
SAP Tree and Tree Model
(BC-CI)

H
E

L
P

.B
C

C
IT

R
E

E

Re lease 4 .6C

SAP Tree and Tree Model (BC-CI) SAP AG

2 April 2001

Copyright

© Copyright 2001 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose
without the express permission of SAP AG. The information contained herein may be changed
without prior notice.

Some software products marketed by SAP AG and its distributors contain proprietary software
components of other software vendors.

Microsoft®, WINDOWS®, NT®, EXCEL®, Word®, PowerPoint® and SQL Server® are registered
trademarks of
Microsoft Corporation.

IBM®, DB2®, OS/2®, DB2/6000®, Parallel Sysplex®, MVS/ESA®, RS/6000®, AIX®, S/390®,
AS/400®, OS/390®, and OS/400® are registered trademarks of IBM Corporation.

ORACLE® is a registered trademark of ORACLE Corporation.

INFORMIX®-OnLine for SAP and Informix® Dynamic Server
TM

 are registered trademarks of
Informix Software Incorporated.

UNIX®, X/Open®, OSF/1®, and Motif® are registered trademarks of the Open Group.

HTML, DHTML, XML, XHTML are trademarks or registered trademarks of W3C®, World Wide
Web Consortium,
Massachusetts Institute of Technology.

JAVA® is a registered trademark of Sun Microsystems, Inc.

JAVASCRIPT® is a registered trademark of Sun Microsystems, Inc., used under license for
technology invented and implemented by Netscape.

SAP, SAP Logo, R/2, RIVA, R/3, ABAP, SAP ArchiveLink, SAP Business Workflow, WebFlow,
SAP EarlyWatch, BAPI, SAPPHIRE, Management Cockpit, mySAP.com Logo and mySAP.com
are trademarks or registered trademarks of SAP AG in Germany and in several other countries
all over the world. All other products mentioned are trademarks or registered trademarks of their
respective companies.

 SAP AG SAP Tree and Tree Model (BC-CI)

April 2001 3

Icons

Icon Meaning

Caution

Example

Note

Recommendation

Syntax

Tip

SAP Tree and Tree Model (BC-CI) SAP AG

4 April 2001

Content

SAP Tree and Tree Model (BC-CI) ... 12
The Tree Controls in SAPGUI for HTML...14
SAP Tree..15
Programming the SAP Tree...17
Overview of SAP Tree Classes ...18
The Inheritance Hierarchy ...22
Finding Errors...24
Important Notes..25
Example Programs...26
Using Controls in a WAN...27

Special Considerations for the SAP Tree ...29
Incremental Tree Construction..31

The Simple Tree..32
Creating a Control: SAP Picture Example ..33
Using the Simple Tree...35

Changing the Attributes of the Control...37
Finding Out the Attributes of the Control ...39

Registering and Processing Events ..40
Events of the Simple Tree..42
Drag and Drop ...45

Process Flow of a Drag and Drop Operation..46
Drag and Drop Events ..48
Defining Drag and Drop Events in the SAP Tree ...50
Example of Drag and Drop Programming ..53

The Column Tree ..58
Creating a Control: SAP Picture Example ..59
Using the Column Tree ...61

Changing the Attributes of the Control...64
Finding Out the Attributes of the Control ...68

Registering and Processing Events ..69
Events of the Column Tree and List Tree..71
Drag and Drop ...76

Process Flow of a Drag and Drop Operation..77
Drag and Drop Events ..79
Defining Drag and Drop Events in the SAP Tree ...81
Example of Drag and Drop Programming ..84

The List Tree ...89
Creating a Control: SAP Picture Example ..90
Using the List Tree ..92

Changing the Attributes of the Control...95
Finding Out the Attributes of the Control ...98

Registering and Processing Events ..99
Events of the Column Tree and List Tree..101

 SAP AG SAP Tree and Tree Model (BC-CI)

April 2001 5

Drag and Drop ...106
Process Flow of a Drag and Drop Operation..107
Drag and Drop Events ..109
Defining Drag and Drop Events in the SAP Tree ...111
Example of Drag and Drop Programming ..114

Methods of Class CL_TREE_CONTROL_BASE ..119
add_key_stroke...120
collapse_all_nodes..121
collapse_nodes ...122
collapse_subtree ...123
delete_all_nodes ...124
delete_node...125
delete_nodes...126
ensure_visible ...127
expand_node...128
expand_nodes...129
expand_root_nodes ..130
get_expanded_nodes..131
get_selected_node..132
get_selected_nodes ..133
get_top_node ..134
move_node..135
node_set_disabled ..136
node_set_dragdropid ..137
node_set_expander ..138
node_set_exp_image..139
node_set_hidden...140
node_set_is_folder..141
node_set_no_branch ..142
node_set_n_image..143
node_set_style ..144
remove_all_key_strokes ...145
scroll ..146
select_nodes ...147
set_default_drop ...148
set_folder_show_exp_image ..149
set_has_3d_frame ..150
set_screen_update..151
set_selected_node ..152
set_top_node...153
unselect_all ...154
unselect_nodes ...155
set_ctx_menu_select_event_appl...156

Methods of Class CL_ITEM_TREE_CONTROL..157
add_nodes_and_items..158
delete_all_items_of_nodes ...162
delete_items..163
get_selected_item ...164
item_set_chosen ...165
item_set_disabled ...166
item_set_editable ..167

SAP Tree and Tree Model (BC-CI) SAP AG

6 April 2001

item_set_font...168
item_set_hidden..169
item_set_style ...170
item_set_text ...171
item_set_t_image..172
select_item ..173
set_min_node_height..174
update_nodes_and_items...175

Methods of Class CL_GUI_SIMPLE_TREE ..179
constructor...180
add_nodes...181
node_set_text..184
update_nodes ...185

Methods of Class CL_GUI_LIST_TREE..188
constructor...189
node_set_last_hierarchy_item ..191
hierarchy_header_set_t_image ..192
list_header_set_t_image...193
hierarchy_header_set_text..194
list_header_set_text ..195
hierarchy_header_set_width ...196
hiearchy_header_get_width ..197
hierarchy_header_adjust_width ..198
item_set_alignment ...199
item_set_length...200
hierarchy_header_set_tooltip..201
list_header_set_tooltip ..202

Methods of Class CL_GUI_COLUMN_TREE..203
constructor...204
add_column...206
add_hierarchy_column..208
adjust_column_width...209
column_get_width ...210
column_set_disabled ..211
column_set_heading_image ...212
column_set_heading_text ...213
column_set_heading_tooltip ...214
column_set_hidden ...215
column_set_width ...216
delete_column...217
get_column_order ...218
hierarchy_header_adjust_width ..219
hierarchy_header_get_width...220
hierarchy_header_set_text..221
hierarchy_header_set_tooltip..222
hierarchy_header_set_t_image ..223
hierarchy_header_set_width ...224
insert_column..225
insert_hierarchy_column...227
set_column_order ...228
update_column..229

SAP Tree Model ..231

 SAP AG SAP Tree and Tree Model (BC-CI)

April 2001 7

Overview of SAP Tree Model Classes..232
The Inheritance Hierarchy ...236
Finding Errors...237
Important Notes..238
Example Programs...239
Using Controls in a WAN...240
The Simple Tree Model ..242

Getting Started With the Simple Tree Model ..243
Searching in the Simple Tree Model...246

The Column Tree Model...247
Getting Started With the Column Tree Model ...248
Loading Items on Demand..251

The List Tree Model..252
Getting Started With the List Tree Model..253
Loading Items on Demand..256

Processing Events in the Tree Model ..257
Methods of Class CL_TREE_MODEL ...258

create_tree_control ...259
set_has_3d_frame ..260
update_view ..261
add_key_stroke...262
remove_all_key_strokes ...263
get_key_strokes ..264
set_selected_node ..265
select_nodes ...266
unselect_all ...267
unselect_nodes ...268
get_selected_node..269
get_selected_nodes ..270
get_node_selection_mode..271
get_hide_selection ..272
node_keys_in_tree..273
node_key_in_tree..274
expand_node...275
expand_nodes...276
expand_root_nodes ..277
save_expand_all_nodes ...278
save_expand_subree..279
expand_node_predecessors...280
get_expanded_nodes..281
collapse_all_nodes..282
collapse_node ...283
get_first_root_node ...284
get_last_root_node ...285
get_nr_of_root_nodes ...286
get_root_nodes ...287
delete_all_nodes ...288
delete_node...289
delete_nodes...290
node_set_disabled ..291
node_set_dragdropid ..292

SAP Tree and Tree Model (BC-CI) SAP AG

8 April 2001

node_set_expander ..293
node_set_expanded_image..294
node_set_hidden...295
node_set_is_folder..296
node_set_no_branch ..297
node_set_image..298
node_set_style ..299
node_set_user_object...300
node_get_children...301
node_get_first_child ..302
node_get_last_child ..303
node_get_next_sibling ..304
node_get_nr_of_children ..305
node_get_parent ...306
node_get_prev_sibling ..307
node_get_user_object...308
print_tree ...309
get_nr_of_nodes ...310
ensure_visible ...311
move_node..312
scroll ..314
set_ctx_menu_select_event_appl...315
get_ctx_menu_select_event_appl ..316
set_default_drop ...317
get_default_drop ...318
set_folder_show_exp_image ..319
get_folder_show_exp_image ..320
set_top_node...321
get_top_node ..322
get_first_root_node ...323
get_last_root_node ...324

Methods of Class CL_SIMPLE_TREE_MODEL..325
constructor...326
add_node ..327
add_nodes...330
update_nodes ...331
set_registered_events...332
get_registered_events...333
node_set_text..334
node_get_text..335
node_get_properties ...336
get_tree ...337
find...338
find_first...339
find_next..341
find_all ...342
find_all_continue ...344

Methods of Class CL_ITEM_TREE_MODEL ..345
set_registered_events...346
get_registered_events...347
find...348
find_first...349

 SAP AG SAP Tree and Tree Model (BC-CI)

April 2001 9

find_next..351
find_all ...352
find_all_continue ...354
select_item ..355
get_selected_item ...356
get_item_selection ..357
delete_items..358
delete_all_items_of_nodes ...359
item_set_chosen ...360
item_set_disabled ...361
item_set_editable ..362
item_set_font...363
item_set_hidden..364
item_set_style ...365
item_set_text ...366
item_get_text...367
item_set_image...368

Methods of Class CL_LIST_TREE_MODEL ...369
constructor...370
add_node ..372
add_nodes...375
update_nodes ...376
add_items..377
update_items...378
hierarchy_header_set_t_image ..379
hierarchy_header_set_width ...380
hierarchy_header_set_text..381
hierarchy_header_set_tooltip..382
hierarchy_header_adjust_width ..383
hierarchy_header_get_width...384
hierarchy_header_get_props ..385
list_header_set_t_image...386
list_header_set_text ..387
list_header_set_tooltip ..388
list_header_get_properties..389
node_set_last_hierarchy_item ..390
node_get_properties ...391
node_get_item ..392
node_get_items...393
item_set_alignment ...394
item_set_length...395
get_tree ...396
set_item_provider..397
get_with_headers..398

Methods of Class CL_COLUMN_TREE_MODEL ...399
constructor...400
add_node ..401
add_nodes...404
update_nodes ...405
add_items..406
update_items...407
add_column...408

SAP Tree and Tree Model (BC-CI) SAP AG

10 April 2001

add_hierarchy_column..410
insert_column..411
insert_hierarchy_column...413
delete_column...414
hierarchy_header_adjust_width ..415
hierarchy_header_set_text..416
hierarchy_header_set_tooltip..417
hierarchy_header_set_t_image ..418
hierarchy_header_set_width ...419
update_hierarchy_header ...420
hierarchy_header_get_width...421
hierarchy_header_get_props ..422
get_hierarchy_columns ...423
get_nr_of_columns..424
get_first_column..425
get_last_column ..426
get_widths_of_columns...427
get_column_order ...428
set_column_order ...429
set_column_order_frozen ...430
column_set_disabled ..431
column_set_heading_image ...432
column_set_heading_text ...433
column_set_heading_tooltip ...434
column_set_hidden ...435
column_set_width ...436
update_column..437
adjust_column_width...439
column_get_width ...440
column_get_next_sibling...441
column_get_prev_sibling ..442
column_get_properties..443
node_get_item ..444
node_get_items...445
node_get_properties ...446
get_table..447
set_print_short_header_width...448
set_item_provider..449

Important Data Structures ...450
Structure TREEMSNODT ...451
Structure TREEMSUNO..454
Structures for Headings of Item Trees ..457
Structure TREEMLNODT..458
Structure TREEMLITEM ...461
Structure TREEMCITEM...464
Structure TREEMCNODT ...466
Structure TREEMSNOD..469

Methods of the Control Framework..471
Methods of Class CL_GUI_CFW ...472

dispatch ...473
flush...474
get_living_dynpro_controls ...475

 SAP AG SAP Tree and Tree Model (BC-CI)

April 2001 11

set_new_ok_code ...476
update_view ..477

Methods of Class CL_GUI_OBJECT...478
is_valid ..479
free ..480

Methods of Class CL_GUI_CONTROL ...481
finalize ...482
set_registered_events...483
get_registered_events...484
is_alive ..485
set_alignment..486
set_position ...487
set_visible..488
get_focus...489
set_focus...490
get_height..491
get_width ...492

Methods of the Class CL_DRAGDROP ..493
constructor...494
add ..495
clear...497
destroy...498
get ...499
get_handle...501
modify..502
remove ..504

Methods of the Class CL_DRAGDROPOBJECT..505
set_flavor...506
abort ..507

SAP Tree and Tree Model (BC-CI) SAP AG

SAP Tree and Tree Model (BC-CI)

12 April 2001

SAP Tree and Tree Model (BC-CI)
Purpose
SAP Tree and SAP Tree Model are techniques based on SAP's Control Framework that you can
use to display hierarchically-arranged data in tree format. SAP Tree, introduced in Release 4.6A,
can be used to display data at the frontend. The SAP Tree Model, new in Release 4.6C, also
allows you to administer the data within the control instance.

The graphic illustrates the difference: The SAP Tree receives application data from the program
and passes it to its corresponding frontend component, either directly, or at the next
synchronization. However, it cannot hold any data itself, which means that to find out attributes of
a node or item other than its key or name, you must program the request yourself on the basis of
the node key. The SAP Tree Model, on the other hand, incorporates a data management part
and also encapsulates a normal tree control instance. All of the data that is passed to the tree is
held within the Tree Model instance as well as being sent to the frontend. Consequently, actions
like searching within the tree take place within the ABAP program, and do not require time-
consuming network communication.

SAP Tree SAP Tree Model

Frontend
display

Application data Application data

Tree Control instance
Tree Control instance

Data management

Tree model
instance

Frontend
display

Application program Application program

Implementation Considerations
When deciding whether to use the SAP Tree or the SAP Tree Model, you should remember that
the SAP Tree Model provides some useful functions that are not available in the SAP Tree. For
example, the SAP Tree Model allows you to:

� Check node keys before you send them to the frontend (to ensure that there are no
duplicates)

� Search within the tree

 SAP AG SAP Tree and Tree Model (BC-CI)

SAP Tree and Tree Model (BC-CI)

April 2001 13

� Print the tree

The SAP Tree Model also provides

� Automatic flush handling

� Automatic handling of node transfer to the frontend

To use the SAP Tree you must have a SAPgui with Release 4.6A or higher. To use the SAP Tree
Model, you must have a SAPgui with Release 4.6C or higher.

Constraints
Certain features of the SAP Tree and SAP Tree Model are not available under SAPGUI for
HTML. For further information, refer to The Tree Controls in SAPGUI for HTML [Page 14].

SAP Tree and Tree Model (BC-CI) SAP AG

The Tree Controls in SAPGUI for HTML

14 April 2001

The Tree Controls in SAPGUI for HTML
Part of SAP's GUI strategy has been to introduce the SAPGUI for HTML, in which it is possible to
use R/3 transactions within a web browser. However, certain functions of the Tree and Tree
Model controls are either not available in this environment, or have different behavior from the
SAPGUI for Windows environment.

Restrictions in the Simple Tree and Simple Tree Model
� You cannot set and retrieve the top node of the tree control display. The top node of the

display cannot be retained between browser requests

� Drag and drop is not available

� Context menus are not available for nodes

Restrictions in the Column Tree and Column Tree Model
All of the restrictions of the Simple Tree and Simple Tree Model apply, along with the following:

� You cannot set or change the column width. The column widths are automatically fitted to the
maximum text width in the column

� You cannot scroll the hierarchy part of the tree separately

Restrictions in the List Tree and List Tree Model
All of the restrictions of the Simple Tree and Simple Tree Model apply, along with the following:

� Colors and formatting have not yet been implemented

 SAP AG SAP Tree and Tree Model (BC-CI)

SAP Tree

April 2001 15

SAP Tree
Purpose
SAP Tree is a control that allows you to display tree structures on a screen. It has been
developed by SAP, and while it fulfills the basic requirements of a tree control, it has not been
adapted for individual applications.

The R/3 System contains the following example programs:
SAPCOLUMN_TREE_CONTROL_DEMO, SAPSIMPLE_TREE_CONTROL_DEMO, and
SAPTLIST_TREE_CONTROL_DEMO.

The following graphic provides an example. The R/3 window contains both a SAP Tree (left-
hand side) and a SAP HTML Viewer (right-hand side):

Features
There are three different versions [Page 18] of the SAP Tree.

� Simple tree structure: A simple tree with a single text entry for each node.

SAP Tree and Tree Model (BC-CI) SAP AG

SAP Tree

16 April 2001

� List structure: Each node may have more than one entry. The entries are displayed from left
to right.

� Column structure: Tree structure with freely-definable columns.

 SAP AG SAP Tree and Tree Model (BC-CI)

Programming the SAP Tree

April 2001 17

Programming the SAP Tree
Data Handling in the ABAP Program:
When you program the SAP Tree, you send it the data you want to display, along with the
necessary administration and formatting information.

An instance of the SAP Tree has no data of its own. Instead, you use it to transfer
data to and from the SAP Tree at the frontend. You must maintain the tree data
structure in your application.

This is particularly important in event handling, since the tree control only provides
administrative data when an event is triggered (for example, the name of the node on
which the event was triggered).

Important Elements of the SAP Tree
Nodes with subordinate nodes are called branches. Nodes without subordinate nodes are called
leaves.

Each folder that is not empty has a plus or minus sign next to it, indicating that you can expand or
collapse it respectively . You can also define a picture for each node, which is displayed before
the node itself.

SAP Tree and Tree Model (BC-CI) SAP AG

Overview of SAP Tree Classes

18 April 2001

Overview of SAP Tree Classes
Simple Tree
The class CL_GUI_SIMPLE_TREE is the ABAP Objects wrapper for the simple tree.

Example program: SAPSIMPLE_TREE_CONTROL_DEMO:

Attributes

� A node consists of a folder or leaf symbol and a text.

� You cannot use checkboxes or additional icons.

� You can only have one text for each node.

� There is no heading.

Column Tree
The class CL_GUI_COLUMN_TREE is the ABAP Objects wrapper for the column tree.

Example program: SAPCOLUMN_TREE_CONTROL_DEMO:

 SAP AG SAP Tree and Tree Model (BC-CI)

Overview of SAP Tree Classes

April 2001 19

Attributes

� A node consists of a folder or leaf symbol and a range of items.

� The entries of a node are arranged in columns.

In the example, the tree has three columns with the logical names 'Column1',
'Column2', and 'Column3'. The topmost node has an entry in each of these columns:

'Root Col. 1' in column 'Column1'

'Root Col. 2' in column 'Column2'

'Root Col. 3' in column 'Column3'

� A COLUMN_TREE can contain two kinds of columns:

� Columns in the hierarchy area: These columns are below the hierarchy heading. The
hierarchy heading is the first heading from the left in the SAP Tree (in the example,
'Hierarchy Header'). There is normally only one column in the hierarchy area. In the
example, it is the column with the name 'Column1', containing the entries 'Root Col.1',
'Child1 Col. 1' and so on.

� Columns outside the hierarchy area: These columns have their own heading. The
example contains two columns outside the hierarchy area, with the headings 'Column2'
and 'Column3'.

� Columns can have the following kinds of entries:

� Text: Text, with optional icon

� Checkbox: Checkbox with optional icon and text.

� Pushbutton: Pushbutton with text and icon.

� Link: Like text, but additionally, an event is triggered when the user clicks the link.

SAP Tree and Tree Model (BC-CI) SAP AG

Overview of SAP Tree Classes

20 April 2001

List Tree
The class CL_GUI_LIST_TREE is the ABAP Objects wrapper for the column tree.

Example program: SAPTLIST_TREE_CONTROL_DEMO:

Attributes

� A node consists of a folder or leaf symbol and entries.

� The entries are displayed from left to right.

Structure of the first three nodes in the example:

The topmost node has a single entry ("objects"). Proportional font is set for this entry.
Additionally, the "automatic width" is set. This means that the width of the entry is
adjusted to fit the contents (in this case, the string "objects").

The second node from the top has the same construction as the first: An entry with
the text "Screens".

The third node from the top has four entries:

A tick icon, four characters wide.

0100, not in proportional font, four characters wide.

MUELLER, not in proportional font, 11 characters wide.

Comment for screen 100, proportional font, automatic width.

� Using non-proportional fonts and a fixed display width allows you to display data in tabular
format, as in the example.

� Columns can have the following kinds of entries:

� Text: Text, with optional icon

� Checkbox: Checkbox with optional icon and text.

 SAP AG SAP Tree and Tree Model (BC-CI)

Overview of SAP Tree Classes

April 2001 21

� Pushbutton: Pushbutton with text and icon.

� Link: Like text, but additionally, an event is triggered when the user clicks the link.

� There is a hierarchy heading and a list heading, under which all entries can be grouped.
The program SAPTLIST_TREE_CONTROL_DEMO_HDR provides an example:

SAP Tree and Tree Model (BC-CI) SAP AG

The Inheritance Hierarchy

22 April 2001

The Inheritance Hierarchy
The lines in the diagram indicate the inheritance relationship.

cl_gui_control

cl_tree_control_base

cl_gui_simple_tree cl_item_tree_control

cl_gui_column_tree cl_gui_list_tree

All control classes inherit from the class cl_gui_control.

The interface of a control consists of the public methods of its wrapper class and of the
superclasses of the wrapper class.

Interface of the class cl_gui_column_tree:

Public methods of the class cl_gui_column_tree

Public methods of the class cl_item_tree_control

Public methods of the class cl_tree_control_base

Public methods of the class cl_gui_control

Functions of the Classes
cl_tree_control_base Methods common to all SAP Trees (simple tree, list tree, column tree).

For example - setting the expanded node.

cl_gui_simple_tree Simple Tree

cl_item_tree_control Methods common to the list tree and column tree. For example, setting
the text for an item.

cl_gui_column_tree Column Tree

 SAP AG SAP Tree and Tree Model (BC-CI)

The Inheritance Hierarchy

April 2001 23

cl_gui_list_tree List Tree

SAP Tree and Tree Model (BC-CI) SAP AG

Finding Errors

24 April 2001

Finding Errors
The majority of errors in control programming occur when you synchronize the automation queue
[Ext.]. Synchronization occurs either explicitly, using the method CL_GUI_CFW=>FLUSH [Page
474], or implicitly after the last PBO module has finished.

If the error occurs in an explicit synchronization, the method CL_GUI_CFW=>FLUSH triggers the
exception CNTL_ERROR. If the error occurs in an implicit synchronization, a short dump occurs.
You can avoid the short dump by handling special events of the Control Framework.

The exception CNTL_ERROR only indicates that an unspecified method call to a control at the
frontend was unsuccessful. You then need to find out which control at the frontend has triggered
the exception and why. You can do this using the Debugger:

1. Run the program again in the Debugger.

2. Go into the settings in the Debugger and select the option Automation Controller: Always
process requests synchronously.
When you set this option, the automation queue is synchronized after each method call.

3. Step through the individual method calls. Note that SY-SUBRC is only set after the method
that triggers the exception if you handle the exceptions in your application program.
Otherwise, another short dump occurs.

4. Identify the error in the method call.

If an error occurs, you should first run the example programs for the corresponding
control wrapper. If an error also occurs in these programs, the problem is due to
your local SAPgui installation.

Once CNTL_ERROR has been triggered, you should no longer work with the controls.
Remember above all that method calls that come after the error in the automation
queue will not be processed.

If the error occurred in the first automation queue synchronization, the automation
controller may no longer be active. This results in all subsequent control calls ending
with a CNTL_ERROR.

 SAP AG SAP Tree and Tree Model (BC-CI)

Important Notes

April 2001 25

Important Notes
If you transfer too many nodes to the SAP Tree within a single PBO/PAI cycle, a timeout may
occur. The Incremental Tree Construction [Page 31] section explains how you can minimize the
number of nodes transferred at any one time.

If you want to change a large number of components (for example, 20 texts), you should use a
method with a table interface (update_nodes_and_items [Page 175] or update_nodes [Page
185]) instead of calling a single method 20 times. This also applies to other operations, such as
expanding nodes.

Within a PBO/PAI cycle, you should not repeatedly call methods with table interfaces. For
example, instead of calling one of the ADD_NODES_… methods 20 times with five nodes in
each call, it is better to call it once with all 100 nodes.

The exceptions of the SAP Tree methods do not set messages.

You must never ignore exceptions of the SAP Tree methods or flush calls. If an error occurs, the
automation queue processing is terminated. This affects all of the controls in the same internal
session. Once an error has occurred, the internal session affected may no longer work with
controls.

The SAP Tree is not suitable for displaying non-hierarchical lists, since all root nodes must
always be transferred to the control. Consequently, long lists cause performance problems.

Finding Errors
If an error suddenly occurs in a program that previously worked correctly, you should test the
SAP Tree examples to see if they still work.

The majority of errors in control programming occur when you call the flush [Page 474] method.
The exception CNTL_ERROR only indicates that an unspecified error has occurred in a control
at the frontend. The error does not actually have to have occurred in the SAP Tree - it can be
triggered by any control.

To find the error, restart the program in the Debugger. Go into the Settings screen in the
Debugger. Select the option Automation Controller: Always process requests synchronously
(see Automation Queue Services [Ext.]). The individual SAP Tree methods will now return more
precise information about where the error occurred.

SAP Tree and Tree Model (BC-CI) SAP AG

Example Programs

26 April 2001

Example Programs
Your system contains the following example programs for the SAP Tree:

Example program Theme

SAPSIMPLE_TREE_CONTROL_DEMO Example of a simple tree

SAPTLIST_TREE_CONTROL_DEMO Example of a list tree

SAPCOLUMN_TREE_CONTROL_DEMO Example of a column tree

SAPSIMPLE_TREE_CONTEXT_MEN_DEM Example of context menus

SAPTLIST_TREE_CONTROL_DEMO_HDR Example of a context menu on headings in a
SAP Tree

SAPSIMPLE_TREE_DRAG_DROP_DEMO Example of drag and drop

RSDEMO_DRAG_DROP_TREE_MULTI Example of drag and drop with multiple
selection

RSDEMO_DRAG_DROP_EDIT_TREE Example of drag and drop between a SAP
Tree and a SAP Textedit

 SAP AG SAP Tree and Tree Model (BC-CI)

Using Controls in a WAN

April 2001 27

Using Controls in a WAN
When you use controls in your programs, you place an extra load on the communication channel
between the frontend and backend. In a LAN, and particularly in a WAN environment, this can
be a critical factor.

The problem is alleviated somewhat by buffering mechanisms (see also Automation Queue
[Ext.]). Use these points as a guideline to using controls in a WAN.

The documentation for the individual controls also contains more specific notes about using that
control in a WAN.

Using CL_GUI_CFW=>FLUSH
The method CL_GUI_CFW=>FLUSH [Page 474] synchronizes the automation queue and the
ABAP variables in it. Calling it often generates a synchronous RFC call from the application
server to the frontend. To optimize the performance of your application, you should call this
method as little as possible.

It is often a good idea to read all control attributes in a single automation queue (for example, at
the beginning of the PAI) and retrieve them in a single synchronization. You should, in particular,
do this when you read attributes that are not necessary in your event handlers or the PAI/PBO
cycle.

You do not need to include a "safety flush" at the end of the PBO to ensure that all method calls
are transported to the frontend. A flush at the end of the PBO is guaranteed. Consequently, you
cannot construct an automation queue spread over several screens.

There is no guarantee that an automation queue will be sent when you call
CL_GUI_CFW=>FLUSH. The queue recognizes whether it contains any return values. If this
is not the case, it is not sent.
If you have a queue with no return values, and want to ensure that it is synchronized, you can
use the Control Framework method CL_GUI_CFW=>UPDATE_VIEW [Page 477]. You should
only use this method if you absolutely need to update the GUI. For example, you might have a
long-running application in which you want to provide the user with regular updates on the status
of an action.

After you have read the attributes of a control, the contents of the corresponding ABAP variables
are not guaranteed until after the next flush. The contents of the ABAP variables remain
undefined until this call occurs. In the future, there will be cases in which this flush is
unnecessary. They will be recognized by the automation queue and the corresponding flush call
will be ignored.

Creating Controls and Passing Data
Creating controls and passing data to them is normally a one-off procedure, which in comparison
to using normal screen elements can be very runtime-intensive. You should therefore not use
any unnecessary controls, or pass unnecessary data to the controls that you are using.

A typical example is a tabstrip control with several tab pages. If the pages contain controls, you
should consider using application server scrolling instead of local scrolling, and not loading the
controls until the corresponding page is activated by the user. The same applies to passing data
to the controls on tab pages.

If you want to differentiate between LAN and WAN environments when you pass data to a
control, you can use the function module SAPGUI_GET_WANFLAG. In some applications, you may

SAP Tree and Tree Model (BC-CI) SAP AG

Using Controls in a WAN

28 April 2001

need to pass different amounts of data or use a complete fallback in a WAN application. The
environment affects, for example, the number of same-level nodes that you can transfer to a tree
control without having to introduce artificial intermediate levels.

Unlike screen elements, controls only have to be created and filled with data once. From a
performance point of view, this means that they become more profitable the longer they exist. In
applications that are called repeatedly, and therefore initialized repeatedly, controls can have a
negative effect on performance. In applications that use the same screen for a long time, on the
other hand, you may find that using controls results in improved performance.

You can always use the performance tools [Ext.] to check the advantages and disadvantages in
terms of network load that using a control brings.

Storing Documents, Picture, and Other Data
Release 4.6A sees the introduction of a frontend cache for accessing documents from the
Business Document Service (BDS). You are strongly recommended to store desktop documents,
images, and other data in the BDS and not in the R/3 database. Documents from the BDS can
be cached at the frontend, and therefore only have to be loaded over the network once.

 SAP AG SAP Tree and Tree Model (BC-CI)

Special Considerations for the SAP Tree

April 2001 29

Special Considerations for the SAP Tree
In addition to the considerations that apply to all controls, you should note the following:

Wherever possible when you use the SAP Tree, you should avoid loading child nodes [Page 31]
until the user expands the parent node. If a hierarchy level has a large number of nodes, you
should insert artificial intermediate levels. This also gives the user a better overview of your tree
structure.

Filling a tree control with a deep hierarchy structure can be a runtime-intensive operation. This
problem is not restricted to use in a WAN - it can also occur in a LAN environment. As well as
the large amount of data that has to be transferred for a large hierarchy, considerable runtime is
also expended inserting the data into the control. Running under a 200 MHz processor, the
control can insert around 700 nodes per second into a simple tree (no additional columns).

Since the SAP tree uses keys instead of line and column numbers, and there is no general data
model, it is impossible to provide a general solution. When you use the SAP Tree, you must
ensure that your programming method results in acceptable performance.

There are three ways of avoiding the problem:

Loading Child Nodes on Demand
See Incremental Tree Construction [Page 31].

Adding Artificial Intermediate Levels to the Hierarchy
If a node has a large number of child nodes, transferring even only the child nodes of that one
node can cause performance problems. Furthermore, if the list of child nodes for a single node
extends over several pages, the tree becomes less easily readable for the user.
If you have a node with several child nodes, you can divide them up by using artificial
intermediate hierarchy levels. From a technical point of view, a sensible number of same-level
nodes is around 500 in a LAN, and around 100 in a WAN.

Product
 |____ Vendor1
 |____ Vendor2
 |____ Vendor3
 ...
 |____ Vendor1000

You could alleviate this problem by inserting intermediate hierarchy levels, whose
child nodes are also only loaded on demand, as follows:

Product
 |_____| Vendor1 – Vendor100
 | |_____ Vendor1
 | |_____ Vendor2
 | |_____ ...
 | |_____ Vendor100
 |
 |_____ Vendor101 – Vendor200
and so on.

SAP Tree and Tree Model (BC-CI) SAP AG

Special Considerations for the SAP Tree

30 April 2001

Explorer-Type Structure
Instead of displaying the leaves of the tree in the tree itself, you could display them in a table
control to the right of the tree. In this case, only the folders are displayed in the tree. The leaves,
which form a large part of the data, no longer have to be transferred.

 SAP AG SAP Tree and Tree Model (BC-CI)

Incremental Tree Construction

April 2001 31

Incremental Tree Construction
Transferring node informatino to the SAP Tree at the frontend is a critical operation in
performance terms. If you have a large tree with more than 500 nodes, you should not transfer
the child nodes of a particular node to the frontend until the user actually expands that node.

In the following structure, you should only add the nodes Root and Child1 into the
SAP Tree. The child nodes of Child1 should not be transferred until the user actually
expands the node.

To do this, you must implement the following steps:

� For node Child1, set the field EXPANDER = 'X' in the node structure (TREEV_NODE).
By doing this, you ensure that the event EXPAND_NO_CHILDREN is triggered when the user
tries to expand this node.

� Register the event EXPAND_NO_CHILDREN.

� In the event handler method, include a runtime that transfers the child nodes of the expanded
node to the SAP Tree.

An example of this is provided in the program SAPSIMPLE_TREE_CONTROL_DEMO.

SAP Tree and Tree Model (BC-CI) SAP AG

The Simple Tree

32 April 2001

The Simple Tree
Definition
You crate a simple tree with reference to the class cl_gui_simple_tree:

DATA simple_tree TYPE REF TO cl_gui_simple_tree.

According to the inheritance hierarchy, you can now access the methods of the following classes:

� cl_gui_object and cl_gui_control (see Methods of the ABAP Objects Control
Framework [Page 471]).

� cl_gui_tree_control_base (see Methods of the Class CL_TREE_CONTROL_BASE
[Page 119]).

� cl_gui_simple_tree (see Methods of the Class CL_GUI_SIMPLE_TREE [Page 179]).

Use
The program sapsimple_tree_control_demo demonstrates how to use the simple tree.

For details of the attributes of the simple tree, refer to the Overview of Tree Classes [Page 18].

 SAP AG SAP Tree and Tree Model (BC-CI)

Creating a Control: SAP Picture Example

April 2001 33

Creating a Control: SAP Picture Example
Prerequisites
The following process applies to all SAP custom controls. The programming examples use the
SAP Picture Control. However, to apply the example to other controls, you would only have to
change the name of the control class.

The example also assumes that you are using the custom control in a Custom Container. The
SAP Container documentation contains details of further scenarios.

Process Flow
Create the Instance
1. Define a reference variable for the Custom Container in which you want to place the custom

control (see SAP Container [Ext.]).

DATA container TYPE REF TO cl_gui_custom_container.

2. Define a reference variable for the SAP Picture:

DATA picture TYPE REF TO cl_gui_picture.

3. Create the Custom Container. You must already have created the area 'CUSTOM' for the
Custom Container in the Screen Painter. When you create the container, you must also
specify its lifetime [Ext.] (see constructor [Ext.]).

CREATE OBJECT container
 EXPORTING container_name = 'CUSTOM'

 lifetime = lifetime.

4. Create the SAP Picture Control. You can also specify a lifetime for the SAP Picture, but it
must not be longer than that of its container.

CREATE OBJECT picture
 EXPORTING parent = container

 lifetime = lifetime.

Register the Events
5. There are three steps: Registering the events with the Control Framework, defining a handler

method, and registering the hander method. These steps are explained under Registering
and Processing Events [Page 99].

Use the Control
6. These steps are control-specific and therefore not described here.

Destroy the Control
The lifetime management [Ext.] is normally responsible for destroying any controls you use.
However, the following two steps allow you to destroy the control yourself:

7. Use the method free [Page 480] to destroy the Custom Control at the frontend. If you no
longer need the control container, release it as well:

SAP Tree and Tree Model (BC-CI) SAP AG

Creating a Control: SAP Picture Example

34 April 2001

CALL METHOD picture->free
 EXCEPTIONS cntl_error = 1
 cntl_system_error = 2.
CALL METHOD container->free
 EXCEPTIONS cntl_error = 1
 cntl_system_error = 2.

Pay careful attention to the sequence in which you destroy controls at the frontend.
When you destroy a container, all controls in it are automatically destroyed as well.
If you have already destroyed a control and try to destroy it again, an error occurs.
You can check whether a control has already been destroyed using the method
is_alive [Page 485].

