
SAP Toolbar (BC-CI)

H
E

L
P

.B
C

C
IT

O
O

L
B

A
R

Re lease 4 .6C

SAP Toolbar (BC-CI) SAP AG

2 April 2001

Copyright

© Copyright 2001 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose
without the express permission of SAP AG. The information contained herein may be changed
without prior notice.

Some software products marketed by SAP AG and its distributors contain proprietary software
components of other software vendors.

Microsoft®, WINDOWS®, NT®, EXCEL®, Word®, PowerPoint® and SQL Server® are registered
trademarks of
Microsoft Corporation.

IBM®, DB2®, OS/2®, DB2/6000®, Parallel Sysplex®, MVS/ESA®, RS/6000®, AIX®, S/390®,
AS/400®, OS/390®, and OS/400® are registered trademarks of IBM Corporation.

ORACLE® is a registered trademark of ORACLE Corporation.

INFORMIX®-OnLine for SAP and Informix® Dynamic Server
TM

 are registered trademarks of
Informix Software Incorporated.

UNIX®, X/Open®, OSF/1®, and Motif® are registered trademarks of the Open Group.

HTML, DHTML, XML, XHTML are trademarks or registered trademarks of W3C®, World Wide
Web Consortium,
Massachusetts Institute of Technology.

JAVA® is a registered trademark of Sun Microsystems, Inc.

JAVASCRIPT® is a registered trademark of Sun Microsystems, Inc., used under license for
technology invented and implemented by Netscape.

SAP, SAP Logo, R/2, RIVA, R/3, ABAP, SAP ArchiveLink, SAP Business Workflow, WebFlow,
SAP EarlyWatch, BAPI, SAPPHIRE, Management Cockpit, mySAP.com Logo and mySAP.com
are trademarks or registered trademarks of SAP AG in Germany and in several other countries
all over the world. All other products mentioned are trademarks or registered trademarks of their
respective companies.

 SAP AG SAP Toolbar (BC-CI)

April 2001 3

Icons

Icon Meaning

Caution

Example

Note

Recommendation

Syntax

Tip

SAP Toolbar (BC-CI) SAP AG

4 April 2001

Content

SAP Toolbar (BC-CI)...5
Instance for the SAP Toolbar ... 6
Creating a Control: SAP Picture Example .. 7
Using the SAP Toolbar ... 9
Registering and Processing Events.. 11
Events for the SAP Toolbar.. 13
Using Controls in a WAN.. 15
Special Considerations for the SAP Toolbar.. 17
Methods of Class CL_GUI_TOOLBAR .. 18
constructor... 19
add_button... 20
add_button_group... 22
fill_buttons_data_table ... 23
delete_button... 25
delete_all_buttons... 26
set_button_state.. 27
set_button_info ... 28
set_static_ctxmenu ... 29
assign_static_ctxmenu_table .. 30
track_context_menu ... 32
Methods of the Control Framework... 33
Methods of Class CL_GUI_CFW .. 34

dispatch .. 35
flush.. 36
get_living_dynpro_controls .. 37
set_new_ok_code .. 38
update_view ... 39

Methods of Class CL_GUI_OBJECT.. 40
is_valid ... 41
free ... 42

Methods of Class CL_GUI_CONTROL .. 43
finalize .. 44
set_registered_events.. 45
get_registered_events.. 46
is_alive ... 47
set_alignment... 48
set_position .. 49
set_visible... 50
get_focus.. 51
set_focus.. 52
get_height... 53
get_width .. 54

 SAP AG SAP Toolbar (BC-CI)

SAP Toolbar (BC-CI)

April 2001 5

SAP Toolbar (BC-CI)
Purpose
The SAP toolbar allows you to define a separate toolbar in addition to the normal application
toolbar:

Integration
You can embed the SAP Toolbar in any SAP Control Container.

Features
SAP toolbar allows you to create additional toolbars, which may contain the following objects:

� Pushbuttons

� Pushbuttons with a dropdown menu : If the user chooses the
pushbutton, the action defined for the pushbutton is triggered. If the user chooses the
arrow, a menu appears.

� Menus : A menu is displayed when the user clicks the button.

� Separators

� Pushbutton groups (similar to radio button groups)

� Toggle buttons (like checkboxes)

When the user chooses an item in the SAP Toolbar, control is passed back to the application
program using the event control of the Control Framework. The chosen function is passed to the
program as an event parameter.

Constraints
SAP Toolbar requires the Microsoft Common Control. You therefore need to install Microsoft
Internet Explorer Version 4.0.

SAP Toolbar (BC-CI) SAP AG

Instance for the SAP Toolbar

6 April 2001

Instance for the SAP Toolbar
Definition
You define this instance with reference to the class cl_gui_toolbar:

data toolbar type ref to cl_gui_toolbar.

Use
A SAP Toolbar instance administers all of the information relating to an additional toolbar on your
screen. You can call the methods of this instance to define and change the attributes of the
toolbar control.

Integration
The class cl_gui_toolbar contains both control-specific methods [Page 18] and methods of
the Control Framework [Page 33].

 SAP AG SAP Toolbar (BC-CI)

Creating a Control: SAP Picture Example

April 2001 7

Creating a Control: SAP Picture Example
Prerequisites
The following process applies to all SAP custom controls. The programming examples use the
SAP Picture Control. However, to apply the example to other controls, you would only have to
change the name of the control class.

