method to synchronize the automation queue [Page 30]. The buffered operations are
sent to the frontend using GUI RFC. At the frontend, the automation queue is processed in the
sequence in which you filled it.

If an error occurs, an exception is triggered. You must catch and handle this error. Since it is not
possible to identify the cause of the error from the exception itself, there are tools available in the
Debugger and the SAPgui to enable you to do so.

Debugger: Select the option Automation Controller: Always process requests synchronously.
The system then automatically calls the method cl_gui_cfw=>flush after each method called
by the Automation Controller.

SAPGUI: In the SAPgui settings, under Trace, select Automation. The communication between
the application server and the Automation Controller is then logged in a trace file that you can
analyze at a later date.

CALL METHOD cl_gui_cfw=>flush
 EXCEPTIONS CNTL_SYSTEM_ERROR = 1
 CNTL_ERROR = 2.

Do not use any more synchronizations in your program than are really necessary.
Each synchronization opens a new RFC connection to the SAPgui.

 SAP AG SAP Control Framework

get_living_dynpro_controls

April 2001 49

get_living_dynpro_controls
This method returns a list of reference variables to all active custom controls.
CALL METHOD cl_gui_cfw=>get_living_dynpro_controls
 IMPORTING control_list = control_list.

Parameters Description
control_list List of reference variables of active custom controls.

The list has the type CNTO_CONTROL_LIST (defined in class CL_GUI_CFW).

SAP Control Framework SAP AG

set_new_ok_code

50 April 2001

set_new_ok_code
You may only use this method in the handler method of a system event. It sets an OK_CODE that
triggers PAI processing. This means that data is transferred from the screen to the program, and
you can take control of the program in your PAI modules.

CALL METHOD cl_gui_cfw=>set_new_ok_code
 EXPORTING new_code = new_code
 IMPORTING rc = rc.

Parameters Description

new_code Function code that you want to place in the OK_CODE field
(SY-UCOMM).

return_code cl_gui_cfw=>rc_posted: The OK_CODE was set successfully and the
automatic field checks and PAI will be triggered after the event handler
method has finished.

cl_gui_cfw=>rc_wrong_state: The method was not called from the handler
method of a system event.

cl_gui_cfw=>rc_invalid: The OK_CODE that you set is invalid.

 SAP AG SAP Control Framework

update_view

April 2001 51

update_view
Calling the flush [Page 47] method only updates the automation queue if the queue contains
return values.

If you have a queue with no return values, and want to ensure that it is synchronized, you can
use the Control Framework method CL_GUI_CFW=>UPDATE_VIEW. You should only use this
method if you absolutely need to update the GUI. For example, you might have a long-running
application in which you want to provide the user with regular updates on the status of an action.

CALL METHOD cl_gui_cfw=>update_view
 EXCEPTIONS CNTL_SYSTEM_ERROR = 1
 CNTL_ERROR = 2.

SAP Control Framework SAP AG

Methods of Class CL_GUI_OBJECT

52 April 2001

Methods of Class CL_GUI_OBJECT
The class CL_GUI_OBJECT contains important methods for custom control wrappers. The only
one relevant for application programs is the is_valid [Page 52] method.

 SAP AG SAP Control Framework

is_valid

April 2001 53

is_valid
This method informs you whether a custom control for an object reference still exists at the
frontend.

CALL METHOD my_control->is_valid
 IMPORTING result = result.

Parameters Description

result 0: Custom control is no longer active at the frontend

1: Custom control is still active

SAP Control Framework SAP AG

free

54 April 2001

free
Use this method to destroy a custom control at the frontend. Once you have called this method,
you should also initialize the object reference (FREE my_control).

CALL METHOD my_control->free
 EXCEPTIONS cntl_error = 1
 cntl_system_error = 2.

 SAP AG SAP Control Framework

Methods of Class CL_GUI_CONTROL

April 2001 55

Methods of Class CL_GUI_CONTROL
The class CL_GUI_CONTROL contains methods that you need to set control attributes (for
example, displaying the control), register events, and destroy controls.

SAP Control Framework SAP AG

constructor

56 April 2001

constructor
This method is called by the control wrapper when you instantiate a control.

To instantiate a SAP control, always call the constructor of its class.