8. Delete the reference variables to the custom control and the control container.

FREE PICTURE.
FREE CONTAINER.

 SAP AG SAP Tree and Tree Model (BC-CI)

Using the Simple Tree

April 2001 35

Using the Simple Tree
This section lists the functions that are specific to the simple tree.

Prerequisites
The process described here is an extension of the general process for using controls [Page 90]
that is specific to the simple tree. It does not contain all of the steps required to produce a valid
instance of the control.

Process Flow

The program extracts are examples that do not necessarily illustrate all of the
features of the control. For precise information, refer to the reference section of this
documentation.

Creating the Instance
1. Define a reference variable for the simple tree:

DATA simple_tree TYPE REF TO cl_gui_simple_tree.

2. Create an instance [Page 180] of the SAP Tree:

CREATE OBJECT simple_tree
 EXPORTING parent = container
 node_selection_mode = node_selection_mode
 hide_selection = hide_selection
 EXCEPTIONS lifetime_error = 1
 cntl_system_error = 2
 create_error = 3
 failed = 4
 illegal_node_selection_mode = 5.

Register the Events
3. Register the events [Page 42] for the simple tree. The control supports the following events:

Event name Meaning

NODE_DOUBLE_CLICK User double-clicked a node

EXPAND_NO_CHILDREN User expanded a node that has no children

SELECTION_CHANGED Selected node has changed

NODE_CONTEXT_MENU_REQUEST User requested a context menu with the cursor
positioned on a node

NODE_CONTEXT_MENU_SELECT User selected an entry from the context menu

DEFAULT_CONTEXT_MENU_REQUEST User requested a context menu with the cursor
positioned on an empty space in the control

DEFAULT_CONTEXT_MENU_SELECT User selected an entry from the context menu

SAP Tree and Tree Model (BC-CI) SAP AG

Using the Simple Tree

36 April 2001

KEYPRESS User pressed a key. Keys for which this event is
triggered have to be registered beforehand.

Using the Simple Tree
4. Insert nodes in the tree. To do this, fill a node table, then pass it to the control using the

add_nodes [Page 181] method:

CALL METHOD simple_tree->add_nodes
 EXPORTING table_structure_name = table_structure_name
 node_table = node_table
 EXCEPTIONS error_in_node_table = 1
 failed = 2
 dp_error = 3
 table_structure_name_not_found = 4.

5. Change existing nodes in the tree, or change the tree attributes (see Changing the Attribtues
of the Control [Page 37]).

6. Query any necessary attributes of the tree and its nodes (see Finding Out the Attributes of
the Control [Page 39]).

Destroying the Control
7. Destroy the custom control at the frontend. If you no longer need the control container,

release it as well:

CALL METHOD simple_tree->free.

If you are working with the lifetime management [Ext.], you do not need to worry
about destroying the control at the frontend yourself. It is done automatically by the
system instead.

8. Delete the reference variables to the simple tree and the control container.

FREE simple_tree.

 SAP AG SAP Tree and Tree Model (BC-CI)

Changing the Attributes of the Control

April 2001 37

Changing the Attributes of the Control
This section lists all of the methods you can use to change the simple tree.

Inserting and Changing Nodes

Method Description

add_nodes [Page 181] Inserts a list of nodes

node_set_text [Page 184] Changes the text of a node

update_nodes [Page 185] Change the attributes of a list of nodes

Expanding Nodes

Method Description

expand_node [Page 128] Expands a particular node

expand_nodes [Page 129] Expands a set of nodes

expand_root_nodes [Page 130] Expands all root nodes

Selecting Nodes

Method Description

set_selected_node [Page 152] Selects a particular node

select_nodes [Page 147] Selects a list of nodes

unselect_all [Page 154] Deselects all selected nodes

unselect_nodes [Page 155] Deselects a set of nodes

Deleting Nodes

Method Description

delete_all_nodes [Page 124] Deletes all nodes from the tree

delete_node [Page 125] Deletes a particular node from the tree

delete_nodes [Page 126] Deletes a set of nodes from the tree

Changing the Attributes of a Node

Method Description

node_set_disabled [Page 136] Deactivates nodes

node_set_expander [Page 138] Sets the expander attribute.

node_set_exp_image [Page 139] Sets expanded node icon

node_set_hidden [Page 140] Hides a node

node_set_is_folder [Page 141] Sets the is_folder attribute

SAP Tree and Tree Model (BC-CI) SAP AG

Changing the Attributes of the Control

38 April 2001

node_set_no_branch [Page 142] Suppresses the hierarchy line to the node

node_set_n_image [Page 143] Sets the non-expanded node icon

node_set_style [Page 144] Sets the style of the node

node_set_dragdropid [Page 137] Sets the drag and drop behavior of a node

Configuring Keyboard Events

Method Description

add_key_stroke [Page 120] Sets a key to trigger an event

remove_all_key_strokes [Page
145]

Deregisters all keys that were registered to trigger an event

Other Methods

Method Description

ensure_visible [Page 127] Ensures that a particular node is visible

move_node [Page 135] Moves a node

scroll [Page 146] Scrolls in the tree

set_ctx_menu_select_event
_appl [Page 156]

Sets whether the event triggered when the user chooses an entry
from a context menu should be an application event or a system
event

set_has_3d_frame [Page
150]

Sets the 3D frame

set_screen_update [Page
151]

Controls the visibility of changes

set_top_node [Page 153] Defines the topmost visible node

set_default_drop [Page 148] Sets the drag and drop behavior for dropping on the background
of the SAP Tree

set_folder_show_exp_image
[Page 149]

Sets the open folder symbol

 SAP AG SAP Tree and Tree Model (BC-CI)

Finding Out the Attributes of the Control

April 2001 39

Finding Out the Attributes of the Control
This section lists all of the methods you can use to retrieve the attributes of the simple tree.

Methods for Retrieving Control Attributes

Method Meaning

get_expanded_nodes [Page 131] Lists all expanded nodes

get_selected_node [Page 132] Returns the name of the selected node

get_selected_nodes [Page 133] Lists all selected nodes

get_top_node [Page 134] Returns the name of the topmost visible node

SAP Tree and Tree Model (BC-CI) SAP AG

Registering and Processing Events

40 April 2001

Registering and Processing Events
Purpose
The event mechanism of the Control Framework allows you to use handler methods in your
programs to react to events triggered by the control (for example, a double-click).

Prerequisites
The following description has been generalized to apply to all custom controls. For more
information specific to a particular control, refer to that control's documentation.

Process Flow
1. Assume you are working with a custom control that has the ABAP wrapper cl_gui_xyz.

DATA my_control TYPE REF TO cl_gui_xyz.

Registering Events with the Control Framework
2. Define an internal table (type cntl_simple_events) and a corresponding work area (type

cntl_simple_event).

DATA events TYPE cntl_simple_events.
DATA wa_events TYPE cntl_simple_event.

3. Now fill the event table with the relevant events. To do this, you need the event ID
(event_id field). You can find this information in the Class Browser by looking at the
attributes of the class cl_gui_xyz. You must also decide whether the event is to be a
system event (appl_event = ' ') or an application event (appl_event = 'X').

wa_events-eventid = event_id.
wa_events-appl_event = appl_event.
APPEND wa_events TO events.

4. You must now send the event table to the frontend so that it knows which events it has to
direct to the backend.

CALL METHOD my_control->set_registered_events
 events = events.

To react to the events of you custom control, you must now specify a handler method for it. This
can be either an instance method or a static method.

Processing an Event Using an Instance Method
5. Define the (local) class definition for the event handler. To do this, specify the name of the

handler method (Event_Handler). You need to look at the class for the custom control
cl_gui_xyz in the Class Browser to find out the name of the event (event_name) and its
parameters (event_parameter). There is also a default event parameter sender, which is
passed by all events. This contains the reference to the control that triggered the event.

CLASS lcl_event_receiver DEFINITION.
PUBLIC SECTION.
METHODS Event_Handler
 FOR EVENT event_name OF cl_gui_xyz

 SAP AG SAP Tree and Tree Model (BC-CI)

Registering and Processing Events

April 2001 41

 IMPORTING event_parameter
 sender.
ENDCLASS.

6. Register the handler methods with the ABAP Objects Control Framework for the events.

DATA event_receiver TYPE REF TO lcl_event_receiver.
CREATE OBJECT event_receiver.
SET HANDLER event_receiver->Event_Handler
 FOR my_control.

Processing an Event Using a Static Method
7. Define the (local) class definition for the event handler. To do this, specify the name of the

handler method (Event_Handler). You need to look at the class for the custom control
cl_gui_xyz in the Class Browser to find out the name of the event (event_name) and its
parameters (event_parameter).

CLASS lcl_event_receiver DEFINITION.
PUBLIC SECTION.
CLASS-METHODS Event_Handler
 FOR EVENT event_name OF cl_gui_xyz
 IMPORTING event_parameter
 sender.
ENDCLASS.

8. Register the handler methods with the ABAP Objects Control Framework for the events.

SET HANDLER lcl_event_receiver=>Event_Handler
 FOR my_control.

Processing Control Events
9. You define how you want the system to react to an event in the implementation of the

handler method.

CLASS lcl_event_receiver IMPLEMENTATION.
METHOD Event_Handler.
* Event processing
ENDMETHOD
ENDCLASS.

10. If you registered your event as an application event, you need to process it using the method
CL_GUI_CFW=>DISPATCH. For further information, refer to Event Handling [Ext.].

SAP Tree and Tree Model (BC-CI) SAP AG

Events of the Simple Tree

42 April 2001

Events of the Simple Tree
Use
Certain user actions within the simple tree trigger events:

Event Event ID
CL_GUI_SIMPLE_TREE=>

Description

NODE_DOUBLE_CLIC
K

EVENTID_NODE_DOUBLE_CLICK Double-click on a node

EXPAND_NO_CHILDR
EN

EVENTID_EXPAND_NO_CHILDREN User expanded a node that
has no children The
EXPANDER attribute of the
node must be set to 'X'.

SELECTION_CHANGE
D

EVENTID_SELECTION_CHANGED You can only use this event if
you specified single selection
for the tree control when you
created it.

Selected node has changed
Important: If you use this
event, you cannot use the
NODE_DOUBLE_CLICK
event.

NODE_KEYPRESS EVENTID_NODE_KEYPRESS The user pressed a key while
a node was selected

NODE_CONTEXT_ME
NU_REQUEST

EVENTID_NODE_CONTEXT_MENU
_REQ

User requested a context
menu with the cursor
positioned on a node

NODE_CONTEXT_ME
NU_SELECT

This event is registered automatically
when you register the event
NODE_CONTEXT_MENU_REQUEST.

User selected an entry in the
context menu for a node

DEFAULT_CONTEXT_
MENU_REQUEST

EVENTID_DEF_CONTEXT_MENU_R
EQ

User requested a context
menu with the cursor
positioned on the tree
background

DEFAULT_CONTEXT_
MENU_SELECT

This event is registered automatically
when you register the event
DEFAULT_CONTEXT_MENU_REQUEST.

User selected an entry from
the context menu for the tree
background

ON_DROP_GET_FLAV
OR

See Drag and Drop Events in the SAP
Tree [Page 111]

There are several different
drag and drop flavors

 SAP AG SAP Tree and Tree Model (BC-CI)

Events of the Simple Tree

April 2001 43

ON_DRAG See Drag and Drop Events in the SAP
Tree [Page 111]

Determines the source object
(single selection)

ON_DRAG_MULTIPLE See Drag and Drop Events in the SAP
Tree [Page 111]

Determines the source object
(multiple selection)

ON_DROP See Drag and Drop Events in the SAP
Tree [Page 111]

Determines the context in the
target object

ON_DROP_COMPLET
E

See Drag and Drop Events in the SAP
Tree [Page 111]

Last event before completion
of the drag and drop (single
selection)

ON_DROP_COMPLET
E_MULTIPLE

See Drag and Drop Events in the SAP
Tree [Page 111]

Last event before completion
of the drag and drop (multiple
selection)

Some events also export parameters:

Event Parameters Description

NODE_DOUBLE_CLI
CK

NODE_KEY Node on which the user double-
clicked

EXPAND_NO_CHILD
REN

NODE_KEY Node without child nodes that
the user tried to expand

SELECTION_CHANG
ED

NODE_KEY New selected node

NODE_KEY Node selected when the user
pressed the key

NODE_KEYPRESS

KEY Key pressed

NODE_KEY Node selected when the user
requested the context menuNODE_CONTEXT_M

ENU_REQUEST
MENU Menu to be displayed (must be

filled in the event handler)

NODE_KEY Node selected when the user
chose an entry from the context
menu

NODE_CONTEXT_M
ENU_SELECT

FCODE Function code of the selected
entry in the context menu

DEFAULT_CONTEXT
_MENU_REQUEST

MENU Menu to be displayed (must be
filled in the event handler)

DEFAULT_CONTEXT
_MENU_SELECT

FCODE Function code of the selected
entry in the context menu

SAP Tree and Tree Model (BC-CI) SAP AG

Events of the Simple Tree

44 April 2001

ON_DROP_GET_FLA
VOR

See Drag and Drop Events in the
SAP Tree [Page 111]

ON_DRAG See Drag and Drop Events in the
SAP Tree [Page 111]

ON_DRAG_MULTIPL
E

See Drag and Drop Events in the
SAP Tree [Page 111]

ON_DROP See Drag and Drop Events in the
SAP Tree [Page 111]

ON_DROP_COMPLE
TE

See Drag and Drop Events in the
SAP Tree [Page 111]

ON_DROP_COMPLE
TE_MULTIPLE

See Drag and Drop Events in the
SAP Tree [Page 111]

If you want to use events that rely on the user pressing a key (for example,
NODE_KEYPRESS), you must register the keystroke using the method
add_key_stroke [Page 120]. You can deregister the registered key strokes using the
method remove_all_key_strokes [Page 145].

Integration
To react to an event in your ABAP program, you must have registered it. To do this, use the
method set_registered_events [Page 483]. Events that are triggered but for which you are not
registered are filtered by the presentation server, and not passed to the application server. See
event handling [Ext.].

Activities
Read the general process [Page 99] for working with events in the Control Framework.

 SAP AG SAP Tree and Tree Model (BC-CI)

Drag and Drop

April 2001 45

Drag and Drop
Use
Drag and drop allows the user to select an object from one part of a custom control (source) and
drop it on another part of a custom control (target). An action occurs in the second part that
depends on the object type. Source and target may be either the same control or different
controls.

Prerequisites
For a control to support drag and drop, the control wrapper must provide drag and drop events.
You must then write handler methods for these events in your program. The events are
registered automatically by the relevant control wrapper.

Features
A particular drag and drop behavior is set for each custom control. This behavior may be set
globally for all elements of the control (for example, SAP Textedit), or you may be able to define
a different behavior for each component (for example SAP Tree). Each behavior consists of one
or more descriptions.

A description has the following attributes:

� DragSrc: Object is the source of a drag and drop procedure

� DropTarget: Object is the target of a drag and drop procedure

� Flavor: The flavor describes the type of a drag and drop description. In a drag and drop
operation, you can only drop an object onto another if both have at least one common
description.

� Effect: Specifies whether the drag and drop operations copies or moves the object.

� Effect_In_Ctrl: The drop effect used when you copy or move data within the same control.

As soon as a drag event is triggered, you must use the corresponding handler method to find out
the affected object.

You must also define the action that is to be carried out on the drop event. The action usually
depends on the object that you drop in the control.

If you assign more than one flavor to an object, you must define which flavor is to be used. You
do this in the handler for another event.

Once the drop event is finished, you can use a further event to implement additional actions.
This is particularly useful for deleting the dropped object from the source after a move operation.

Activities
Whenever you provide a drag and drop function to move objects, you should always provide an
Undo function as well. You must implement this yourself in the application.

SAP Tree and Tree Model (BC-CI) SAP AG

Process Flow of a Drag and Drop Operation

46 April 2001

Process Flow of a Drag and Drop Operation
Prerequisites
The following section explains how a drag and drop operation works, examining into the roles of
the application server and frontend, and going on to identify the individual steps required to
program drag and drop in an application.

Process Flow
Application Server
1. You create the custom control [Page 90].

2. You register the drag and drop events [Page 109].

3. You define the drag and drop behavior for the individual custom controls or their
components. To do this, you create an instance [Page 494] of the class CL_DRAGDROP
[Page 493]. You then assign one or more flavors [Page 495] to this instance. These describe
the drag and drop behavior of the relevant custom control. During the program, you can
change [Page 502], delete [Page 504], and query [Page 499] the flavors in your program.
You can also initialize [Page 497] or destroy [Page 498] the entire instance.

4. You assign flavors to the custom control using specific methods of the relevant control. For
further information, refer to the corresponding control documentation.

Frontend
The following steps are performed by the system at the frontend. They are only listed here so
that you can understand what happens during a drag and drop operation.

5. Once the use has selected an object with the left mouse button, the drag and drop service
starts.

6. The drag and drop service checks whether a drag and drop behavior has been defined for
the object, and whether the object can be dragged (DragSource attribute).

7. If, according to the DragSource attribute, the object can be dragged, the drag and drop
operation starts. The mouse pointer then changes automatically.

8. As long as the left mouse button remains pressed, the system continually checks whether the
mouse pointer is positioned over an object in a custom control that can receive a dropped
object (DropTarget attribute), and whether the flavor of that object is the same as the flavor of
the source. If this is the case, the mouse pointer changes again to inform the user.

9. If the user now drops the object, an event is triggered to inform the application server.

This concludes the drag and drop operation for the frontend. However, there has not
yet been any change to the contents of the custom control.

Application Server
10. The drag and drop service of the application server creates an instance of the class

CL_DRAGDROPOBJECT [Page 505]. You can use this instance (for example,

 SAP AG SAP Tree and Tree Model (BC-CI)

Process Flow of a Drag and Drop Operation

April 2001 47

drag_drop_object) in all events of the drag and drop process as an event parameter. You
can use it to find out the context between the events.

11. The drag and drop service checks whether the drag object and drop object have more than
one flavor in common. If this is the case, the event ONGETFLAVOR is triggered. In the
corresponding handler method, you must decide which flavor to use. You do this using the
method set_flavor [Page 506].

12. Now, the drag and drop event ONDRAG is triggered. It has event parameters that tell you
which object the user has dragged. Within the handler routine, you must pass the context
(information about the source object) to the instance of the drag and drop data object created
in step 9.
drag_drop_object->object = mydragobject.

13. Next, the ONDROP event is triggered. The corresponding handler method serves to process
the drag and drop data object. Here, you have to implement the changes that are to be
made to the target object based on the drag and drop operation.

14. The last event of the drag and drop operation is ONDROPCOMPLETE. This is where you can
make your last changes to the drag and drop object. In particular, you should use this event
to delete the source object from the DragSource control and the corresponding data
structures if you have used the drag and drop operation to move the object.

The Example of Drag and Drop Programming [Page 114] contains an example of a
drag and drop operation between a SAP Tree and a SAP Textedit.

SAP Tree and Tree Model (BC-CI) SAP AG

Drag and Drop Events

48 April 2001

Drag and Drop Events
This section only describes those properties of drag and drop events that apply to all controls.
The individual control wrappers may augment them. You should therefore consult the relevant
control documentation to see if that control has any peculiarities.

Use
There are four standard events in a drag and drop operation at which control is returned to the
application program. You use the event handler methods for these events to implement the
actions that should be performed during the operation.

Some control wrappers offer additional drag and drop events. For further
information, refer to the documentation of the individual controls.

Prerequisites
To be able to react to an event, you must first register it. Unlike normal event handling, you do
not register drag and drop events with the Control Framework using the set_registered_events
[Page 483] method Instead, they are registered automatically by the wrapper of the control that
you are using.

However, you still have to specify handler methods for the events.

DATA tree TYPE REF TO cl_gui_simple_tree.
SET HANDLER dragdrop=>on_drag FOR tree.

The events are always registered as system events.

Features
In a drag and drop operation, the Control Framework does not pass any events to the application
server until the object is dropped. At the application server, it is separated into up to four
standard events that can occur within a drag and drop operation, as described in Process Flow of
a Drag and Drop Operation [Page 107]. All events have a drag and drop data object as an event
parameter. You use this parameter to manage the context of the drag and drop operation. The
particular control wrapper that you are using also provides further information about the drag and
drop context. For further information, refer to the documentation of the relevant control wrapper.

� ONGETFLAVOR: This event is only triggered if the source and target objects have more than
one flavor in common. In the handler method, you must then specify which flavor should be
used. To do this, use the set_flavor [Page 506] method on the drag and drop object.
The event is triggered by the target object of the drag and drop operation.

� ONDRAG: This event is triggered when the drag and drop operation is complete at the
frontend. When you handle this event, you must determine the context of the target object.
You then pass this context to the instance of the class CL_DRAGDROPOBJECT that you
received as an event parameter.
The event is triggered by the source object of the drag and drop operation.

� ONDROP: When you handle this event, you define what should be done to the target object.
To do this, use the event parameter for the context that you filled in the ONDRAG event. In
this event, you must remember the following:

 SAP AG SAP Tree and Tree Model (BC-CI)

Drag and Drop Events

April 2001 49

� Within the ONDROP event, you must make a dynamic typecast. You must catch all
possible exceptions of the typecast. In the exception handling you must include handling
for the case where you try to assign an invalid object. In this case, you must use the
abort [Page 507] method to terminate the drag and drop processing.

� You should select the flavor you want to use so that it is possible to assign the drag and
drop object to the right TypeCast.

The event is triggered by the target object of the drag and drop operation.

� ONDROPCOMPLETE: Use this event to perform any further processing necessary after the end
of the drag and drop operation. For example, this would be necessary following a move
operation.
The event is triggered by the source object of the drag and drop operation.

SAP Tree and Tree Model (BC-CI) SAP AG

Defining Drag and Drop Events in the SAP Tree

50 April 2001

Defining Drag and Drop Events in the SAP Tree
This section explains the special considerations that apply to drag and drop operations in the
SAP Tree.

Prerequisites
To be able to react to an event, you must first register it. Unlike normal event handling, you do
not register drag and drop events with the Control Framework using the set_registered_events
[Page 483] method Instead, they are registered automatically by the SAP Tree control wrapper.

However, you still have to specify handler methods for the events.

The events are always registered as system events.

When you fill the node table, you must also specify which nodes are enabled for drag and drop,
and the flavors that the nodes should have. You do this by assigning the relevant drag and drop
behavior to the field DRAGDROPID (see point 3 under Drag and Drop Operations [Page 107]).
This requires the following steps (see also the Drag and Drop Programming Example [Page
114]).

1. Define the drag and drop behavior:

DATA behaviour_left TYPE REF TO cl_dragdrop.
 CREATE OBJECT behaviour_left.
 CALL METHOD behaviour_left->add
 EXPORTING
 flavor = 'Tree_move_to_Edit'
 dragsrc = 'X'
 droptarget = ' '
 effect = cl_dragdrop=>copy.

2. Use the get_handle [Page 501] method to return a handle to the drag and drop behavior:

 CALL METHOD behaviour_left->get_handle
 IMPORTING handle = handle_tree.

3. Assign the handle to the DRAGDROPID field of the corresponding entry in the node table:

 node-dragdropid = handle_tree. " handle of behaviour

Entries with the type tree->item_class_checkbox (checkboxes), tree-
>item_class_button (pushbuttons) and tree->item_class_link (links)
cannot be the source object of a drag and drop operation.

Features
The following table contains the events used in drag and drop:

Event Description

ON_DROP_GET_FLAVOR See the event ONGETFLAVOR under Drag and Drop Events
[Page 109]

 SAP AG SAP Tree and Tree Model (BC-CI)

Defining Drag and Drop Events in the SAP Tree

April 2001 51

ON_DRAG See the event ONDRAG under Drag and Drop Events [Page
109]

For trees without multiple selection
(NODE_SELECTION_MODE = TREE-
>NODE_SEL_MODE_SINGLE).

ON_DRAG_MULTIPLE See the event ONDRAG under Drag and Drop Events [Page
109]

For trees with multiple selection (NODE_SELECTION_MODE =
TREE->NODE_SEL_MODE_MULTIPLE).

ON_DROP See the event ONDROP under Drag and Drop Events [Page
109]

ON_DROP_COMPLETE See the event ONDROPCOMPLETE under Drag and Drop
Events [Page 109]

For trees without multiple selection (NODE_SELECTION_MODE
= TREE->NODE_SEL_MODE_SINGLE).

ON_DROP_COMPLETE_MULTI
PLE

See the event ONDROPCOMPLETE under Drag and Drop
Events [Page 109]

For trees with multiple selection (NODE_SELECTION_MODE =
TREE->NODE_SEL_MODE_MULTIPLE).

The individual events have the following parameters:

Event Event parameter Description

NODE_KEY Technical name of the node onto which
the source object was dragged

DRAG_DROP_OBJE
CT

Data object describing the source
object

ON_DROP_GET_FLAVOR

FLAVORS Shared flavors of the drag and drop
operation

NODE_KEY Technical name of the node selected
as the source object

ITEM_NAME

(not in simple
tree)

Technical name of the item selected as
the source object

ON_DRAG

DRAG_DROP_OBJE
CT

Data object describing the source
object

ON_DRAG_MULTIPLE NODE_KEY_TABLE Table of nodes selected as source
obejcts

SAP Tree and Tree Model (BC-CI) SAP AG

Defining Drag and Drop Events in the SAP Tree

52 April 2001

ITEM_NAME

(not in simple
tree)

Technical name of the item selected as
the source object

DRAG_DROP_OBJE
CT

Data object describing the source
object

NODE_KEY Technical name of the node onto which
the source object was dragged

ON_DROP

DRAG_DROP_OBJE
CT

Data object describing the source
object

NODE_KEY Technical name of the node selected
as the source object

ITEM_NAME

(not in simple
tree)

Technical name of the item selected as
the source object

ON_DROP_COMPLETE

DRAG_DROP_OBJE
CT

Data object describing the source
object

NODE_KEY_TABLE Table of nodes selected as source
obejcts

ITEM_NAME

(not in simple
tree)

Technical name of the item selected as
the source object

ON_DROP_COMPLETE_MULTI
PLE

DRAG_DROP_OBJE
CT

Data object describing the source
object

 SAP AG SAP Tree and Tree Model (BC-CI)

Example of Drag and Drop Programming

April 2001 53

Example of Drag and Drop Programming
This example program uses a SAP Simple Tree Control and a SAP Textedit Control. The aim is
to enable the user to move texts from the tree control into the textedit control.

The example has the program name RSDEMO_DRAG_DROP_EDIT_TREE.

&---
*& Report RSDEMO_DRAG_DROP_EDIT_TREE *&
--
REPORT rsdemo_drag_drop_edit_tree .
DATA ok_code TYPE sy-ucomm.
DATA node_itab LIKE node_str OCCURS 0.
DATA node LIKE node_str.
DATA container TYPE REF TO cl_gui_custom_container.
DATA splitter TYPE REF TO cl_gui_easy_splitter_container.
DATA right TYPE REF TO cl_gui_container.
DATA left TYPE REF TO cl_gui_container.
DATA editor TYPE REF TO cl_gui_textedit.
DATA tree TYPE REF TO cl_gui_simple_tree.
DATA behaviour_left TYPE REF TO cl_dragdrop.
DATA behaviour_right TYPE REF TO cl_dragdrop.
DATA handle_tree TYPE i.
--
* CLASS lcl_treeobject DEFINITION
* container class for drag object
--
CLASS lcl_drag_object DEFINITION.
 PUBLIC SECTION.
 DATA text TYPE mtreesnode-text.
ENDCLASS.

* CLASS dragdrop_receiver DEFINITION
* event handler class for drag&drop events

CLASS lcl_dragdrop_receiver DEFINITION.
 PUBLIC SECTION.
 METHODS:
 flavor_select FOR EVENT on_get_flavor OF cl_gui_textedit
 IMPORTING index line pos flavors dragdrop_object,
 left_drag FOR EVENT on_drag OF cl_gui_simple_tree
 IMPORTING node_key drag_drop_object,
 right_drop FOR EVENT ON_DROP OF cl_gui_textedit
 IMPORTING index line pos dragdrop_object,
 drop_complete FOR EVENT on_drop_complete OF cl_gui_simple_tree
 IMPORTING node_key drag_drop_object.
ENDCLASS.
START-OF-SELECTION.
 CALL SCREEN 100.
&---
*& Module START OUTPUT
&---
MODULE start OUTPUT.

SAP Tree and Tree Model (BC-CI) SAP AG

Example of Drag and Drop Programming

54 April 2001

 SET PF-STATUS 'BASE'.
 IF container is initial.
 CREATE OBJECT container
 EXPORTING container_name = 'CONTAINER'.
 CREATE OBJECT splitter
 EXPORTING parent = container
 orientation = 1.
 left = splitter->top_left_container.
 right = splitter->bottom_right_container.
 CREATE OBJECT editor
 EXPORTING parent = right.
 CREATE OBJECT tree
 EXPORTING parent = left
 node_selection_mode = tree->node_sel_mode_single.
* Definition of drag drop behaviour for tree
 CREATE OBJECT behaviour_left.
 CALL METHOD behaviour_left->add
 EXPORTING
 flavor = 'Tree_move_to_Edit'
 dragsrc = 'X'
 droptarget = ' '
 effect = cl_dragdrop=>copy.
 CALL METHOD behaviour_left->add
 EXPORTING
 flavor = 'Tree_copy_to_Edit'
 dragsrc = 'X'
 droptarget = ' '
 effect = cl_dragdrop=>copy.
 CALL METHOD behaviour_left->get_handle
 IMPORTING handle = handle_tree.
* Drag Drop behaviour of tree control nodes are defined in the node
* structure
 PERFORM fill_tree.
 CALL METHOD tree->add_nodes
 EXPORTING node_table = node_itab
 table_structure_name = 'NODE_STR'.
* Definition of drag drop behaviour for tree
 CREATE OBJECT behaviour_right.
 CALL METHOD behaviour_right->add
 EXPORTING
 flavor = 'Tree_move_to_Edit'
 dragsrc = ' '
 droptarget = 'X'
 effect = cl_dragdrop=>copy.
 CALL METHOD behaviour_right->add
 EXPORTING
 flavor = 'Tree_copy_to_Edit'
 dragsrc = ' '
 droptarget = 'X'
 effect = cl_dragdrop=>copy.
 CALL METHOD editor->set_dragdrop
 EXPORTING dragdrop = behaviour_right.

 SAP AG SAP Tree and Tree Model (BC-CI)

Example of Drag and Drop Programming

April 2001 55

* registration of drag and drop events

 SET HANDLER dragdrop=>flavor_select FOR editor.
 SET HANDLER dragdrop=>left_drag FOR tree.
 SET HANDLER dragdrop=>right_drop FOR editor.
 SET HANDLER dragdrop=>drop_complete for TREE.
 ENDIF.
ENDMODULE. " START OUTPUT
&---
*& Module EXIT INPUT
&---
MODULE exit INPUT.
 LEAVE PROGRAM.
ENDMODULE. " EXIT INPUT
&---
*& Form fill_tree
&---
FORM fill_tree.
 DATA: node LIKE mtreesnode.
 CLEAR node.
 node-node_key = 'Root'.
 node-isfolder = 'X'.
 node-text = 'Text'.
 node-dragdropid = ' '.
 APPEND node TO node_itab.
 CLEAR node.
 node-node_key = 'Child1'.
 node-relatkey = 'Root'.
 node-relatship = cl_gui_simple_tree=>relat_last_child.
 node-text = 'DragDrop Text 1'.
 node-dragdropid = handle_tree. " handle of behaviour
 APPEND node TO node_itab.
 CLEAR node.
 node-node_key = 'Child2'.
 node-relatkey = 'Root'.
 node-relatship = cl_gui_simple_tree=>relat_last_child.
 node-text = 'DragDrop Text 2'.
 node-dragdropid = handle_tree. " handle of behaviour
 APPEND node TO node_itab.
ENDFORM. " fill_tree
&---
*& Module USER_COMMAND_0100 INPUT
&---
MODULE user_command_0100 INPUT.
 CALL METHOD cl_gui_cfw=>dispatch.
ENDMODULE. " USER_COMMAND_0100 INPUT
--
* CLASS DRAGDROP_RECEIVER IMPLEMENTATION
--
CLASS lcl_dragdrop_receiver IMPLEMENTATION.
 METHOD flavor_select. " set the right flavor
 IF line > 5.
 SEARCH flavors FOR 'Tree_move_to_Edit'.

SAP Tree and Tree Model (BC-CI) SAP AG

Example of Drag and Drop Programming

56 April 2001

 IF sy-subrc = 0.
 CALL METHOD dragDROP_OBJECT->SET_FLAVOR

 EXPORTING newflavor = 'Tree_move_to_Edit'.
 ELSE.
 CALL METHOD dragdrop_object->abort.
 ENDIF.
 ELSE.
 SEARCH flavors FOR 'Tree_copy_to_Edit'.
 IF sy-subrc = 0.
 CALL METHOD dragdrop_object->set_flavor
 EXPORTING newflavor = 'Tree_copy_to_Edit'.
 ELSE.
 CALL METHOD dragdrop_object->abort.
 ENDIF.
 ENDIF.
 ENDMETHOD.
 METHOD left_drag. " define drag object
 DATA drag_object TYPE REF TO lcl_drag_object.
 READ TABLE node_itab WITH KEY node_key = node_key
 INTO node.
 CREATE OBJECT drag_object.
 drag_object->text = node-text.
 drag_drop_object->object = drag_object.
ENDMETHOD.
 METHOD right_drop. " action in the drop object
 DATA textline(256).
 DATA text_table LIKE STANDARD TABLE OF textline.
 DATA drag_object TYPE REF TO lcl_drag_object.
 CATCH SYSTEM-EXCEPTIONS move_cast_error = 1.
 drag_object ?= dragdrop_object->object.
 ENDCATCH.
 IF sy-subrc = 1.
 " data object has unexpected class
 " => cancel Drag & Drop operation
 CALL METHOD dragdrop_object->abort.
 EXIT.
 ENDIF.
 CALL METHOD editor->get_text_as_stream
 IMPORTING text = text_table.
* Synchronize Automation Queue after Get Methods
 CALL METHOD cl_gui_cfw=>flush.
 textline = drag_object->text.
* Insert text in internal table
 INSERT textline INTO text_table INDEX 1.
* Send modified table to frontend
 CALL METHOD editor->set_text_as_stream
 EXPORTING text = text_table
 EXCEPTIONS error_dp = 1
 error_dp_create = 2.
 ENDMETHOD.
 METHOD drop_complete. " do something after drop
 IF drag_drop_object->flavor = 'Tree_move_to_Edit'.

 SAP AG SAP Tree and Tree Model (BC-CI)

Example of Drag and Drop Programming

April 2001 57

 CALL METHOD tree->delete_node
 EXPORTING node_key = node_key.
 delete node_itab where node_key = node_key.

 ENDIF.
 ENDMETHOD.
ENDCLASS.

SAP Tree and Tree Model (BC-CI) SAP AG

The Column Tree

58 April 2001

The Column Tree
Definition
You crate a simple tree with reference to the class cl_gui_column_tree:

DATA column_tree TYPE REF TO cl_gui_column_tree.

According to the inheritance hierarchy, you can now access the methods of the following classes:

� cl_gui_object and cl_gui_control (see Methods of the ABAP Objects Control
Framework [Page 471]).

� cl_tree_control_base (see Methods of the class CL_TREE_CONTROL_BASE [Page
119]).

� cl_item_control_base (see Methods of the class CL_ITEM_TREE_CONTROL [Page
157]).

� cl_gui_column_tree (see Methods of the Class CL_GUI_COLUMN_TREE [Page 203]).

Use
The program sapcolumn_tree_control_demo demonstrates how to use the simple tree.

For details of the attributes of the column tree, refer to the Overview of Tree Classes [Page 18].

 SAP AG SAP Tree and Tree Model (BC-CI)

Creating a Control: SAP Picture Example

April 2001 59

Creating a Control: SAP Picture Example
Prerequisites
The following process applies to all SAP custom controls. The programming examples use the
SAP Picture Control. However, to apply the example to other controls, you would only have to
change the name of the control class.

The example also assumes that you are using the custom control in a Custom Container. The
SAP Container documentation contains details of further scenarios.

Process Flow
Create the Instance
9. Define a reference variable for the Custom Container in which you want to place the custom

control (see SAP Container [Ext.]).

DATA container TYPE REF TO cl_gui_custom_container.

10. Define a reference variable for the SAP Picture:

DATA picture TYPE REF TO cl_gui_picture.

11. Create the Custom Container. You must already have created the area 'CUSTOM' for the
Custom Container in the Screen Painter. When you create the container, you must also
specify its lifetime [Ext.] (see constructor [Ext.]).

CREATE OBJECT container
 EXPORTING container_name = 'CUSTOM'

 lifetime = lifetime.

12. Create the SAP Picture Control. You can also specify a lifetime for the SAP Picture, but it
must not be longer than that of its container.

CREATE OBJECT picture
 EXPORTING parent = container

 lifetime = lifetime.

Register the Events
13. There are three steps: Registering the events with the Control Framework, defining a handler

method, and registering the hander method. These steps are explained under Registering
and Processing Events [Page 99].