The example also assumes that you are using the custom control in a Custom Container. The
SAP Container documentation contains details of further scenarios.

Process Flow
Create the Instance
1. Define a reference variable for the Custom Container in which you want to place the custom

control (see SAP Container [Ext.]).

DATA container TYPE REF TO cl_gui_custom_container.

2. Define a reference variable for the SAP Picture:

DATA picture TYPE REF TO cl_gui_picture.

3. Create the Custom Container. You must already have created the area 'CUSTOM' for the
Custom Container in the Screen Painter. When you create the container, you must also
specify its lifetime [Ext.] (see constructor [Ext.]).

CREATE OBJECT container
 EXPORTING container_name = 'CUSTOM'

 lifetime = lifetime.

4. Create the SAP Picture Control. You can also specify a lifetime for the SAP Picture, but it
must not be longer than that of its container.

CREATE OBJECT picture
 EXPORTING parent = container

 lifetime = lifetime.

Register the Events
5. There are three steps: Registering the events with the Control Framework, defining a handler

method, and registering the hander method. These steps are explained under Registering
and Processing Events [Page 11].

Use the Control
6. These steps are control-specific and therefore not described here.

Destroy the Control
The lifetime management [Ext.] is normally responsible for destroying any controls you use.
However, the following two steps allow you to destroy the control yourself:

7. Use the method free [Page 42] to destroy the Custom Control at the frontend. If you no
longer need the control container, release it as well:

SAP Toolbar (BC-CI) SAP AG

Creating a Control: SAP Picture Example

8 April 2001

CALL METHOD picture->free
 EXCEPTIONS cntl_error = 1
 cntl_system_error = 2.
CALL METHOD container->free
 EXCEPTIONS cntl_error = 1
 cntl_system_error = 2.

Pay careful attention to the sequence in which you destroy controls at the frontend.
When you destroy a container, all controls in it are automatically destroyed as well.
If you have already destroyed a control and try to destroy it again, an error occurs.
You can check whether a control has already been destroyed using the method
is_alive [Page 47].

8. Delete the reference variables to the custom control and the control container.

FREE PICTURE.
FREE CONTAINER.

 SAP AG SAP Toolbar (BC-CI)

Using the SAP Toolbar

April 2001 9

Using the SAP Toolbar
This section lists the functions that are specific to the SAP Toolbar.

Prerequisites
The process described here is an extension of the general process for using controls [Page 7]
that is specific to the SAP HTML Viewer. It does not contain all of the steps required to produce a
valid instance of the control.

Process Flow

The program extracts are examples that do not necessarily illustrate all of the
features of the control. For precise information, refer to the reference section of this
documentation.

Your system contains a demonstration program called SAPTOOLBAR_DEMO1.

Creating the Instance
1. Define a reference variable for the SAP Toolbar:

DATA toolbar TYPE REF TO cl_gui_toolbar.

2. Create an instance [Ext.] of the SAP toolbar:

CREATE OBJECT toolbar

EXPORTING parent = container.

3. Insert either individual pushbuttons [Page 20] or pushbutton groups [Page 22] into the
toolbar control.

CALL METHOD toolbar->add_button

 EXPORTING fcode = 'FUNC_1'

 icon = '@03@'

 butn_type = cntb_btype_dropdown

 text = 'My Function'

 EXCEPTIONS cntl_error = 1.

Register the Events
4. Register the events for the SAP Toolbar [Page 13]. It supports the following events:

Event name Meaning

FUNCTION_SELECTED Pushbutton chosen

DROPDOWN_CLICKED Context menu of a pushbutton (type cntb_btype_dropdown and
cntb_btype_menu) chosen

SAP Toolbar (BC-CI) SAP AG

Using the SAP Toolbar

10 April 2001

Changing Control Attributes at Runtime
5. You can add extra pushbuttons or pushbutton groups.

6. You can change the status [Page 27] of individual pushbuttons:

CALL METHOD toolbar->set_button_state

 EXPORTING enabled = 'X'

 fcode = 'FUNC_1'

 EXCEPTIONS cntl_error = 1.

7. You can delete one [Page 25] or all [Page 26] of the pushbuttons:

CALL METHOD toolbar->DELETE_BUTTON

 exporting fcode = 'FUNC_1'

 exceptions CNTL_ERROR = 1.

8. You can interpret the SAP Toolbar functions chosen by the user using event handler
methods.

Destroying the Control
The lifetime management [Ext.] is normally responsible for destroying any controls you use.
However, the following two steps allow you to destroy the control yourself:

9. Destroy the custom control at the frontend. If you no longer need the control container,
release it as well:

CALL METHOD toolbar->free.

10. Delete the reference variables to the custom control and the control container.

FREE toolbar.

The program SAPTOOLBAR_DEMO1 provides an example of how to use the SAP
Toolbar Control in an application.

 SAP AG SAP Toolbar (BC-CI)

Registering and Processing Events

April 2001 11

Registering and Processing Events
Purpose
The event mechanism of the Control Framework allows you to use handler methods in your
programs to react to events triggered by the control (for example, a double-click).

Prerequisites
The following description has been generalized to apply to all custom controls. For more
information specific to a particular control, refer to that control's documentation.

Process Flow
1. Assume you are working with a custom control that has the ABAP wrapper cl_gui_xyz.

DATA my_control TYPE REF TO cl_gui_xyz.