CREATE OBJECT my_control
 EXPORTING clsid = clsid
 lifetime = lifetime
 shellstyle = shellstyle
 parent = parent
 autoalign = autoalign
 EXCEPTIONS cntl_error = 1
 cntl_system_error = 2
 create_error = 3
 lifetime_error = 4.

Parameters Description

clsid ID of the class

lifetime Lifetime management parameter. The following values are permitted:

my_control->lifetime_imode: The control remains alive for the duration of
the internal session (that is, until the session is ended by one of the following
statements: leave program. leave to transaction. set screen
0, leave screen.). After this, the finalize [Page 57] method is called.

my_control->lifetime_dynpro: The control remains alive for the lifetime of
the screen instance, that is, for as long as the screen remains in the stack.
After this, the free [Page 53] method is called.
Using this mode automatically regulates the visibility of the control. Controls
are only displayed when the screen on which they were created is active.
When other screens are active, the controls are hidden.

my_control->lifetime_default: If you create the control in a container, it
inherits the lifetime of the container. If you do not create the control in a
container (for example, because it is a container itself), the lifetime is set to
my_control->lifetime_imode.

Shellstyle Controls the appearance and behavior of the control

You can pass any constants from the ABAP include <CTLDEF> that begin with
WS. You can combine styles by adding the constants together. The default value
sets a suitable combination of style constants internally.

parent Container in which the SAP Picture Control can be displayed (see also SAP
Container [Ext.]).

autoalign ' ': Control is not automatically aligned

'X': Control is automatically aligned. This uses the maximum available space
within a container.

 SAP AG SAP Control Framework

constructor

April 2001 57

SAP Control Framework SAP AG

finalize

58 April 2001

finalize
This method is redefined by the relevant control wrapper. It contains specific functions for
destroying the corresponding control. This method is called automatically by the free [Page 53]
method, before the control is destroyed at the frontend.
CALL METHOD my_control->finalize.

 SAP AG SAP Control Framework

set_registered_events

April 2001 59

set_registered_events
Use this method to register the events of the control. See also: Event Handling [Page 10]

CALL METHOD my_control->set_registered_events
 EXPORTING events = events
 EXCEPTIONS cntl_error = 1
 cntl_system_error = 2
 illegal_event_combination = 3.

Parameters Description

events Table of events that you want to register for the custom control my_control.

The table events is a list of the events that you want to register. It is defined with reference to
table type CNTL_SIMPLE_EVENTS. The table type is based on the structure
CNTL_SIMPLE_EVENT, which consists of the following fields:

Field Description

EVENTID Event name

APPL_EVENT Indicates whether the event is a system event (initial) or an application event
(X).

The values that you assign to the field EVENTID are control-specific and therefore described in
the documentation of the individual controls.

SAP Control Framework SAP AG

get_registered_events

60 April 2001

get_registered_events
This method returns a list of all events registered for custom control my_control.

CALL METHOD my_control->get_registered_events
 IMPORTING events = events
 EXCEPTIONS cntl_error = 1.

Parameters Description

events Table of events that you want to register for the custom control my_control.

The table events is a list of the events that you want to register. It is defined with reference to
table type CNTL_SIMPLE_EVENTS. The table type is based on the structure
CNTL_SIMPLE_EVENT, which consists of the following fields:

Field Description

EVENTID Event name

APPL_EVENT Indicates whether the event is a system event (initial) or an application event
(X).

The values that you assign to the field EVENTID are control-specific and therefore described in
the documentation of the individual controls.

For general information about event handling, refer to the Event Handling [Page 10]
section of the SAP Control Framework documentation.

 SAP AG SAP Control Framework

is_alive

April 2001 61

is_alive
This method informs you whether a custom control for an object reference still exists at the
frontend.

CALL METHOD my_control->is_alive
 RETURNING state = state.

Parameters Description

state my_control->state_dead: Custom control is no longer active at the frontend

my_control->state_alive: Custom control is active on the current screen.

my_control->state_alive_on_other_dynpro: Custom control is not
active on the current screen, but is still active (but invisible) at the frontend.

SAP Control Framework SAP AG

set_alignment

62 April 2001

set_alignment
Use this method to align the custom control within its container:

CALL METHOD my_control->set_alignment
 EXPORTING alignment = alignment
 EXCEPTIONS cntl_error = 1
 cntl_system_error = 2.