Use the Control
14. These steps are control-specific and therefore not described here.

Destroy the Control
The lifetime management [Ext.] is normally responsible for destroying any controls you use.
However, the following two steps allow you to destroy the control yourself:

15. Use the method free [Page 480] to destroy the Custom Control at the frontend. If you no
longer need the control container, release it as well:

SAP Tree and Tree Model (BC-CI) SAP AG

Creating a Control: SAP Picture Example

60 April 2001

CALL METHOD picture->free
 EXCEPTIONS cntl_error = 1
 cntl_system_error = 2.
CALL METHOD container->free
 EXCEPTIONS cntl_error = 1
 cntl_system_error = 2.

Pay careful attention to the sequence in which you destroy controls at the frontend.
When you destroy a container, all controls in it are automatically destroyed as well.
If you have already destroyed a control and try to destroy it again, an error occurs.
You can check whether a control has already been destroyed using the method
is_alive [Page 485].

16. Delete the reference variables to the custom control and the control container.

FREE PICTURE.
FREE CONTAINER.

 SAP AG SAP Tree and Tree Model (BC-CI)

Using the Column Tree

April 2001 61

Using the Column Tree
This section lists the functions that are specific to the column tree.

Prerequisites
The process described here is an extension of the general process for using controls [Page 90]
that is specific to the simple tree. It does not contain all of the steps required to produce a valid
instance of the control.

Process Flow

The program extracts are examples that do not necessarily illustrate all of the
features of the control. For precise information, refer to the reference section of this
documentation.

Creating the Instance
9. Define a reference variable for the column tree:

DATA column_tree TYPE REF TO cl_gui_column_tree.

10. Define a work area for the hierarchy heading by referring to the structure treev_hhdr.

DATA hierarchy_header TYPE treev_hhdr.

11. Fill the work area for the hierarchy heading. You can set the width (width and width_pix),
the text (heading), an icon (t_image) and a tool tip (tooltip). There are also methods
that allow you to change these attributes later on.

hierarchy_header-heading = 'Title'.
hierarchy_header-width = 30.

12. Create an instance [Page 204] of the SAP Tree:

CREATE OBJECT column_tree
 EXPORTING parent = container
 node_selection_mode = node_selection_mode
 hide_selection = hide_selection
 item_selection = item_selection
 hierarchy_column_name = hierarchy_column_name
 hierarchy_header = hierarchy_header
 EXCEPTIONS lifetime_error = 1
 cntl_system_error = 2
 create_error = 3
 illegal_node_selection_mode = 4
 failed = 5
 illegal_column_name = 6.

Register the Events
13. Register the events [Page 101] for the column tree. The control supports the following

events:

SAP Tree and Tree Model (BC-CI) SAP AG

Using the Column Tree

62 April 2001

Event name Description

NODE_DOUBLE_CLICK User double-clicked a node

EXPAND_NO_CHILDREN User expanded a node that has no children

SELECTION_CHANGED Selected node has changed

NODE_CONTEXT_MENU_REQUEST User requested a context menu with the cursor
positioned on a node

NODE_CONTEXT_MENU_SELECT User selected an entry from the context menu

DEFAULT_CONTEXT_MENU_REQUEST User requested a context menu with the cursor
positioned on an empty space in the control

DEFAULT_CONTEXT_MENU_SELECT User selected an entry from the context menu

HEADER_CONTEXT_MENU_REQUEST User requested a context menu with the cursor
positioned on the heading

HEADER_CONTEXT_MENU_SELECT User selected an entry from the context menu

ITEM_KEYPRESS User pressed a key while an entry was selected.

NODE_KEYPRESS User pressed a key while an entry was selected.

HEADER_CLICK User clicked a heading

If you set the parameter item_selection = 'X' when you created the instance, you can also
react to the following events:

Event name Description

BUTTON_CLICK The user clicked an item with the class BUTTON

LINK_CLICK The user clicked an item with the class LINK

CHECKBOX_CHANGE The user clicked an item with the class CHECKBOX

ITEM_DOUBLE_CLICK The user double-clicked an item

ITEM_CONTEXT_MENU_REQUEST User requested a context menu with the cursor
positioned on an item

ITEM_CONTEXT_MENU_SELECT User selected an entry from the context menu for an
item

Using the Column Tree
14. Insert nodes in the tree. To do this, first fill a node table and an item table, then pass them to

the control using the add_nodes_and_items [Page 158] method.

CALL METHOD column_tree->add_nodes_and_items
 EXPORTING node_table = node_table
 item_table = item_table
 item_table_structure_name = item_table_structure_name
 EXCEPTIONS failed = 1
 cntl_system_error = 2
 error_in_tables = 3

 SAP AG SAP Tree and Tree Model (BC-CI)

Using the Column Tree

April 2001 63

 dp_error = 4
 table_structure_name_not_found = 5.

15. Change existing nodes in the tree, or change the tree attributes (see Changing the Attribtues
of the Control [Page 64]).

16. Query any necessary attributes of the tree and its nodes (see Finding Out the Attributes of
the Control [Page 68]).

Destroying the Control
17. Destroy the custom control at the frontend. If you no longer need the control container,

release it as well:

CALL METHOD column_tree->free.

If you are working with the lifetime management [Ext.], you do not need to worry
about destroying the control at the frontend yourself. It is done automatically by the
system instead.

18. Delete the reference variables to the simple tree and the control container.

FREE column_tree.

SAP Tree and Tree Model (BC-CI) SAP AG

Changing the Attributes of the Control

64 April 2001

Changing the Attributes of the Control
This section lists all of the methods you can use to change the column tree.

Inserting, Changing, and Deleting Items (With Nodes)

Method Description

add_nodes_and_items [Page 158] Adds a set of items (and their nodes)

delete_all_items_of_nodes [Page 162] Deletes all items for a list of nodes

delete_items [Page 163] Deletes a set of items

update_nodes_and_items [Page 175] Changes a list of entries (and their nodes)

Changing Individual Items

Method Description

item_set_chosen [Page 165] Sets a checkbox in the tree to selected

item_set_disabled [Page 166] Deactivates an entry in the table

item_set_editable [Page 167] Sets whether a checkbox can be changed

item_set_font [Page 168] Sets the font for the item

item_set_hidden [Page 169] Makes an item invisible

item_set_style [Page 170] Sets the style of an item

item_set_text [Page 171] Changes the text of an item

item_set_t_image [Page 172] Changes the icon of an item

Selecting a Single Item

Method Description

select_item [Page 173] Selects a single item

Expanding Nodes

Method Description

expand_node [Page 128] Expands a particular node

expand_nodes [Page 129] Expands a set of nodes

expand_root_nodes [Page 130] Expands all root nodes

Selecting Nodes

Method Description

set_selected_node [Page 152] Selects a particular node

select_nodes [Page 147] Selects a list of nodes

unselect_all [Page 154] Deselects all seleceted nodes and items

 SAP AG SAP Tree and Tree Model (BC-CI)

Changing the Attributes of the Control

April 2001 65

unselect_nodes [Page 155] Deselects a set of nodes

Deleting Nodes

Method Description

delete_all_nodes [Page 124] Deletes all nodes from the tree

delete_node [Page 125] Deletes a particular node from the tree

delete_nodes [Page 126] Deletes a set of nodes from the tree

Changing the Attributes of a Node

Method Description

node_set_disabled [Page 136] Deactivates nodes

node_set_expander [Page 138] Sets the expander attribute.

node_set_exp_image [Page 139] Sets expanded node icon

node_set_hidden [Page 140] Hides a node

node_set_is_folder [Page 141] Sets the is_folder attribute

node_set_no_branch [Page 142] Sets whether the hierarchy line is drawn to the node

node_set_n_image [Page 143] Sets the non-expanded node icon

node_set_style [Page 144] Sets the style of the node

node_set_dragdropid [Page 137] Sets the drag and drop behavior of a node

Inserting, Deleting and Changing Columns

Method Description

add_column [Page 206] Adds a column

add_hierarchy_column
[Page 208]

Add a column below the hierarchy heading

delete_column [Page 217] Delete column

insert_column [Page 225] Inserts a column at a particular position

insert_hierarchy_column
[Page 227]

Inserts a column at a particular position below the hierarchy
header

Changing Column Attributes

Method Description

column_set_disabled [Page 211] Deactivates a column

column_set_heading_image [Page 212] Changes the icon of the heading

column_set_heading_text [Page 213] Changes the text of the heading

column_set_heading_tooltip [Page 214] Changes the tooltip of the heading

SAP Tree and Tree Model (BC-CI) SAP AG

Changing the Attributes of the Control

66 April 2001

column_set_hidden [Page 215] Hides a column

column_set_width [Page 216] Changes the width of the column

adjust_column_width [Page 209] Adjusts the width of a column

update_column [Page 229] Changes a set of attributes of a column

Changing the Attributes of the Hierarchy Heading

Method Description

hierarchy_header_set_t_image [Page 223] Changes the icon of the hierarchy heading

hierarchy_header_set_text [Page 221] Changes the text of the hieararchy heading

hierarchy_header_set_tooltip [Page 222] Changes the tooltip of the hierarchy heading

hierarchy_header_set_width [Page 224] Changes the width of the hierarchy heading

hierarchy_header_adjust_width [Page 219] Adjusts the width of the hierarchy heading

Setting the Sequence of Columns

Method Description

set_column_order [Page 228] Setting the Sequence of Columns

Configuring Keyboard Events

Method Description

add_key_stroke [Page 120] Sets a key to trigger an event

remove_all_key_strokes [Page
145]

Deregisters all keys that were registered to trigger an event

Other Methods

Method Description

ensure_visible [Page 127] Ensures that a particular node is visible

move_node [Page 135] Moves a node

scroll [Page 146] Scrolls in the tree

set_ctx_menu_select_event
_appl [Page 156]

Sets whether the event triggered when the user chooses an entry
from a context menu should be an application event or a system
event

set_has_3d_frame [Page
150]

Sets the 3D frame

set_screen_update [Page
151]

Controls the visibility of changes

set_top_node [Page 153] Defines the topmost visible node

set_min_node_height [Page
174]

Sets the minimum height of a node

 SAP AG SAP Tree and Tree Model (BC-CI)

Changing the Attributes of the Control

April 2001 67

set_default_drop [Page 148] Sets the drag and drop behavior for dropping on the background
of the SAP Tree

set_folder_show_exp_image
[Page 149]

Sets the open folder symbol

SAP Tree and Tree Model (BC-CI) SAP AG

Finding Out the Attributes of the Control

68 April 2001

Finding Out the Attributes of the Control
This section lists all of the methods you can use to retrieve the attributes of the column tree.

Methods for Retrieving Control Attributes

Method Description

get_expanded_nodes [Page 131] Lists all expanded nodes

get_selected_node [Page 132] Returns the name of the selected node

get_selected_nodes [Page 133] Lists all selected nodes

get_top_node [Page 134] Name of the topmost visible node

get_selected_item [Page 164] Name of the selected item

hierarchy_header_get_width [Page 220] Width of the hierarchy heading

column_get_width [Page 210] Width of a column

get_column_order [Page 218] Sequence of the columns

 SAP AG SAP Tree and Tree Model (BC-CI)

Registering and Processing Events

April 2001 69

Registering and Processing Events
Purpose
The event mechanism of the Control Framework allows you to use handler methods in your
programs to react to events triggered by the control (for example, a double-click).

Prerequisites
The following description has been generalized to apply to all custom controls. For more
information specific to a particular control, refer to that control's documentation.

Process Flow
11. Assume you are working with a custom control that has the ABAP wrapper cl_gui_xyz.

DATA my_control TYPE REF TO cl_gui_xyz.

Registering Events with the Control Framework
12. Define an internal table (type cntl_simple_events) and a corresponding work area (type

cntl_simple_event).

DATA events TYPE cntl_simple_events.
DATA wa_events TYPE cntl_simple_event.

13. Now fill the event table with the relevant events. To do this, you need the event ID
(event_id field). You can find this information in the Class Browser by looking at the
attributes of the class cl_gui_xyz. You must also decide whether the event is to be a
system event (appl_event = ' ') or an application event (appl_event = 'X').

wa_events-eventid = event_id.
wa_events-appl_event = appl_event.
APPEND wa_events TO events.

14. You must now send the event table to the frontend so that it knows which events it has to
direct to the backend.

CALL METHOD my_control->set_registered_events
 events = events.

To react to the events of you custom control, you must now specify a handler method for it. This
can be either an instance method or a static method.

Processing an Event Using an Instance Method
15. Define the (local) class definition for the event handler. To do this, specify the name of the

handler method (Event_Handler). You need to look at the class for the custom control
cl_gui_xyz in the Class Browser to find out the name of the event (event_name) and its
parameters (event_parameter). There is also a default event parameter sender, which is
passed by all events. This contains the reference to the control that triggered the event.

CLASS lcl_event_receiver DEFINITION.
PUBLIC SECTION.
METHODS Event_Handler
 FOR EVENT event_name OF cl_gui_xyz

SAP Tree and Tree Model (BC-CI) SAP AG

Registering and Processing Events

70 April 2001

 IMPORTING event_parameter
 sender.
ENDCLASS.

16. Register the handler methods with the ABAP Objects Control Framework for the events.

DATA event_receiver TYPE REF TO lcl_event_receiver.
CREATE OBJECT event_receiver.
SET HANDLER event_receiver->Event_Handler
 FOR my_control.

Processing an Event Using a Static Method
17. Define the (local) class definition for the event handler. To do this, specify the name of the

handler method (Event_Handler). You need to look at the class for the custom control
cl_gui_xyz in the Class Browser to find out the name of the event (event_name) and its
parameters (event_parameter).

CLASS lcl_event_receiver DEFINITION.
PUBLIC SECTION.
CLASS-METHODS Event_Handler
 FOR EVENT event_name OF cl_gui_xyz
 IMPORTING event_parameter
 sender.
ENDCLASS.

18. Register the handler methods with the ABAP Objects Control Framework for the events.

SET HANDLER lcl_event_receiver=>Event_Handler
 FOR my_control.

Processing Control Events
19. You define how you want the system to react to an event in the implementation of the

handler method.

CLASS lcl_event_receiver IMPLEMENTATION.
METHOD Event_Handler.
* Event processing
ENDMETHOD
ENDCLASS.

20. If you registered your event as an application event, you need to process it using the method
CL_GUI_CFW=>DISPATCH. For further information, refer to Event Handling [Ext.].

 SAP AG SAP Tree and Tree Model (BC-CI)

Events of the Column Tree and List Tree

April 2001 71

Events of the Column Tree and List Tree
Use
Certain user actions on the column tree and list tree trigger events:

Event Event ID
CL_ITEM_TREE_CONTROL=>

Description

NODE_DOUBLE_CLIC
K

EVENTID_NODE_DOUBLE_CLICK Double-click on a node

NODE_KEYPRESS EVENTID_NODE_KEYPRESS The user pressed a key while
a node was selected

EXPAND_NO_CHILDR
EN

EVENTID_EXPAND_NO_CHILDREN User expanded a node that
has no children

SELECTION_CHANGE
D

EVENTID_SELECTION_CHANGED You can only use this event if
you specified single node
selection and
ITEM_SELECTION = ' '
when you created the control.

Selected node has changed
Important: If you use this
event, you cannot use the
NODE_DOUBLE_CLICK
event.

NODE_CONTEXT_ME
NU_REQUEST

EVENTID_NODE_CONTEXT_MENU
_REQ

User requested a context
menu with the cursor
positioned on a node

NODE_CONTEXT_ME
NU_SELECT

This event is registered automatically
when you register the event
NODE_CONTEXT_MENU_REQUEST.

User selected an entry in the
context menu for a node

DEFAULT_CONTEXT_
MENU_REQUEST

EVENTID_DEF_CONTEXT_MENU_R
EQ

User requested a context
menu with the cursor
positioned on the tree
background

DEFAULT_CONTEXT_
MENU_SELECT

This event is registered automatically
when you register the event
DEFAULT_CONTEXT_MENU_REQUEST.

User selected an entry from
the context menu for the tree
background

HEADER_CONTEXT_
MENU_REQUEST

EVENTID_HEADER_CONTEXT_ME
N_REQ

User requested a context
menu with the cursor
positioned on a heading

SAP Tree and Tree Model (BC-CI) SAP AG

Events of the Column Tree and List Tree

72 April 2001

HEADER_CONTEXT_
MENU_SELECT

This event is registered automatically
when you register the event
EVENTID_HEADER_CONTEXT_MEN_R
EQ.

User selected an entry from
the context menu for the tree
background

HEADER_CLICK EVENTID_HEADER_CLICK User clicked a heading

ON_DROP_GET_FLAV
OR

See Drag and Drop Events in the SAP
Tree [Page 111]

There are several different
drag and drop flavors

ON_DRAG See Drag and Drop Events in the SAP
Tree [Page 111]

Determines the source object
(single selection)

ON_DRAG_MULTIPLE See Drag and Drop Events in the SAP
Tree [Page 111]

Determines the source object
(multiple selection)

ON_DROP See Drag and Drop Events in the SAP
Tree [Page 111]

Determines the context in the
target object

ON_DROP_COMPLET
E

See Drag and Drop Events in the SAP
Tree [Page 111]

Last event before completion
of the drag and drop (single
selection)

ON_DROP_COMPLET
E_MULTIPLE

See Drag and Drop Events in the SAP
Tree [Page 111]

Last event before completion
of the drag and drop (multiple
selection)

If you set the parameter item_selection = 'X' when you created the instance, you can also
react to the following events:

Event Event ID
CL_ITEM_TREE_CONTROL=>

Description

ITEM_DOUBLE_CLICK EVENTID_ITEM_DOUBLE_CLICK The user double-clicked an
item

ITEM_KEYPRESS EVENTID_ITEM_KEYPRESS The user pressed a key while
a node was selected

BUTTON_CLICK EVENTID_BUTTON_CLICK The user clicked an item with
type BUTTON

LINK_CLICK EVENTID_LINK_CLICK The user clicked an item with
type LINK

CHECKBOX_CHANGE EVENTID_CHECKBOX_CHANGE The user clicked an item with
type CHECKBOX

ITEM_CONTEXT_MEN
U_REQUEST

EVENTID_ITEM_CONTEXT_MENU_
REQUEST

User requested a context
menu with the cursor
positioned on a node

ITEM_CONTEXT_MEN
U_SELECT

This event is registered automatically
when you register the event
ITEM_CONTEXT_MENU_REQUEST.

User selected an entry from
the context menu

Some events also export parameters:

 SAP AG SAP Tree and Tree Model (BC-CI)

Events of the Column Tree and List Tree

April 2001 73

Event Parameters Description

NODE_DOUBLE_CLI
CK

NODE_KEY Node on which the user
double-clicked

NODE_KEY Node selected when the user
pressed the key

NODE_KEYPRESS

KEY Key pressed

EXPAND_NO_CHILD
REN

NODE_KEY Node without child nodes that
the user tried to expand

SELECTION_CHANG
ED

NODE_KEY New selected node

NODE_KEY Node selected when the user
requested the context menuNODE_CONTEXT_M

ENU_REQUEST MENU Menu to be displayed (must be
filled in the event handler)

NODE_KEY Node selected when the user
chose an entry from the
context menu

NODE_CONTEXT_M
ENU_SELECT

FCODE Function code of the selected
entry in the context menu

HEADER_CLICK HEADER_NAME Name of the heading clicked by
the user

HEADER_NAME Heading selected when the
user requested the context
menu

HEADER_CONTEXT_
MENU_REQUEST

MENU Menu to be displayed (must be
filled in the event handler)

HEADER_NAME Heading selected when the
user selected from the context
menu

HEADER_CONTEXT_
MENU_SELECT

FCODE Function code of the selected
entry in the context menu

NODE_KEY Name of the node

ITEM_NAME Name of the item clicked by the
user

CHECKBOX_CHANG
E

CHECKED 'X': Checkbox selected
' ': Checkbox not selected

ITEM_DOUBLE_CLIC
K

NODE_KEY Name of the node

SAP Tree and Tree Model (BC-CI) SAP AG

Events of the Column Tree and List Tree

74 April 2001

ITEM_NAME Name of the item clicked by the
user

NODE_KEY Name of the node

ITEM_NAME Name of the item on which the
context menu was request

ITEM_CONTEXT_ME
NU_REQUEST

MENU Menu to be displayed (must be
filled in the event handler)

NODE_KEY Name of the node

ITEM_NAME Name of the item on which the
context menu was request

ITEM_CONTEXT_ME
NU_SELECT

FCODE Function code of the selected
entry in the context menu

NODE_KEY Name of the node

ITEM_NAME Name of the item selected
when the user pressed a key

ITEM_KEYPRESS

KEY Key pressed

DEFAULT_CONTEXT
_MENU_REQUEST

MENU Menu to be displayed (must be
filled in the event handler)

DEFAULT_CONTEXT
_MENU_SELECT

FCODE Function code of the selected
entry in the context menu

ON_DROP_GET_FLA
VOR

See Drag and Drop Events in the
SAP Tree [Page 111]

ON_DRAG See Drag and Drop Events in the
SAP Tree [Page 111]

ON_DRAG_MULTIPL
E

See Drag and Drop Events in the
SAP Tree [Page 111]

ON_DROP See Drag and Drop Events in the
SAP Tree [Page 111]

ON_DROP_COMPLE
TE

See Drag and Drop Events in the
SAP Tree [Page 111]

ON_DROP_COMPLE
TE_MULTIPLE

See Drag and Drop Events in the
SAP Tree [Page 111]

If you want to use events that rely on the user pressing a key (for example,
NODE_KEYPRESS), you must register the keystroke using the method

 SAP AG SAP Tree and Tree Model (BC-CI)

Events of the Column Tree and List Tree

April 2001 75

add_key_stroke [Page 120]. You can deregister the registered key strokes using the
method remove_all_key_strokes [Page 145].

Integration
To react to an event in your ABAP program, you must have registered it. To do this, use the
method set_registered_events [Page 483]. Events that are triggered but for which you are not
registered are filtered by the presentation server, and not passed to the application server. See
event handling [Ext.].

Activities
Read the general process [Page 90] for working with events in the Control Framework.

SAP Tree and Tree Model (BC-CI) SAP AG

Drag and Drop

76 April 2001

Drag and Drop
Use
Drag and drop allows the user to select an object from one part of a custom control (source) and
drop it on another part of a custom control (target). An action occurs in the second part that
depends on the object type. Source and target may be either the same control or different
controls.

Prerequisites
For a control to support drag and drop, the control wrapper must provide drag and drop events.
You must then write handler methods for these events in your program. The events are
registered automatically by the relevant control wrapper.

Features
A particular drag and drop behavior is set for each custom control. This behavior may be set
globally for all elements of the control (for example, SAP Textedit), or you may be able to define
a different behavior for each component (for example SAP Tree). Each behavior consists of one
or more descriptions.

A description has the following attributes:

� DragSrc: Object is the source of a drag and drop procedure

� DropTarget: Object is the target of a drag and drop procedure

� Flavor: The flavor describes the type of a drag and drop description. In a drag and drop
operation, you can only drop an object onto another if both have at least one common
description.

� Effect: Specifies whether the drag and drop operations copies or moves the object.

� Effect_In_Ctrl: The drop effect used when you copy or move data within the same control.

As soon as a drag event is triggered, you must use the corresponding handler method to find out
the affected object.

You must also define the action that is to be carried out on the drop event. The action usually
depends on the object that you drop in the control.

If you assign more than one flavor to an object, you must define which flavor is to be used. You
do this in the handler for another event.

Once the drop event is finished, you can use a further event to implement additional actions.
This is particularly useful for deleting the dropped object from the source after a move operation.

Activities
Whenever you provide a drag and drop function to move objects, you should always provide an
Undo function as well. You must implement this yourself in the application.

 SAP AG SAP Tree and Tree Model (BC-CI)

Process Flow of a Drag and Drop Operation

April 2001 77

Process Flow of a Drag and Drop Operation
Prerequisites
The following section explains how a drag and drop operation works, examining into the roles of
the application server and frontend, and going on to identify the individual steps required to
program drag and drop in an application.

Process Flow
Application Server
15. You create the custom control [Page 90].

16. You register the drag and drop events [Page 109].

17. You define the drag and drop behavior for the individual custom controls or their
components. To do this, you create an instance [Page 494] of the class CL_DRAGDROP
[Page 493]. You then assign one or more flavors [Page 495] to this instance. These describe
the drag and drop behavior of the relevant custom control. During the program, you can
change [Page 502], delete [Page 504], and query [Page 499] the flavors in your program.
You can also initialize [Page 497] or destroy [Page 498] the entire instance.

18. You assign flavors to the custom control using specific methods of the relevant control. For
further information, refer to the corresponding control documentation.

Frontend
The following steps are performed by the system at the frontend. They are only listed here so
that you can understand what happens during a drag and drop operation.

19. Once the use has selected an object with the left mouse button, the drag and drop service
starts.

20. The drag and drop service checks whether a drag and drop behavior has been defined for
the object, and whether the object can be dragged (DragSource attribute).

21. If, according to the DragSource attribute, the object can be dragged, the drag and drop
operation starts. The mouse pointer then changes automatically.

22. As long as the left mouse button remains pressed, the system continually checks whether the
mouse pointer is positioned over an object in a custom control that can receive a dropped
object (DropTarget attribute), and whether the flavor of that object is the same as the flavor of
the source. If this is the case, the mouse pointer changes again to inform the user.

23. If the user now drops the object, an event is triggered to inform the application server.

This concludes the drag and drop operation for the frontend. However, there has not
yet been any change to the contents of the custom control.

Application Server
24. The drag and drop service of the application server creates an instance of the class

CL_DRAGDROPOBJECT [Page 505]. You can use this instance (for example,

SAP Tree and Tree Model (BC-CI) SAP AG

Process Flow of a Drag and Drop Operation

78 April 2001

drag_drop_object) in all events of the drag and drop process as an event parameter. You
can use it to find out the context between the events.

25. The drag and drop service checks whether the drag object and drop object have more than
one flavor in common. If this is the case, the event ONGETFLAVOR is triggered. In the
corresponding handler method, you must decide which flavor to use. You do this using the
method set_flavor [Page 506].

26. Now, the drag and drop event ONDRAG is triggered. It has event parameters that tell you
which object the user has dragged. Within the handler routine, you must pass the context
(information about the source object) to the instance of the drag and drop data object created
in step 9.
drag_drop_object->object = mydragobject.

27. Next, the ONDROP event is triggered. The corresponding handler method serves to process
the drag and drop data object. Here, you have to implement the changes that are to be
made to the target object based on the drag and drop operation.

28. The last event of the drag and drop operation is ONDROPCOMPLETE. This is where you can
make your last changes to the drag and drop object. In particular, you should use this event
to delete the source object from the DragSource control and the corresponding data
structures if you have used the drag and drop operation to move the object.

The Example of Drag and Drop Programming [Page 114] contains an example of a
drag and drop operation between a SAP Tree and a SAP Textedit.

 SAP AG SAP Tree and Tree Model (BC-CI)

Drag and Drop Events

April 2001 79

Drag and Drop Events
This section only describes those properties of drag and drop events that apply to all controls.
The individual control wrappers may augment them. You should therefore consult the relevant
control documentation to see if that control has any peculiarities.

Use
There are four standard events in a drag and drop operation at which control is returned to the
application program. You use the event handler methods for these events to implement the
actions that should be performed during the operation.

Some control wrappers offer additional drag and drop events. For further
information, refer to the documentation of the individual controls.

Prerequisites
To be able to react to an event, you must first register it. Unlike normal event handling, you do
not register drag and drop events with the Control Framework using the set_registered_events
[Page 483] method Instead, they are registered automatically by the wrapper of the control that
you are using.

However, you still have to specify handler methods for the events.

DATA tree TYPE REF TO cl_gui_simple_tree.
SET HANDLER dragdrop=>on_drag FOR tree.

The events are always registered as system events.

Features
In a drag and drop operation, the Control Framework does not pass any events to the application
server until the object is dropped. At the application server, it is separated into up to four
standard events that can occur within a drag and drop operation, as described in Process Flow of
a Drag and Drop Operation [Page 107]. All events have a drag and drop data object as an event
parameter. You use this parameter to manage the context of the drag and drop operation. The
particular control wrapper that you are using also provides further information about the drag and
drop context. For further information, refer to the documentation of the relevant control wrapper.

� ONGETFLAVOR: This event is only triggered if the source and target objects have more than
one flavor in common. In the handler method, you must then specify which flavor should be
used. To do this, use the set_flavor [Page 506] method on the drag and drop object.
The event is triggered by the target object of the drag and drop operation.

� ONDRAG: This event is triggered when the drag and drop operation is complete at the
frontend. When you handle this event, you must determine the context of the target object.
You then pass this context to the instance of the class CL_DRAGDROPOBJECT that you
received as an event parameter.
The event is triggered by the source object of the drag and drop operation.

� ONDROP: When you handle this event, you define what should be done to the target object.
To do this, use the event parameter for the context that you filled in the ONDRAG event. In
this event, you must remember the following:

SAP Tree and Tree Model (BC-CI) SAP AG

Drag and Drop Events

80 April 2001

� Within the ONDROP event, you must make a dynamic typecast. You must catch all
possible exceptions of the typecast. In the exception handling you must include handling
for the case where you try to assign an invalid object. In this case, you must use the
abort [Page 507] method to terminate the drag and drop processing.

� You should select the flavor you want to use so that it is possible to assign the drag and
drop object to the right TypeCast.

The event is triggered by the target object of the drag and drop operation.

� ONDROPCOMPLETE: Use this event to perform any further processing necessary after the end
of the drag and drop operation. For example, this would be necessary following a move
operation.
The event is triggered by the source object of the drag and drop operation.

 SAP AG SAP Tree and Tree Model (BC-CI)

Defining Drag and Drop Events in the SAP Tree

April 2001 81

Defining Drag and Drop Events in the SAP Tree
This section explains the special considerations that apply to drag and drop operations in the
SAP Tree.

Prerequisites
To be able to react to an event, you must first register it. Unlike normal event handling, you do
not register drag and drop events with the Control Framework using the set_registered_events
[Page 483] method Instead, they are registered automatically by the SAP Tree control wrapper.

However, you still have to specify handler methods for the events.

The events are always registered as system events.

When you fill the node table, you must also specify which nodes are enabled for drag and drop,
and the flavors that the nodes should have. You do this by assigning the relevant drag and drop
behavior to the field DRAGDROPID (see point 3 under Drag and Drop Operations [Page 107]).
This requires the following steps (see also the Drag and Drop Programming Example [Page
114]).

4. Define the drag and drop behavior:

DATA behaviour_left TYPE REF TO cl_dragdrop.
 CREATE OBJECT behaviour_left.
 CALL METHOD behaviour_left->add
 EXPORTING
 flavor = 'Tree_move_to_Edit'
 dragsrc = 'X'
 droptarget = ' '
 effect = cl_dragdrop=>copy.

5. Use the get_handle [Page 501] method to return a handle to the drag and drop behavior:

 CALL METHOD behaviour_left->get_handle
 IMPORTING handle = handle_tree.

6. Assign the handle to the DRAGDROPID field of the corresponding entry in the node table:

 node-dragdropid = handle_tree. " handle of behaviour

Entries with the type tree->item_class_checkbox (checkboxes), tree-
>item_class_button (pushbuttons) and tree->item_class_link (links)
cannot be the source object of a drag and drop operation.

Features
The following table contains the events used in drag and drop:

Event Description

ON_DROP_GET_FLAVOR See the event ONGETFLAVOR under Drag and Drop Events
[Page 109]

SAP Tree and Tree Model (BC-CI) SAP AG

Defining Drag and Drop Events in the SAP Tree

82 April 2001

ON_DRAG See the event ONDRAG under Drag and Drop Events [Page
109]

For trees without multiple selection
(NODE_SELECTION_MODE = TREE-
>NODE_SEL_MODE_SINGLE).

ON_DRAG_MULTIPLE See the event ONDRAG under Drag and Drop Events [Page
109]

For trees with multiple selection (NODE_SELECTION_MODE =
TREE->NODE_SEL_MODE_MULTIPLE).

ON_DROP See the event ONDROP under Drag and Drop Events [Page
109]

ON_DROP_COMPLETE See the event ONDROPCOMPLETE under Drag and Drop
Events [Page 109]

For trees without multiple selection (NODE_SELECTION_MODE
= TREE->NODE_SEL_MODE_SINGLE).

ON_DROP_COMPLETE_MULTI
PLE

See the event ONDROPCOMPLETE under Drag and Drop
Events [Page 109]

For trees with multiple selection (NODE_SELECTION_MODE =
TREE->NODE_SEL_MODE_MULTIPLE).

The individual events have the following parameters:

Event Event parameter Description

NODE_KEY Technical name of the node onto which
the source object was dragged

DRAG_DROP_OBJE
CT

Data object describing the source
object

ON_DROP_GET_FLAVOR

FLAVORS Shared flavors of the drag and drop
operation

NODE_KEY Technical name of the node selected
as the source object

ITEM_NAME

(not in simple
tree)

Technical name of the item selected as
the source object

ON_DRAG

DRAG_DROP_OBJE
CT

Data object describing the source
object

ON_DRAG_MULTIPLE NODE_KEY_TABLE Table of nodes selected as source
obejcts

 SAP AG SAP Tree and Tree Model (BC-CI)

Defining Drag and Drop Events in the SAP Tree

April 2001 83

ITEM_NAME

(not in simple
tree)

Technical name of the item selected as
the source object

DRAG_DROP_OBJE
CT

Data object describing the source
object

NODE_KEY Technical name of the node onto which
the source object was dragged

ON_DROP

DRAG_DROP_OBJE
CT

Data object describing the source
object

NODE_KEY Technical name of the node selected
as the source object

ITEM_NAME

(not in simple
tree)

Technical name of the item selected as
the source object

ON_DROP_COMPLETE

DRAG_DROP_OBJE
CT

Data object describing the source
object

NODE_KEY_TABLE Table of nodes selected as source
obejcts

ITEM_NAME

(not in simple
tree)

Technical name of the item selected as
the source object

ON_DROP_COMPLETE_MULTI
PLE

DRAG_DROP_OBJE
CT

Data object describing the source
object

SAP Tree and Tree Model (BC-CI) SAP AG

Example of Drag and Drop Programming

84 April 2001

Example of Drag and Drop Programming
This example program uses a SAP Simple Tree Control and a SAP Textedit Control. The aim is
to enable the user to move texts from the tree control into the textedit control.

The example has the program name RSDEMO_DRAG_DROP_EDIT_TREE.

&---
*& Report RSDEMO_DRAG_DROP_EDIT_TREE *&
--
REPORT rsdemo_drag_drop_edit_tree .
DATA ok_code TYPE sy-ucomm.
DATA node_itab LIKE node_str OCCURS 0.
DATA node LIKE node_str.
DATA container TYPE REF TO cl_gui_custom_container.
DATA splitter TYPE REF TO cl_gui_easy_splitter_container.
DATA right TYPE REF TO cl_gui_container.
DATA left TYPE REF TO cl_gui_container.
DATA editor TYPE REF TO cl_gui_textedit.
DATA tree TYPE REF TO cl_gui_simple_tree.
DATA behaviour_left TYPE REF TO cl_dragdrop.
DATA behaviour_right TYPE REF TO cl_dragdrop.
DATA handle_tree TYPE i.
--
* CLASS lcl_treeobject DEFINITION
* container class for drag object
--
CLASS lcl_drag_object DEFINITION.
 PUBLIC SECTION.
 DATA text TYPE mtreesnode-text.
ENDCLASS.

* CLASS dragdrop_receiver DEFINITION
* event handler class for drag&drop events

CLASS lcl_dragdrop_receiver DEFINITION.
 PUBLIC SECTION.
 METHODS:
 flavor_select FOR EVENT on_get_flavor OF cl_gui_textedit
 IMPORTING index line pos flavors dragdrop_object,
 left_drag FOR EVENT on_drag OF cl_gui_simple_tree
 IMPORTING node_key drag_drop_object,
 right_drop FOR EVENT ON_DROP OF cl_gui_textedit
 IMPORTING index line pos dragdrop_object,
 drop_complete FOR EVENT on_drop_complete OF cl_gui_simple_tree
 IMPORTING node_key drag_drop_object.
ENDCLASS.
START-OF-SELECTION.
 CALL SCREEN 100.
&---
*& Module START OUTPUT
&---
MODULE start OUTPUT.