Registering Events with the Control Framework
2. Define an internal table (type cntl_simple_events) and a corresponding work area (type

cntl_simple_event).

DATA events TYPE cntl_simple_events.
DATA wa_events TYPE cntl_simple_event.

3. Now fill the event table with the relevant events. To do this, you need the event ID
(event_id field). You can find this information in the Class Browser by looking at the
attributes of the class cl_gui_xyz. You must also decide whether the event is to be a
system event (appl_event = ' ') or an application event (appl_event = 'X').

wa_events-eventid = event_id.
wa_events-appl_event = appl_event.
APPEND wa_events TO events.

4. You must now send the event table to the frontend so that it knows which events it has to
direct to the backend.

CALL METHOD my_control->set_registered_events
 events = events.

To react to the events of you custom control, you must now specify a handler method for it. This
can be either an instance method or a static method.

Processing an Event Using an Instance Method
5. Define the (local) class definition for the event handler. To do this, specify the name of the

handler method (Event_Handler). You need to look at the class for the custom control
cl_gui_xyz in the Class Browser to find out the name of the event (event_name) and its
parameters (event_parameter). There is also a default event parameter sender, which is
passed by all events. This contains the reference to the control that triggered the event.

CLASS lcl_event_receiver DEFINITION.
PUBLIC SECTION.
METHODS Event_Handler
 FOR EVENT event_name OF cl_gui_xyz

SAP Toolbar (BC-CI) SAP AG

Registering and Processing Events

12 April 2001

 IMPORTING event_parameter
 sender.
ENDCLASS.

6. Register the handler methods with the ABAP Objects Control Framework for the events.

DATA event_receiver TYPE REF TO lcl_event_receiver.
CREATE OBJECT event_receiver.
SET HANDLER event_receiver->Event_Handler
 FOR my_control.

Processing an Event Using a Static Method
7. Define the (local) class definition for the event handler. To do this, specify the name of the

handler method (Event_Handler). You need to look at the class for the custom control
cl_gui_xyz in the Class Browser to find out the name of the event (event_name) and its
parameters (event_parameter).

CLASS lcl_event_receiver DEFINITION.
PUBLIC SECTION.
CLASS-METHODS Event_Handler
 FOR EVENT event_name OF cl_gui_xyz
 IMPORTING event_parameter
 sender.
ENDCLASS.

8. Register the handler methods with the ABAP Objects Control Framework for the events.

SET HANDLER lcl_event_receiver=>Event_Handler
 FOR my_control.

Processing Control Events
9. You define how you want the system to react to an event in the implementation of the

handler method.

CLASS lcl_event_receiver IMPLEMENTATION.
METHOD Event_Handler.
* Event processing
ENDMETHOD
ENDCLASS.

10. If you registered your event as an application event, you need to process it using the method
CL_GUI_CFW=>DISPATCH. For further information, refer to Event Handling [Ext.].

 SAP AG SAP Toolbar (BC-CI)

Events for the SAP Toolbar

April 2001 13

Events for the SAP Toolbar
Use
When the user chooses a pushbutton in the SAP Toolbar, one of the following events is
triggered, depending on the type of the pushbutton:

Event Event ID
cl_gui_toolbar=>

Meaning

FUNCTION_SELECTE
D

M_ID_FUNCTION_SELECTE
D

Pushbutton chosen

User chose a menu with type
cntb_btype_dropdown or
cntb_btype_menu.

DROPDOWN_CLICKE
D

M_ID_DROPDOWN_CLICKE
D

Context menu of a pushbutton (type
cntb_btype_dropdown and
cntb_btype_menu) chosen

The events have the following parameters:

Event Parameters Meaning

FUNCTION_SELECTED fcode Function code of pushbutton

fcode Function code of pushbuttonDROPDOWN_CLICKED

posx

posy

Position of the pushbutton for which the menu
should be displayed

Integration
To react to an event in your ABAP program, you must have registered it. To do this, use the
method set_registered_events [Page 45]. Events that are triggered but for which you are not
registered are filtered by the presentation server, and not passed to the application server. See
event handling [Ext.].

Features
Event FUNCTION_SELECTED
This event is always triggered when the user chooses a pushbutton or a menu entry from a
pushbutton with type cntb_btype_dropdown or cntb_btype_menu.

Pushbuttons with type cntb_btype_dropdown have two parts: On the left-hand side is the
actual pushbutton, with a particular function assigned to it, just like a normal pushbutton. If you
click the button, the FUNCTION_SELECTED event is triggered. On the right-hand side is a
pushbutton with an arrow. If you click this, the event DROPDOWN_CLICKED is triggered.

If the pushbutton has the type cntb_btype_menu, the event DROPDOWN_CLICKED is always
triggered.

SAP Toolbar (BC-CI) SAP AG

Events for the SAP Toolbar

14 April 2001

The function code of the pushbutton is passed as a parameter of the event
FUNCTION_SELECTED. This allows you to identify the pushbutton and react accordingly in your
program.

Event DROPDOWN_CLICKED
This event is triggered whenever a menu is requested for a pushbutton. This is only possible for
pushbuttons with the type cntb_btype_dropdown and cntb_btype_menu.

The event parameters are the function code and position of the pushbutton. You can use the
function code to identify the pushbutton. You can use the position to place the context menu in
the correct position.

To construct the context menu, use the methods of class CL_CTMENU. To display it, use the
method track_context_menu [Page 32].