Parameters Description

alignment Control alignment

The alignment parameter may consist of combinations of the following alignments:

Name Description

my_control->align_at_left Alignment with left-hand edge

my_control->align_at_right Alignment with right-hand edge

my_control->align_at_top Alignment with top edge

my_control->align_at_bottom Alignment with bottom edge

You can combine these parameters by adding the components:

alignment = my_control->align_at_left + my_control->align_at_top.

 SAP AG SAP Control Framework

set_position

April 2001 63

set_position
Use this method to place the control at a particular position on the screen.

The position of the control is usually determined by its container.

CALL METHOD my_control->set_position
 EXPORTING height = height
 left = left
 top = top
 width = width
 EXCEPTIONS cntl_error = 1
 cntl_system_error = 2.

Parameters Description

height Height of the control

left Left-hand edge of the control

top Top edge of the control

width Width of the control

SAP Control Framework SAP AG

set_visible

64 April 2001

set_visible
Use this method to change the visibility of a custom control.

CALL METHOD my_control->set_visible
 EXPORTING visible = visible
 EXCEPTIONS cntl_error = 1
 cntl_system_error = 2.

Parameters Description

visible X: Custom control is visible

' ': Custom control is not visible

 SAP AG SAP Control Framework

get_focus

April 2001 65

get_focus
This static method returns the object reference of the control that has the focus.

CALL METHOD cl_gui_control=>get_focus
 IMPORTING control = control
 EXCEPTIONS cntl_error = 1
 cntl_system_error = 2.

Parameters Description

control Object reference (TYPE REF TO cl_gui_control) to the control that has the
focus.

SAP Control Framework SAP AG

set_focus

66 April 2001

set_focus
Use this static method to set the focus to a custom control.

CALL METHOD cl_gui_control=>set_focus
 EXPORTING control = control
 EXCEPTIONS cntl_error = 1
 cntl_system_error = 2.

Parameters Description

control Object reference (TYPE REF TO cl_gui_control) to the control on which
you want to set the focus.

 SAP AG SAP Control Framework

get_height

April 2001 67

get_height
This method returns the height of the control.

CALL METHOD control->get_height
 IMPORTING height = height
 EXCEPTIONS cntl_error = 1.

Parameters Description

height Current height of the control

SAP Control Framework SAP AG

get_width

68 April 2001

get_width
This method returns the width of the control.

CALL METHOD control->get_width
 IMPORTING width = width
 EXCEPTIONS cntl_error = 1.

Parameters Description

width Current width of the control

 SAP AG SAP Control Framework

Methods of the Class CL_DRAGDROP

April 2001 69

Methods of the Class CL_DRAGDROP
The class CL_DRAGDROP contains methods that describe the drag and drop [Page 17] behavior
of a custom control.

SAP Control Framework SAP AG

constructor

70 April 2001

constructor
The constructor creates an instance for the description of the drag and drop behavior of a control.

CREATE OBJECT dragdrop.

 SAP AG SAP Control Framework

add

April 2001 71

add
This method adds a new description to the drag and drop behavior. You can store any number of
descriptions, but you may not add the same description more than once.

CALL METHOD dragdrop->add
 EXPORTING flavor = flavor
 dragsrc = dragsrc
 droptarget = droptarget
 effect = effect
 effect_in_ctrl = effect_in_ctrl
 EXCEPTIONS already_defined = 1
 obj_invalid = 2.

Parameters Description

flavor Description of the new flavor

dragsrc 'X': The description is a drag source

droptarget 'X': The description is a drop target

effect Drop effect of the description between different custom controls. The following
effects are supported:

dragdrop->copy: Appearance of the mouse when using drag and drop to
copy.

dragdrop->move: Appearance of the mouse when using drag and drop to
move.

dragdrop->none: Drag and drop is not possible.

effect_in_ctrl Drop effect of the description in the same custom control. The following effects
are supported:

dragdrop->copy: Appearance of the mouse when using drag and drop to
copy.

dragdrop->move: Appearance of the mouse when using drag and drop to
move.

dragdrop->none: Drag and drop is not possible.

dragdrop->use_default_effect: Uses the same effect specified in the
effect parameter.