 SAP AG SAP Tree and Tree Model (BC-CI)

Example of Drag and Drop Programming

April 2001 85

 SET PF-STATUS 'BASE'.
 IF container is initial.
 CREATE OBJECT container
 EXPORTING container_name = 'CONTAINER'.
 CREATE OBJECT splitter
 EXPORTING parent = container
 orientation = 1.
 left = splitter->top_left_container.
 right = splitter->bottom_right_container.
 CREATE OBJECT editor
 EXPORTING parent = right.
 CREATE OBJECT tree
 EXPORTING parent = left
 node_selection_mode = tree->node_sel_mode_single.
* Definition of drag drop behaviour for tree
 CREATE OBJECT behaviour_left.
 CALL METHOD behaviour_left->add
 EXPORTING
 flavor = 'Tree_move_to_Edit'
 dragsrc = 'X'
 droptarget = ' '
 effect = cl_dragdrop=>copy.
 CALL METHOD behaviour_left->add
 EXPORTING
 flavor = 'Tree_copy_to_Edit'
 dragsrc = 'X'
 droptarget = ' '
 effect = cl_dragdrop=>copy.
 CALL METHOD behaviour_left->get_handle
 IMPORTING handle = handle_tree.
* Drag Drop behaviour of tree control nodes are defined in the node
* structure
 PERFORM fill_tree.
 CALL METHOD tree->add_nodes
 EXPORTING node_table = node_itab
 table_structure_name = 'NODE_STR'.
* Definition of drag drop behaviour for tree
 CREATE OBJECT behaviour_right.
 CALL METHOD behaviour_right->add
 EXPORTING
 flavor = 'Tree_move_to_Edit'
 dragsrc = ' '
 droptarget = 'X'
 effect = cl_dragdrop=>copy.
 CALL METHOD behaviour_right->add
 EXPORTING
 flavor = 'Tree_copy_to_Edit'
 dragsrc = ' '
 droptarget = 'X'
 effect = cl_dragdrop=>copy.
 CALL METHOD editor->set_dragdrop
 EXPORTING dragdrop = behaviour_right.

SAP Tree and Tree Model (BC-CI) SAP AG

Example of Drag and Drop Programming

86 April 2001

* registration of drag and drop events

 SET HANDLER dragdrop=>flavor_select FOR editor.
 SET HANDLER dragdrop=>left_drag FOR tree.
 SET HANDLER dragdrop=>right_drop FOR editor.
 SET HANDLER dragdrop=>drop_complete for TREE.
 ENDIF.
ENDMODULE. " START OUTPUT
&---
*& Module EXIT INPUT
&---
MODULE exit INPUT.
 LEAVE PROGRAM.
ENDMODULE. " EXIT INPUT
&---
*& Form fill_tree
&---
FORM fill_tree.
 DATA: node LIKE mtreesnode.
 CLEAR node.
 node-node_key = 'Root'.
 node-isfolder = 'X'.
 node-text = 'Text'.
 node-dragdropid = ' '.
 APPEND node TO node_itab.
 CLEAR node.
 node-node_key = 'Child1'.
 node-relatkey = 'Root'.
 node-relatship = cl_gui_simple_tree=>relat_last_child.
 node-text = 'DragDrop Text 1'.
 node-dragdropid = handle_tree. " handle of behaviour
 APPEND node TO node_itab.
 CLEAR node.
 node-node_key = 'Child2'.
 node-relatkey = 'Root'.
 node-relatship = cl_gui_simple_tree=>relat_last_child.
 node-text = 'DragDrop Text 2'.
 node-dragdropid = handle_tree. " handle of behaviour
 APPEND node TO node_itab.
ENDFORM. " fill_tree
&---
*& Module USER_COMMAND_0100 INPUT
&---
MODULE user_command_0100 INPUT.
 CALL METHOD cl_gui_cfw=>dispatch.
ENDMODULE. " USER_COMMAND_0100 INPUT
--
* CLASS DRAGDROP_RECEIVER IMPLEMENTATION
--
CLASS lcl_dragdrop_receiver IMPLEMENTATION.
 METHOD flavor_select. " set the right flavor
 IF line > 5.
 SEARCH flavors FOR 'Tree_move_to_Edit'.

 SAP AG SAP Tree and Tree Model (BC-CI)

Example of Drag and Drop Programming

April 2001 87

 IF sy-subrc = 0.
 CALL METHOD dragDROP_OBJECT->SET_FLAVOR

 EXPORTING newflavor = 'Tree_move_to_Edit'.
 ELSE.
 CALL METHOD dragdrop_object->abort.
 ENDIF.
 ELSE.
 SEARCH flavors FOR 'Tree_copy_to_Edit'.
 IF sy-subrc = 0.
 CALL METHOD dragdrop_object->set_flavor
 EXPORTING newflavor = 'Tree_copy_to_Edit'.
 ELSE.
 CALL METHOD dragdrop_object->abort.
 ENDIF.
 ENDIF.
 ENDMETHOD.
 METHOD left_drag. " define drag object
 DATA drag_object TYPE REF TO lcl_drag_object.
 READ TABLE node_itab WITH KEY node_key = node_key
 INTO node.
 CREATE OBJECT drag_object.
 drag_object->text = node-text.
 drag_drop_object->object = drag_object.
ENDMETHOD.
 METHOD right_drop. " action in the drop object
 DATA textline(256).
 DATA text_table LIKE STANDARD TABLE OF textline.
 DATA drag_object TYPE REF TO lcl_drag_object.
 CATCH SYSTEM-EXCEPTIONS move_cast_error = 1.
 drag_object ?= dragdrop_object->object.
 ENDCATCH.
 IF sy-subrc = 1.
 " data object has unexpected class
 " => cancel Drag & Drop operation
 CALL METHOD dragdrop_object->abort.
 EXIT.
 ENDIF.
 CALL METHOD editor->get_text_as_stream
 IMPORTING text = text_table.
* Synchronize Automation Queue after Get Methods
 CALL METHOD cl_gui_cfw=>flush.
 textline = drag_object->text.
* Insert text in internal table
 INSERT textline INTO text_table INDEX 1.
* Send modified table to frontend
 CALL METHOD editor->set_text_as_stream
 EXPORTING text = text_table
 EXCEPTIONS error_dp = 1
 error_dp_create = 2.
 ENDMETHOD.
 METHOD drop_complete. " do something after drop
 IF drag_drop_object->flavor = 'Tree_move_to_Edit'.

SAP Tree and Tree Model (BC-CI) SAP AG

Example of Drag and Drop Programming

88 April 2001

 CALL METHOD tree->delete_node
 EXPORTING node_key = node_key.
 delete node_itab where node_key = node_key.

 ENDIF.
 ENDMETHOD.
ENDCLASS.

 SAP AG SAP Tree and Tree Model (BC-CI)

The List Tree

April 2001 89

The List Tree
Definition
You create a list tree with reference to the class cl_gui_list_tree:

DATA list_tree TYPE REF TO cl_gui_list_tree.

According to the inheritance hierarchy, you can now access the methods of the following classes:

� cl_gui_object and cl_gui_control (see Methods of the ABAP Objects Control
Framework [Page 471]).

� cl_tree_control_base (see Methods of the class CL_TREE_CONTROL_BASE [Page
119]).

� cl_item_control_base (see Methods of the class CL_ITEM_TREE_CONTROL [Page
157]).

� cl_gui_list_tree (see Methods of Class CL_GUI_LIST_TREE [Page 188]).

Use
The program saptlist_tree_control_demo demonstrates how to use the list tree.

For details of the attributes of the list tree, refer to the Overview of Tree Classes [Page 18].

SAP Tree and Tree Model (BC-CI) SAP AG

Creating a Control: SAP Picture Example

90 April 2001

Creating a Control: SAP Picture Example
Prerequisites
The following process applies to all SAP custom controls. The programming examples use the
SAP Picture Control. However, to apply the example to other controls, you would only have to
change the name of the control class.

The example also assumes that you are using the custom control in a Custom Container. The
SAP Container documentation contains details of further scenarios.

Process Flow
Create the Instance
17. Define a reference variable for the Custom Container in which you want to place the custom

control (see SAP Container [Ext.]).

DATA container TYPE REF TO cl_gui_custom_container.

18. Define a reference variable for the SAP Picture:

DATA picture TYPE REF TO cl_gui_picture.

19. Create the Custom Container. You must already have created the area 'CUSTOM' for the
Custom Container in the Screen Painter. When you create the container, you must also
specify its lifetime [Ext.] (see constructor [Ext.]).

CREATE OBJECT container
 EXPORTING container_name = 'CUSTOM'

 lifetime = lifetime.

20. Create the SAP Picture Control. You can also specify a lifetime for the SAP Picture, but it
must not be longer than that of its container.

CREATE OBJECT picture
 EXPORTING parent = container

 lifetime = lifetime.

Register the Events
21. There are three steps: Registering the events with the Control Framework, defining a handler

method, and registering the hander method. These steps are explained under Registering
and Processing Events [Page 99].

Use the Control
22. These steps are control-specific and therefore not described here.

Destroy the Control
The lifetime management [Ext.] is normally responsible for destroying any controls you use.
However, the following two steps allow you to destroy the control yourself:

23. Use the method free [Page 480] to destroy the Custom Control at the frontend. If you no
longer need the control container, release it as well:

 SAP AG SAP Tree and Tree Model (BC-CI)

Creating a Control: SAP Picture Example

April 2001 91

CALL METHOD picture->free
 EXCEPTIONS cntl_error = 1
 cntl_system_error = 2.
CALL METHOD container->free
 EXCEPTIONS cntl_error = 1
 cntl_system_error = 2.

Pay careful attention to the sequence in which you destroy controls at the frontend.
When you destroy a container, all controls in it are automatically destroyed as well.
If you have already destroyed a control and try to destroy it again, an error occurs.
You can check whether a control has already been destroyed using the method
is_alive [Page 485].

24. Delete the reference variables to the custom control and the control container.

FREE PICTURE.
FREE CONTAINER.

SAP Tree and Tree Model (BC-CI) SAP AG

Using the List Tree

92 April 2001

Using the List Tree
This section lists the functions that are specific to the list tree.

Prerequisites
The process described here is an extension of the general process for using controls [Page 90]
that is specific to the list tree. It does not contain all of the steps required to produce a valid
instance of the control.

Process Flow

The program extracts are examples that do not necessarily illustrate all of the
features of the control. For precise information, refer to the reference section of this
documentation.

Creating the Instance
19. Define a reference variable for the list tree:

DATA list_tree TYPE REF TO cl_gui_list_tree.

20. If you want to create a heading for the tree, you must create a work area for the hierarchy
heading with reference to the structure treev_hhdr and one for the list heading with
reference to the structure treev_lhdr:

DATA hierarchy_header TYPE treev_hhdr.
DATA list_header type treev_lhdr.

21. Fill the work area for the hierarchy heading. You can set the width (width and width_pix),
the text (heading), an icon (t_image) and a tool tip (tooltip). There are also methods
that allow you to change these attributes later on.

hierarchy_header-heading = 'Title'.
hierarchy_header-width = 30.

22. Fill the work area for the list heading. You can set the text (heading), an icon (t_image)
and a tool tip (tooltip).

list_header-heading = 'List heading'.

23. Create an instance [Page 189] of the SAP Tree:

CREATE OBJECT list_tree
 EXPORTING parent = container
 node_selection_mode = node_selection_mode
 item_selection = item_selection
 with_headers = with_headers
 hierarchy_header = hierarchy_header
 list_header = list_header
 EXCEPTIONS lifetime_error = 1
 cntl_system_error = 2
 create_error = 3

 SAP AG SAP Tree and Tree Model (BC-CI)

Using the List Tree

April 2001 93

 illegal_node_selection_mode = 4
 failed = 5.

Register the Events
24. Register the events [Page 101] for the list tree. The control supports the following events:

Event name Description

NODE_DOUBLE_CLICK User double-clicked a node

EXPAND_NO_CHILDREN User expanded a node that has no children

SELECTION_CHANGED Selected node has changed

NODE_CONTEXT_MENU_REQUEST User requested a context menu with the cursor
positioned on a node

NODE_CONTEXT_MENU_SELECT User selected an entry from the context menu

DEFAULT_CONTEXT_MENU_REQUEST User requested a context menu with the cursor
positioned on an empty space in the control

DEFAULT_CONTEXT_MENU_SELECT User selected an entry from the context menu

HEADER_CONTEXT_MENU_REQUEST User requested a context menu with the cursor
positioned on the heading

HEADER_CONTEXT_MENU_SELECT User selected an entry from the context menu

ITEM_KEYPRESS User pressed a key while an entry was selected.

NODE_KEYPRESS User pressed a key while an entry was selected.

HEADER_CLICK User clicked a heading

If you set the parameter item_selection = 'X' when you created the instance, you can also
react to the following events:

Event name Description

BUTTON_CLICK The user clicked an item with the class BUTTON

LINK_CLICK The user clicked an item with the class LINK

CHECKBOX_CHANGE The user clicked an item with the class CHECKBOX

ITEM_DOUBLE_CLICK The user double-clicked an item

ITEM_CONTEXT_MENU_REQUEST User requested a context menu with the cursor
positioned on an item

ITEM_CONTEXT_MENU_SELECT User selected an entry from the context menu for an
item

Using the Column Tree
25. Insert nodes in the tree. To do this, first fill a node table and an item table, then pass them to

the control using the add_nodes_and_items [Page 158] method.

CALL METHOD list_tree->add_nodes_and_items
 EXPORTING node_table = node_table
 item_table = item_table

SAP Tree and Tree Model (BC-CI) SAP AG

Using the List Tree

94 April 2001

 item_table_structure_name = item_table_structure_name
 EXCEPTIONS failed = 1
 cntl_system_error = 2
 error_in_tables = 3
 dp_error = 4
 table_structure_name_not_found = 5.

Change existing nodes in the tree, or change the tree attributes (see Changing the Attribtues of
the Control [Page 95]).

Query any necessary attributes of the tree and its nodes (see Finding Out the Attributes of the
Control [Page 98]).

Destroying the Control
26. Destroy the custom control at the frontend. If you no longer need the control container,

release it as well:

CALL METHOD list_tree->free.

If you are working with the lifetime management [Ext.], you do not need to worry
about destroying the control at the frontend yourself. It is done automatically by the
system instead.

27. Delete the reference variables to the simple tree and the control container.

FREE list_tree.

 SAP AG SAP Tree and Tree Model (BC-CI)

Changing the Attributes of the Control

April 2001 95

Changing the Attributes of the Control
This section lists all of the methods you can use to change the list tree.

Inserting, Changing, and Deleting Items (With Nodes)

Method Description

add_nodes_and_items [Page 158] Adds a set of items (and their nodes)

delete_all_items_of_nodes [Page 162] Deletes all items for a list of nodes

delete_items [Page 163] Deletes a set of items

update_nodes_and_items [Page 175] Changes a list of items (and their nodes)

Changing Individual Items

Method Description

item_set_chosen [Page 165] Sets a checkbox in the tree to selected

item_set_disabled [Page 166] Deactivates an entry in the table

item_set_editable [Page 167] Sets whether a checkbox can be changed

item_set_font [Page 168] Sets the font for the item

item_set_hidden [Page 169] Makes an item invisible

item_set_style [Page 170] Sets the style of an item

item_set_text [Page 171] Changes the text of an item

item_set_t_image [Page 172] Changes the icon of an item

item_set_alignment [Page 199] Sets the alignment of the item

item_set_length [Page 200] Sets the displayed length of the item

Selecting a Single Item

Method Description

select_item [Page 173] Selects a single item

Expanding Nodes

Method Description

expand_node [Page 128] Expands a particular node

expand_nodes [Page 129] Expands a set of nodes

expand_root_nodes [Page 130] Expands all root nodes

Selecting Nodes

Method Description

set_selected_node [Page 152] Selects a particular node

SAP Tree and Tree Model (BC-CI) SAP AG

Changing the Attributes of the Control

96 April 2001

select_nodes [Page 147] Selects a list of nodes

unselect_all [Page 154] Deselects all seleceted nodes and items

unselect_nodes [Page 155] Deselects a set of nodes

Deleting Nodes

Method Description

delete_all_nodes [Page 124] Deletes all nodes from the tree

delete_node [Page 125] Deletes a particular node from the tree

delete_nodes [Page 126] Deletes a set of nodes from the tree

Changing the Attributes of a Node

Method Description

node_set_disabled [Page
136]

Deactivates nodes

node_set_expander [Page
138]

Sets the expander attribute.

node_set_exp_image [Page
139]

Sets expanded node icon

node_set_hidden [Page 140] Hides a node

node_set_is_folder [Page
141]

Sets the is_folder attribute

node_set_no_branch [Page
142]

Sets whether the hierarchy line is drawn to the node

node_set_n_image [Page
143]

Sets the non-expanded node icon

node_set_style [Page 144] Sets the style of the node

node_set_last_hierarchy_item
[Page 191]

Specifies the last item of a node that appears under the
hierarchy heading

node_set_dragdropid [Page
137]

Sets the drag and drop behavior of a node

Changing the Attributes of the Hierarchy Heading

Method Description

hierarchy_header_set_t_image [Page 192] Changes the icon of the hierarchy heading

hierarchy_header_set_text [Page 194] Changes the text of the hieararchy heading

hierarchy_header_set_tooltip [Page 201] Changes the tooltip of the hierarchy heading

hierarchy_header_set_width [Page 196] Changes the width of the hierarchy heading

hierarchy_header_adjust_width [Page 198] Adjusts the width of the hierarchy heading

 SAP AG SAP Tree and Tree Model (BC-CI)

Changing the Attributes of the Control

April 2001 97

Changing the Attributes of the List Heading

Method Description

list_header_set_t_image [Page 193] Changes the icon of the list heading

list_header_set_text [Page 195] Changes the text of the list heading

list_header_set_tooltip [Page 202] Changes the tooltip of the list heading

Configuring Keyboard Events

Method Description

add_key_stroke [Page 120] Sets a key to trigger an event

remove_all_key_strokes [Page
145]

Deregisters all keys that were registered to trigger an event

Other Methods

Method Description

ensure_visible [Page 127] Ensures that a particular node is visible

move_node [Page 135] Moves a node

scroll [Page 146] Scrolls in the tree

set_ctx_menu_select_event
_appl [Page 156]

Sets whether the event triggered when the user chooses an entry
from a context menu should be an application event or a system
event

set_has_3d_frame [Page
150]

Sets the 3D frame

set_screen_update [Page
151]

Controls the visibility of changes

set_top_node [Page 153] Defines the topmost visible node

set_min_node_height [Page
174]

Sets the minimum height of a node

set_default_drop [Page 148] Sets the drag and drop behavior for dropping on the background
of the SAP Tree

set_folder_show_exp_image
[Page 149]

Sets the open folder symbol

SAP Tree and Tree Model (BC-CI) SAP AG

Finding Out the Attributes of the Control

98 April 2001

Finding Out the Attributes of the Control
This section lists all of the methods you can use to retrieve the attributes of the column tree.

Methods for Retrieving Control Attributes

Method Description

get_expanded_nodes [Page 131] Lists all expanded nodes

get_selected_node [Page 132] Returns the name of the selected node

get_selected_nodes [Page 133] Lists all selected nodes

get_top_node [Page 134] Name of the topmost visible node

get_selected_item [Page 164] Name of the selected item

hiearchy_header_get_width [Page 197] Width of the hierarchy heading

 SAP AG SAP Tree and Tree Model (BC-CI)

Registering and Processing Events

April 2001 99

Registering and Processing Events
Purpose
The event mechanism of the Control Framework allows you to use handler methods in your
programs to react to events triggered by the control (for example, a double-click).

Prerequisites
The following description has been generalized to apply to all custom controls. For more
information specific to a particular control, refer to that control's documentation.

Process Flow
21. Assume you are working with a custom control that has the ABAP wrapper cl_gui_xyz.

DATA my_control TYPE REF TO cl_gui_xyz.

Registering Events with the Control Framework
22. Define an internal table (type cntl_simple_events) and a corresponding work area (type

cntl_simple_event).

DATA events TYPE cntl_simple_events.
DATA wa_events TYPE cntl_simple_event.

23. Now fill the event table with the relevant events. To do this, you need the event ID
(event_id field). You can find this information in the Class Browser by looking at the
attributes of the class cl_gui_xyz. You must also decide whether the event is to be a
system event (appl_event = ' ') or an application event (appl_event = 'X').

wa_events-eventid = event_id.
wa_events-appl_event = appl_event.
APPEND wa_events TO events.

24. You must now send the event table to the frontend so that it knows which events it has to
direct to the backend.

CALL METHOD my_control->set_registered_events
 events = events.

To react to the events of you custom control, you must now specify a handler method for it. This
can be either an instance method or a static method.

Processing an Event Using an Instance Method
25. Define the (local) class definition for the event handler. To do this, specify the name of the

handler method (Event_Handler). You need to look at the class for the custom control
cl_gui_xyz in the Class Browser to find out the name of the event (event_name) and its
parameters (event_parameter). There is also a default event parameter sender, which is
passed by all events. This contains the reference to the control that triggered the event.

CLASS lcl_event_receiver DEFINITION.
PUBLIC SECTION.
METHODS Event_Handler
 FOR EVENT event_name OF cl_gui_xyz

SAP Tree and Tree Model (BC-CI) SAP AG

Registering and Processing Events

100 April 2001

 IMPORTING event_parameter
 sender.
ENDCLASS.

26. Register the handler methods with the ABAP Objects Control Framework for the events.

DATA event_receiver TYPE REF TO lcl_event_receiver.
CREATE OBJECT event_receiver.
SET HANDLER event_receiver->Event_Handler
 FOR my_control.

Processing an Event Using a Static Method
27. Define the (local) class definition for the event handler. To do this, specify the name of the

handler method (Event_Handler). You need to look at the class for the custom control
cl_gui_xyz in the Class Browser to find out the name of the event (event_name) and its
parameters (event_parameter).

CLASS lcl_event_receiver DEFINITION.
PUBLIC SECTION.
CLASS-METHODS Event_Handler
 FOR EVENT event_name OF cl_gui_xyz
 IMPORTING event_parameter
 sender.
ENDCLASS.

28. Register the handler methods with the ABAP Objects Control Framework for the events.

SET HANDLER lcl_event_receiver=>Event_Handler
 FOR my_control.

Processing Control Events
29. You define how you want the system to react to an event in the implementation of the

handler method.

CLASS lcl_event_receiver IMPLEMENTATION.
METHOD Event_Handler.
* Event processing
ENDMETHOD
ENDCLASS.

30. If you registered your event as an application event, you need to process it using the method
CL_GUI_CFW=>DISPATCH. For further information, refer to Event Handling [Ext.].

 SAP AG SAP Tree and Tree Model (BC-CI)

Events of the Column Tree and List Tree

April 2001 101

Events of the Column Tree and List Tree
Use
Certain user actions on the column tree and list tree trigger events:

Event Event ID
CL_ITEM_TREE_CONTROL=>

Description

NODE_DOUBLE_CLIC
K

EVENTID_NODE_DOUBLE_CLICK Double-click on a node

NODE_KEYPRESS EVENTID_NODE_KEYPRESS The user pressed a key while
a node was selected

EXPAND_NO_CHILDR
EN

EVENTID_EXPAND_NO_CHILDREN User expanded a node that
has no children

SELECTION_CHANGE
D

EVENTID_SELECTION_CHANGED You can only use this event if
you specified single node
selection and
ITEM_SELECTION = ' '
when you created the control.

Selected node has changed
Important: If you use this
event, you cannot use the
NODE_DOUBLE_CLICK
event.

NODE_CONTEXT_ME
NU_REQUEST

EVENTID_NODE_CONTEXT_MENU
_REQ

User requested a context
menu with the cursor
positioned on a node

NODE_CONTEXT_ME
NU_SELECT

This event is registered automatically
when you register the event
NODE_CONTEXT_MENU_REQUEST.

User selected an entry in the
context menu for a node

DEFAULT_CONTEXT_
MENU_REQUEST

EVENTID_DEF_CONTEXT_MENU_R
EQ

User requested a context
menu with the cursor
positioned on the tree
background

DEFAULT_CONTEXT_
MENU_SELECT

This event is registered automatically
when you register the event
DEFAULT_CONTEXT_MENU_REQUEST.

User selected an entry from
the context menu for the tree
background

HEADER_CONTEXT_
MENU_REQUEST

EVENTID_HEADER_CONTEXT_ME
N_REQ

User requested a context
menu with the cursor
positioned on a heading

SAP Tree and Tree Model (BC-CI) SAP AG

Events of the Column Tree and List Tree

102 April 2001

HEADER_CONTEXT_
MENU_SELECT

This event is registered automatically
when you register the event
EVENTID_HEADER_CONTEXT_MEN_R
EQ.

User selected an entry from
the context menu for the tree
background

HEADER_CLICK EVENTID_HEADER_CLICK User clicked a heading

ON_DROP_GET_FLAV
OR

See Drag and Drop Events in the SAP
Tree [Page 111]

There are several different
drag and drop flavors

ON_DRAG See Drag and Drop Events in the SAP
Tree [Page 111]

Determines the source object
(single selection)

ON_DRAG_MULTIPLE See Drag and Drop Events in the SAP
Tree [Page 111]

Determines the source object
(multiple selection)

ON_DROP See Drag and Drop Events in the SAP
Tree [Page 111]

Determines the context in the
target object

ON_DROP_COMPLET
E

See Drag and Drop Events in the SAP
Tree [Page 111]

Last event before completion
of the drag and drop (single
selection)

ON_DROP_COMPLET
E_MULTIPLE

See Drag and Drop Events in the SAP
Tree [Page 111]

Last event before completion
of the drag and drop (multiple
selection)

If you set the parameter item_selection = 'X' when you created the instance, you can also
react to the following events:

Event Event ID
CL_ITEM_TREE_CONTROL=>

Description

ITEM_DOUBLE_CLICK EVENTID_ITEM_DOUBLE_CLICK The user double-clicked an
item

ITEM_KEYPRESS EVENTID_ITEM_KEYPRESS The user pressed a key while
a node was selected

BUTTON_CLICK EVENTID_BUTTON_CLICK The user clicked an item with
type BUTTON

LINK_CLICK EVENTID_LINK_CLICK The user clicked an item with
type LINK

CHECKBOX_CHANGE EVENTID_CHECKBOX_CHANGE The user clicked an item with
type CHECKBOX

ITEM_CONTEXT_MEN
U_REQUEST

EVENTID_ITEM_CONTEXT_MENU_
REQUEST

User requested a context
menu with the cursor
positioned on a node

ITEM_CONTEXT_MEN
U_SELECT

This event is registered automatically
when you register the event
ITEM_CONTEXT_MENU_REQUEST.

User selected an entry from
the context menu

Some events also export parameters:

 SAP AG SAP Tree and Tree Model (BC-CI)

Events of the Column Tree and List Tree

April 2001 103

Event Parameters Description

NODE_DOUBLE_CLI
CK

NODE_KEY Node on which the user
double-clicked

NODE_KEY Node selected when the user
pressed the key

NODE_KEYPRESS

KEY Key pressed

EXPAND_NO_CHILD
REN

NODE_KEY Node without child nodes that
the user tried to expand

SELECTION_CHANG
ED

NODE_KEY New selected node

NODE_KEY Node selected when the user
requested the context menuNODE_CONTEXT_M

ENU_REQUEST MENU Menu to be displayed (must be
filled in the event handler)

NODE_KEY Node selected when the user
chose an entry from the
context menu

NODE_CONTEXT_M
ENU_SELECT

FCODE Function code of the selected
entry in the context menu

HEADER_CLICK HEADER_NAME Name of the heading clicked by
the user

HEADER_NAME Heading selected when the
user requested the context
menu

HEADER_CONTEXT_
MENU_REQUEST

MENU Menu to be displayed (must be
filled in the event handler)

HEADER_NAME Heading selected when the
user selected from the context
menu

HEADER_CONTEXT_
MENU_SELECT

FCODE Function code of the selected
entry in the context menu

NODE_KEY Name of the node

ITEM_NAME Name of the item clicked by the
user

CHECKBOX_CHANG
E

CHECKED 'X': Checkbox selected
' ': Checkbox not selected

ITEM_DOUBLE_CLIC
K

NODE_KEY Name of the node

SAP Tree and Tree Model (BC-CI) SAP AG

Events of the Column Tree and List Tree

104 April 2001

ITEM_NAME Name of the item clicked by the
user

NODE_KEY Name of the node

ITEM_NAME Name of the item on which the
context menu was request

ITEM_CONTEXT_ME
NU_REQUEST

MENU Menu to be displayed (must be
filled in the event handler)

NODE_KEY Name of the node

ITEM_NAME Name of the item on which the
context menu was request

ITEM_CONTEXT_ME
NU_SELECT

FCODE Function code of the selected
entry in the context menu

NODE_KEY Name of the node

ITEM_NAME Name of the item selected
when the user pressed a key

ITEM_KEYPRESS

KEY Key pressed

DEFAULT_CONTEXT
_MENU_REQUEST

MENU Menu to be displayed (must be
filled in the event handler)

DEFAULT_CONTEXT
_MENU_SELECT

FCODE Function code of the selected
entry in the context menu

ON_DROP_GET_FLA
VOR

See Drag and Drop Events in the
SAP Tree [Page 111]

ON_DRAG See Drag and Drop Events in the
SAP Tree [Page 111]

ON_DRAG_MULTIPL
E

See Drag and Drop Events in the
SAP Tree [Page 111]

ON_DROP See Drag and Drop Events in the
SAP Tree [Page 111]

ON_DROP_COMPLE
TE

See Drag and Drop Events in the
SAP Tree [Page 111]

ON_DROP_COMPLE
TE_MULTIPLE

See Drag and Drop Events in the
SAP Tree [Page 111]

If you want to use events that rely on the user pressing a key (for example,
NODE_KEYPRESS), you must register the keystroke using the method

 SAP AG SAP Tree and Tree Model (BC-CI)

Events of the Column Tree and List Tree

April 2001 105

add_key_stroke [Page 120]. You can deregister the registered key strokes using the
method remove_all_key_strokes [Page 145].

Integration
To react to an event in your ABAP program, you must have registered it. To do this, use the
method set_registered_events [Page 483]. Events that are triggered but for which you are not
registered are filtered by the presentation server, and not passed to the application server. See
event handling [Ext.].

Activities
Read the general process [Page 90] for working with events in the Control Framework.

SAP Tree and Tree Model (BC-CI) SAP AG

Drag and Drop

106 April 2001

Drag and Drop
Use
Drag and drop allows the user to select an object from one part of a custom control (source) and
drop it on another part of a custom control (target). An action occurs in the second part that
depends on the object type. Source and target may be either the same control or different
controls.

Prerequisites
For a control to support drag and drop, the control wrapper must provide drag and drop events.
You must then write handler methods for these events in your program. The events are
registered automatically by the relevant control wrapper.

Features
A particular drag and drop behavior is set for each custom control. This behavior may be set
globally for all elements of the control (for example, SAP Textedit), or you may be able to define
a different behavior for each component (for example SAP Tree). Each behavior consists of one
or more descriptions.

A description has the following attributes:

� DragSrc: Object is the source of a drag and drop procedure

� DropTarget: Object is the target of a drag and drop procedure

� Flavor: The flavor describes the type of a drag and drop description. In a drag and drop
operation, you can only drop an object onto another if both have at least one common
description.

� Effect: Specifies whether the drag and drop operations copies or moves the object.

� Effect_In_Ctrl: The drop effect used when you copy or move data within the same control.

As soon as a drag event is triggered, you must use the corresponding handler method to find out
the affected object.

You must also define the action that is to be carried out on the drop event. The action usually
depends on the object that you drop in the control.

If you assign more than one flavor to an object, you must define which flavor is to be used. You
do this in the handler for another event.

Once the drop event is finished, you can use a further event to implement additional actions.
This is particularly useful for deleting the dropped object from the source after a move operation.

Activities
Whenever you provide a drag and drop function to move objects, you should always provide an
Undo function as well. You must implement this yourself in the application.

 SAP AG SAP Tree and Tree Model (BC-CI)

Process Flow of a Drag and Drop Operation

April 2001 107

Process Flow of a Drag and Drop Operation
Prerequisites
The following section explains how a drag and drop operation works, examining into the roles of
the application server and frontend, and going on to identify the individual steps required to
program drag and drop in an application.

Process Flow
Application Server
29. You create the custom control [Page 90].

30. You register the drag and drop events [Page 109].

31. You define the drag and drop behavior for the individual custom controls or their
components. To do this, you create an instance [Page 494] of the class CL_DRAGDROP
[Page 493]. You then assign one or more flavors [Page 495] to this instance. These describe
the drag and drop behavior of the relevant custom control. During the program, you can
change [Page 502], delete [Page 504], and query [Page 499] the flavors in your program.
You can also initialize [Page 497] or destroy [Page 498] the entire instance.

32. You assign flavors to the custom control using specific methods of the relevant control. For
further information, refer to the corresponding control documentation.

Frontend
The following steps are performed by the system at the frontend. They are only listed here so
that you can understand what happens during a drag and drop operation.

33. Once the use has selected an object with the left mouse button, the drag and drop service
starts.

34. The drag and drop service checks whether a drag and drop behavior has been defined for
the object, and whether the object can be dragged (DragSource attribute).

35. If, according to the DragSource attribute, the object can be dragged, the drag and drop
operation starts. The mouse pointer then changes automatically.

36. As long as the left mouse button remains pressed, the system continually checks whether the
mouse pointer is positioned over an object in a custom control that can receive a dropped
object (DropTarget attribute), and whether the flavor of that object is the same as the flavor of
the source. If this is the case, the mouse pointer changes again to inform the user.

37. If the user now drops the object, an event is triggered to inform the application server.

This concludes the drag and drop operation for the frontend. However, there has not
yet been any change to the contents of the custom control.

Application Server
38. The drag and drop service of the application server creates an instance of the class

CL_DRAGDROPOBJECT [Page 505]. You can use this instance (for example,

SAP Tree and Tree Model (BC-CI) SAP AG

Process Flow of a Drag and Drop Operation

108 April 2001

drag_drop_object) in all events of the drag and drop process as an event parameter. You
can use it to find out the context between the events.

39. The drag and drop service checks whether the drag object and drop object have more than
one flavor in common. If this is the case, the event ONGETFLAVOR is triggered. In the
corresponding handler method, you must decide which flavor to use. You do this using the
method set_flavor [Page 506].

40. Now, the drag and drop event ONDRAG is triggered. It has event parameters that tell you
which object the user has dragged. Within the handler routine, you must pass the context
(information about the source object) to the instance of the drag and drop data object created
in step 9.
drag_drop_object->object = mydragobject.

41. Next, the ONDROP event is triggered. The corresponding handler method serves to process
the drag and drop data object. Here, you have to implement the changes that are to be
made to the target object based on the drag and drop operation.

42. The last event of the drag and drop operation is ONDROPCOMPLETE. This is where you can
make your last changes to the drag and drop object. In particular, you should use this event
to delete the source object from the DragSource control and the corresponding data
structures if you have used the drag and drop operation to move the object.

The Example of Drag and Drop Programming [Page 114] contains an example of a
drag and drop operation between a SAP Tree and a SAP Textedit.

 SAP AG SAP Tree and Tree Model (BC-CI)

Drag and Drop Events

April 2001 109

Drag and Drop Events
This section only describes those properties of drag and drop events that apply to all controls.
The individual control wrappers may augment them. You should therefore consult the relevant
control documentation to see if that control has any peculiarities.

Use
There are four standard events in a drag and drop operation at which control is returned to the
application program. You use the event handler methods for these events to implement the
actions that should be performed during the operation.

Some control wrappers offer additional drag and drop events. For further
information, refer to the documentation of the individual controls.

Prerequisites
To be able to react to an event, you must first register it. Unlike normal event handling, you do
not register drag and drop events with the Control Framework using the set_registered_events
[Page 483] method Instead, they are registered automatically by the wrapper of the control that
you are using.

However, you still have to specify handler methods for the events.

DATA tree TYPE REF TO cl_gui_simple_tree.
SET HANDLER dragdrop=>on_drag FOR tree.

The events are always registered as system events.

Features
In a drag and drop operation, the Control Framework does not pass any events to the application
server until the object is dropped. At the application server, it is separated into up to four
standard events that can occur within a drag and drop operation, as described in Process Flow of
a Drag and Drop Operation [Page 107]. All events have a drag and drop data object as an event
parameter. You use this parameter to manage the context of the drag and drop operation. The
particular control wrapper that you are using also provides further information about the drag and
drop context. For further information, refer to the documentation of the relevant control wrapper.

� ONGETFLAVOR: This event is only triggered if the source and target objects have more than
one flavor in common. In the handler method, you must then specify which flavor should be
used. To do this, use the set_flavor [Page 506] method on the drag and drop object.
The event is triggered by the target object of the drag and drop operation.

� ONDRAG: This event is triggered when the drag and drop operation is complete at the
frontend. When you handle this event, you must determine the context of the target object.
You then pass this context to the instance of the class CL_DRAGDROPOBJECT that you
received as an event parameter.
The event is triggered by the source object of the drag and drop operation.

� ONDROP: When you handle this event, you define what should be done to the target object.
To do this, use the event parameter for the context that you filled in the ONDRAG event. In
this event, you must remember the following:

SAP Tree and Tree Model (BC-CI) SAP AG

Drag and Drop Events

110 April 2001

� Within the ONDROP event, you must make a dynamic typecast. You must catch all
possible exceptions of the typecast. In the exception handling you must include handling
for the case where you try to assign an invalid object. In this case, you must use the
abort [Page 507] method to terminate the drag and drop processing.

� You should select the flavor you want to use so that it is possible to assign the drag and
drop object to the right TypeCast.