Activities
Read the general process [Page 11] for working with events in the Control Framework.

 SAP AG SAP Toolbar (BC-CI)

Using Controls in a WAN

April 2001 15

Using Controls in a WAN
When you use controls in your programs, you place an extra load on the communication channel
between the frontend and backend. In a LAN, and particularly in a WAN environment, this can
be a critical factor.

The problem is alleviated somewhat by buffering mechanisms (see also Automation Queue
[Ext.]). Use these points as a guideline to using controls in a WAN.

The documentation for the individual controls also contains more specific notes about using that
control in a WAN.

Using CL_GUI_CFW=>FLUSH
The method CL_GUI_CFW=>FLUSH [Page 36] synchronizes the automation queue and the
ABAP variables in it. Calling it often generates a synchronous RFC call from the application
server to the frontend. To optimize the performance of your application, you should call this
method as little as possible.

It is often a good idea to read all control attributes in a single automation queue (for example, at
the beginning of the PAI) and retrieve them in a single synchronization. You should, in particular,
do this when you read attributes that are not necessary in your event handlers or the PAI/PBO
cycle.

You do not need to include a "safety flush" at the end of the PBO to ensure that all method calls
are transported to the frontend. A flush at the end of the PBO is guaranteed. Consequently, you
cannot construct an automation queue spread over several screens.

There is no guarantee that an automation queue will be sent when you call
CL_GUI_CFW=>FLUSH. The queue recognizes whether it contains any return values. If this
is not the case, it is not sent.
If you have a queue with no return values, and want to ensure that it is synchronized, you can
use the Control Framework method CL_GUI_CFW=>UPDATE_VIEW [Page 39]. You should only
use this method if you absolutely need to update the GUI. For example, you might have a long-
running application in which you want to provide the user with regular updates on the status of an
action.

After you have read the attributes of a control, the contents of the corresponding ABAP variables
are not guaranteed until after the next flush. The contents of the ABAP variables remain
undefined until this call occurs. In the future, there will be cases in which this flush is
unnecessary. They will be recognized by the automation queue and the corresponding flush call
will be ignored.

Creating Controls and Passing Data
Creating controls and passing data to them is normally a one-off procedure, which in comparison
to using normal screen elements can be very runtime-intensive. You should therefore not use
any unnecessary controls, or pass unnecessary data to the controls that you are using.

A typical example is a tabstrip control with several tab pages. If the pages contain controls, you
should consider using application server scrolling instead of local scrolling, and not loading the
controls until the corresponding page is activated by the user. The same applies to passing data
to the controls on tab pages.

If you want to differentiate between LAN and WAN environments when you pass data to a
control, you can use the function module SAPGUI_GET_WANFLAG. In some applications, you may

SAP Toolbar (BC-CI) SAP AG

Using Controls in a WAN

16 April 2001

need to pass different amounts of data or use a complete fallback in a WAN application. The
environment affects, for example, the number of same-level nodes that you can transfer to a tree
control without having to introduce artificial intermediate levels.

Unlike screen elements, controls only have to be created and filled with data once. From a
performance point of view, this means that they become more profitable the longer they exist. In
applications that are called repeatedly, and therefore initialized repeatedly, controls can have a
negative effect on performance. In applications that use the same screen for a long time, on the
other hand, you may find that using controls results in improved performance.

You can always use the performance tools [Ext.] to check the advantages and disadvantages in
terms of network load that using a control brings.

Storing Documents, Picture, and Other Data
Release 4.6A sees the introduction of a frontend cache for accessing documents from the
Business Document Service (BDS). You are strongly recommended to store desktop documents,
images, and other data in the BDS and not in the R/3 database. Documents from the BDS can
be cached at the frontend, and therefore only have to be loaded over the network once.

 SAP AG SAP Toolbar (BC-CI)

Special Considerations for the SAP Toolbar

April 2001 17

Special Considerations for the SAP Toolbar
There are no specific problems to bear in mind when you use the SAP Toolbar Control in a WAN.

SAP Toolbar (BC-CI) SAP AG

Methods of Class CL_GUI_TOOLBAR

18 April 2001

Methods of Class CL_GUI_TOOLBAR
This class contains both specific methods for the SAP Toolbar and inherited methods from the
Control Framework. However, this section deals only with the methods specific to SAP Toolbar.
For information about the Control Framework methods, refer to the Methods of the Control
Framework [Page 33] section.

 SAP AG SAP Toolbar (BC-CI)

constructor

April 2001 19

constructor
You use this method to instantiate the SAP Toolbar.

CREATE OBJECT toolbar

 EXPORTING parent = parent
 shellstyle = shellstyle
 lifetime = lifetime
 display_mode = display_mode
 EXCEPTIONS cntl_install_error = 1
 cntl_error = 2.

Parameter Meaning

lifetime Lifetime management [Ext.] parameter. The following values are permitted:

toolbar->lifetime_imode: The control remains alive for the duration of
the internal session (that is, until the session is ended by one of the
following statements: leave program. leave to transaction. set
screen 0, leave screen.). After this, the finalize [Page 44] method is
called.

toolbar->lifetime_dynpro: The control remains alive for the lifetime of
the screen instance, that is, for as long as the screen remains in the stack.
After this, the free [Page 42] method is called.
Using this mode automatically regulates the visibility of the control. Controls
are only displayed when the screen on which they were created is active.
When other screens are active, the controls are hidden.

toolbar->lifetime_default: If you create the control in a container, it
inherits the lifetime of the container. If you do not create the control in a
container (for example, because it is a container itself), the lifetime is set to
toolbar->lifetime_imode.