Exceptions Description

already_defined The specified flavor has already been defined.

obj_invalid The object has already been destroyed using the method destroy [Page 73].

SAP Control Framework SAP AG

add

72 April 2001

If you use the copy and move effects when you define the flavor, the system uses
the move effect when the user drags an object normally, and the copy effect when
the user presses and holds the CTRL key while dragging.

 SAP AG SAP Control Framework

clear

April 2001 73

clear
Deletes the contents of the instance. Once you have called this method, you cannot perform any
more drag and drop operations on the corresponding custom control.

CALL METHOD dragdrop->clear
 EXCEPTIONS obj_invalid = 1.

Exceptions Description

obj_invalid The object has already been destroyed using the method destroy [Page 73].

SAP Control Framework SAP AG

destroy

74 April 2001

destroy
Deletes the contents of the instance. The instance itself is also destroyed. Once you have called
this method, you cannot perform any more drag and drop operations on the corresponding
custom control.

CALL METHOD dragdrop->destroy.

 SAP AG SAP Control Framework

get

April 2001 75

get
Returns the complete description of a flavor.

CALL METHOD dragdrop->get

 EXPORTING flavor = flavor
 IMPORTING isdragsrc = isdragsrc
 isdroptarget = isdroptarget
 effect = effect
 effect_in_ctrl = effect_in_ctrl
 EXCEPTIONS not_found = 1
 obj_invalid = 2.

Parameters Description

flavor Name of the flavor

dragsrc 'X': The description is a drag source

droptarget 'X': The description is a drop target

effect Drop effect of the description between different custom controls. The following
effects are supported:

dragdrop->copy: Appearance of the mouse when using drag and drop to
copy.

dragdrop->move: Appearance of the mouse when using drag and drop to
move.

dragdrop->none: Drag and drop is not possible.

effect_in_ctrl Drop effect of the description in the same custom control. The following effects
are supported:

dragdrop->copy: Appearance of the mouse when using drag and drop to
copy.

dragdrop->move: Appearance of the mouse when using drag and drop to
move.

dragdrop->none: Drag and drop is not possible.

dragdrop->use_default_effect: Uses the same effect specified in the
effect parameter.

Exceptions Description

already_defined The specified flavor has already been defined.

If you use the copy and move effects when you define the flavor, the system uses
the move effect when the user drags an object normally, and the copy effect when
the user presses and holds the CTRL key while dragging.

SAP Control Framework SAP AG

get

76 April 2001

 SAP AG SAP Control Framework

get_handle

April 2001 77

get_handle
This method returns the handle of the drag and drop position. In most cases, you will not need to
use this method. However, for tabular mass data interfaces (such as the SAP Tree), you must
copy this handle into the interface table.

CALL METHOD dragdrop->get_handle
 IMPORTING handle = handle
 EXCEPTIONS obj_invalid = 1.

Parameters Description

handle Handle of the drag and drop description

Exceptions Description

obj_invalid The object has already been destroyed using the method destroy [Page 73].

SAP Control Framework SAP AG

modify

78 April 2001

modify
Use this method to change an existing flavor.

CALL METHOD dragdrop->modify
 EXPORTING flavor = flavor
 dragsrc = dragsrc
 droptarget = droptarget
 effect = effect
 effect_in_ctrl = effect_in_ctrl
 EXCEPTIONS not_found = 1
 obj_invalid = 2.

Parameters Description

flavor Name of the flavor

dragsrc 'X': The description is a drag source

droptarget 'X': The description is a drop target

effect Drop effect of the description between different custom controls. The following
effects are supported:

dragdrop->copy: Appearance of the mouse when using drag and drop to
copy.

dragdrop->move: Appearance of the mouse when using drag and drop to
move.

dragdrop->none: Drag and drop is not possible.

effect_in_ctrl Drop effect of the description in the same custom control. The following effects
are supported:

dragdrop->copy: Appearance of the mouse when using drag and drop to
copy.

dragdrop->move: Appearance of the mouse when using drag and drop to
move.

dragdrop->none: Drag and drop is not possible.

dragdrop->use_default_effect: Uses the same effect specified in the
effect parameter.

Exceptions Description

not_found The specified flavor does not exist

obj_invalid The object has already been destroyed using the method destroy [Page 73].