The event is triggered by the target object of the drag and drop operation.

� ONDROPCOMPLETE: Use this event to perform any further processing necessary after the end
of the drag and drop operation. For example, this would be necessary following a move
operation.
The event is triggered by the source object of the drag and drop operation.

 SAP AG SAP Tree and Tree Model (BC-CI)

Defining Drag and Drop Events in the SAP Tree

April 2001 111

Defining Drag and Drop Events in the SAP Tree
This section explains the special considerations that apply to drag and drop operations in the
SAP Tree.

Prerequisites
To be able to react to an event, you must first register it. Unlike normal event handling, you do
not register drag and drop events with the Control Framework using the set_registered_events
[Page 483] method Instead, they are registered automatically by the SAP Tree control wrapper.

However, you still have to specify handler methods for the events.

The events are always registered as system events.

When you fill the node table, you must also specify which nodes are enabled for drag and drop,
and the flavors that the nodes should have. You do this by assigning the relevant drag and drop
behavior to the field DRAGDROPID (see point 3 under Drag and Drop Operations [Page 107]).
This requires the following steps (see also the Drag and Drop Programming Example [Page
114]).

7. Define the drag and drop behavior:

DATA behaviour_left TYPE REF TO cl_dragdrop.
 CREATE OBJECT behaviour_left.
 CALL METHOD behaviour_left->add
 EXPORTING
 flavor = 'Tree_move_to_Edit'
 dragsrc = 'X'
 droptarget = ' '
 effect = cl_dragdrop=>copy.

8. Use the get_handle [Page 501] method to return a handle to the drag and drop behavior:

 CALL METHOD behaviour_left->get_handle
 IMPORTING handle = handle_tree.

9. Assign the handle to the DRAGDROPID field of the corresponding entry in the node table:

 node-dragdropid = handle_tree. " handle of behaviour

Entries with the type tree->item_class_checkbox (checkboxes), tree-
>item_class_button (pushbuttons) and tree->item_class_link (links)
cannot be the source object of a drag and drop operation.

Features
The following table contains the events used in drag and drop:

Event Description

ON_DROP_GET_FLAVOR See the event ONGETFLAVOR under Drag and Drop Events
[Page 109]

SAP Tree and Tree Model (BC-CI) SAP AG

Defining Drag and Drop Events in the SAP Tree

112 April 2001

ON_DRAG See the event ONDRAG under Drag and Drop Events [Page
109]

For trees without multiple selection
(NODE_SELECTION_MODE = TREE-
>NODE_SEL_MODE_SINGLE).

ON_DRAG_MULTIPLE See the event ONDRAG under Drag and Drop Events [Page
109]

For trees with multiple selection (NODE_SELECTION_MODE =
TREE->NODE_SEL_MODE_MULTIPLE).

ON_DROP See the event ONDROP under Drag and Drop Events [Page
109]

ON_DROP_COMPLETE See the event ONDROPCOMPLETE under Drag and Drop
Events [Page 109]

For trees without multiple selection (NODE_SELECTION_MODE
= TREE->NODE_SEL_MODE_SINGLE).

ON_DROP_COMPLETE_MULTI
PLE

See the event ONDROPCOMPLETE under Drag and Drop
Events [Page 109]

For trees with multiple selection (NODE_SELECTION_MODE =
TREE->NODE_SEL_MODE_MULTIPLE).

The individual events have the following parameters:

Event Event parameter Description

NODE_KEY Technical name of the node onto which
the source object was dragged

DRAG_DROP_OBJE
CT

Data object describing the source
object

ON_DROP_GET_FLAVOR

FLAVORS Shared flavors of the drag and drop
operation

NODE_KEY Technical name of the node selected
as the source object

ITEM_NAME

(not in simple
tree)

Technical name of the item selected as
the source object

ON_DRAG

DRAG_DROP_OBJE
CT

Data object describing the source
object

ON_DRAG_MULTIPLE NODE_KEY_TABLE Table of nodes selected as source
obejcts

 SAP AG SAP Tree and Tree Model (BC-CI)

Defining Drag and Drop Events in the SAP Tree

April 2001 113

ITEM_NAME

(not in simple
tree)

Technical name of the item selected as
the source object

DRAG_DROP_OBJE
CT

Data object describing the source
object

NODE_KEY Technical name of the node onto which
the source object was dragged

ON_DROP

DRAG_DROP_OBJE
CT

Data object describing the source
object

NODE_KEY Technical name of the node selected
as the source object

ITEM_NAME

(not in simple
tree)

Technical name of the item selected as
the source object

ON_DROP_COMPLETE

DRAG_DROP_OBJE
CT

Data object describing the source
object

NODE_KEY_TABLE Table of nodes selected as source
obejcts

ITEM_NAME

(not in simple
tree)

Technical name of the item selected as
the source object

ON_DROP_COMPLETE_MULTI
PLE

DRAG_DROP_OBJE
CT

Data object describing the source
object

SAP Tree and Tree Model (BC-CI) SAP AG

Example of Drag and Drop Programming

114 April 2001

Example of Drag and Drop Programming
This example program uses a SAP Simple Tree Control and a SAP Textedit Control. The aim is
to enable the user to move texts from the tree control into the textedit control.

The example has the program name RSDEMO_DRAG_DROP_EDIT_TREE.

&---
*& Report RSDEMO_DRAG_DROP_EDIT_TREE *&
--
REPORT rsdemo_drag_drop_edit_tree .
DATA ok_code TYPE sy-ucomm.
DATA node_itab LIKE node_str OCCURS 0.
DATA node LIKE node_str.
DATA container TYPE REF TO cl_gui_custom_container.
DATA splitter TYPE REF TO cl_gui_easy_splitter_container.
DATA right TYPE REF TO cl_gui_container.
DATA left TYPE REF TO cl_gui_container.
DATA editor TYPE REF TO cl_gui_textedit.
DATA tree TYPE REF TO cl_gui_simple_tree.
DATA behaviour_left TYPE REF TO cl_dragdrop.
DATA behaviour_right TYPE REF TO cl_dragdrop.
DATA handle_tree TYPE i.
--
* CLASS lcl_treeobject DEFINITION
* container class for drag object
--
CLASS lcl_drag_object DEFINITION.
 PUBLIC SECTION.
 DATA text TYPE mtreesnode-text.
ENDCLASS.

* CLASS dragdrop_receiver DEFINITION
* event handler class for drag&drop events

CLASS lcl_dragdrop_receiver DEFINITION.
 PUBLIC SECTION.
 METHODS:
 flavor_select FOR EVENT on_get_flavor OF cl_gui_textedit
 IMPORTING index line pos flavors dragdrop_object,
 left_drag FOR EVENT on_drag OF cl_gui_simple_tree
 IMPORTING node_key drag_drop_object,
 right_drop FOR EVENT ON_DROP OF cl_gui_textedit
 IMPORTING index line pos dragdrop_object,
 drop_complete FOR EVENT on_drop_complete OF cl_gui_simple_tree
 IMPORTING node_key drag_drop_object.
ENDCLASS.
START-OF-SELECTION.
 CALL SCREEN 100.
&---
*& Module START OUTPUT
&---
MODULE start OUTPUT.

 SAP AG SAP Tree and Tree Model (BC-CI)

Example of Drag and Drop Programming

April 2001 115

 SET PF-STATUS 'BASE'.
 IF container is initial.
 CREATE OBJECT container
 EXPORTING container_name = 'CONTAINER'.
 CREATE OBJECT splitter
 EXPORTING parent = container
 orientation = 1.
 left = splitter->top_left_container.
 right = splitter->bottom_right_container.
 CREATE OBJECT editor
 EXPORTING parent = right.
 CREATE OBJECT tree
 EXPORTING parent = left
 node_selection_mode = tree->node_sel_mode_single.
* Definition of drag drop behaviour for tree
 CREATE OBJECT behaviour_left.
 CALL METHOD behaviour_left->add
 EXPORTING
 flavor = 'Tree_move_to_Edit'
 dragsrc = 'X'
 droptarget = ' '
 effect = cl_dragdrop=>copy.
 CALL METHOD behaviour_left->add
 EXPORTING
 flavor = 'Tree_copy_to_Edit'
 dragsrc = 'X'
 droptarget = ' '
 effect = cl_dragdrop=>copy.
 CALL METHOD behaviour_left->get_handle
 IMPORTING handle = handle_tree.
* Drag Drop behaviour of tree control nodes are defined in the node
* structure
 PERFORM fill_tree.
 CALL METHOD tree->add_nodes
 EXPORTING node_table = node_itab
 table_structure_name = 'NODE_STR'.
* Definition of drag drop behaviour for tree
 CREATE OBJECT behaviour_right.
 CALL METHOD behaviour_right->add
 EXPORTING
 flavor = 'Tree_move_to_Edit'
 dragsrc = ' '
 droptarget = 'X'
 effect = cl_dragdrop=>copy.
 CALL METHOD behaviour_right->add
 EXPORTING
 flavor = 'Tree_copy_to_Edit'
 dragsrc = ' '
 droptarget = 'X'
 effect = cl_dragdrop=>copy.
 CALL METHOD editor->set_dragdrop
 EXPORTING dragdrop = behaviour_right.

SAP Tree and Tree Model (BC-CI) SAP AG

Example of Drag and Drop Programming

116 April 2001

* registration of drag and drop events

 SET HANDLER dragdrop=>flavor_select FOR editor.
 SET HANDLER dragdrop=>left_drag FOR tree.
 SET HANDLER dragdrop=>right_drop FOR editor.
 SET HANDLER dragdrop=>drop_complete for TREE.
 ENDIF.
ENDMODULE. " START OUTPUT
&---
*& Module EXIT INPUT
&---
MODULE exit INPUT.
 LEAVE PROGRAM.
ENDMODULE. " EXIT INPUT
&---
*& Form fill_tree
&---
FORM fill_tree.
 DATA: node LIKE mtreesnode.
 CLEAR node.
 node-node_key = 'Root'.
 node-isfolder = 'X'.
 node-text = 'Text'.
 node-dragdropid = ' '.
 APPEND node TO node_itab.
 CLEAR node.
 node-node_key = 'Child1'.
 node-relatkey = 'Root'.
 node-relatship = cl_gui_simple_tree=>relat_last_child.
 node-text = 'DragDrop Text 1'.
 node-dragdropid = handle_tree. " handle of behaviour
 APPEND node TO node_itab.
 CLEAR node.
 node-node_key = 'Child2'.
 node-relatkey = 'Root'.
 node-relatship = cl_gui_simple_tree=>relat_last_child.
 node-text = 'DragDrop Text 2'.
 node-dragdropid = handle_tree. " handle of behaviour
 APPEND node TO node_itab.
ENDFORM. " fill_tree
&---
*& Module USER_COMMAND_0100 INPUT
&---
MODULE user_command_0100 INPUT.
 CALL METHOD cl_gui_cfw=>dispatch.
ENDMODULE. " USER_COMMAND_0100 INPUT
--
* CLASS DRAGDROP_RECEIVER IMPLEMENTATION
--
CLASS lcl_dragdrop_receiver IMPLEMENTATION.
 METHOD flavor_select. " set the right flavor
 IF line > 5.
 SEARCH flavors FOR 'Tree_move_to_Edit'.

 SAP AG SAP Tree and Tree Model (BC-CI)

Example of Drag and Drop Programming

April 2001 117

 IF sy-subrc = 0.
 CALL METHOD dragDROP_OBJECT->SET_FLAVOR

 EXPORTING newflavor = 'Tree_move_to_Edit'.
 ELSE.
 CALL METHOD dragdrop_object->abort.
 ENDIF.
 ELSE.
 SEARCH flavors FOR 'Tree_copy_to_Edit'.
 IF sy-subrc = 0.
 CALL METHOD dragdrop_object->set_flavor
 EXPORTING newflavor = 'Tree_copy_to_Edit'.
 ELSE.
 CALL METHOD dragdrop_object->abort.
 ENDIF.
 ENDIF.
 ENDMETHOD.
 METHOD left_drag. " define drag object
 DATA drag_object TYPE REF TO lcl_drag_object.
 READ TABLE node_itab WITH KEY node_key = node_key
 INTO node.
 CREATE OBJECT drag_object.
 drag_object->text = node-text.
 drag_drop_object->object = drag_object.
ENDMETHOD.
 METHOD right_drop. " action in the drop object
 DATA textline(256).
 DATA text_table LIKE STANDARD TABLE OF textline.
 DATA drag_object TYPE REF TO lcl_drag_object.
 CATCH SYSTEM-EXCEPTIONS move_cast_error = 1.
 drag_object ?= dragdrop_object->object.
 ENDCATCH.
 IF sy-subrc = 1.
 " data object has unexpected class
 " => cancel Drag & Drop operation
 CALL METHOD dragdrop_object->abort.
 EXIT.
 ENDIF.
 CALL METHOD editor->get_text_as_stream
 IMPORTING text = text_table.
* Synchronize Automation Queue after Get Methods
 CALL METHOD cl_gui_cfw=>flush.
 textline = drag_object->text.
* Insert text in internal table
 INSERT textline INTO text_table INDEX 1.
* Send modified table to frontend
 CALL METHOD editor->set_text_as_stream
 EXPORTING text = text_table
 EXCEPTIONS error_dp = 1
 error_dp_create = 2.
 ENDMETHOD.
 METHOD drop_complete. " do something after drop
 IF drag_drop_object->flavor = 'Tree_move_to_Edit'.

SAP Tree and Tree Model (BC-CI) SAP AG

Example of Drag and Drop Programming

118 April 2001

 CALL METHOD tree->delete_node
 EXPORTING node_key = node_key.
 delete node_itab where node_key = node_key.

 ENDIF.
 ENDMETHOD.
ENDCLASS.

 SAP AG SAP Tree and Tree Model (BC-CI)

Methods of Class CL_TREE_CONTROL_BASE

April 2001 119

Methods of Class CL_TREE_CONTROL_BASE
All SAP Tree classes can use the methods of this class.

SAP Tree and Tree Model (BC-CI) SAP AG

add_key_stroke

120 April 2001

add_key_stroke
Use this method to define keys that trigger an event. To react to the events, you must also
register the corresponding event (NODE_KEYPRESS and/or ITEM_KEYPRESS).

CALL METHOD tree->add_key_stroke
 EXPORTING key = key
 EXCEPTIONS failed = 1
 illegal_key = 2
 cntl_system_error = 3.

Parameters Description

key Key that you want to trigger the event:

CL_TREE_CONTROL_BASE=>KEY_F1: Function key F1

CL_TREE_CONTROL_BASE=>KEY_F4: Function key F4

CL_TREE_CONTROL_BASE=>KEY_INSERT: Insert key

CL_TREE_CONTROL_BASE=>KEY_DELETE: Delete key

 SAP AG SAP Tree and Tree Model (BC-CI)

collapse_all_nodes

April 2001 121

collapse_all_nodes
This method allows you to collapse the tree from within your program. The result is that only the
root nodes are displayed.

CALL METHOD tree->collapse_all_nodes
 EXCEPTIONS failed = 1
 cntl_system_error = 2.

SAP Tree and Tree Model (BC-CI) SAP AG

collapse_nodes

122 April 2001

collapse_nodes
Use this method to close all the folders specified in the node table.

CALL METHOD tree->collapse_nodes
 EXPORTING node_key_table = node_key_table
 EXCEPTIONS failed = 1
 cntl_system_error = 2
 error_in_node_key_table = 3
 dp_error = 4.

Parameters Description

node_key_table Node table containing the folders you want to close.

Declare the node table with reference to the type treev_nks.

 SAP AG SAP Tree and Tree Model (BC-CI)

collapse_subtree

April 2001 123

collapse_subtree
Use this method to close a specified folder.

CALL METHOD tree->collapse_subtree
 EXPORTING node_key = node_key
 EXCEPTIONS failed = 1
 node_not_found = 2
 cntl_system_error = 3.

Parameters Description

node_key Folder you want to close.

The parameter is defined with reference to type tv_nodekey.

SAP Tree and Tree Model (BC-CI) SAP AG

delete_all_nodes

124 April 2001

delete_all_nodes
Use this method to delete all nodes from the tree.

CALL METHOD tree->delete_all_nodes
 EXCEPTIONS failed = 1
 cntl_system_error = 2.

 SAP AG SAP Tree and Tree Model (BC-CI)

delete_node

April 2001 125

delete_node
Use this method to delete the node node_key from the tree. If the node is a folder, all of its child
nodes will be deleted as well.

CALL METHOD tree->delete_node
 EXPORTING node_key = node_key
 EXCEPTIONS failed = 1
 node_not_found = 2
 cntl_system_error = 3.

Parameters Description

node_key Node you want to delete.

The parameter is defined with reference to type tv_nodekey.

SAP Tree and Tree Model (BC-CI) SAP AG

delete_nodes

126 April 2001

delete_nodesUse this method to delete all the nodes specified in the node table
node_key_table.

CALL METHOD tree->delete_nodes
 EXPORTING node_key_table = node_key_table
 EXCEPTIONS failed = 1
 cntl_system_error = 2
 error_in_node_key_table = 3
 dp_error = 4.

Parameters Description

node_key_table Node table containing the nodes you want to delete.

Declare the node table with reference to the type treev_nks.

If you want to delete a node's child nodes explicitly, you must make sure that you list
them in the table before the parent node. However, deleting the parent node is
sufficient, since all of its child nodes will be deleted with it.

 SAP AG SAP Tree and Tree Model (BC-CI)

ensure_visible

April 2001 127

ensure_visible
Use this method to ensure that a particular node is visible.

CALL METHOD tree->ensure_visible
 EXPORTING node_key = node_key
 EXCEPTIONS failed = 1
 node_not_found = 2
 cntl_system_error = 3.

Parameters Description

node_key Node that you want to ensure is visible.

The parameter is defined with reference to type tv_nodekey.

SAP Tree and Tree Model (BC-CI) SAP AG

expand_node

128 April 2001

expand_node
Use this method to expand a particular node.

CALL METHOD tree->expand_node
 EXPORTING node_key = node_key
 level_count = level_count
 expand_subtree = expand_subtree
 EXCEPTIONS failed = 1
 illegal_level_count = 2
 cntl_system_error = 3
 node_not_found = 4
 cannot_expand_leaf = 5.

Parameters Description

node_key Node you want to expand.

The parameter is defined with reference to type tv_nodekey.

level_count Depth to which you want to expand nodes.

0: Only the current node is expanded.

1: The current node and the next hierarchy level are expanded.

and so on.

expand_subtree 'X': Expands all nodes in the subtree. The system ignores any value of
level_count.

 SAP AG SAP Tree and Tree Model (BC-CI)

expand_nodes

April 2001 129

expand_nodes
Use this method to expand a list of nodes.

CALL METHOD tree->expand_nodes
 EXPORTING node_key_table = node_key_table
 EXCEPTIONS failed = 1
 cntl_system_error = 2
 ERROR_IN_NODE_KEY_TABLE = 3
 DP_ERROR = 4.

Parameters Description

node_key_table Node table containing the nodes you want to expand.

Declare the node table with reference to the type treev_nks.

SAP Tree and Tree Model (BC-CI) SAP AG

expand_root_nodes

130 April 2001

expand_root_nodes
Use this method to expand all root nodes.

CALL METHOD tree->expand_root_nodes
 EXPORTING level_count = level_count
 expand_subtree = expand_subtree
 EXCEPTIONS failed = 1
 illegal_level_count = 2
 cntl_system_error = 3.

Parameters Description

level_count Depth to which you want to expand nodes.

0: Only the root nodes are expanded - no underlying nodes.

1: The current node and the next hierarchy level are expanded.

and so on.

expand_subtree 'X': Expands all nodes in the subtree. The system ignores any value of
LEVEL_COUNT.

 SAP AG SAP Tree and Tree Model (BC-CI)

get_expanded_nodes

April 2001 131

get_expanded_nodes
This method returns a node table containing the keys of all expanded nodes.

CALL METHOD tree->get_expanded_nodes
 CHANGING node_key_table = node_key_table
 EXCEPTIONS cntl_system_error = 1
 dp_error = 2
 failed = 3.

Parameters Description

node_key_table Node table containing the expanded nodes.

Declare the node table with reference to the type treev_nks.

SAP Tree and Tree Model (BC-CI) SAP AG

get_selected_node

132 April 2001

get_selected_node
This method returns a selected node.

You may only use this method with tree controls where only one node may be
selected at any one time. (That is, created using node_selection_mode =
tree->node_sel_mode_single.)

CALL METHOD tree->get_selected_node
 IMPORTING node_key = node_key
 EXCEPTIONS failed = 1
 single_node_selection_only = 2
 cntl_system_error = 3.

Parameters Description

node_key Node selected in the tree control.

The parameter is defined with reference to type tv_nodekey.

 SAP AG SAP Tree and Tree Model (BC-CI)

get_selected_nodes

April 2001 133

get_selected_nodes
This method returns a node table containing the keys of all selected nodes.

You may only use this method with tree controls where multiple nodes may be
selected at any one time. (That is, created using node_selection_mode =
tree->node_sel_mode_multiple.)

CALL METHOD tree->get_selected_nodes
 CHANGING node_key_table = node_key_table
 EXCEPTIONS cntl_system_error = 1
 dp_error = 2
 failed = 3
 multiple_node_selection_only = 4.

Parameters Description

node_key_table Node table containing the selected nodes.

Declare the node table with reference to the type treev_nks.

SAP Tree and Tree Model (BC-CI) SAP AG

get_top_node

134 April 2001

get_top_node
This method returns the topmost node in the display.

CALL METHOD tree->get_top_node
 IMPORTING node_key = node_key
 EXCEPTIONS failed = 1
 cntl_system_error = 2.

Parameters Description

node_key Topmost node in the control display

The parameter is defined with reference to type tv_nodekey.

 SAP AG SAP Tree and Tree Model (BC-CI)

move_node

April 2001 135

move_node
Use this method to mode nodes within the tree. Subordinate nodes of the node that you move
are also moved.

CALL METHOD tree->move_node
 EXPORTING node_key = node_key
 relatkey = relatkey
 relatship = relatship
 EXCEPTIONS failed = 1
 cntl_system_error = 2
 node_not_found = 3
 move_error = 4
 relative_not_found = 5
 illegal_relatship = 6
 parent_is_leaf = 7.

Parameters Description

node_key Name of the node you want to move.

The parameter is defined with reference to type tv_nodekey.

relatkey Name of the related node.

relatship Relationship between node_key and relatkey:

tree->relat_first_child (node_key is first child node of node relatkey)

tree->relat_last_child (node_key is the last child node of node
relatkey)

tree->relat_prev_sibling (node_key is inserted before relatkey at the
same hierarchy level)

tree->relat_prev_sibling (node_key is inserted after relatkey at the
same hierarchy level)

tree->relat_first_sibling (node_key is inserted before all other nodes
at the same hierarchy level as relatkey).

tree->relat_last_sibling (node_key is inserted after all other nodes at
the same hierarchy level as relatkey).

You cannot reassign a node below one of its children.

SAP Tree and Tree Model (BC-CI) SAP AG

node_set_disabled

136 April 2001

node_set_disabled
Use this method to deactivate a node. These nodes cannot then be selected. Furthermore, no
other actions, such as double-clicking, are possible.

CALL METHOD tree->node_set_disabled
 EXPORTING node_key = node_key
 disabled = disabled
 EXCEPTIONS failed = 1
 node_not_found = 2
 cntl_system_error = 3.

Parameters Description

node_key Name of the node that you want to deactivate.

The parameter is defined with reference to type tv_nodekey.

disabled 'X': Deactivate the node

' ': Activate the node

 SAP AG SAP Tree and Tree Model (BC-CI)

node_set_dragdropid

April 2001 137

node_set_dragdropid
Use this method to set the drag and drop behavior of a node.

CALL METHOD tree->node_set_dragdropid
 EXPORTING node_key = node_key
 dragdropid = dragdropid
 EXCEPTIONS failed = 1
 node_not_found = 2
 cntl_system_error = 3.

Parameters Description

node_key Name of the node that you want to deactivate.

The parameter is defined with reference to type tv_nodekey.

dragdropid Drag and drop [Page 106] behavior that you want to assign to the node

SAP Tree and Tree Model (BC-CI) SAP AG

node_set_expander

138 April 2001

node_set_expander
You may only assign the expander attribute to nodes for which the isfolder attribute has also
been set. These nodes are also called folders. When you set the expander attribute, a plus sign
appears next to the folder (so that you can expand it), even if the folder is currently empty. If the
user expands an empty branch, the control triggers the event EXPAND_NO_CHILDREN .

Setting this attribute is useful if you only want to send data to the tree control on request. In this
case, you can set the expander attribute for those nodes under which further information might
be requested. If a user expands one of these nodes, the EXPAND_NO_CHILDREN event is
triggered, and you can pass the relevant information back to the tree control in the corresponding
event handler method.

Prerequisites
The is_folder attribute must be set for the node in question.

CALL METHOD tree->node_set_expander
 EXPORTING node_key = node_key
 expander = expander
 EXCEPTIONS failed = 1
 node_not_found = 2
 cntl_system_error = 3.

Parameters Description

node_key Name of the node for which you want to set the expander attribute.

The parameter is defined with reference to type tv_nodekey.

expander 'X': Sets the expander attribute for the node.

' ': Does not set the expander attribute for the node.

 SAP AG SAP Tree and Tree Model (BC-CI)

node_set_exp_image

April 2001 139

node_set_exp_image
Use this method to set the symbol that denotes an open folder.

CALL METHOD tree->node_set_exp_image
 EXPORTING node_key = node_key
 exp_image = exp_image
 EXCEPTIONS failed = 1
 node_not_found = 2
 cntl_system_error = 3
 not_allowed_for_leaf = 4.

Parameters Description

node_key Name of the node for which you want to change the symbol.

The parameter is defined with reference to type tv_nodekey.

exp_image ' ': Uses a default icon

'@xy@': Uses the SAP icon with number xy

'BNONE': No icon. As a result, the display position of the node is brought
forwards.

You can address the icon using its name, for example, ICON_ANNOTATION. To do
this, the statement INCLUDE <ICON>. must appear in your program.

SAP Tree and Tree Model (BC-CI) SAP AG

node_set_hidden

140 April 2001

node_set_hidden
Use this method to hide a particular node.

CALL METHOD tree->node_set_hidden
 EXPORTING node_key = node_key
 hidden = hidden
 EXCEPTIONS failed = 1
 node_not_found = 2
 cntl_system_error = 3.

Parameters Description

node_key Node that you want to hide

The parameter is defined with reference to type tv_nodekey.

hidden ' ': Node is visible

'X': Node, and all of its children, are invisible

 SAP AG SAP Tree and Tree Model (BC-CI)

node_set_is_folder

April 2001 141

node_set_is_folder
The is_folder attribute defines a node as a branch. This means that you can assign child
nodes to it.

CALL METHOD tree->node_set_is_folder
 EXPORTING node_key = node_key
 is_folder = is_folder
 EXCEPTIONS failed = 1
 node_not_found = 2
 cntl_system_error = 3
 node_has_children = 4.

Parameters Description

node_key Name of the node for which you want to set the is_folder attribute.

The parameter is defined with reference to type tv_nodekey.

is_folder 'X': Sets the is_folder attribute for the node.

' ': Does not set the is_folder attribute for the node.

SAP Tree and Tree Model (BC-CI) SAP AG

node_set_no_branch

142 April 2001

node_set_no_branch
This method controls whether to draw the hierarchy line to a node.

CALL METHOD tree->node_set_no_branch
 EXPORTING node_key = node_key
 no_branch = no_branch
 EXCEPTIONS failed = 1
 node_not_found = 2
 cntl_system_error = 3.

Parameters Description

node_key Node for which you want to change the hierarchy line.

The parameter is defined with reference to type tv_nodekey.

branch ' ': Node with hierarchy line

'X': Node without hierarchy line

 SAP AG SAP Tree and Tree Model (BC-CI)

node_set_n_image

April 2001 143

node_set_n_image
Use this method to change the symbol for a leaf (node with no subordinate nodes) or an
unexpanded branch (node with subordinate nodes).

CALL METHOD tree->node_set_n_image
 EXPORTING node_key = node_key
 n_image = n_image
 EXCEPTIONS failed = 1
 node_not_found = 2
 cntl_system_error = 3.

Parameters Description

node_key Node for which you want to change the symbol.

The parameter is defined with reference to type tv_nodekey.

n_image ' ': Uses a default icon

'@xy@': Uses the SAP icon with number xy

'BNONE': No icon. As a result, the display position of the node is brought
forwards.

You can address the icon using its name, for example, ICON_ANNOTATION. To do
this, the statement INCLUDE <ICON>. must appear in your program.

SAP Tree and Tree Model (BC-CI) SAP AG

node_set_style

144 April 2001

node_set_style
Sets the style of a node.

CALL METHOD tree->node_set_style
 EXPORTING node_key = node_key
 style = style
 EXCEPTIONS failed = 1
 node_not_found = 2
 cntl_system_error = 3.

Parameters Description

node_key Node for which you want to change the style.

The parameter is defined with reference to type tv_nodekey.

style Style of the item. You can use one of the following styles:

tree->style_default

tree->style_inherited

tree->style_intensified

tree->style_inactive

tree->style_intensified_critical

tree->style_emphasized_negative

tree->style_emphasized_positive

tree->style_emphasized

 SAP AG SAP Tree and Tree Model (BC-CI)

remove_all_key_strokes

April 2001 145

remove_all_key_strokes
Use this method to reset all key registrations you made using add_key_stroke [Page 120].

CALL METHOD tree->remove_all_key_strokes
 EXCEPTIONS failed = 1
 cntl_system_error = 2.

SAP Tree and Tree Model (BC-CI) SAP AG

scroll

146 April 2001

scroll
Use this method to scroll through the tree.

CALL METHOD tree->scroll
 EXPORTING scroll_command = scroll_command
 EXCEPTIONS failed = 1
 illegal_scroll_command = 2
 cntl_system_error = 3.

Parameters Description

scroll_command tree->sroll_up_line scrolls up one line.

tree->sroll_down_line scrolls down one line.

tree->sroll_up_line scrolls up one page.

tree->sroll_down_page scrolls down one page.

tree->scroll_home scrolls to the beginning of the tree.

tree->scroll_end scrolls to the end of the tree.

 SAP AG SAP Tree and Tree Model (BC-CI)

select_nodes

April 2001 147

select_nodes
Use this method to select a set of nodes in the tree.

You can only use it if you set multiple selection (NODE_SELECTION_MODE =
TREEV_SELECT_NODES) when you created the tree control.

CALL METHOD tree->select_nodes
 EXPORTING node_key_table = node_key_table
 EXCEPTIONS failed = 1
 cntl_system_error = 2
 error_in_node_key_table = 3
 dp_error = 4
 multiple_node_selection_only = 5.

Parameters Description

node_key_table Node table containing the nodes you want to select.

Declare the node table with reference to the type treev_nks.

SAP Tree and Tree Model (BC-CI) SAP AG

set_default_drop

148 April 2001

set_default_drop
Use this method to set a drag and drop behavior for the drop event on the control background.

CALL METHOD tree->set_default_drop
 EXPORTING drag_drop = drag_drop
 EXCEPTIONS failed = 1
 cntl_system_error = 2
 invalid_drag_drop_obj = 3.

Parameters Description

drag_drop Drag and drop behavior [Page 106] to be assigned to the background of the
control.

 SAP AG SAP Tree and Tree Model (BC-CI)

set_folder_show_exp_image

April 2001 149

set_folder_show_exp_image
Use this method to set the folder symbol you want to use for an open folder.

CALL METHOD tree->set_folder_show_exp_image
 EXPORTING folder_show_exp_image = folder_show_exp_image
 EXCEPTIONS failed = 1
 cntl_system_error = 2.

Parameters Description

folder_show_exp_image 'X': Open folders always display the symbol specified in the
exp_image field of the node.

' ': Only the last folder to be opened displays the folder symbol
entered in the exp_image field of the node. The other folders
display the folder symbol specified in the n_image field for the
node.

SAP Tree and Tree Model (BC-CI) SAP AG

set_has_3d_frame

150 April 2001

set_has_3d_frame
Use this method to specify whether the SAP Tree should appear with a three-dimensional border.

CALL METHOD tree->set_has_3d_frame
 EXPORTING has_3d_frame = has_3d_frame
 EXCEPTIONS failed = 1
 cntl_system_error = 2.

Parameters Description

has_3d_frame 'X': The SAP Tree is displayed in a 3D frame

' ': The control appears "flat" on the screen.

 SAP AG SAP Tree and Tree Model (BC-CI)

set_screen_update

April 2001 151

set_screen_update
Use this method to control whether the tree is refreshed. Use the UPDATE parameter to
determine whether changes to the tree control should be visible immediately.

Use this method if the tree control is redrawn too many times in quick succession due to a series
of changes to the data.

Using it will improve the performance of your program. Call it at the beginning of the PAI event
using UPDATE = ' ' and then again at the end of the PBO event using UPDATE = 'X'.

CALL METHOD tree->set_screen_update
 EXPORTING UPDATE = UPDATE
 exceptions failed = 1
 cntl_system_error = 2.

Parameters Description

UPDATE 'X': All changes are visible immediately

' ': The changes are not visible immediately They become visible when you call
the method again with UPDATE = ‘X’.

SAP Tree and Tree Model (BC-CI) SAP AG

set_selected_node

152 April 2001

set_selected_node
Use this method to select a particular node within the tree.

You can only use it if you set multiple selection (NODE_SELECTION_MODE = tree-
>node_sel_mode_single) when you created the tree control.

CALL METHOD tree->set_selected_node
 EXPORTING node_key = node_key
 EXCEPTIONS failed = 1
 single_node_selection_only = 2
 node_not_found = 3
 cntl_system_error = 4.

Parameters Description

node_key Node that you want to select.

The parameter is defined with reference to type tv_nodekey.

 SAP AG SAP Tree and Tree Model (BC-CI)

set_top_node

April 2001 153

set_top_node
When you use this method the system scrolls the tree so that the specified node appears at the
top of the display if possible.

CALL METHOD tree->set_top_node
 EXPORTING node_key = node_key
 EXCEPTIONS failed = 1
 node_not_found = 2
 cntl_system_error = 3.

Parameters Description

node_key Node that you want to appear at the top of the display.

The parameter is defined with reference to type tv_nodekey.

SAP Tree and Tree Model (BC-CI) SAP AG

unselect_all

154 April 2001

unselect_all
Use this method to deselect any selected nodes in the tree.

CALL METHOD tree->unselect_all
 EXCEPTIONS failed = 1
 cntl_system_error = 2.

 SAP AG SAP Tree and Tree Model (BC-CI)

unselect_nodes

April 2001 155

unselect_nodes
Use this method to deselect a list of selected nodes in the tree.

CALL METHOD tree->unselect_nodes
 EXPORTING node_key_table = node_key_table
 EXCEPTIONS failed = 1
 cntl_system_error = 2
 error_in_node_key_table = 3
 dp_error = 4
 multiple_node_selection_only = 5.

Parameters Description

node_key_table Table containing the nodes that you want to deselect.

Declare the node table with reference to the type treev_nks.

SAP Tree and Tree Model (BC-CI) SAP AG

set_ctx_menu_select_event_appl

156 April 2001

set_ctx_menu_select_event_appl
Use this method to set whether the event that occurs after the user has chosen an entry from a
context menu should be an application event or a system event. The default is a system event.

CALL METHOD tree->set_ctx_menu_select_event_appl
 EXPORTING appl_event = appl_event.

 SAP AG SAP Tree and Tree Model (BC-CI)

Methods of Class CL_ITEM_TREE_CONTROL

April 2001 157

Methods of Class CL_ITEM_TREE_CONTROL
You can use these methods with both the column tree and the list tree.

SAP Tree and Tree Model (BC-CI) SAP AG

add_nodes_and_items

158 April 2001

add_nodes_and_items
Use this method to add nodes and items to the tree. To do this, you need an internal table
containing the nodes and items you want to insert.

The node table is processed at the frontend in the order in which you filled it. Consequently, if
you insert a node, you must ensure that its parent node has already occurred in the node table.

Tree control proxy objects (in this case, list_tree or column_tree) does not
itself contain any data. Instead, you use it to transfer data to and from the SAP Tree
at the frontend. You must maintain the tree data structure in your application.

CALL METHOD tree->add_nodes_and_items

 EXPORTING node_table = node_table
 item_table = item_table
 item_table_structure_name = item_table_structure_name
 EXCEPTIONS failed = 1
 cntl_system_error = 2
 error_in_tables = 3
 dp_error = 4
 table_structure_name_not_found = 5.

Parameters Description

node_table Name of the nodes internal table.

Create the table with reference to treev_ntab.

item_table Name of the internal table containing the nodes for insertion.

Define the table with reference to a structure of your own.

item_table_structure_name Name of the structure used to create the internal table for the
entries

Filling the Node Table
The node table structure consists of the following fields. You must fill the structure for each node.

node_key Name of the node you want to define. The name must be a unique key within the
tree. The node must not already exist.

relatkey Name of the related node. This must already be defined in the tree. It must
therefore come above the current node in the node table.

If the value is initial, the node is inserted as the root node.