Shellstyle Controls the appearance and behavior of the control

You can pass any constants from the ABAP include <CTLDEF> that begin with
WS. You can combine styles by adding the constants together. The default
value sets a suitable combination of style constants internally.

parent Container in which the SAP Toolbar can be displayed (see also SAP Container
[Ext.]).

display_mode The alignment of the toolbar:

� cl_gui_toolbar=>m_mode_horizontal: Horizontal

� cl_gui_toolbar=>m_mode_vertical: Vertical

SAP Toolbar (BC-CI) SAP AG

add_button

20 April 2001

add_button
You use this method to add a new pushbutton to the toolbar.
CALL METHOD toolbar->add_button
 EXPORTING fcode = fcode
 icon = iconid
 is_disabled = is_disabled
 butn_type = butn_type
 text = text
 quickinfo = quickinfo
 is_checked = is_checked
 EXCEPTIONS cntl_error = 1.

Parameters Meaning

fcode Function code that will be passed to the application program by an event when
the user chooses the pushbutton.

icon Icon to be displayed on the pushbutton.

is_disabled 'X': Pushbutton is inactive

' ': Pushbutton is active

butn_type cntb_btype_button: Pushbutton

cntb_btype_dropdown: Pushbutton with menu

cntb_btype_menu: Menu

cntb_btype_sep: Separator

cntb_btype_group: Pushbutton group

cntb_btype_check: Toggle button

Note: You should use static menus wherever possible, since this helps to
eliminate excessive roundtrips. This is especially important under SAPGUI for
HTML. For further details, refer to set_static_ctxmenu [Page 29] or
assign_static_ctxmenu_table [Page 30].

text Text to be displayed on the pushbutton.

quickinfo Quick info for the pushbutton

is_checked Only for pushbuttons with type cntb_btype_group and cntb_btype_check:

'X': Button is chosen

' ': Button not chosen

You can address the icon using its name, for example, ICON_ANNOTATION. To do
this, the statement INCLUDE <ICON>. must appear in your program. The
executable program SHOWICON displays all of the icons in your system.

 SAP AG SAP Toolbar (BC-CI)

add_button

April 2001 21

Otherwise, you can address the icons using the form @xy@, where xy is the relevant
icon code.

SAP Toolbar (BC-CI) SAP AG

add_button_group

22 April 2001

add_button_group
You use this method to add a list of pushbuttons to your toolbar.

CALL METHOD toolbar->add_button_group

 EXPORTING data_table = data_table

 EXCEPTIONS dp_error = 1.

Parameter Meaning

data_table Table of pushbuttons that you want to add to the toolbar.

You create the table with reference to the type TTB_BUTTON.

You can use the method fill_buttons_data_table [Page 23] to fill the table.

You should use static menus wherever possible, since this helps to eliminate
excessive roundtrips. This is especially important under SAPGUI for HTML. For
further details, refer to set_static_ctxmenu [Page 29] or assign_static_ctxmenu_table
[Page 30].

 SAP AG SAP Toolbar (BC-CI)

fill_buttons_data_table

April 2001 23

fill_buttons_data_table
You use this method to fill the internal table that you pass to the method add_button_group [Page
22] in order to create a set of new pushbuttons in your toolbar.
CALL METHOD toolbar->fill_buttons_data_table
 EXPORTING fcode = fcode
 icon = iconid
 disabled = disabled
 butn_type = butn_type
 text = text
 quickinfo = quickinfo
 checked = checked
 CHANGING data_table = data_table.

Parameters Meaning

fcode Function code that will be passed to the application program by an event when
the user chooses the pushbutton.

icon Icon to be displayed on the pushbutton.

disabled 'X': Pushbutton is inactive

' ': Pushbutton is active

butn_type cntb_btype_button: Pushbutton

cntb_btype_dropdown: Pushbutton with menu

cntb_btype_menu: Menu

cntb_btype_sep: Separator

cntb_btype_group: Pushbutton group

cntb_btype_check: Toggle button

Note: You should use static menus wherever possible, since this helps to
eliminate excessive roundtrips. This is especially important under SAPGUI for
HTML. For further details, refer to set_static_ctxmenu [Page 29] or
assign_static_ctxmenu_table [Page 30].

text Text to be displayed on the pushbutton.

quickinfo Quick info for the pushbutton

checked Only for pushbuttons with type cntb_btype_group and cntb_btype_check:

'X': Button is chosen

' ': Button not chosen

data_table Table of pushbuttons that you want to add to the toolbar.

You create the table with reference to the type TTB_BUTTON.

You then pass the table to the method add_button_group [Page 22].

SAP Toolbar (BC-CI) SAP AG

fill_buttons_data_table

24 April 2001

You can address the icon using its name, for example, ICON_ANNOTATION. To do
this, the statement INCLUDE <ICON>. must appear in your program. The
executable program SHOWICON displays all of the icons in your system.

Otherwise, you can address the icons using the form @xy@, where xy is the relevant
icon code.

 SAP AG SAP Toolbar (BC-CI)

delete_button

April 2001 25

delete_button
You use this method to delete a pushbutton from the toolbar.

CALL METHOD toolbar->DELETE_BUTTON

 exporting fcode = fcode

 exceptions CNTL_ERROR = 1.