If you use the copy and move effects when you define the flavor, the system uses
the move effect when the user drags an object normally, and the copy effect when
the user presses and holds the CTRL key while dragging.

 SAP AG SAP Control Framework

modify

April 2001 79

SAP Control Framework SAP AG

remove

80 April 2001

remove
Use this method to delete a flavor.

CALL METHOD dragdrop->remove
 EXPORTING flavor = flavor
 EXCEPTIONS not_found = 1
 obj_invalid = 2.

Parameters Description

flavor Name of the flavor

Exceptions Description

not_found The specified flavor does not exist

obj_invalid The object has already been destroyed using the method destroy [Page 73].

 SAP AG SAP Control Framework

Methods of the Class CL_DRAGDROPOBJECT

April 2001 81

Methods of the Class CL_DRAGDROPOBJECT
The class CL_DRAGDROPOBJECT describes the context of a drag and drop operation [Page
17]. It contains information about the source object, the flavor of the drag and drop operation, and
information about the source and target.

SAP Control Framework SAP AG

set_flavor

82 April 2001

set_flavor
You can only use this method within event handling for the ONGETFLAVOR event. Use the
newflavor parameter to determine the flavor that you want to use in the drag and drop
operation. You receive a list of available flavors as an event parameter.

CALL METHOD dragdropobject->set_flavor
 EXPORTING newflavor = newflavor
 EXCEPTIONS illegal_state = 1
 illegal_flavor = 2.

Parameters Description

newflavor Name of the flavor

Exceptions Description

invalid_state You did not call the method from within event handling for ONGETFLAVOR.

obj_invalid You used a flavor that is not supported by the current drag and drop situation.

 SAP AG SAP Control Framework

abort

April 2001 83

abort
Terminates the drag and drop operation immediately. No further events are triggered.

CALL METHOD dragdropobject->abort.

	Copyright
	Icons
	Contents
	SAP Control Framework
	Purpose
	Features
	Constraints

	Control Framework Architecture
	
	Automation Controller
	ABAP Objects Control Framework

	Event Handling
	Use
	Integration
	Features

	Registering and Processing Events
	Purpose
	Prerequisites
	Process Flow
	Registering Events with the Control Framework
	Processing an Event Using an Instance Method
	Processing an Event Using a Static Method
	Processing Control Events

	Context Menu
	Use
	Features
	Activities
	Constructing a Context Menu
	Evaluating the Function Code

	Drag and Drop
	Use
	Prerequisites
	Features
	Activities

	Process Flow of a Drag and Drop Operation
	Prerequisites
	Process Flow
	Application Server
	Frontend
	Application Server

	Drag and Drop Events
	Use
	Prerequisites
	Features

	Example of Drag and Drop Programming
	Drag and Drop in WAN Environments
	
	The Only Rule You Must Observe:

	Lifetime Management
	Use
	Features

	Automation Queue
	Use
	Performance Notes

	Prerequisites
	Features

	Synchronizing the Automation Queue
	Purpose
	Process Flow
	Using Buffered Operations to Improve Performance
	Buffered Method Calls to Get Control Attributes

	Error Handling in Synchronization
	Purpose
	Process Flow

	Automation Queue Services
	Use
	Features
	Debugger
	Performance Display
	Automation Trace

	Using Controls in a WAN
	
	Using CL_GUI_CFW=>FLUSH
	Creating Controls and Passing Data
	Storing Documents, Picture, and Other Data

	Creating a Control: SAP Picture Example
	Prerequisites
	Process Flow
	Create the Instance
	Register the Events
	Use the Control
	Destroy the Control

	Methods of Class CL_GUI_CFW
	dispatch
	flush
	get_living_dynpro_controls
	set_new_ok_code
	update_view
	Methods of Class CL_GUI_OBJECT
	is_valid
	free
	Methods of Class CL_GUI_CONTROL
	constructor
	finalize
	set_registered_events
	get_registered_events
	is_alive
	set_alignment
	set_position
	set_visible
	get_focus
	set_focus
	get_height
	get_width
	Methods of the Class CL_DRAGDROP
	constructor
	add
	clear
	destroy
	get
	get_handle
	modify
	remove
	Methods of the Class CL_DRAGDROPOBJECT
	set_flavor
	abort