 SAP AG SAP Tree and Tree Model (BC-CI)

add_nodes_and_items

April 2001 159

relatship Relationship between node_key and relatkey:

tree->relat_first_child (node_key is inserted as the first child node of
node relatkey)

tree->relat_first_child (node_key is inserted as the first child node of
node relatkey)

tree->relat_prev_sibling (node_key is inserted before relatkey at the
same hierarchy level)

tree->relat_prev_sibling (node_key is inserted after relatkey at the
same hierarchy level)

tree->relat_first_sibling (node_key is inserted before all other nodes at
the same hierarchy level as relatkey).

tree->relat_last_sibling (node_key is inserted after all other nodes at
the same hierarchy level as relatkey).

hidden initial: Node is displayed

'X': Node is not displayed

disabled initial: Node can be selected

'X': Node cannot be selected

isfolder initial: Node has no subordinate nodes

'X': Node has subordinate nodes

n_image Specifies an icon for an unexpanded branch or a leaf:

' ': Uses a default icon

'@xy@': Uses the icon with number xy

'BNONE': No icon. As a result, the display position of the node is brought
forwards.

exp_image Specifies an icon for an expanded branch or a leaf:

' ': Uses a default icon

'@xy@': Uses the icon with number xy

'BNONE': No icon. As a result, the display position of the node is brought
forwards.

last_hitem Name of the last item that you want to appear under the hierarchy heading. (Can
only be used with the list tree.)

no_branch initial: Draws a hierarchy line to the node

'X': Suppresses the hierarchy line to the node

no_branch initial: Draws a connecting line to the node.

'X': Suppresses the connecting line to the node.

SAP Tree and Tree Model (BC-CI) SAP AG

add_nodes_and_items

160 April 2001

expander initial: Node has no ‘+’ sign for expansion. This setting is only valid for nodes with
no child nodes.

'X': Node must be a branch (ISFOLDER = ‘X’) and has a ‘+’ sign for
expansion. If the user expands a branch that has no children, the event
EXPAND_NO_CHILDREN is triggered.

dragdropid Use this field for a handle to the drag and drop behavior of the node (see also
Defining Drag and Drop Events in the SAP Tree [Page 111]).

Creating the ABAP Dictionary Structure for the Item Table
When you create the ABAP Dictionary structure <my_item>, you must include the structure
treev_item and add an extra text field with the name Text. Define the text field using a text type.

Filling the Item Table
node_key Name of the node to which the item should belong.

item_name Name of the column in which you want to display this item.

For the list tree, you can use numbers � 1.

In the column tree, specify the previously-defined column.

class tree->item_class_text: Item is text

tree->item_class_checkbox: Item as checkbox

tree->item_class_button: Item is a pushbutton

tree->item_class_link: Item is a link

font Font:

tree->item_font_default: corresponds to tree->item_font_prop in the
tree structure but to tree->item_font_fixed in the list tree.

tree->item_font_fixed: GUI fixed font

tree->item_font_prop: GUI proportional font.

disabled Deactivates an item

editable Sets whether an item can be edited

hidden Sets the visibility of an item

alignment Alignment of an item (only in list tree)

t_image Icon for the item

chosen Checkbox selected

togg_right You can only use togg_right for items with the class TREE-
>ITEM_CLASS_CHECKBOX. If TOGG_RIGHT is initial, the checkbox appears to the
left of the text. Otherwise, it appears to the right of the text.

 SAP AG SAP Tree and Tree Model (BC-CI)

add_nodes_and_items

April 2001 161

style Style of the item. You can use one of the following styles:

tree->style_default

tree->style_inherited

tree->style_intensified

tree->style_inactive

tree->style_intensified_critical

tree->style_emphasized_negative

tree->style_emphasized_positive

tree->style_emphasized

length Visible length of the item (only in list tree)

length_pix Length in pixels (only in list tree)

ignoreimag Can only be used in the list tree.

initial: LENGTH contains the length of the item text. The width of any checkbox or
icon is added to the width of the text.

'X': LENGTH contains the width of the whole item. In this case, icons take up
space that would otherwise be occupied by text.

usebgcolor Can only be used in the list tree.

'X': The item has a background color that is slightly different to that of the tree
control.

initial: The background color is the same.

text Text for the item.

If the user changes the font, the change does not take effect until the next
instantiation of the SAP Tree.

You can address the icon using its name, for example, ICON_ANNOTATION. To do
this, the statement INCLUDE <ICON>. must appear in your program.

SAP Tree and Tree Model (BC-CI) SAP AG

delete_all_items_of_nodes

162 April 2001

delete_all_items_of_nodes
Use this method to delete all items of a particular node from the tree.

ALL METHOD tree->DELETE_ALL_ITEMS_OF_NODES
 EXPORTING node_key_table = node_key_table
 EXCEPTIONS failed = 1
 cntl_system_error = 2
 error_in_node_key_table = 3
 dp_error = 4.

Parameters Description

node_key_table Node table Nodes whose items will be deleted.

 SAP AG SAP Tree and Tree Model (BC-CI)

delete_items

April 2001 163

delete_items
Use this method to delete the items from the tree that you pass to it in a table.

CALL METHOD tree->delete_items
 EXPORTING item_key_table = item_key_table
 EXCEPTIONS failed = 1
 cntl_system_error = 2
 error_in_item_key_table = 3
 dp_error = 4.

Parameters Description

item_key_table Table of entries that you want to delete.

SAP Tree and Tree Model (BC-CI) SAP AG

get_selected_item

164 April 2001

get_selected_item
This method returns a selected item and its node.

CALL METHOD tree->get_selected_item
 IMPORTING node_key = node_key
 item_name = item_name
 EXCEPTIONS failed = 1
 cntl_system_error = 2
 no_item_selection = 3.

Parameters Description

node_key Node in the SAP Tree with a selected item.

The parameter is defined with reference to type tv_nodekey.

item_name Name of the selected item.

The parameter is defined with reference to type tv_itmname .

 SAP AG SAP Tree and Tree Model (BC-CI)

item_set_chosen

April 2001 165

item_set_chosen
Use this method to select or deselect a checkbox from within your program.

CALL METHOD tree->item_set_chosen
 EXPORTING node_key = node_key
 item_name = item_name
 chosen = chosen
 EXCEPTIONS failed = 1
 node_not_found = 2
 item_not_found = 3
 cntl_system_error = 4
 chosen_not_supported = 5.

Parameters Description

node_key Node in the SAP Tree containing the item that you want to select.

The parameter is defined with reference to type tv_nodekey.

item_name Name of the checkbox item that you want to select.

The parameter is defined with reference to type tv_itmname .

chosen 'X': Item is set to selected.

' ': Item is set to deselected.

SAP Tree and Tree Model (BC-CI) SAP AG

item_set_disabled

166 April 2001

item_set_disabled
Use this method to deactivate an item.. This item cannot then be selected. Furthermore, no other
actions, such as double-clicking, are possible.

CALL METHOD tree->item_set_disabled
 EXPORTING node_key = node_key
 item_name = item_name
 disabled = disabled
 EXCEPTIONS failed = 1
 node_not_found = 2
 item_not_found = 3
 cntl_system_error = 4
 no_item_selection = 5.

Parameters Description

node_key Node containing the item you want to deactivate.

The parameter is defined with reference to type tv_nodekey.

item_name Name of the item that you want to deactivate.

The parameter is defined with reference to type tv_itmname .

disabled 'X': Item is inactive

' ': Item is active

 SAP AG SAP Tree and Tree Model (BC-CI)

item_set_editable

April 2001 167

item_set_editable
Use this method to control whether the user can change a checkbox.

When you initialize the control, the parameter ITEM_SELECTION must be set to ‘X’.

The item must be a checkbox (the field class in structure TREEV_ITEM must have
the value tree->item_class_checkbox).

CALL METHOD tree->item_set_editable
 EXPORTING node_key = node_key
 item_name = item_name
 editable = editable
 EXCEPTIONS failed = 1
 node_not_found = 2
 item_not_found = 3
 cntl_system_error = 4
 editable_not_supported = 5.

Parameters Description

node_key Node containing the item you want to make accept input.

The parameter is defined with reference to type tv_nodekey.

item_name Name of the item that you want to make accept input.

The parameter is defined with reference to type tv_itmname .

editable 'X': Checkbox can be changed.

' ': Checkbox cannot be changed.

SAP Tree and Tree Model (BC-CI) SAP AG

item_set_font

168 April 2001

item_set_font
Use this method to change the font of the text of an item.

CALL METHOD tree->item_set_font
 EXPORTING node_key = node_key
 item_name = item_name
 font = font
 EXCEPTIONS failed = 1
 node_not_found = 2
 item_not_found = 3
 cntl_system_error = 4.

Parameters Description

node_key Node in the SAP Tree containing the item that you want to change.

The parameter is defined with reference to type tv_nodekey.

item_name Name of the item whose font you want to change.

The parameter is defined with reference to type tv_itmname .

font Font:

tree->item_font_default: corresponds to tree->item_font_prop in
the tree structure but to tree->item_font_fixed in the list tree.

tree->item_font_fixed: GUI fixed font

tree->item_font_prop: GUI proportional font.

 SAP AG SAP Tree and Tree Model (BC-CI)

item_set_hidden

April 2001 169

item_set_hidden
Use this method to hide a particular item of a node.

CALL METHOD tree->item_set_hidden
 EXPORTING node_key = node_key
 item_name = item_name
 hidden = hidden
 EXCEPTIONS failed = 1
 node_not_found = 2
 item_not_found = 3
 cntl_system_error = 4.

Parameters Description

node_key Node in the SAP Tree containing the item that you want to hide.

The parameter is defined with reference to type tv_nodekey.

item_name Name of the item that you want to hide.

The parameter is defined with reference to type tv_itmname .

hidden ' ': Item is visible

'X': Entry is no longer visible

SAP Tree and Tree Model (BC-CI) SAP AG

item_set_style

170 April 2001

item_set_style
Use this method to set the style for the combination of background and foreground color for the
item.

CALL METHOD tree->item_set_style
 EXPORTING node_key = node_key
 item_name = item_name
 style = style
 EXCEPTIONS failed = 1
 node_not_found = 2
 item_not_found = 3
 cntl_system_error = 4.

Parameters Description

node_key Node in the SAP Tree containing the item that you want to change.

The parameter is defined with reference to type tv_nodekey.

item_name Name of the item whose style you want to change.

The parameter is defined with reference to type tv_itmname .

style Style of the entry. You can use one of the following styles:

tree->style_default

tree->style_inherited

tree->style_intensified

tree->style_inactive

tree->style_intensified_critical

tree->style_emphasized_negative

tree->style_emphasized_positive

tree->style_emphasized

 SAP AG SAP Tree and Tree Model (BC-CI)

item_set_text

April 2001 171

item_set_text
Use this method to set or change the text of an item.

CALL METHOD tree->item_set_text
 EXPORTING node_key = node_key
 item_name = item_name
 text = text
 EXCEPTIONS failed = 1
 node_not_found = 2
 item_not_found = 3
 cntl_system_error = 4.

Parameters Description

node_key Node in the SAP Tree containing the item that you want to change.

The parameter is defined with reference to type tv_nodekey.

item_name Name of the item whose text you want to change.

The parameter is defined with reference to type tv_itmname .

text Text to be assigned to the entry.

SAP Tree and Tree Model (BC-CI) SAP AG

item_set_t_image

172 April 2001

item_set_t_image
Use this method to set an icon for an item. This allows you to set an icon as an item with or
without a text.

CALL METHOD tree->item_set_t_image
 EXPORTING node_key = node_key
 item_name = item_name
 t_image = t_image
 EXCEPTIONS failed = 1
 node_not_found = 2
 item_not_found = 3
 cntl_system_error = 4.

Parameters Description

node_key Node in the SAP Tree containing the item that you want to change.

The parameter is defined with reference to type tv_nodekey.

item_name Name of the item for which you want to set an icon.

The parameter is defined with reference to type tv_itmname .

t_image ' ': No icon.

'@xy@': Uses the SAP icon with number xy

You can address the icon using its name, for example, ICON_ANNOTATION. To do
this, the statement INCLUDE <ICON>. must appear in your program.

 SAP AG SAP Tree and Tree Model (BC-CI)

select_item

April 2001 173

select_item
Use this method to select a particular item within the tree.

When you initialize the control, the parameter ITEM_SELECTION must be set to
‘X’.

CALL METHOD tree->select_item
 EXPORTING node_key = node_key
 item_name = item_name
 EXCEPTIONS failed = 1
 key_or_item_name_not_found = 2
 no_item_selection = 3
 cntl_system_error = 4.

Parameters Description

node_key Node in the SAP Tree containing the item that you want to change.

The parameter is defined with reference to type tv_nodekey.

item_name Name of the item that you want to select.

The parameter is defined with reference to type tv_itmname .

SAP Tree and Tree Model (BC-CI) SAP AG

set_min_node_height

174 April 2001

set_min_node_height
Use this method to set the minimum height of a node.

CALL METHOD tree->set_min_node_height
 EXPORTING include_text = include_text
 include_image = include_image
 include_button = include_button
 include_checkbox = include_checkbox
 include_link = include_link
 EXCEPTIONS failed = 1
 cntl_system_error = 2.

Parameters Description

include_text If you set this flag, the node is at least as high as a text object.

include_image If you set this flag, the node is at least as high as a picture object (folder or
leaf symbol).

include_button If you set this flag, the node is at least as high as a pushbutton.

include_checkbox If you set this flag, the node is at least as high as a checkbox

include_link If you set this flag, the node is at least as high as a link entry.

 SAP AG SAP Tree and Tree Model (BC-CI)

update_nodes_and_items

April 2001 175

update_nodes_and_items
Use this method to change a set of node and item attributes.

CALL METHOD tree->UPDATE_NODES_AND_ITEMS
 exporting node_table = node_table
 item_table = item_table
 ITEM_TABLE_STRUCTURE_NAME = ITEM_TABLE_STRUCTURE_NAME
 EXCEPTIONS failed = 1
 cntl_system_error = 2
 error_in_tables = 3
 dp_error = 4
 TABLE_STRUCTURE_NAME_NOT_FOUND = 5.

Parameters Description

node_table Name of the nodes internal table. Compared to the normal node
table, this table also contains the structure treemunode. Use this
to determine the attributes you want to change.

Create the table with reference to treev_upno.

item_table Name of the internal table containing the nodes you want to
change.

Define the table with reference to a structure of your own.

item_table_structure_name Name of the structure used to create the internal table for the
entries

Filling the Node Table
The node table structure consists of the following fields. You must fill the structure for each node.

node_key Name of the node you want to change. The name must exist in the tree.

hidden initial: Node is displayed

'X': Node is not displayed

disabled initial: Node can be selected

'X': Node cannot be selected

isfolder initial: Node has no subordinate nodes Note that the node may not have
subordinate nodes.

'X': Node has subordinate nodes

n_image Specifies an icon for an unexpanded branch or a leaf:

' ': Uses a default icon

'@xy@': Uses the icon with number xy

'BNONE': No icon. As a result, the display position of the node is brought
forwards.

SAP Tree and Tree Model (BC-CI) SAP AG

update_nodes_and_items

176 April 2001

exp_image Specifies an icon for an expanded branch or a leaf:

' ': Uses a default icon

'@xy@': Uses the icon with number xy

'BNONE': No icon. As a result, the display position of the node is brought
forwards.

style Node style.

no_branch initial: Draws a connecting line to the node.

'X': Suppresses the connecting line to the node.

expander initial: Node has no ‘+’ sign for expansion.

'X': Node must be a branch (ISFOLDER = ‘X’) and has a ‘+’ sign for
expansion. If the user expands a branch that has no children, the event
EXPAND_NO_CHILDREN is triggered.

u_all Change all changeable attributes

u_hidden Change the hidden attribute.

u_disabled Change the disabled attribute.

u_isfolder Change the is_folder attribute.

u_n_image Change the n_image attribute.

u_exp_imag Change the exp_image attribute.

u_style Change the style attribute.

u_no_branch Change the no_branch attribute.

u_expander Change the expander attribute.

Suppose you want to change the hidden and is_folder attributes: You assign
values to the hidden and is_folder fields. The flags u_hidden and
u_is_folder are set, to select the fields hidden and is_folder for change.

If you choose the field u_all, all of the fields for which a "U flag" exists are selected
for change.

Creating the ABAP Dictionary Structure for the Item Table
When you create the ABAP Dictionary structure <my_u_item>, you must include the structure
treev_uite and add an extra text field with the name Text. Define the text field using a text
type.

Filling the Item Table
node_key Name of the node containing the item you want to check.

 SAP AG SAP Tree and Tree Model (BC-CI)

update_nodes_and_items

April 2001 177

item_name Name of the column in which you want to change the item.

For the list tree, you can use numbers � 1.

In the column tree, specify the previously-defined column.

class tree=>item_class_text: Item is a text

tree=>item_class_checkbox: Item is a checkbox

tree=>item_class_button: Item is a pushbutton

tree=>item_class_link: Item is a link item

font Font:

tree->item_font_default: corresponds to tree->item_font_prop in the
tree structure but to tree->item_font_fixed in the list tree.

tree->item_font_fixed: GUI fixed font

tree->item_font_prop: GUI proportional font.

disabled Deactivates an entry

editable Sets whether an entry can be edited

hidden Sets the visibility of an entry

alignment Sets the alignment of an entry (only in list structure)

t_image Icon for the entry

chosen Selects a checkbox

togg_right You can only use togg_right for items with the class TREE-
>ITEM_CLASS_CHECKBOX. If TOGG_RIGHT is initial, the checkbox appears to the
left of the text. Otherwise, it appears to the right of the text.

style Style of the entry. You can use one of the following styles:

tree->style_default

tree->style_inherited

tree->style_intensified

tree->style_inactive

tree->style_intensified_critical

tree->style_emphasized_negative

tree->style_emphasized_positive

tree->style_emphasized

length Visible length of the entry (only in list structure)

length_pix Length in pixels (only in list structure)

SAP Tree and Tree Model (BC-CI) SAP AG

update_nodes_and_items

178 April 2001

ignoreimag Can only be used in the list tree.

initial: LENGTH contains the length of the item text. The width of any checkbox or
icon is added to the width of the text.

'X': LENGTH contains the width of the whole item. In this case, icons take up
space that would otherwise be occupied by text.

usebgcolor Can only be used in the list tree.

'X': The item has a background color that is slightly different to that of the tree
control.

initial: The background color is the same.

text Text for the entry.

u_all Changes all modifiable attributes

u_font Changes the font

u_disabled Changes the disabled attribute.

u_editable Changes the editable attribute.

u_hidden Changes the hidden attribute.

u_alignmen Changes the alignment attribute.

u_t_image Changes the t_image attribute.

u_chosen Changes the chosen attribute.

u_style Changes the style attribute.

u_text Changes the text attribute.

u_length Changes the length attribute.

u_length_p Changes the length_pix attribute.

If the user changes the font, the change does not take effect until the next
instantiation of the SAP Tree.

 SAP AG SAP Tree and Tree Model (BC-CI)

Methods of Class CL_GUI_SIMPLE_TREE

April 2001 179

Methods of Class CL_GUI_SIMPLE_TREE

SAP Tree and Tree Model (BC-CI) SAP AG

constructor

180 April 2001

constructor
You use this method to instantiate the simple tree.

CREATE OBJECT simple_tree
 EXPORTING lifetime = lifetime
 parent = parent
 shellstyle = shellstyle
 node_selection_mode = node_selection_mode
 hide_selection = hide_selection
 EXCEPTIONS lifetime_error = 1
 cntl_system_error = 2
 create_error = 3
 failed = 4
 illegal_node_selection_mode = 5.

Parameters Description

lifetime Lifetime management [Ext.] parameter. The following values are
permitted:

simple_tree->lifetime_imode: The control remains alive for the
duration of the internal session (that is, until the session is ended
by one of the following statements: leave program. leave to
transaction. set screen 0, leave screen.). After this,
the finalize [Page 482] method is called.

simple_tree->lifetime_dynpro: The control remains alive for
the lifetime of the screen instance, that is, for as long as the screen
remains in the stack. After this, the free [Page 480] method is
called.
Using this mode automatically regulates the visibility of the control.
Controls are only displayed when the screen on which they were
created is active. When other screens are active, the controls are
hidden.

simple_tree->lifetime_default: If you create the control in a
container, it inherits the lifetime of the container. If you do not create
the control in a container (for example, because it is a container
itself), the lifetime is set to simple_tree->lifetime_imode.

parent Container in which the SAP Tree can be displayed (see also SAP
Container [Ext.]).

node_selection_mode simple_tree->node_sel_mode_single: Only single selection
allowed.

simple_tree->node_sel_mode_multiple: Multiple selection
allowed.

hide_selection Hides a selection

 SAP AG SAP Tree and Tree Model (BC-CI)

add_nodes

April 2001 181

add_nodes
Use this method to add nodes to an existing tree. You pass the list of new entries using an
internal table. The internal table must be defined with reference to an ABAP Dictionary structure
of your own.

The node table is processed at the frontend in the order in which you filled it. Consequently, if
you insert a node, you must ensure that its parent node has already occurred in the node table.

A tree control proxy object (in this case, simple_tree) does not itself contain any
data. Instead, you use it to transfer data to and from the SAP Tree at the frontend.
You must maintain the tree data structure in your application.

CALL METHOD simple_tree->add_nodes
 EXPORTING table_structure_name = table_structure_name
 node_table = node_table
 EXCEPTIONS error_in_node_table = 1
 failed = 2
 dp_error = 3
 table_structure_name_not_found = 4.

Parameters Description

node_table_structure_name Name of the structure used to create the internal table for the
entries

node_table Internal table containing the nodes you want to create

Creating the ABAP Dictionary Structure
When you create the ABAP Dictionary structure <my_node>, you must include the structure
treev_node and add an extra text field with the name Text. Define the text field using a text
type.

Filling the Node Table
The node table structure consists of the following fields. You must fill the structure for each node.

node_key Name of the node you want to define. The name must be a unique key within the
tree. The node must not already exist.

relatkey Name of the related node. This must already be defined in the tree. It must
therefore come above the current node in the node table.

SAP Tree and Tree Model (BC-CI) SAP AG

add_nodes

182 April 2001

relatship Relationship between node_key and relatkey:

tree->relat_first_child (node_key is first child node of node relatkey)

tree->relat_first_child (node_key is inserted as the first child node of
node relatkey)

tree->relat_prev_sibling (node_key is inserted before relatkey at the
same hierarchy level)

tree->relat_prev_sibling (node_key is inserted after relatkey at the
same hierarchy level)

tree->relat_first_sibling (node_key is inserted before all other nodes at
the same hierarchy level as relatkey).

tree->relat_last_sibling (node_key is inserted after all other nodes at
the same hierarchy level as relatkey).

hidden initial: Node is displayed

'X': Node is not displayed

disabled initial: Node can be selected

'X': Node cannot be selected

isfolder initial: Node has no subordinate nodes

'X': Node has subordinate nodes

n_image Specifies an icon for an unexpanded branch or a leaf:

' ': Uses a default icon

'@xy@': Uses the icon with number xy

'BNONE': No icon. As a result, the display position of the node is brought
forwards.

exp_image Specifies an icon for an expanded branch or a leaf:

' ': Uses a default icon

'@xy@': Uses the icon with number xy

'BNONE': No icon. As a result, the display position of the node is brought
forwards.

 SAP AG SAP Tree and Tree Model (BC-CI)

add_nodes

April 2001 183

style Style of the entry. You can use one of the following styles:

tree->style_default

tree->style_inherited

tree->style_intensified

tree->style_inactive

tree->style_intensified_critical

tree->style_emphasized_negative

tree->style_emphasized_positive

tree->style_emphasized

no_branch initial: Draws a connecting line to the node.

'X': Does not draw a connecting line to the node.

expander initial: Node has no ‘+’ sign for expansion.

'X': Node must be a branch (ISFOLDER = ‘X’) and has a ‘+’ sign for
expansion. If the user expands a branch that has no children, the event
EXPAND_NO_CHILDREN is triggered.

dragdropid Use this field for a handle to the drag and drop behavior of the node (see also
Defining Drag and Drop Events in the SAP Tree [Page 111]).

text This field is only used in the simple tree. It is part of your node structure
definition in the ABAP Dictionary. When you use a simple tree, use this field to
pass the text you want to display.

You can address the icon using its name, for example, ICON_ANNOTATION. To do
this, the statement INCLUDE <ICON>. must appear in your program.

SAP Tree and Tree Model (BC-CI) SAP AG

node_set_text

184 April 2001

node_set_text
Use this method to change the text of a node.

CALL METHOD simple_tree->node_set_text
 EXPORTING node_key = node_key
 text = text
 EXCEPTIONS failed = 1
 node_not_found = 2
 cntl_system_error = 3.

Parameters Description

node_key Name of the node for which you want to change the text.

The parameter is defined with reference to type tv_nodekey.

text Text to be assigned to the node.

 SAP AG SAP Tree and Tree Model (BC-CI)

update_nodes

April 2001 185

update_nodes
Use this method to changes the attributes of a set of nodes (text, relationship to other nodes,
display options). You need a special node table, which you create with reference to an ABAP
Dictionary structure that you have to define yourself.

To change a particular attribute of a node, you must set the corresponding flag.

CALL METHOD simple_tree->update_nodes
 EXPORTING node_table_structure_name = node_table_structure_name
 node_table = node_table
 EXCEPTIONS failed = 1
 cntl_system_error = 2
 error_in_node_table = 3
 dp_error = 4
 table_structure_name_not_found = 5.

Parameters Description

node_table_structure_name Name of the structure used to create the internal table for the
changed nodes.

node_table Internal table containing the changed nodes.

Creating the ABAP Dictionary Structure
To create the ABAP Dictionary structure <my_unode>, you must include the structure
treev_unod and create two additional fields - one called Text (a text field), the other called
U_TEXT with type AS4FLAG. Define the text field using a text type.

Filling the Node Table
The node table structure consists of the following fields. You must fill the structure for each node.

node_key Name of the node you want to define. The name must be a unique key within
the tree.

relatkey Name of the related node. This must already be defined in the tree. It must
therefore come above the current node in the node table.

SAP Tree and Tree Model (BC-CI) SAP AG

update_nodes

186 April 2001

relatship Relationship between node_key and relatkey:

simple_tree->relat_first_child (node_key is first child node of node
relatkey)

simple_tree->relat_last_child (node_key is the last child node of
node relatkey)

simple_tree->relat_prev_sibling (node_key is inserted before
relatkey at the same hierarchy level)

simple_tree->relat_prev_sibling (node_key is inserted after
relatkey at the same hierarchy level)

simple_tree->relat_first_sibling (node_key is inserted before all
other nodes at the same hierarchy level as relatkey).

simple_tree->relat_last_sibling (node_key is inserted after all other
nodes at the same hierarchy level as relatkey).

hidden initial: Node is displayed

'X': Node is not displayed

disabled initial: Node can be selected

'X': Node cannot be selected

isfolder initial: Node has no subordinate nodes

'X': Node has subordinate nodes

n_image Specifies an icon for an unexpanded branch or a leaf:

' ': Uses a default icon

'@xy@': Uses the icon with number xy

'BNONE': No icon. As a result, the display position of the node is brought
forwards.

exp_image Specifies an icon for an expanded branch or a leaf:

' ': Uses a default icon

'@xy@': Uses the icon with number xy

'BNONE': No icon. As a result, the display position of the node is brought
forwards.

style Node style.

no_branch initial: Draws a connecting line to the node.

'X': Suppresses the connecting line to the node.

expander initial: Node has no ‘+’ sign for expansion.

'X': Node must be a branch (ISFOLDER = ‘X’) and has a ‘+’ sign for
expansion. If the user expands a branch that has no children, the event
EXPAND_NO_CHILDREN is triggered.

 SAP AG SAP Tree and Tree Model (BC-CI)

update_nodes

April 2001 187

text This field is only used in the simple tree. It is part of your node structure
definition in the ABAP Dictionary. When you use a simple tree, use this field to
pass the text you want to display.

u_all Change all changeable attributes

u_hidden Change the hidden attribute.

u_disabled Change the disabled attribute.

u_isfolder Change the is_folder attribute.

u_n_image Change the n_image attribute.

u_exp_imag Change the exp_image attribute.

u_style Change the style attribute.

u_no_branch Change the no_branch attribute.

u_expander Change the expander attribute.

u_text Change the node text.

Suppose you want to change the hidden and is_folder attributes: You assign
values to the hidden and is_folder fields. The flags u_hidden and
u_is_folder are set, to select the fields hidden and is_folder for change.

If you choose the field u_all, all of the fields for which a "U flag" exists are selected
for change.

You can address the icon using its name, for example, ICON_ANNOTATION. To do
this, the statement INCLUDE <ICON>. must appear in your program.

SAP Tree and Tree Model (BC-CI) SAP AG

Methods of Class CL_GUI_LIST_TREE

188 April 2001

Methods of Class CL_GUI_LIST_TREE

 SAP AG SAP Tree and Tree Model (BC-CI)

constructor

April 2001 189

constructor
You use this method to instantiate the list tree.

CREATE OBJECT list_tree
 EXPORTING lifetime = lifetime
 parent = parent
 shellstyle = shellstyle
 node_selection_mode = node_selection_mode
 hide_selection = hide_selection
 item_selection = item_selection
 with_headers = with_headers
 hierarchy_header = hierarchy_header
 list_header = list_header
 EXCEPTIONS lifetime_error = 1
 cntl_system_error = 2
 create_error = 3
 illegal_node_selection_mode = 4
 failed = 5.

Parameters Description

lifetime Lifetime management [Ext.] parameter. The following values are
permitted:

list_tree->lifetime_imode: The control remains alive for the
duration of the internal session (that is, until the session is ended
by one of the following statements: leave program. leave to
transaction. set screen 0, leave screen.). After this,
the finalize [Page 482] method is called.

list_tree->lifetime_dynpro: The control remains alive for the
lifetime of the screen instance, that is, for as long as the screen
remains in the stack. After this, the free [Page 480] method is
called.
Using this mode automatically regulates the visibility of the control.
Controls are only displayed when the screen on which they were
created is active. When other screens are active, the controls are
hidden.

list_tree->lifetime_default: If you create the control in a
container, it inherits the lifetime of the container. If you do not
create the control in a container (for example, because it is a
container itself), the lifetime is set to simple_tree-
>lifetime_imode.

parent Container in which the SAP Tree can be displayed (see also SAP
Container [Ext.]).

node_selection_mode list_tree->node_sel_mode_single: Only single selection
allowed.

list_tree->node_sel_mode_multiple: Multiple selection
allowed.

SAP Tree and Tree Model (BC-CI) SAP AG

constructor

190 April 2001

hide_selection Hides a selection

item_selection Flags whether individual entries should be selectable. If you set this
attribute, the node can only be selected using its icon.

If the attribute is not set, the entire node can be selected as a single
unit.

with_headers Flags whether headers are used.

hierarchy_header Structure with the definition of the first header.

list_header Structure with the definition of the following header.

 SAP AG SAP Tree and Tree Model (BC-CI)

node_set_last_hierarchy_item

April 2001 191

node_set_last_hierarchy_item
Use this method to determine the item in a node that should be the last to appear under the
hierarchy heading. All subsequent items then appear under the list heading.

CALL METHOD list_tree->node_set_last_hierarchy_item
 EXPORTING node_key = node_key
 last_hierarchy_item = last_hierarchy_item
 EXCEPTIONS failed = 1
 node_not_found = 2
 cntl_system_error = 3
 tree_has_no_headers = 4.

Parameters Description

node_key Node you want to change.

The parameter is defined with reference to type tv_nodekey.

last_hierarchy_item Name of the last item that you want to appear under the hierarchy
heading.

The parameter is defined with reference to type tv_itmname .

SAP Tree and Tree Model (BC-CI) SAP AG

hierarchy_header_set_t_image

192 April 2001

hierarchy_header_set_t_image
Use this method to define an icon for the hierarchy heading.

CALL METHOD list_tree->hierarchy_header_set_t_image
 EXPORTING t_image = t_image
 EXCEPTIONS tree_has_no_headers = 1
 failed = 2
 cntl_system_error = 3.

Parameters Description

t_image ' ': No icon.

'@xy@': Uses the SAP icon with number xy

You can address the icon using its name, for example, ICON_ANNOTATION. To do
this, the statement INCLUDE <ICON>. must appear in your program.

 SAP AG SAP Tree and Tree Model (BC-CI)

list_header_set_t_image

April 2001 193

list_header_set_t_image
Use this method to define an icon for the list heading.

CALL METHOD list_tree->LIST_HEADER_SET_T_IMAGE
 EXPORTING t_image = t_image
 EXCEPTIONS tree_has_no_headers = 1
 failed = 2
 cntl_system_error = 3.

Parameters Description

t_image ' ': No icon.

'@xy@': Uses the SAP icon with number xy

'BNONE': No icon. As a result, the display position of the node is brought
forwards.

You can address the icon using its name, for example, ICON_ANNOTATION. To do
this, the statement INCLUDE <ICON>. must appear in your program.

SAP Tree and Tree Model (BC-CI) SAP AG

hierarchy_header_set_text

194 April 2001

hierarchy_header_set_text
You use this method to change the text of the hierarchy heading:

CALL METHOD list_tree->hierarchy_header_set_text
 EXPORTING text = text
 EXCEPTIONS tree_has_no_headers = 1
 failed = 2
 cntl_system_error = 3.

Parameters Description

text Hierarchy heading text

The parameter is defined with reference to type tv_heading .

 SAP AG SAP Tree and Tree Model (BC-CI)

list_header_set_text

April 2001 195

list_header_set_text
You use this method to change the text of the list heading:

CALL METHOD list_tree->list_header_set_text
 EXPORTING text = text
 EXCEPTIONS tree_has_no_headers = 1
 failed = 2
 cntl_system_error = 3.

Parameters Description

text List heading text

The parameter is defined with reference to type tv_heading .

SAP Tree and Tree Model (BC-CI) SAP AG

hierarchy_header_set_width

196 April 2001

hierarchy_header_set_width
Use this method to set the width of the hierarchy heading.

CALL METHOD list_tree->hierarchy_header_set_width
 EXPORTING width = width
 width_pix = width_pix
 EXCEPTIONS tree_has_no_headers = 1
 failed = 2
 cntl_system_error = 3.

Parameters Description

width Width of the heading

width_pix 'X': The length is interpreted in pixels.

‘ ‘: The length is interpreted in characters.

 SAP AG SAP Tree and Tree Model (BC-CI)

hiearchy_header_get_width

April 2001 197

hiearchy_header_get_width
This method returns the current width of the hierarchy heading in pixels.

CALL METHOD list_tree->hierarchy_header_get_width
 IMPORTING width = width
 width_pix = width_pix
 EXCEPTIONS failed = 1
 cntl_system_error = 2
 tree_has_no_headers = 3.

Parameters Description

width Width of the heading

width_pix 'X': Width in pixels

SAP Tree and Tree Model (BC-CI) SAP AG

hierarchy_header_adjust_width

198 April 2001

hierarchy_header_adjust_width
Use this method to adjust the width of the headings so that the entire contents of the items below
them are visible.

CALL METHOD list_tree->hierarchy_header_adjust_width
 EXCEPTIONS failed = 1
 cntl_system_error = 2
 tree_has_no_headers = 3.

 SAP AG SAP Tree and Tree Model (BC-CI)

item_set_alignment

April 2001 199

item_set_alignment
Use this method to set the width of an item.

CALL METHOD list_tree->item_set_alignment
 EXPORTING node_key = node_key
 item_name = item_name
 alignment = alignment
 EXCEPTIONS failed = 1
 node_not_found = 2
 item_not_found = 3
 cntl_system_error = 4.

Parameters Description

node_key Node in the SAP Tree containing the item that you want to change.

The parameter is defined with reference to type tv_nodekey.

item_name Name of the item for which you want to adjust the alignment.

The parameter is defined with reference to type tv_itmname .

alignment list_tree->align_left: left justified

list_tree->align_right: right-justified

list_tree->align_center: centered

list_tree->align_auto: automatic alignment

SAP Tree and Tree Model (BC-CI) SAP AG

item_set_length

200 April 2001

item_set_length
Use this method to change the displayed length of a particular item.

CALL METHOD list_tree->item_set_length
 EXPORTING node_key = node_key
 item_name = item_name
 length = length
 length_pix = length_pix
 EXCEPTIONS failed = 1
 node_not_found = 2
 item_not_found = 3
 cntl_system_error = 4.

Parameters Description

node_key Node in the SAP Tree containing the item that you want to change.

The parameter is defined with reference to type tv_nodekey.

item_name Name of the item for which you want to adjust the alignment.

The parameter is defined with reference to type tv_itmname .

length Display length for the item.

length_pix 'X': The length is interpreted in pixels.

‘ ‘: The length is interpreted in characters.

 SAP AG SAP Tree and Tree Model (BC-CI)

hierarchy_header_set_tooltip

April 2001 201

hierarchy_header_set_tooltip
Use this method to set a tooltip for a hierarchy heading. The tooltip is displayed whenever the
mouse pointer is positioned over the hierarchy heading.