Parameter Meaning

fcode Function code of the pushbutton that you want to delete.

If you created more than one pushbutton with the same function code, the system
only deletes the last one.

SAP Toolbar (BC-CI) SAP AG

delete_all_buttons

26 April 2001

delete_all_buttons
You use this method to delete all pushbuttons from the toolbar.

CALL METHOD toolbar->DELETE_ALL_BUTTONS

 exceptions CNTL_ERROR = 1.

 SAP AG SAP Toolbar (BC-CI)

set_button_state

April 2001 27

set_button_state
You use this method to change the status of an individual pushbutton:

CALL METHOD toolbar->set_button_state

 EXPORTING enabled = enabled

 checked = checked

 fcode = fcode

 EXCEPTIONS cntl_error = 1.

Parameters Meaning

enabled ' ': Pushbutton is inactive

'X': Pushbutton is active

is_checked Only for pushbuttons with type cntb_btype_group and cntb_btype_check:

'X': Button is chosen

' ': Button not chosen

SAP Toolbar (BC-CI) SAP AG

set_button_info

28 April 2001

set_button_info
Use this method to change the text, icon, or quick info for a button.
CALL METHOD toolbar->set_button_info
 EXPORTING fcode = fcode
 icon = icon
 text = text
 quickinfo = quickinfo.

Parameter and Type Optional Meaning

fcode
TYPE UI_FUNC

Function code of the button (used to identify the button -
may not be changed)

icon
TYPE ICOPNNAME

X New icon in the form '@XY@'

text
TYPE TEXT40

X New text for the button

quickinfo
TYPE ICONQUICK

X New quickinfo text for the button

 SAP AG SAP Toolbar (BC-CI)

set_static_ctxmenu

April 2001 29

set_static_ctxmenu
Use this method to assign a context menu to a pushbutton for the entire lifetime of the control.
When you assign a context menu statically, the system loads it into the frontend control and it
remains there after the user has closed it. Normally the system triggers the
DROPDOWN_CLICKED event when the user clicks a pushbutton that has a dropdown menu. In
your application, you would then assign the context menu to the button, but only for that one
occasion. If you assign the context menu statically, it resides at the frontend, and is available
each time the user clicks the corresponding pushbutton without you having to reassign it each
time.

You should use static context menus in all but the most context-sensitive cases.

Any changes that are made to the context menu during the lifetime of the control are
automatically updated at the frontend.

CALL METHOD toolbar->set_static_ctxmenu
 EXPORTING fcode = fcode
 ctxmenu = ctxmenu

Parameter and Type Meaning

fcode
TYPE UI_FUNC

Function code of the button to which you want to assign the context
menu
Note: The button must have the type cntb_btype_dropdown or
cntb_btype_menu.

ctxmenu
TYPE REF TO
CL_CTMENU

Reference variable pointing to the context menu instance you want to
assign (see Context Menus [Ext.])

SAP Toolbar (BC-CI) SAP AG

assign_static_ctxmenu_table

30 April 2001

assign_static_ctxmenu_table
Use this method to assign context menus to a group of pushbuttons for the entire lifetime of the
control. When you assign a context menu statically, the system loads it into the frontend control
and it remains there after the user has closed it. Normally the system triggers the
DROPDOWN_CLICKED event when the user clicks a pushbutton that has a dropdown menu. In
your application, you would then assign the context menu to the button, but only for that one
occasion. If you assign the context menus statically, they reside at the frontend, and are available
whenever the user clicks the corresponding pushbutton without you having to reassign it each
time.

You should use static context menus in all but the most context-sensitive cases.

Any changes that are made to the context menu during the lifetime of the control are
automatically updated at the frontend.

CALL METHOD toolbar->assign_static_ctxmenu_table
 EXPORTING table_ctxmenu = table_ctxmenu.

Parameter and Type Meaning

table_ctxmenu
TYPE TTB_BTNMNU

Internal table containing the assignments of context menus to
pushbuttons in the toolbar instance. It has the line type STB_BTNMNU
(described below).

Structure STB_BTNMNU
Component and Type Meaning

Function
TYPE UI_FUNC

The function code of the pushbutton in the toolbar to which you
want to assign the context menu

ctmenu
TYPE REF TO
CL_CTMENU

A reference variable pointing to the context menu you want to
assign to the pushbutton (see Context Menus [Ext.])

 SAP AG SAP Toolbar (BC-CI)

assign_static_ctxmenu_table

April 2001 31

SAP Toolbar (BC-CI) SAP AG

track_context_menu

32 April 2001

track_context_menu
Use this method to display a context menu. It is particulaly useful in connection with the events
of pushbuttons with type cntb_btype_dropdown and cntb_btype_menu.

CALL METHOD toolbar->track_context_menu

 EXPORTING context_menu = menu

 posx = posx

 posy = posy

 EXCEPTIONS ctmenu_error = 1.

Parameters Description

context_menu Name of the context menu.

You create the menu with reference to the class CL_CTMENU.

You must use this class to fill it.

posx Horizontal display position for the menu

posy Vertical display position for the menu

 SAP AG SAP Toolbar (BC-CI)

Methods of the Control Framework

April 2001 33

Methods of the Control Framework
This section describes the methods of the Control Framework that you need to implement the
SAP Toolbar.

SAP Toolbar (BC-CI) SAP AG

Methods of Class CL_GUI_CFW

34 April 2001

Methods of Class CL_GUI_CFW
The class CL_GUI_CFW contains static methods that apply to all instantiated custom controls
when you call them.

 SAP AG SAP Toolbar (BC-CI)

dispatch

April 2001 35

dispatch
Use this method to dispatch application events (see Event Handling [Ext.]) to the event handlers
registered for the events. If you do not call the method within the PAI event of your application
program, it is called automatically by the system after the PAI has been processed. The method
returns a return code from which you can tell if the call was successful.

CALL METHOD cl_gui_cfw=>dispatch
 IMPORTING return_code = return_code.

Parameters Description

return_code cl_gui_cfw=>rc_found: The event was successfully directed to a handler
method.

cl_gui_cfw=>rc_unknown: The event was not registered in the event list.

cl_gui_cfw=>rc_noevent: No event was triggered in a control. The function
code was therefore a normal one (for example, from a menu entry).

cl_gui_cfw=>rc_nodispatch: No handler method could be assigned to the
event.

An event can only be dispatched once. After that, it is "spent". Consequently,
attempting to dispatch the events a second time does not trigger the handler events
again.

SAP Toolbar (BC-CI) SAP AG

flush

36 April 2001

flush
Use this method to synchronize the automation queue [Ext.]. The buffered operations are sent to
the frontend using GUI RFC. At the frontend, the automation queue is processed in the sequence
in which you filled it.

If an error occurs, an exception is triggered. You must catch and handle this error. Since it is not
possible to identify the cause of the error from the exception itself, there are tools available in the
Debugger and the SAPgui to enable you to do so.

Debugger: Select the option Automation Controller: Always process requests synchronously.
The system then automatically calls the method cl_gui_cfw=>flush after each method called
by the Automation Controller.

SAPGUI: In the SAPgui settings, under Trace, select Automation. The communication between
the application server and the Automation Controller is then logged in a trace file that you can
analyze at a later date.

CALL METHOD cl_gui_cfw=>flush
 EXCEPTIONS CNTL_SYSTEM_ERROR = 1
 CNTL_ERROR = 2.

Do not use any more synchronizations in your program than are really necessary.
Each synchronization opens a new RFC connection to the SAPgui.

 SAP AG SAP Toolbar (BC-CI)

get_living_dynpro_controls

April 2001 37

get_living_dynpro_controls
This method returns a list of reference variables to all active custom controls.
CALL METHOD cl_gui_cfw=>get_living_dynpro_controls
 IMPORTING control_list = control_list.

Parameters Description
control_list List of reference variables of active custom controls.

The list has the type CNTO_CONTROL_LIST (defined in class CL_GUI_CFW).

SAP Toolbar (BC-CI) SAP AG

set_new_ok_code

38 April 2001

set_new_ok_code
You may only use this method in the handler method of a system event. It sets an OK_CODE that
triggers PAI processing. This means that data is transferred from the screen to the program, and
you can take control of the program in your PAI modules.

CALL METHOD cl_gui_cfw=>set_new_ok_code
 EXPORTING new_code = new_code
 IMPORTING rc = rc.

Parameters Description

new_code Function code that you want to place in the OK_CODE field
(SY-UCOMM).

return_code cl_gui_cfw=>rc_posted: The OK_CODE was set successfully and the
automatic field checks and PAI will be triggered after the event handler
method has finished.

cl_gui_cfw=>rc_wrong_state: The method was not called from the handler
method of a system event.

cl_gui_cfw=>rc_invalid: The OK_CODE that you set is invalid.

 SAP AG SAP Toolbar (BC-CI)

update_view

April 2001 39

update_view
Calling the flush [Page 36] method only updates the automation queue if the queue contains
return values.

If you have a queue with no return values, and want to ensure that it is synchronized, you can
use the Control Framework method CL_GUI_CFW=>UPDATE_VIEW. You should only use this
method if you absolutely need to update the GUI. For example, you might have a long-running
application in which you want to provide the user with regular updates on the status of an action.

CALL METHOD cl_gui_cfw=>update_view
 EXCEPTIONS CNTL_SYSTEM_ERROR = 1
 CNTL_ERROR = 2.

SAP Toolbar (BC-CI) SAP AG

Methods of Class CL_GUI_OBJECT

40 April 2001

Methods of Class CL_GUI_OBJECT
The class CL_GUI_OBJECT contains important methods for custom control wrappers. The only
one relevant for application programs is the is_valid [Page 41] method.

 SAP AG SAP Toolbar (BC-CI)

is_valid

April 2001 41

is_valid
This method informs you whether a custom control for an object reference still exists at the
frontend.

CALL METHOD my_control->is_valid
 IMPORTING result = result.

Parameters Description

result 0: Custom control is no longer active at the frontend

1: Custom control is still active

SAP Toolbar (BC-CI) SAP AG

free

42 April 2001

free
Use this method to destroy a custom control at the frontend. Once you have called this method,
you should also initialize the object reference (FREE my_control).

CALL METHOD my_control->free
 EXCEPTIONS cntl_error = 1
 cntl_system_error = 2.

 SAP AG SAP Toolbar (BC-CI)

Methods of Class CL_GUI_CONTROL

April 2001 43

Methods of Class CL_GUI_CONTROL
The class CL_GUI_CONTROL contains methods that you need to set control attributes (for
example, displaying the control), register events, and destroy controls.