CALL METHOD list_tree->hierarchy_header_set_tooltip
 EXPORTING tooltip = tooltip
 EXCEPTIONS tree_has_no_headers = 1
 failed = 2
 cntl_system_error = 3.

Parameters Description

tooltip Text

SAP Tree and Tree Model (BC-CI) SAP AG

list_header_set_tooltip

202 April 2001

list_header_set_tooltip
Use this method to set a tooltip for a list heading. The tooltip is displayed whenever the mouse
pointer is positioned over the list heading.

CALL METHOD list_tree->list_header_set_tooltip
 EXPORTING tooltip = tooltip
 EXCEPTIONS tree_has_no_headers = 1
 failed = 2
 cntl_system_error = 3.

Parameters Description

tooltip Text

 SAP AG SAP Tree and Tree Model (BC-CI)

Methods of Class CL_GUI_COLUMN_TREE

April 2001 203

Methods of Class CL_GUI_COLUMN_TREE

SAP Tree and Tree Model (BC-CI) SAP AG

constructor

204 April 2001

constructor
You use this method to instantiate the column tree.

CREATE OBJECT column_tree
 EXPORTING lifetime = lifetime
 parent = parent
 shellstyle = shellstyle
 node_selection_mode = node_selection_mode
 hide_selection = hide_selection
 item_selection = item_selection
 hierarchy_column_name = hierarchy_column_name
 hierarchy_header = hierarchy_header
 EXCEPTIONS lifetime_error = 1
 cntl_system_error = 2
 create_error = 3
 illegal_node_selection_mode = 4
 failed = 5
 illegal_column_name = 6.

Parameters Description

lifetime Lifetime management [Ext.] parameter. The following values are
permitted:

column_tree->lifetime_imode: The control remains alive for
the duration of the internal session (that is, until the session is
ended by one of the following statements: leave program.
leave to transaction. set screen 0, leave
screen.). After this, the finalize [Page 482] method is called.

column_tree->lifetime_dynpro: The control remains alive for
the lifetime of the screen instance, that is, for as long as the
screen remains in the stack. After this, the free [Page 480]
method is called.
Using this mode automatically regulates the visibility of the
control. Controls are only displayed when the screen on which
they were created is active. When other screens are active, the
controls are hidden.

column_tree->lifetime_default: If you create the control in a
container, it inherits the lifetime of the container. If you do not
create the control in a container (for example, because it is a
container itself), the lifetime is set to simple_tree-
>lifetime_imode.

parent Container in which the SAP Tree can be displayed (see also SAP
Container [Ext.]).

node_selection_mode column_tree->node_sel_mode_single: Only single selection
allowed.

column_tree->node_sel_mode_multiple: Multiple selection
allowed.

 SAP AG SAP Tree and Tree Model (BC-CI)

constructor

April 2001 205

hide_selection Hides a selection

item_selection Flags whether individual entries should be selectable. If you set this
attribute, the node can only be selected using its icon.

If the attribute is not set, the entire node can be selected as a
single unit.

hierarchy_column_name Name of the column heading

hierarchy_header Structure with the definition of the first header.

SAP Tree and Tree Model (BC-CI) SAP AG

add_column

206 April 2001

add_column
Use this method to add a new column to the tree. The column has its own heading - it is not
inserted under the hierarchy heading.

CALL METHOD column_tree->add_column
 EXPORTING name = name
 hidden = hidden
 disabled = disabled
 alignment = alignment
 width = width
 width_pix = width_pix
 header_image = header_image
 header_text = header_text
 header_tooltip = header_tooltip
 EXCEPTIONS column_exists = 1
 illegal_column_name = 2
 too_many_columns = 3
 illegal_alignment = 4
 different_column_types = 5
 cntl_system_error = 6
 failed = 7
 predecessor_column_not_found = 8.

Parameters Description

name Technical name of the column

hidden ' ': Column is visible

'X': Column is not visible

disabled 'X': Column can be selected

' ': Column cannot be selected

alignment column_tree->align_left: left justified

column_tree->align_right: right-justified

column_tree->align_center: centered

width Width of the heading

width_pix 'X': The width is interpreted in pixels.

‘ ‘: The width is interpreted in characters.

header_image ' ': No icon.

'@xy@': Uses the SAP icon with number xy

header_text Hierarchy heading text

The parameter is defined with reference to type tv_heading .

header_tooltip Text that is displayed when the mouse pointer is positioned on the heading.

 SAP AG SAP Tree and Tree Model (BC-CI)

add_column

April 2001 207

You can address the icon using its name, for example, ICON_ANNOTATION. To do
this, the statement INCLUDE <ICON>. must appear in your program.

SAP Tree and Tree Model (BC-CI) SAP AG

add_hierarchy_column

208 April 2001

add_hierarchy_column
Use this method to insert a new column. It is inserted below the hierarchy heading.

CALL METHOD column_tree->add_hierarchy_column
 EXPORTING name = name
 hidden = hidden
 disabled = disabled
 EXCEPTIONS column_exists = 1
 illegal_column_name = 2
 too_many_columns = 3
 cntl_system_error = 4
 failed = 5.

Parameters Description

name Technical name of the column

hidden ' ': Column is visible

'X': Column is not visible

disabled 'X': Column cannot be selected

' ': Column can be selected

You should only insert one text column below a hierarchy heading. Further columns
should contain icons, checkboxes, or other classes of item.

 SAP AG SAP Tree and Tree Model (BC-CI)

adjust_column_width

April 2001 209

adjust_column_width
Use this method to adjust the width of the headings so that the entire contents of the items below
them are visible. You can either adjust all columns or specify a range (column n to column m) to
be adjusted.

CALL METHOD column_tree->adjust_column_width
 EXPORTING start_column = start_column
 end_column = end_column
 all_columns = all_columns
 EXCEPTIONS start_column_not_found = 1
 end_column_not_found = 2
 start_column_in_hierarchy = 3
 end_column_in_hierarchy = 4
 start_column_empty = 5
 cntl_system_error = 6
 failed = 7.

Parameters Description

start_column Technical name of the first column outside the column heading that you want
to adjust.

end_column Technical name of the last column outside the column heading that you want
to adjust.

all_columns 'X': All columns, including the hierarchy header, are adjusted.

SAP Tree and Tree Model (BC-CI) SAP AG

column_get_width

210 April 2001

column_get_width
This method returns the current width of the specified column. The width is returned in pixels.

CALL METHOD column_tree->column_get_width
 EXPORTING column_name = column_name
 IMPORTING width = width
 EXCEPTIONS failed = 1
 column_not_found = 2
 hierarchy_column = 3
 cntl_system_error = 4.

Parameters Description

column_name Technical name of the column

width Width of the heading

 SAP AG SAP Tree and Tree Model (BC-CI)

column_set_disabled

April 2001 211

column_set_disabled
Use this method to deactivate a column. The column cannot then be selected. Furthermore, no
other actions, such as double-clicking, are possible.

CALL METHOD column_tree->column_set_disabled
 EXPORTING column_name = column_name
 disabled = disabled
 EXCEPTIONS failed = 1
 column_not_found = 2
 cntl_system_error = 3.

Parameters Description

column_name Technical name of the column

disabled 'X': Column is inactive

' ': Column is active

SAP Tree and Tree Model (BC-CI) SAP AG

column_set_heading_image

212 April 2001

column_set_heading_image
Use this method to define an icon for the column heading.

CALL METHOD column_tree->column_set_heading_image
 EXPORTING column_name = column_name
 image = image
 EXCEPTIONS failed = 1
 column_not_found = 2
 hierarchy_column = 3
 cntl_system_error = 4.

Parameters Description

column_name Technical name of the column

image ' ': No icon.

'@xy@': Uses the SAP icon with number xy

'BNONE': No icon. As a result, the display position of the node is brought
forwards.

You can address the icon using its name, for example, ICON_ANNOTATION. To do
this, the statement INCLUDE <ICON>. must appear in your program.

 SAP AG SAP Tree and Tree Model (BC-CI)

column_set_heading_text

April 2001 213

column_set_heading_text
Use this method to change the text of the column heading:

CALL METHOD column_tree->column_set_heading_text
 EXPORTING column_name = column_name
 text = text
 EXCEPTIONS failed = 1
 column_not_found = 2
 hierarchy_column = 3
 cntl_system_error = 4.

Parameters Description

column_name Technical name of the column

text Hierarchy heading text

The parameter is defined with reference to type tv_heading .

SAP Tree and Tree Model (BC-CI) SAP AG

column_set_heading_tooltip

214 April 2001

column_set_heading_tooltip
Use this method to set a tooltip for the heading. The tooltip is displayed whenever the mouse
pointer is positioned over the heading.

CALL METHOD column_tree->column_set_heading_tooltip
 EXPORTING column_name = column_name
 tooltip = tooltip
 EXCEPTIONS failed = 1
 column_not_found = 2
 hierarchy_column = 3
 cntl_system_error = 4.

Parameters Description

column_name Technical name of the column

tooltip Text

 SAP AG SAP Tree and Tree Model (BC-CI)

column_set_hidden

April 2001 215

column_set_hidden
Use this method to hide a particular column.

CALL METHOD column_tree->column_set_hidden
 EXPORTING column_name = column_name
 hidden = hidden
 EXCEPTIONS failed = 1
 column_not_found = 2
 cntl_system_error = 3.

Parameters Description

column_name Technical name of the column

hidden ' ': Column is visible

'X': Column is not visible

SAP Tree and Tree Model (BC-CI) SAP AG

column_set_width

216 April 2001

column_set_width
Use this method to set the width of the column heading.

CALL METHOD column_tree->column_set_width
 EXPORTING column_name = column_name
 width = width
 width_pix = width_pix
 EXCEPTIONS failed = 1
 column_not_found = 2
 hierarchy_column = 3
 cntl_system_error = 4.

Parameters Description

column_name Technical name of the column

width Width of the heading

width_pix 'X': The width is interpreted in pixels.

‘ ‘: The width is interpreted in characters.

 SAP AG SAP Tree and Tree Model (BC-CI)

delete_column

April 2001 217

delete_column
Use this method to delete a column.

CALL METHOD column_tree->delete_column
 EXPORTING column_name = column_name
 EXCEPTIONS failed = 1
 column_not_found = 2
 cntl_system_error = 3.

Parameters Description

column_name Technical name of the column

SAP Tree and Tree Model (BC-CI) SAP AG

get_column_order

218 April 2001

get_column_order
This method returns the sequence of the columns. This is useful if you want to find out if the user
moved any columns.

CALL METHOD column_tree->get_column_order
 CHANGING columns = columns
 EXCEPTIONS cntl_system_error = 1
 dp_error = 2
 failed = 3.

Parameters Description

columns Internal table, containing the columns in the order in which they appear in the
tree.

The parameter is defined with reference to type treev_cona .

 SAP AG SAP Tree and Tree Model (BC-CI)

hierarchy_header_adjust_width

April 2001 219

hierarchy_header_adjust_width
Use this method to adjust the width of the hierarchy heading so that the entire contents of the
columns are visible.

CALL METHOD column_tree->hierarchy_header_adjust_width
 EXCEPTIONS failed = 1
 cntl_system_error = 2.

SAP Tree and Tree Model (BC-CI) SAP AG

hierarchy_header_get_width

220 April 2001

hierarchy_header_get_width
This method returns the current width of the hierarchy heading. The width is returned in pixels.

CALL METHOD column_tree->hierarchy_header_get_width
 IMPORTING width = width
 width_pix = width_pix
 EXCEPTIONS failed = 1
 cntl_system_error = 2.

Parameters Description

width Width of the heading

width_pix 'X': Width in pixels

 SAP AG SAP Tree and Tree Model (BC-CI)

hierarchy_header_set_text

April 2001 221

hierarchy_header_set_text
You use this method to change the text of the hierarchy heading:

CALL METHOD column_tree->hierarchy_header_set_text
 EXPORTING text = text
 EXCEPTIONS failed = 1
 cntl_system_error = 2.

Parameters Description

text Hierarchy heading text

The parameter is defined with reference to type tv_heading .

SAP Tree and Tree Model (BC-CI) SAP AG

hierarchy_header_set_tooltip

222 April 2001

hierarchy_header_set_tooltip
Use this method to set a tooltip for a hierarchy heading. The tooltip is displayed whenever the
mouse pointer is positioned over the heading.
CALL METHOD column_tree->hierarchy_header_set_tooltip
 EXPORTING tooltip = tooltip
 EXCEPTIONS failed = 1
 cntl_system_error = 2.

Parameters Description
tooltip Text

 SAP AG SAP Tree and Tree Model (BC-CI)

hierarchy_header_set_t_image

April 2001 223

hierarchy_header_set_t_image
Use this method to define an icon for the hierarchy heading.

CALL METHOD column_tree->hierarchy_header_set_t_image
 EXPORTING t_image = t_image
 EXCEPTIONS failed = 1
 cntl_system_error = 2.

Parameters Description

t_image ' ': No icon.

'@xy@': Uses the SAP icon with number xy

You can address the icon using its name, for example, ICON_ANNOTATION. To do
this, the statement INCLUDE <ICON>. must appear in your program.

SAP Tree and Tree Model (BC-CI) SAP AG

hierarchy_header_set_width

224 April 2001

hierarchy_header_set_width
Use this method to set the width of the hierarchy heading.

CALL METHOD column_tree->hierarchy_header_set_width
 EXPORTING width = width
 width_pix = width_pix
 EXCEPTIONS failed = 1
 cntl_system_error = 2.

Parameters Description

width Width of the heading

width_pix 'X': The length is interpreted in pixels.

‘ ‘: The length is interpreted in characters.

 SAP AG SAP Tree and Tree Model (BC-CI)

insert_column

April 2001 225

insert_column
Use this method to insert a new column with a heading after an existing column with heading in
the tree.

CALL METHOD column_tree->insert_column
 EXPORTING name = name
 predecessor_column = predecessor_column
 hidden = hidden
 disabled = disabled
 alignment = alignment
 width = width
 width_pix = width_pix
 header_image = header_image
 header_text = header_text
 header_tooltip = header_tooltip
 EXCEPTIONS column_exists = 1
 illegal_column_name = 2
 too_many_columns = 3
 illegal_alignment = 4
 different_column_types = 5
 cntl_system_error = 6
 failed = 7
 predecessor_column_not_found = 8.

Parameters Description

name Technical name of the column

predecessor_column Technical name of the preceding column The preceding column cannot
be a hierarchy column.

initial: The column is inserted as the first column after the hierarchy
columns.

hidden ' ': Column is visible

'X': Column is not visible

disabled 'X': Column cannot be selected

' ': Column can be selected

alignment column_tree->align_left: left justified

column_tree->align_right: right-justified

column_tree->align_center: centered

width Width of the heading

width_pix 'X': The width is interpreted in pixels.

‘ ‘: The width is interpreted in characters.

header_image ' ': No icon.

'@xy@': Uses the SAP icon with number xy

SAP Tree and Tree Model (BC-CI) SAP AG

insert_column

226 April 2001

header_text Hierarchy heading text

The parameter is defined with reference to type tv_heading .

header_tooltip Text that is displayed when the mouse pointer is positioned on the
heading.

You can address the icon using its name, for example, ICON_ANNOTATION. To do
this, the statement INCLUDE <ICON>. must appear in your program.

 SAP AG SAP Tree and Tree Model (BC-CI)

insert_hierarchy_column

April 2001 227

insert_hierarchy_column
Use this method to insert a new column after an existing column. It is inserted below the
hierarchy heading.

CALL METHOD column_tree->insert_hierarchy_column
 EXPORTING name = name
 predecessor_column = predecessor_column
 hidden = hidden
 disabled = disabled
 EXCEPTIONS column_exists = 1
 illegal_column_name = 2
 too_many_columns = 3
 different_column_types = 4
 cntl_system_error = 5
 failed = 6
 predecessor_column_not_found = 7.

Parameters Description

name Technical name of the column

predecessor_column Technical name of the preceding column

hidden ' ': Column is visible

'X': Column is not visible

disabled 'X': Column cannot be selected

' ': Column can be selected

SAP Tree and Tree Model (BC-CI) SAP AG

set_column_order

228 April 2001

set_column_order
Use this method to set a new sequence for the columns.

CALL METHOD column_tree->set_column_order
 EXPORTING columns = columns
 EXCEPTIONS cntl_system_error = 1
 dp_error = 2
 failed = 3
 column_not_found = 4
 hierarchy_column = 5
 wrong_column_set = 6.

Parameters Description

columns Internal table containing the defined columns in their new sequence.

The parameter is defined with reference to type treev_cona .

 SAP AG SAP Tree and Tree Model (BC-CI)

update_column

April 2001 229

update_column
Use this method to change the attributes of a column.

CALL METHOD column_tree->update_column
 EXPORTING name = name
 hidden = hidden
 disabled = disabled
 alignment = alignment
 header_image = header_image
 header_text = header_text
 header_tooltip = header_tooltip
 update_width = update_width
 width = width
 width_pix = width_pix
 EXCEPTIONS illegal_alignment = 1
 cntl_system_error = 2
 failed = 3
 hierarchy_column = 4
 column_not_found = 5.

Parameters Description

name Technical name of the column

hidden ' ': Column is visible

'X': Column is not visible

disabled 'X': Column cannot be selected

' ': Column can be selected

alignment list_tree->align_left: left justified

list_tree->align_right: right-justified

list_tree->align_center: centered

header_image ' ': No icon.

'@xy@': Uses the SAP icon with number xy

header_text Hierarchy heading text

The parameter is defined with reference to type tv_heading .

header_tooltip Text that is displayed when the mouse pointer is positioned on the heading.

update_width 'X': Change the width of the column to the value in the parameter width.

' ': Column width remains unchanged.

width Width of the heading

width_pix 'X': The length is interpreted in pixels.

‘ ‘: The length is interpreted in characters.

SAP Tree and Tree Model (BC-CI) SAP AG

update_column

230 April 2001

You can address the icon using its name, for example, ICON_ANNOTATION. To do
this, the statement INCLUDE <ICON>. must appear in your program.

 SAP AG SAP Tree and Tree Model (BC-CI)

SAP Tree Model

April 2001 231

SAP Tree Model
Purpose
The SAP Tree Model has been introduced to complement the SAP Tree Control. Unlike the SAP
Tree Control, which only displayed data without actually administering it, the SAP Tree Model
holds all of the data that is to be displayed on the application server. Instead of communicating
directly with the tree at the frontend, the application program has only to communicate with the
tree model. The tree model also ensures optimal performance - an important aspect of tree
control programming that was previously left to the programmer.

Implementation Considerations
Use the SAP Tree Model whenever you want to display data in a hierarchical tree format.

Features
Like the SAP Tree, the SAP Tree Model has three variants (see Overview of SAP Tree Model
Classes [Page 232]):

� Simple tree

� List tree

� Column tree

The SAP Tree Model also contains features that make it more comfortable to use than the
normal SAP Tree:

� Automatic synchronization between the tree model on the application server and the tree
control at the frontend

� Automatic flush handling

� Search and print functions

� Checks on the validity of node data before it is sent to the frontend (reduces the risk of
runtime error CNTL_ERROR)

� Automatic control of how much data is sent to the frontend and when

� Option to display the tree in tabular form

� A freely-usable object reference to which you can assign an application-related object.

Constraints
Certain features of the SAP Tree Model do not work in the SAPGUI for HTML environment. For
further information, refer to The Tree Controls in SAPGUI for HTML [Page 14].

SAP Tree and Tree Model (BC-CI) SAP AG

Overview of SAP Tree Model Classes

232 April 2001

Overview of SAP Tree Model Classes
Simple Tree Model
The class CL_SIMPLE_TREE_MODEL is the ABAP Objects wrapper for the simple tree.

Example program: SAPSIMPLE_TREE_MODEL_DEMO:

Attributes

� A node consists of a folder or leaf symbol and a text.

� You cannot use checkboxes or additional icons.

� You can only have one text for each node.

� There is no heading.

Column Tree Model
The class CL_COLUMN_TREE_MODEL is the ABAP Objects wrapper for the column tree model.

Example program: SAPCOLUMN_TREE_MODEL_DEMO:

 SAP AG SAP Tree and Tree Model (BC-CI)

Overview of SAP Tree Model Classes

April 2001 233

Attributes

� A node consists of a folder or leaf symbol and a range of items.

� The entries of a node are arranged in columns.

In the example, the tree has three columns with the logical names 'Column1',
'Column2', and 'Column3'. The topmost node has an entry in each of these columns:

'Root Col. 1' in column 'Column1'

'Root Col. 2' in column 'Column2'

'Root Col. 3' in column 'Column3'

� A column tree can contain two kinds of columns:

� Columns in the hierarchy area: These columns are below the hierarchy heading. The
hierarchy heading is the first heading from the left in the tree (in the example, 'Hierarchy
Header'). There is normally only one column in the hierarchy area. In the example, it is
the column with the name 'Column1', containing the entries 'Root Col.1', 'Child1 Col. 1'
and so on.

� Columns outside the hierarchy area: These columns have their own heading. The
example contains two columns outside the hierarchy area, with the headings 'Column2'
and 'Column3'.

� Columns can have the following kinds of entries:

� Text: Text, with optional icon

� Checkbox: Checkbox with optional icon and text.

� Pushbutton: Pushbutton with text and icon.

� Link: Like text, but additionally, an event is triggered when the user clicks the link.

SAP Tree and Tree Model (BC-CI) SAP AG

Overview of SAP Tree Model Classes

234 April 2001

List Tree Model
The class CL_LIST_TREE_MODEL is the ABAP Objects wrapper for the column tree.

Example program: SAPLIST_TREE_MODEL_DEMO:

Attributes

� A node consists of a folder or leaf symbol and entries.

� The entries are displayed from left to right.

Structure of the first three nodes in the example:

The topmost node has a single entry ("objects"). Proportional font is set for this entry.
Additionally, the "automatic width" is set. This means that the width of the entry is
adjusted to fit the contents (in this case, the string "objects").

The second node from the top has the same construction as the first: An entry with
the text "Screens".

The third node from the top has four entries:

A tick icon, four characters wide.

0100, not in proportional font, four characters wide.

MUELLER, not in proportional font, 11 characters wide.

Comment for screen 100, proportional font, automatic width.

� Using non-proportional fonts and a fixed display width allows you to display data in tabular
format, as in the example.

� Columns can have the following kinds of entries:

� Text: Text, with optional icon

� Checkbox: Checkbox with optional icon and text.

 SAP AG SAP Tree and Tree Model (BC-CI)

Overview of SAP Tree Model Classes

April 2001 235

� Pushbutton: Pushbutton with text and icon.

� Link: Like text, but additionally, an event is triggered when the user clicks the link.

� There is a hierarchy heading and a list heading, under which all entries can be grouped.

SAP Tree and Tree Model (BC-CI) SAP AG

The Inheritance Hierarchy

236 April 2001

The Inheritance Hierarchy
The classes used in the SAP Tree Model form the following inheritance hierarchy:

CL_TREE_MODEL

CL_SIMPLE_
TREE_MODEL

CL_LIST_
TREE_MODEL

CL_COLUMN_
TREE_MODEL

CL_ITEM_TREE_MODEL

CL_TREE_MODEL contains methods that are used by all three kinds of Tree Models. Additionally,
CL_LIST_TREE_MODEL and CL_COLUMN_TREE_MODEL share certain methods, which are
defined in their superclass CL_ITEM_TREE_MODEL.

 SAP AG SAP Tree and Tree Model (BC-CI)

Finding Errors

April 2001 237

Finding Errors
The majority of errors in control programming occur when you synchronize the automation queue
[Ext.]. Synchronization occurs either explicitly, using the method CL_GUI_CFW=>FLUSH [Page
474], or implicitly after the last PBO module has finished.

If the error occurs in an explicit synchronization, the method CL_GUI_CFW=>FLUSH triggers the
exception CNTL_ERROR. If the error occurs in an implicit synchronization, a short dump occurs.
You can avoid the short dump by handling special events of the Control Framework.

The exception CNTL_ERROR only indicates that an unspecified method call to a control at the
frontend was unsuccessful. You then need to find out which control at the frontend has triggered
the exception and why. You can do this using the Debugger:

5. Run the program again in the Debugger.

6. Go into the settings in the Debugger and select the option Automation Controller: Always
process requests synchronously.
When you set this option, the automation queue is synchronized after each method call.

7. Step through the individual method calls. Note that SY-SUBRC is only set after the method
that triggers the exception if you handle the exceptions in your application program.
Otherwise, another short dump occurs.

8. Identify the error in the method call.

If an error occurs, you should first run the example programs for the corresponding
control wrapper. If an error also occurs in these programs, the problem is due to
your local SAPgui installation.

Once CNTL_ERROR has been triggered, you should no longer work with the controls.
Remember above all that method calls that come after the error in the automation
queue will not be processed.

If the error occurred in the first automation queue synchronization, the automation
controller may no longer be active. This results in all subsequent control calls ending
with a CNTL_ERROR.

SAP Tree and Tree Model (BC-CI) SAP AG

Important Notes

238 April 2001

Important Notes
The exceptions of the SAP Tree Model do not set messages.

You must never ignore exceptions of the SAP Tree Model methods or flush calls. If an error
occurs, the automation queue processing is terminated. This affects all of the controls in the
same internal session. Once an error has occurred, the internal session affected may no longer
work with controls.

The SAP Tree Model is not suitable for displaying non-hierarchical lists, since all root nodes must
always be transferred to the frontend. Consequently, long lists can cause performance problems.

 SAP AG SAP Tree and Tree Model (BC-CI)

Example Programs

April 2001 239

Example Programs
The development class SEU_TREE_MODEL contains the following example programs that
demonstrate how to program the three different kinds of tree models:

Program name Demonstrates
SAPSIMPLE_TREE_MODEL_DEMO Simple tree model

SAP_SIMPLE_TREEM_DRAG_DROP_DEMO Drag and drop with the simple tree model

SAPCOLUMN_TREE_MODEL_DEMO Column tree model

SAP_LIST_TREE_MODEL_DEMO List tree model

SAP Tree and Tree Model (BC-CI) SAP AG

Using Controls in a WAN

240 April 2001

Using Controls in a WAN
When you use controls in your programs, you place an extra load on the communication channel
between the frontend and backend. In a LAN, and particularly in a WAN environment, this can
be a critical factor.

The problem is alleviated somewhat by buffering mechanisms (see also Automation Queue
[Ext.]). Use these points as a guideline to using controls in a WAN.

The documentation for the individual controls also contains more specific notes about using that
control in a WAN.

Using CL_GUI_CFW=>FLUSH
The method CL_GUI_CFW=>FLUSH [Page 474] synchronizes the automation queue and the
ABAP variables in it. Calling it often generates a synchronous RFC call from the application
server to the frontend. To optimize the performance of your application, you should call this
method as little as possible.

It is often a good idea to read all control attributes in a single automation queue (for example, at
the beginning of the PAI) and retrieve them in a single synchronization. You should, in particular,
do this when you read attributes that are not necessary in your event handlers or the PAI/PBO
cycle.

You do not need to include a "safety flush" at the end of the PBO to ensure that all method calls
are transported to the frontend. A flush at the end of the PBO is guaranteed. Consequently, you
cannot construct an automation queue spread over several screens.

There is no guarantee that an automation queue will be sent when you call
CL_GUI_CFW=>FLUSH. The queue recognizes whether it contains any return values. If this
is not the case, it is not sent.
If you have a queue with no return values, and want to ensure that it is synchronized, you can
use the Control Framework method CL_GUI_CFW=>UPDATE_VIEW [Page 477]. You should
only use this method if you absolutely need to update the GUI. For example, you might have a
long-running application in which you want to provide the user with regular updates on the status
of an action.

After you have read the attributes of a control, the contents of the corresponding ABAP variables
are not guaranteed until after the next flush. The contents of the ABAP variables remain
undefined until this call occurs. In the future, there will be cases in which this flush is
unnecessary. They will be recognized by the automation queue and the corresponding flush call
will be ignored.

Creating Controls and Passing Data
Creating controls and passing data to them is normally a one-off procedure, which in comparison
to using normal screen elements can be very runtime-intensive. You should therefore not use
any unnecessary controls, or pass unnecessary data to the controls that you are using.

A typical example is a tabstrip control with several tab pages. If the pages contain controls, you
should consider using application server scrolling instead of local scrolling, and not loading the
controls until the corresponding page is activated by the user. The same applies to passing data
to the controls on tab pages.

If you want to differentiate between LAN and WAN environments when you pass data to a
control, you can use the function module SAPGUI_GET_WANFLAG. In some applications, you may

 SAP AG SAP Tree and Tree Model (BC-CI)

Using Controls in a WAN

April 2001 241

need to pass different amounts of data or use a complete fallback in a WAN application. The
environment affects, for example, the number of same-level nodes that you can transfer to a tree
control without having to introduce artificial intermediate levels.

Unlike screen elements, controls only have to be created and filled with data once. From a
performance point of view, this means that they become more profitable the longer they exist. In
applications that are called repeatedly, and therefore initialized repeatedly, controls can have a
negative effect on performance. In applications that use the same screen for a long time, on the
other hand, you may find that using controls results in improved performance.

You can always use the performance tools [Ext.] to check the advantages and disadvantages in
terms of network load that using a control brings.

Storing Documents, Picture, and Other Data
Release 4.6A sees the introduction of a frontend cache for accessing documents from the
Business Document Service (BDS). You are strongly recommended to store desktop documents,
images, and other data in the BDS and not in the R/3 database. Documents from the BDS can
be cached at the frontend, and therefore only have to be loaded over the network once.

SAP Tree and Tree Model (BC-CI) SAP AG

The Simple Tree Model

242 April 2001

The Simple Tree Model
Definition
You create a simple tree model instance with reference to the class cl_simple_tree_model:

DATA simple_model TYPE REF TO cl_simple_tree_model.

This instance gives you access to the methods of the following classes:

� cl_tree_model (see Methods of Class CL_TREE_MODEL [Page 258])

� cl_simple_tree_model (see Methods of Class CL_SIMPLE_TREE_MODEL [Page 325])

Use
The program sapsimple_tree_model_demo demonstrates how to use the simple tree model.

For details of the attributes of the simple tree, refer to the Overview of SAP Tree Model Classes
[Page 232].

 SAP AG SAP Tree and Tree Model (BC-CI)

Getting Started With the Simple Tree Model

April 2001 243

Getting Started With the Simple Tree Model
Purpose
This section describes how to create, use, and destroy an instance of the SAP Simple Tree
Model.

Prerequisites
The process described here is an extension of the general process for using controls [Page 90]
that is specific to the simple tree model. It does not contain all of the steps required to produce a
valid instance of the control.

Process Flow

The program extracts are examples that do not necessarily illustrate all of the
features of the control. For precise information, consult the reference section of this
documentation.

Create the Instance for the Backend Model
1. Define a reference variable for the simple tree model:

DATA simple_model TYPE REF TO cl_simple_tree_model.

2. Create an instance of the SAP Simple Tree Model:
CREATE OBJECT simple_model
 EXPORTING node_selection_mode = node_selection_mode
 hide_selection = hide_selection
 EXCEPTIONS illegal_node_selection_mode = 1.

Create the Corresponding Frontend Control
3. Call the method create_tree_control for the simple_model instance. This creates the

frontend control in which the data from the simple tree model will be displayed.
CALL METHOD simple_model->create_tree_control
 EXPORTING parent = container
 EXCEPTIONS lifetime_error = 1
 cntl_system_error = 2
 create_error = 3
 failed = 4
 tree_control_already_created = 5

The parent parameter must contain the reference to a SAP Container that you have
already created. For further information, refer to the SAP Container [Ext.]
documentation.

SAP Tree and Tree Model (BC-CI) SAP AG

Getting Started With the Simple Tree Model

244 April 2001

Register the Events
4. Register the events [Page 99] of the simple tree model that you want to use. The control

supports the following events:

Event name Meaning

NODE_DOUBLE_CLICK User double-clicked a node

NODE_KEYPRESS User pressed a certain key. The keys that trigger
this event must be registered beforehand

EXPAND_NO_CHILDREN User expanded a node that has no child nodes

SELECTION_CHANGED Selected node has changed

NODE_CONTEXT_MENU_REQUEST User requested a context menu with the cursor
positioned on a node

NODE_CONTEXT_MENU_SELECT User selected an entry from the context menu

DEFAULT_CONTEXT_MENU_REQUEST User requested a context menu with the cursor
positioned on an empty space in the control

DEFAULT_CONTEXT_MENU_SELECT User selected an entry from the context menu

Fill the Simple Tree Model With Nodes
5. Add nodes to the simple tree model.

Fill a node table with the relevant node information, then pass it to the tree model using
the add_nodes [Ext.] method:
CALL METHOD simple_model->add_nodes
 EXPORTING nodes_table = nodes_table
 EXCEPTIONS error_in_node_table = 1.

This step adds nodes at the backend. They are not transferred to the control on the
screen until the end of the PBO event.

 SAP AG SAP Tree and Tree Model (BC-CI)

Getting Started With the Simple Tree Model

April 2001 245

Work With the Tree Model
6. Find out any node attributes that you need.

7. Change any node attributes as required.

Destroy the Control
8. Destroy the control container at the frontend. This destroys the tree control instance

contained within it as well.
CALL METHOD container->free.

If you are working with lifetime management, you do not need to worry about
destroying the control at the frontend yourself. It is done automatically by the system
instead.

9. Free the reference to the simple tree model. It will then be deleted by the garbage collector.
FREE simple_model.

SAP Tree and Tree Model (BC-CI) SAP AG

Searching in the Simple Tree Model

246 April 2001

Searching in the Simple Tree Model
Purpose
The Simple Tree Model, unlike the normal Simple Tree Control, allows you to search within the
backend version of the tree using the following methods:

To search for Use the following methods

Individual nodes find [Page 338], find_first [Page 339], find_next [Page 341]

A set of nodes find_all [Page 342], find_all_continue [Page 344]

Prerequisites
You must have created an instance of the Simple Tree Model.

Process Flow
1. Decide which search method you want to use and call the relevant method of

cl_simple_tree_model:

Search method Method of cl_simple_tree_model

Find individual nodes with user dialog find [Page 338]

Find individual nodes without a user dialog find_first [Page 339]

Find a set of nodes find_all [Page 342]

2. After the search stops, query the value of the result_type parameter. This tells you
whether the search text was found, not found, or if the search stopped because the system
encountered a node with the attribute EXPANDER = 'X' and no child nodes.

3. If the search stopped because of the third case, you can now load the child nodes into the
tree model using the add_node [Page 327] or add_nodes [Page 330] method, then restart
the search:

Search method Method used to restart the search

Individual nodes find_next [Page 341]

A set of nodes find_all_continue [Page 344]

If you are searching for individual nodes, you can also use find_next to go onto
the next occurrence of the search string.

 SAP AG SAP Tree and Tree Model (BC-CI)

The Column Tree Model

April 2001 247

The Column Tree Model
Definition
You create a column tree model instance with reference to the class cl_column_tree_model:

DATA column_model TYPE REF TO cl_column_tree_model.

This instance gives you access to the methods of the following classes:

� cl_tree_model (see Methods of Class CL_TREE_MODEL [Page 258])

� cl_item_tree_model (see Methods of Class CL_ITEM_TREE_MODEL [Page 345])

� cl_column_tree_model (see Methods of Class CL_COLUMN_TREE_MODEL [Page
399])

Use
The program sapcolumn_tree_model_demo demonstrates how to use the column tree model.

For details of the attributes of the column tree, refer to the Overview of SAP Tree Model Classes
[Page 232].

SAP Tree and Tree Model (BC-CI) SAP AG

Getting Started With the Column Tree Model

248 April 2001

Getting Started With the Column Tree Model
This section lists the functions that are specific to the Column Tree Model.

Prerequisites
The process described here is an extension of the general process for using controls [Page 90]
that is specific to the Column Tree Model. It does not contain all of the steps required to produce
a valid instance of the control.

Process Flow

The program extracts are examples that do not necessarily illustrate all of the
features of the control. For precise information, refer to the reference section of this
documentation.

Creating the Instance
28. Define a reference variable for the column tree model:
DATA column_model TYPE REF TO cl_column_tree_model.

29. Define a work area for the hierarchy heading by referring to the structure TREEMHHDR.

DATA hierarchy_header TYPE treemhhdr.

30. Fill the work area for the hierarchy heading. You can set the width (width), the text
(heading), an icon (image) and a tool tip (tooltip). There are also methods that allow
you to change these attributes later on.

hierarchy_header-heading = 'Title'.
hierarchy_header-width = 30.

31. Create an instance of the SAP Tree Model:
CREATE OBJECT column_model
 EXPORTING parent = container
 node_selection_mode = node_selection_mode
 hide_selection = hide_selection
 item_selection = item_selection
 hierarchy_column_name = hierarchy_column_name
 hierarchy_header = hierarchy_header
 EXCEPTIONS illegal_node_selection_mode = 1
 illegal_column_name = 2.