SAP Toolbar (BC-CI) SAP AG

finalize

44 April 2001

finalize
This method is redefined by the relevant control wrapper. It contains specific functions for
destroying the corresponding control. This method is called automatically by the free [Page 42]
method, before the control is destroyed at the frontend.
CALL METHOD my_control->finalize.

 SAP AG SAP Toolbar (BC-CI)

set_registered_events

April 2001 45

set_registered_events
Use this method to register the events of the control. See also: Event Handling [Ext.]

CALL METHOD my_control->set_registered_events
 EXPORTING events = events
 EXCEPTIONS cntl_error = 1
 cntl_system_error = 2
 illegal_event_combination = 3.

Parameters Description

events Table of events that you want to register for the custom control my_control.

The table events is a list of the events that you want to register. It is defined with reference to
table type CNTL_SIMPLE_EVENTS. The table type is based on the structure
CNTL_SIMPLE_EVENT, which consists of the following fields:

Field Description

EVENTID Event name

APPL_EVENT Indicates whether the event is a system event (initial) or an application event
(X).

The values that you assign to the field EVENTID are control-specific and therefore described in
the documentation of the individual controls.

SAP Toolbar (BC-CI) SAP AG

get_registered_events

46 April 2001

get_registered_events
This method returns a list of all events registered for custom control my_control.

CALL METHOD my_control->get_registered_events
 IMPORTING events = events
 EXCEPTIONS cntl_error = 1.

Parameters Description

events Table of events that you want to register for the custom control my_control.

The table events is a list of the events that you want to register. It is defined with reference to
table type CNTL_SIMPLE_EVENTS. The table type is based on the structure
CNTL_SIMPLE_EVENT, which consists of the following fields:

Field Description

EVENTID Event name

APPL_EVENT Indicates whether the event is a system event (initial) or an application event
(X).

The values that you assign to the field EVENTID are control-specific and therefore described in
the documentation of the individual controls.

For general information about event handling, refer to the Event Handling [Ext.]
section of the SAP Control Framework documentation.

 SAP AG SAP Toolbar (BC-CI)

is_alive

April 2001 47

is_alive
This method informs you whether a custom control for an object reference still exists at the
frontend.

CALL METHOD my_control->is_alive
 RETURNING state = state.

Parameters Description

state my_control->state_dead: Custom control is no longer active at the frontend

my_control->state_alive: Custom control is active on the current screen.

my_control->state_alive_on_other_dynpro: Custom control is not
active on the current screen, but is still active (but invisible) at the frontend.

SAP Toolbar (BC-CI) SAP AG

set_alignment

48 April 2001

set_alignment
Use this method to align the custom control within its container:

CALL METHOD my_control->set_alignment
 EXPORTING alignment = alignment
 EXCEPTIONS cntl_error = 1
 cntl_system_error = 2.

Parameters Description

alignment Control alignment

The alignment parameter may consist of combinations of the following alignments:

Name Description

my_control->align_at_left Alignment with left-hand edge

my_control->align_at_right Alignment with right-hand edge

my_control->align_at_top Alignment with top edge

my_control->align_at_bottom Alignment with bottom edge

You can combine these parameters by adding the components:

alignment = my_control->align_at_left + my_control->align_at_top.

 SAP AG SAP Toolbar (BC-CI)

set_position

April 2001 49

set_position
Use this method to place the control at a particular position on the screen.

The position of the control is usually determined by its container.

CALL METHOD my_control->set_position
 EXPORTING height = height
 left = left
 top = top
 width = width
 EXCEPTIONS cntl_error = 1
 cntl_system_error = 2.

Parameters Description

height Height of the control

left Left-hand edge of the control

top Top edge of the control

width Width of the control

SAP Toolbar (BC-CI) SAP AG

set_visible

50 April 2001

set_visible
Use this method to change the visibility of a custom control.

CALL METHOD my_control->set_visible
 EXPORTING visible = visible
 EXCEPTIONS cntl_error = 1
 cntl_system_error = 2.

Parameters Description

visible X: Custom control is visible

' ': Custom control is not visible

 SAP AG SAP Toolbar (BC-CI)

get_focus

April 2001 51

get_focus
This static method returns the object reference of the control that has the focus.

CALL METHOD cl_gui_control=>get_focus
 IMPORTING control = control
 EXCEPTIONS cntl_error = 1
 cntl_system_error = 2.

Parameters Description

control Object reference (TYPE REF TO cl_gui_control) to the control that has the
focus.

SAP Toolbar (BC-CI) SAP AG

set_focus

52 April 2001

set_focus
Use this static method to set the focus to a custom control.

CALL METHOD cl_gui_control=>set_focus
 EXPORTING control = control
 EXCEPTIONS cntl_error = 1
 cntl_system_error = 2.

Parameters Description

control Object reference (TYPE REF TO cl_gui_control) to the control on which
you want to set the focus.

 SAP AG SAP Toolbar (BC-CI)

get_height

April 2001 53

get_height
This method returns the height of the control.

CALL METHOD control->get_height
 IMPORTING height = height
 EXCEPTIONS cntl_error = 1.

Parameters Description

height Current height of the control

SAP Toolbar (BC-CI) SAP AG

get_width

54 April 2001

get_width
This method returns the width of the control.

CALL METHOD control->get_width
 IMPORTING width = width
 EXCEPTIONS cntl_error = 1.

Parameters Description

width Current width of the control