Register the Events
32. Register the events [Page 101] of the Column Tree Model. The control supports the following

events:

Event name Description

NODE_DOUBLE_CLICK User double-clicked a node

EXPAND_NO_CHILDREN User expanded a node that has no children

 SAP AG SAP Tree and Tree Model (BC-CI)

Getting Started With the Column Tree Model

April 2001 249

SELECTION_CHANGED Selected node has changed

NODE_CONTEXT_MENU_REQUEST User requested a context menu with the cursor
positioned on a node

NODE_CONTEXT_MENU_SELECT User selected an entry from the context menu

DEFAULT_CONTEXT_MENU_REQUEST User requested a context menu with the cursor
positioned on an empty space in the control

DEFAULT_CONTEXT_MENU_SELECT User selected an entry from the context menu

HEADER_CONTEXT_MENU_REQUEST User requested a context menu with the cursor
positioned on the heading

HEADER_CONTEXT_MENU_SELECT User selected an entry from the context menu

ITEM_KEYPRESS User pressed a key while an entry was selected.

NODE_KEYPRESS User pressed a key while an entry was selected.

HEADER_CLICK User clicked a heading

If you set the parameter item_selection = 'X' when you created the instance, you can also
react to the following events:

Event name Description

BUTTON_CLICK The user clicked an item with the class BUTTON

LINK_CLICK The user clicked an item with the class LINK

CHECKBOX_CHANGE The user clicked an item with the class CHECKBOX

ITEM_DOUBLE_CLICK The user double-clicked an item

ITEM_CONTEXT_MENU_REQUEST User requested a context menu with the cursor
positioned on an item

ITEM_CONTEXT_MENU_SELECT User selected an entry from the context menu for an
item

Using the Column Tree
33. Add nodes to the tree. To do this, fill a node table (type TREEMCNOTA, line type

TREEMCNODT [Page 466]), then pass it to the Column Tree Model using the method
add_nodes [Page 404].

34. Add the items. To do this, fill an item table (type TREEMCITAC, line type TREEMCITEN), then
pass it to the Column Tree Model using the method add_items [Page 406].

Remember that it is possible to update nodes and items at any time when you are
working with the Column Tree Model. For further information, refer to update_nodes
[Page 405] or update_items [Page 407].

8. Create the tree control instance that will display the data. Up until now, you have been
working with the tree model on the application server. However, this cannot, of itself, display
the data, so you now need to create the frontend tree. To do this, you must create a SAP

SAP Tree and Tree Model (BC-CI) SAP AG

Getting Started With the Column Tree Model

250 April 2001

Container Control, then pass a reference to this container to the create_tree_control [Page
259] method:

CALL METHOD column_model->create_tree_control
 EXPORTING parent = container.

 SAP AG SAP Tree and Tree Model (BC-CI)

Loading Items on Demand

April 2001 251

Loading Items on Demand
Use
In a very large List Tree Model or Column Tree Model, it may make sense not to load all of the
items when you create the tree. Instead, you can load items "on demand", that is, when the user
actually displays the node to which the items belong.

Prerequisites
� You must already have instantiated the List Tree Model or Column Tree Model

� You must have a class in your application that implements one of the following interfaces:

� If you are using the List Tree Model, interface IF_LIST_TREE_MODEL_ITEM_PROV.

� If you are using the Column Tree Model, interface
IF_COLUMN_TREE_MODEL_ITEM_PROV.

Procedure
1. When you add new nodes to the tree model, set the flag ITEMSINCOM to 'X'. This informs

the tree model that you want to load the items for that node on demand.

2. In your application class, implement the method LOAD_ITEMS of the relevant interface (see
the Prerequisites section above) so that it fills the internal table item_table with the
attributes of the items you want to load.

3. Depending on which version of the tree model you are using, call one of the following
interfaces and pass to it the instance of your application class that will provide the item
information:

Tree Model version you are using Method you should call

List Tree Model set_item_provider [Page 397] of
cl_list_tree_model

Column Tree Model set_item_provider [Page 449] of
cl_column_tree_model

 Result

When the user displays a node for which the items have not yet been loaded, and for which you
set the ITEMSINCOM attribute to 'X', it calls the LOAD_ITEMS method of the object you
specified in the SET_ITEM_PROVIDER method. This loads the items into the tree model instance,
after which, the system resets the ITEMSINCOM attribute to its initial value.

SAP Tree and Tree Model (BC-CI) SAP AG

The List Tree Model

252 April 2001

The List Tree Model
Definition
You create a list tree model instance with reference to the class cl_list_tree_model:

DATA list_model TYPE REF TO cl_list_tree_model.

This instance gives you access to the methods of the following classes:

� cl_tree_model (see Methods of Class CL_TREE_MODEL [Page 258])

� cl_item_tree_model (see Methods of Class CL_ITEM_TREE_MODEL [Page 345])

� cl_list_tree_model (see Methods of Class CL_LIST_TREE_MODEL [Page 369])

Use
The program saplist_tree_model_demo demonstrates how to use the list tree model.

For details of the attributes of the list tree, refer to the Overview of SAP Tree Model Classes
[Page 232].

 SAP AG SAP Tree and Tree Model (BC-CI)

Getting Started With the List Tree Model

April 2001 253

Getting Started With the List Tree Model
This section lists the functions that are specific to the List Tree Model.

Prerequisites
The process described here is an extension of the general process for using controls [Page 90]
that is specific to the list tree. It does not contain all of the steps required to produce a valid
instance of the control.

Process Flow

The program extracts are examples that do not necessarily illustrate all of the
features of the control. For precise information, refer to the reference section of this
documentation.

Creating the Instance
35. Define a reference variable for the List Tree Model:
DATA list_model TYPE REF TO cl_list_tree_model.

36. If you want to create a heading for the tree, you must create a work area for the hierarchy
heading with reference to the structure TREEMHHDR and one for the list heading with
reference to the structure TREEMLHDR:

DATA hierarchy_header TYPE treemhhdr.
DATA list_header type treemlhdr.

37. Fill the work area for the hierarchy heading. You can set the width (width), the text
(heading), an icon (t_image) and a tool tip (tooltip). There are also methods that allow
you to change these attributes later on.

hierarchy_header-heading = 'Title'.
hierarchy_header-width = 30.

38. Fill the work area for the list heading. You can set the text (heading), an icon (t_image)
and a tool tip (tooltip).

list_header-heading = 'List heading'.

39. [Page 189]Create an instance of the SAP List Tree Model:
CREATE OBJECT list_model
 EXPORTING node_selection_mode = node_selection_mode
 hide_selection = hide_selection
 item_selection = item_selection
 with_headers = with_headers
 hierarchy_header = hierarchy_header
 list_header = list_header
 EXCEPTIONS illegal_node_selection_mode = 1

Register the Events
40. Register the events for the List Tree Model. The control supports the following events:

SAP Tree and Tree Model (BC-CI) SAP AG

Getting Started With the List Tree Model

254 April 2001

Event name Description

NODE_DOUBLE_CLICK User double-clicked a node

EXPAND_NO_CHILDREN User expanded a node that has no children

SELECTION_CHANGED Selected node has changed

NODE_CONTEXT_MENU_REQUEST User requested a context menu with the cursor
positioned on a node

NODE_CONTEXT_MENU_SELECT User selected an entry from the context menu

DEFAULT_CONTEXT_MENU_REQUEST User requested a context menu with the cursor
positioned on an empty space in the control

DEFAULT_CONTEXT_MENU_SELECT User selected an entry from the context menu

HEADER_CONTEXT_MENU_REQUEST User requested a context menu with the cursor
positioned on the heading

HEADER_CONTEXT_MENU_SELECT User selected an entry from the context menu

ITEM_KEYPRESS User pressed a key while an entry was selected.

NODE_KEYPRESS User pressed a key while an entry was selected.

HEADER_CLICK User clicked a heading

If you set the parameter item_selection = 'X' when you created the instance, you can also
react to the following events:

Event name Description

BUTTON_CLICK The user clicked an item with the class BUTTON

LINK_CLICK The user clicked an item with the class LINK

CHECKBOX_CHANGE The user clicked an item with the class CHECKBOX

ITEM_DOUBLE_CLICK The user double-clicked an item

ITEM_CONTEXT_MENU_REQUEST User requested a context menu with the cursor
positioned on an item

ITEM_CONTEXT_MENU_SELECT User selected an entry from the context menu for an
item

Using the List Tree
7. Create a node table (type TREEMLNOTA, line type TREEMLNODT [Page 458]), fill it with

the nodes you want to add to the List Tree Model, and then use the add_nodes [Page 375]
method to pass the table to the tree model instance:

CALL METHOD list_model->add_nodes
 EXPORTING node_table = node_table.

9. Create an item table (type TREEMLITAC, line type TREEMLITEN), fill it with the items you
want to add to the List Tree Mode, and then use the add_items method to pass the table to
the tree model instance:

 SAP AG SAP Tree and Tree Model (BC-CI)

Getting Started With the List Tree Model

April 2001 255

CALL METHOD list_model->add_items
 EXPORTING item_table = item_table.

10. Create the tree control instance that will display the data. Up until now, you have been
working with the tree model on the application server. However, this cannot, of itself, display
the data, so you now need to create the frontend tree. To do this, you must create a SAP
Container Control, then pass a reference to this container to the create_tree_control [Page
259] method:

CALL METHOD column_model->create_tree_control
 EXPORTING parent = container.

SAP Tree and Tree Model (BC-CI) SAP AG

Loading Items on Demand

256 April 2001

Loading Items on Demand
Use
In a very large List Tree Model or Column Tree Model, it may make sense not to load all of the
items when you create the tree. Instead, you can load items "on demand", that is, when the user
actually displays the node to which the items belong.

Prerequisites
� You must already have instantiated the List Tree Model or Column Tree Model

� You must have a class in your application that implements one of the following interfaces:

� If you are using the List Tree Model, interface IF_LIST_TREE_MODEL_ITEM_PROV.

� If you are using the Column Tree Model, interface
IF_COLUMN_TREE_MODEL_ITEM_PROV.

Procedure
4. When you add new nodes to the tree model, set the flag ITEMSINCOM to 'X'. This informs

the tree model that you want to load the items for that node on demand.

5. In your application class, implement the method LOAD_ITEMS of the relevant interface (see
the Prerequisites section above) so that it fills the internal table item_table with the
attributes of the items you want to load.

6. Depending on which version of the tree model you are using, call one of the following
interfaces and pass to it the instance of your application class that will provide the item
information:

Tree Model version you are using Method you should call

List Tree Model set_item_provider [Page 397] of
cl_list_tree_model

Column Tree Model set_item_provider [Page 449] of
cl_column_tree_model

 Result

When the user displays a node for which the items have not yet been loaded, and for which you
set the ITEMSINCOM attribute to 'X', it calls the LOAD_ITEMS method of the object you
specified in the SET_ITEM_PROVIDER method. This loads the items into the tree model instance,
after which, the system resets the ITEMSINCOM attribute to its initial value.

 SAP AG SAP Tree and Tree Model (BC-CI)

Processing Events in the Tree Model

April 2001 257

Processing Events in the Tree Model
Purpose
Certain user actions on the tree control in the SAP Tree Model cause it to trigger events. You can
catch and handle the events in your ABAP program.

Process Flow
To react to an event from an SAP Tree Model instance, you must

� Define and implement a method (usually in a local class) as a handler for the event

� Register the event with the Control Framwork

� Register the event handler using the SET HANDLER statement.

For a full description of how to process control events, refer to Registering and Processing
Events [Page 99].

SAP Tree and Tree Model (BC-CI) SAP AG

Methods of Class CL_TREE_MODEL

258 April 2001

Methods of Class CL_TREE_MODEL

 SAP AG SAP Tree and Tree Model (BC-CI)

create_tree_control

April 2001 259

create_tree_control
When you create a tree model instance, it cannot display the tree until you have called this
method to create the frontend tree control.
CALL METHOD model->create_tree_control
 EXPORTING lifetime = lifetime
 parent = parent
 shellstyle = shellstyle
 IMPORTING control = control.

Parameter and Type Opt. Description

lifetime
TYPE I

X The lifetime of the control. If you leave this parameter blank,
the control inherits the lifetime of its container. Other possible
values:

� cl_gui_control=>lifetime_imode: The control
remains alive for the duration of the internal session (that is,
until the leave program, leave to transaction, or
set screen 0. leave screen statements occur.

� cl_gui_control=>lifetime_dynpro: The control
remains alive for the lifetime of the screen instance, that is,
for as long as the screen remains in the stack.

For further information, refer to Lifetime Management [Ext.].

parent
TYPE REF TO
CL_GUI_CONTAINE
R

The container control [Ext.] in which you want the tree to
appear

control
TYPE REF TO
CL_GUI_CONTROL

A reference to the tree control instance that the method
creates

SAP Tree and Tree Model (BC-CI) SAP AG

set_has_3d_frame

260 April 2001

set_has_3d_frame
Use this method to specify whether the tree control should be displayed "flat" or with a 3-
dimensional frame.
CALL METHOD model->set_has_3d_frame
 EXPORTING has_3d_frame = has_3d_frame.

Parameter and Type Opt. Description

has_3d_frame
TYPE AS4FLAG

Flag indicating the frame type:

� 'X': Tree is displayed with three-dimensional frame

� ' ': Tree does not have a three-dimensional frame

 SAP AG SAP Tree and Tree Model (BC-CI)

update_view

April 2001 261

update_view
This method synchronizes the tree model on the application server with its associated tree
control instance at the frontend.

You should not have to use this method, since the tree model and tree display are
synchronized automatically at the end of each PBO event and at the end of each
system event.

CALL METHOD model->update_view.

SAP Tree and Tree Model (BC-CI) SAP AG

add_key_stroke

262 April 2001

add_key_stroke
Use this method to define keys that trigger an event. To react to the events, you must also
register the corresponding event (NODE_KEYPRESS and/or ITEM_KEYPRESS).

CALL METHOD model->add_key_stroke
 EXPORTING key = key.

Parameters Description

key Key that you want to trigger the event:

CL_TREE_MODEL=>KEY_F1: Function key F1

CL_TREE_MODEL=>KEY_F4: Function key F4

CL_TREE_MODEL=>KEY_INSERT: Insert key

CL_TREE_MODEL=>KEY_DELETE: Delete key

 SAP AG SAP Tree and Tree Model (BC-CI)

remove_all_key_strokes

April 2001 263

remove_all_key_strokes
Use this method to deregister all of the keystrokes that were registered to trigger the
NODE_KEYPRESS and ITEM_KEYPRESS events.

CALL METHOD model->remove_all_key_strokes.

SAP Tree and Tree Model (BC-CI) SAP AG

get_key_strokes

264 April 2001

get_key_strokes
Use this method to find out which keys are registered to trigger the KEYPRESS event.

CALL METHOD model->get_key_strokes
 IMPORTING keystrokes = keystrokes.

Parameter and Type Opt. Description

keystrokes
TYPE TREEMINTEG

A table containing the registered keys. For further information,
refer to add_key_stroke [Page 262].

The internal table has the type I.

 SAP AG SAP Tree and Tree Model (BC-CI)

set_selected_node

April 2001 265

set_selected_node
Use this method to select a node in the tree model.
CALL METHOD model->set_selected_node
 EXPORTING node_key = node_key.

Parameter and Type Opt. Description

node_key
TYPE TM_NODEKEY

The key of the node you want to select

SAP Tree and Tree Model (BC-CI) SAP AG

select_nodes

266 April 2001

select_nodes
Use this method to select a set of nodes in the tree model. You can only use it if the tree model
instance supports multiple node selection.
CALL METHOD model->select_nodes
 EXPORTING node_key_table = node_key_table.

Parameter and
Type

Opt. Description

node_key_table
TYPE
TREEMNOTAB

An internal table, each line of which contains the key of a node you
want to select. The table has the line type TM_NODEKEY.

 SAP AG SAP Tree and Tree Model (BC-CI)

unselect_all

April 2001 267

unselect_all
Use this method to deselect all selected nodes.
CALL METHOD model->unselect all.

SAP Tree and Tree Model (BC-CI) SAP AG

unselect_nodes

268 April 2001

unselect_nodes
Use this method to deselect a set of nodes in the tree.
CALL METHOD model->unselect_nodes
 EXPORTING node_key_table = node_key_table.

Parameter and
Type

Opt. Description

node_key_table
TYPE
TREEMNOTAB

An internal table, each line of which contains the key of a node you
want to deselect within the tree. The table has the line type
TM_NODEKEY.

 SAP AG SAP Tree and Tree Model (BC-CI)

get_selected_node

April 2001 269

get_selected_node
Use this method to find out which node is currently selected.

Prerequisites
� You must have set up the tree model instance to support single node selection only

� You must have created a tree control in which the tree model can be displayed
(create_tree_control [Page 259] method)

Syntax
CALL METHOD model->get_selected_node
 IMPORTING node_key = node_key.

Parameter and
Type

Opt. Description

node_key
TYPE
TM_NODEKEY

The key of the selected node. If no node is selected, node_key
has the value ' '.

SAP Tree and Tree Model (BC-CI) SAP AG

get_selected_nodes

270 April 2001

get_selected_nodes
Use this method to find out which nodes are currently selected within the tree model.

Prerequisites
� You must have set up the tree model instance to support single node selection only

� You must have created a tree control in which the tree model can be displayed
(create_tree_control [Page 259] method)

Syntax
CALL METHOD model->get_selected_nodes
 IMPORTING node_key_table = node_key_table.

Parameter and
Type

Opt. Description

node_key
TYPE
TREEMNOTAB

An internal table in which each line contains the key of the
selected node. If no nodes are selected, the table is empty. The
table has the line type TM_NODEKEY.

 SAP AG SAP Tree and Tree Model (BC-CI)

get_node_selection_mode

April 2001 271

get_node_selection_mode
Use this method to find out whether single or multiple node selection has been set for the tree
model instance.
CALL METHOD model->get_node_selection_mode
 IMPORTING node_key = node_key.

Parameter and Type Opt. Description

node_selection_mo
de
TYPE I

The selection mode set up for the tree model instance. Possible
values:

� cl_tree_model=>node_sel_mode_single: Single node
selection

� cl_tree_model=>node_sel_mode_multiple: Multiple
node selection

SAP Tree and Tree Model (BC-CI) SAP AG

get_hide_selection

272 April 2001

get_hide_selection
Use this method to find out the current setting of the hide_selection attribute for the tree
model instance.
CALL METHOD model->get_hide_selection
 IMPORTING hide_selection = hide_selection.

Parameter and
Type

Opt. Description

hide_selection
TYPE AS4FLAG

Current setting of the hide_selection attribute. Possible values:

� 'X': Selection is hidden

� ' ': Selection is visible

 SAP AG SAP Tree and Tree Model (BC-CI)

node_keys_in_tree

April 2001 273

node_keys_in_tree
Use this method to check whether the keys of a set of nodes are already used in the tree model
instance. Duplicate keys are not allowed, and will lead to a runtime error. The SAP Tree Model,
unlike the normal SAP Tree, provides you with this means of checking that you do not use
duplicate keys.
CALL METHOD model->node_keys_in_tree
 EXPORTING node_key_table = node_key_table
 IMPORTING node_keys_in_tree = node_keys_in_tree
 node_keys_not_in_tree = node_keys_not_in_tree.

Parameter and Type Opt. Description

node_key_table
TYPE TREEMNOTAB

Internal table containing the node keys you want to check

node_keys_in_tree
TYPE TREEMNOTAB

The nodes from node_key_table that are already
contained in the tree model

node_keys_not_in_tre
e
TYPE TREEMNOTAB

The ndoes from node_key_table that are not contained in
the tree model

The internal table type TREEMNOTAB has the line type TM_NODEKEY.

SAP Tree and Tree Model (BC-CI) SAP AG

node_key_in_tree

274 April 2001

node_key_in_tree
Use this method to find out whether a particular node key is already used in the tree model
instance. Duplicate node keys are not allowed and lead to a runtime error.
CALL METHOD model->node_key_in_tree
 EXPORTING node_key = node_key
 RETURNING key_in_tree = key_in_tree.

Parameter and
Type

Opt. Description

node_key
TYPE
TM_NODEKEY

Node key that you want to check

key_in_tree
TYPE AS4FLAG

Flag to indicate whether the key is already used in the tree model
instance. Possible values:

� 'X': Already used

� ' ': Not used

Since key_in_tree is the only returning parameter, you can evaluate it by writing
the method call directly into an IF statement. For example:

IF model->node_key_in_tree(node_key = newnode) = 'X'.
MESSAGE i999.
* Node already exists in tree
ELSE.
CALL METHOD model->add_node...
...
ENDIF.

 SAP AG SAP Tree and Tree Model (BC-CI)

expand_node

April 2001 275

expand_node
Use this method to expand a given node. The node must be a folder. You can also specify
whether to expand its predecessor nodes (the nodes between it and the root node), and whether
to expand its child nodes.
CALL METHOD model->expand_node
 EXPORTING node_key = node_key
 expand_predecessors = expand_predecessors
 expand_subtree = expand_subtree
 level_count = level_count.

Parameter and Type Opt. Description

node_key
TYPE TM_NODEKEY

The key of the node you want to expand

expand_predecessor
s
TYPE AS4FLAG

X Flag indicating whether you want to expand the predecessor
nodes.

expand_subtree
TYPE AS4FLAG

X Flag indicating whether you want to expand the child nodes. If
it has the value 'X', the entire subtree below the node is
expanded, regardless of the value you specify in
level_count.

level_count
TYPE I

X Depth to which you want to expand the child nodes. Possible
values:

� '0': Only the current node is expanded

� '1': The current node and its immediate successors are
expanded

� 'n': The current node and its successors down to the nth

level are expanded.

Note: If you specify expand_subtree = 'X', the method
ignores level_count and expands the entire subtree.

Expanding nodes can lead to large numbers of child nodes being transferred to the
frontend control, which can lead to network timeouts. If you need to expand a lot of
nodes, use the methods save_expand_all_nodes [Page 278] or
save_expand_subree [Page 279].

SAP Tree and Tree Model (BC-CI) SAP AG

expand_nodes

276 April 2001

expand_nodes
Use this method to expand a set of nodes in the tree. The node can only be expanded if they are
folders containing child nodes.
CALL METHOD model->expand_nodes
 EXPORTING node_key_table = node_key_table.

Parameter and
Type

Opt. Description

node_key_table
TYPE
TREEMNOTAB

Internal table containing the keys of the nodes you want to expand.
The table has the line type TM_NODEKEY.

Expanding nodes can lead to large numbers of child nodes being transferred to the
frontend control, which can lead to network timeouts. If you need to expand a lot of
nodes, use the methods save_expand_all_nodes [Page 278] or
save_expand_subree [Page 279].

 SAP AG SAP Tree and Tree Model (BC-CI)

expand_root_nodes

April 2001 277

expand_root_nodes
Use this method to expand all of the root nodes in the tree model. A root node has the attribute
RELATKEY = ' '.

CALL METHOD model->expand_root_nodes
 EXPORTING expand_subtree = expand_subtree
 level_count = level_count.

Parameter and
Type

Opt. Description

expand_subtree
TYPE AS4FLAG

X If you set this parameter to 'X', the system expands all subtrees
of the root nodes

level_count
TYPE I

X Specifies the depth to which the root nodes should be expanded.
Possible values:

� 0: Only the root nodes themselves are expanded

� 1: The root nodes and their first level of child nodes are
expanded

� n: The root nodes are expanded down to their nth level of child
nodes.

Note: If you set the expand_subtree parameter to 'X', the value
of level_count is ignored.

Expanding nodes can lead to large numbers of child nodes being transferred to the
frontend control, which can lead to network timeouts. If you need to expand a lot of
nodes, use the methods save_expand_all_nodes [Page 278] or
save_expand_subree [Page 279].

SAP Tree and Tree Model (BC-CI) SAP AG

save_expand_all_nodes

278 April 2001

save_expand_all_nodes
Use this method to expand all of the nodes in the tree model instance. Since expanding all of the
nodes may involve sending a very large number of nodes to the frontend control, the method
does not necessarily attempt the expansion in a single step. Instead, it transfers as many nodes
as it can without risking a network timeout. The tree is expanded by level, that is, first all root
nodes, then all the child nodes of root nodes, and so on. The all_nodes_expanded parameter
indicates whether all nodes could be transferred during the operation.
CALL METHOD model->save_expand_all_nodes
 IMPORTING all_nodes_expanded = all_nodes_expanded.

Parameter and Type Opt. Description

all_nodes_expanded
TYPE AS4FLAG

Flag indicating whether all nodes could be expanded:

� 'X': Yes

� ' ': No

 SAP AG SAP Tree and Tree Model (BC-CI)

save_expand_subree

April 2001 279

save_expand_subree
Use this method to expand all of the nodes subordinate to a given node in the tree model
instance. Since this may involve sending a very large number of nodes to the frontend control,
the method does not necessarily attempt the expansion in a single step. Instead, it transfers as
many nodes as it can without risking a network timeout. The tree is expanded by level, that is,
first the node node_key, then all of its child nodes, and so on. The all_nodes_expanded
parameter indicates whether all nodes could be transferred during the operation.
CALL METHOD model->save_expand_subtree
 EXPORTING node_key = node_key
 IMPORTING all_nodes_expanded = all_nodes_expanded.

Parameter and Type Opt. Description

node_key
TYPE TM_NODEKEY

The key of the node you want to expand

all_nodes_expanded
TYPE AS4FLAG

Flag indicating whether all of the nodes could be expanded:

� 'X': Yes

� ' ': No

SAP Tree and Tree Model (BC-CI) SAP AG

expand_node_predecessors

280 April 2001

expand_node_predecessors
Use this method to expand all of the predecessor nodes of a given node, that is, all of the nodes
between it and the root node.
CALL METHOD model->expand_node_predecessors
 EXPORTING node_key = node_key.

Parameter and
Type

Opt. Description

node_key
TYPE
TM_NODEKEY

The key of the node whose predecessor nodes you want to
expand

 SAP AG SAP Tree and Tree Model (BC-CI)

get_expanded_nodes

April 2001 281

get_expanded_nodes
Use this method to find out the keys of all of the nodes in the tree model instance that are
currently expanded.
CALL METHOD model->get_expanded_nodes
 EXPORTING no_hidden_nodes
 IMPORTING node_key_table = node_key_table.

Parameter and
Type

Opt. Description

no_hidden_node
s
TYPE AS4FLAG

X If you set this option, a node only counts as expanded if its
predecessors are expanded.

node_key_table
TYPE
TREEMNOTAB

Internal table containing the keys of the expanded nodes. The
table has the line type TM_NODEKEY.

SAP Tree and Tree Model (BC-CI) SAP AG

collapse_all_nodes

282 April 2001

collapse_all_nodes
Use this method to collapse the entire tree display.
CALL METHOD model->collapse_all_nodes.

 SAP AG SAP Tree and Tree Model (BC-CI)

collapse_node

April 2001 283

collapse_node
Use this method to collapse a node in the tree. You can choose whether to collapse its subtree
as well.
CALL METHOD model->collapse_node
 EXPORTING node_key = node_key
 collapse_subtree = collapse_subtree.

Parameter and
Type

Opt. Description

node_key
TYPE
TM_NODEKEY

The key of the node you want to collapse

collapse_subtree
TYPE AS4FLAG

X Indicates whether the child nodes of the specified node should
also be collapsed:

� 'X': Yes

� ' ': No (default)

SAP Tree and Tree Model (BC-CI) SAP AG

get_first_root_node

284 April 2001

get_first_root_node
Use this method to find out the key of the first root node in the tree model instance.
CALL METHOD model->get_first_root_node
 IMPORTING node_key = node_key.

Parameter and Type Opt. Description

node_key
TYPE TM_NODEKEY

The key of the first root node.

 SAP AG SAP Tree and Tree Model (BC-CI)

get_last_root_node

April 2001 285

get_last_root_node
Use this method to find out the key of the last root node in the tree model instance.
CALL METHOD model->get_last_root_node
 IMPORTING node_key = node_key.

Parameter and Type Opt. Description

node_key
TYPE TM_NODEKEY

The key of the last root node.

SAP Tree and Tree Model (BC-CI) SAP AG

get_nr_of_root_nodes

286 April 2001

get_nr_of_root_nodes
Use this method to find out how many root nodes there are in the tree model instance.
CALL METHOD model->get_nr_of_root_nodes
 RETURNING nr_of_root_nodes = nr_of_root_nodes.

Parameter and Type Opt. Description

nr_of_root_nodes
TYPE I

Number of root nodes in the tree model instance

 SAP AG SAP Tree and Tree Model (BC-CI)

get_root_nodes

April 2001 287

get_root_nodes
Use this method to get the keys of all of the root nodes in the tree model instance.
CALL METHOD model->get_root_nodes
 IMPORTING node_key_table = node_key_table.

Parameter and
Type

Opt. Description

node_key_table
TYPE
TREEMNOTAB

An internal table, each line of which contains the key of one root
node. The table has the line type TM_NODEKEY.

SAP Tree and Tree Model (BC-CI) SAP AG

delete_all_nodes

288 April 2001

delete_all_nodes
Use this method to delete all of the nodes from an instance of the tree model.
CALL METHOD model->delete_all_nodes.

 SAP AG SAP Tree and Tree Model (BC-CI)

delete_node

April 2001 289

delete_node
Use this method to delete a single node from the tree. It also deletes all of its child nodes.
CALL METHOD model->delete_node
 EXPORTING node_key = node_key.

Parameter and Type Opt. Description

node_key
TYPE TM_NODEKEY

The key of the node you want to delete.

SAP Tree and Tree Model (BC-CI) SAP AG

delete_nodes

290 April 2001

delete_nodes
Use this method to delete a set of nodes from the tree. All of their child nodes are also deleted.
CALL METHOD model->delete_nodes
 EXPORTING node_key_table = node_key_table.

Parameter and
Type

Opt. Description

node_key_table
TYPE
TREEMNOTAB

An internal table, each line of which contains the key of a node
you want to delete.

 SAP AG SAP Tree and Tree Model (BC-CI)

node_set_disabled

April 2001 291

node_set_disabled
Use this method to set the disabled attribute of a node. Disabled nodes cannot be selected.

CALL METHOD model->node_set_disabled
 EXPORTING node_key = node_key
 disabled = disabled.

Parameter and
Type

Opt. Description

node_key
TYPE
TM_NODEKEY

The key of the node whose disabled attribute you want to change.

disabled
TYPE AS4FLAG

The new value of the disabled parameter:

� 'X': Node is disabled

� ' ': Node is not disabled

SAP Tree and Tree Model (BC-CI) SAP AG

node_set_dragdropid

292 April 2001

node_set_dragdropid
Use this method to set the drag and drop behavior of a node.
CALL METHOD model->node_set_dragdropid
 EXPORTING node_key = node_key
 dragdropid = dragdropid.

Parameter and
Type

Opt. Description

node_key
TYPE
TM_NODEKEY

The key of the relevant node

dragdropid
TYPE I

The drag and drop [Page 106] behavior that you want to assign to
the node.

 SAP AG SAP Tree and Tree Model (BC-CI)

node_set_expander

April 2001 293

node_set_expander
Use this method to set the expander attribute of a node. If you apply the method to a leaf, it is
turned into a folder.
CALL METHOD model->node_set_expander
 EXPORTING node_key = node_key
 expander = expander

Parameter and
Type

Opt. Description

node_key
TYPE
TM_NODEKEY

The key of the node for which you want to change the attribute

expander
TYPE AS4FLAG

The value of the expander attribute:

� 'X': Sets the expander attribute

� ' ': Revokes the expander attribute.

SAP Tree and Tree Model (BC-CI) SAP AG

node_set_expanded_image

294 April 2001

node_set_expanded_image
Use this method to set the image that will appear to represent a folder when it is expanded.
CALL METHOD model->node_set_expanded_image
 EXPORTING node_key = node_key
 exp_image = exp_image.

Parameter and
Type

Opt. Description

node_key
TYPE
TM_NODEKEY

The key of the node whose image you want to set

exp_image
TYPE
TV_IMAGE

The new image. Possible values:

� ' ': No icon

� '@XY@': The SAP icon with code XY

� 'BNONE': No icon. In a simple tree model, the node text then
appears where the icon would normally appear. For ergonomic
reasons, if you use this setting for a node, you should also use
it for all nodes at the same level.

 SAP AG SAP Tree and Tree Model (BC-CI)

node_set_hidden

April 2001 295

node_set_hidden
Use this method to set the hidden attribute of a node.
CALL METHOD model->node_set_hidden
 EXPORTING node_key = node_key
 hidden = hidden

Parameter and Type Opt. Description

node_key
TYPE TM_NODEKEY

Key of the node whose attribute you want to change

hidden
TYPE AS4FLAG

Sets the attribute:

� 'X': Node is hidden

� ' ': Node is visible

SAP Tree and Tree Model (BC-CI) SAP AG

node_set_is_folder

296 April 2001

node_set_is_folder
Use this method to set the is_folder attribute for a node.

CALL METHOD model->node_set_is_folder
 EXPORTING node_key = node_key
 is_folder = is_folder.

Parameter and Type Opt. Description

node_key
TYPE TM_NODEKEY

The key of the node whose attribute you want to change

is_folder
TYPE AS4FLAG

The new setting for the attribute:

� 'X': Node is a folder

� ' ': Node is a leaf

You can only convert a node to a leaf if it has no child nodes.

 SAP AG SAP Tree and Tree Model (BC-CI)

node_set_no_branch

April 2001 297

node_set_no_branch
Use this method to specify whether hierarchy lines should be drawn to a node.
CALL METHOD model->node_set_no_branch
 EXPORTING node_key = node_key
 no_branch = no_branch.

Parameter and
Type

Opt. Description

node_key
TYPE
TM_NODEKEY

The key of the node whose attribute you want to change

no_branch
TYPE AS4FLAG

Indicates whether the hierarchy lines should be drawn to the
node:

� 'X': Yes

� ' ': No

SAP Tree and Tree Model (BC-CI) SAP AG

node_set_image

298 April 2001

node_set_image
Use this method to set the image that will appear to represent a leaf or closed folder.
CALL METHOD model->node_set_image
 EXPORTING node_key = node_key
 image = image.

Parameter and
Type

Opt. Description

node_key
TYPE
TM_NODEKEY

The key of the node whose image you want to set

image
TYPE
TV_IMAGE

The new image. Possible values:

� ' ': No icon

� '@XY@': The SAP icon with code XY

� 'BNONE': No icon. In a simple tree model, the node text then
appears where the icon would normally appear. For ergonomic
reasons, if you use this setting for a node, you should also use
it for all nodes at the same level.

 SAP AG SAP Tree and Tree Model (BC-CI)

node_set_style

April 2001 299

node_set_style
Use this method to set the style of a node.
CALL METHOD model->node_set_style
 EXPORTING node_key = node_key
 style = style

Parameter and
Type

Opt. Description

node_key
TYPE
TM_NODEKEY

Key of the node for which you want to set the style

style
TYPE I

The style of the item. Possible values:

� cl_tree_model=>style_inherited: This has the same
effect as style_default

� cl_tree_model=>style_default: The item has the default
text and background colors

� cl_tree_model=>style_intensified

� cl_tree_model=>style_inactive

� cl_tree_model=>style_intensified_critical

� cl_tree_model=>style_emphasized_negative

� cl_tree_model=>style_emphasized_positive

� cl_tree_model=>style_emphasized

SAP Tree and Tree Model (BC-CI) SAP AG

node_set_user_object

300 April 2001

node_set_user_object
Use this method to assign any object reference to the node. The reference can, for example,
point to an object containing key application data relevant to the node.
CALL METHOD model->set_user_object
 EXPORTING node_key = node_key
 user_object = user_object.

Parameter and Type Opt. Description

node_key
TYPE TM_NODEKEY

Key of the node to which you want to assign the object

user_object
TYPE REF TO
OBJECT

Object reference

 SAP AG SAP Tree and Tree Model (BC-CI)

node_get_children

April 2001 301

node_get_children
Use this method to get a list of the child nodes of a specified node.
CALL METHOD model->node_get_children
 EXPORTING node_key = node_key
 IMPORTING node_key_table = node_key_table.

Parameter and
Type

Opt. Description

node_key
TYPE
TM_NODEKEY

Key of the relevant node

node_key_table
TYPE
TREEMNOTAB

Internal table, each line of which contains the key of a child of the
node specified in node_key. They are listed in the internal table
in the order in which they occur in the tree.

SAP Tree and Tree Model (BC-CI) SAP AG

node_get_first_child

302 April 2001

node_get_first_child
Use this method to find out the first child node of a given node.
CALL METHOD model->node_get_first_child
 EXPORTING node_key = node_key
 IMPORTING child_node_key = child_node_key.

Parameter and Type Opt. Description

node_key
TYPE TM_NODEKEY

Key of the node whose child node you want to find

child_node_key
TYPE TM_NODEKEY

The node key of the first child node.

 SAP AG SAP Tree and Tree Model (BC-CI)

node_get_last_child

April 2001 303

node_get_last_child
Use this method to find out the last child node of a given node.
CALL METHOD model->node_get_last_child
 EXPORTING node_key = node_key
 IMPORTING child_node_key = child_node_key.

Parameter and Type Opt. Description

node_key
TYPE TM_NODEKEY

Key of the node whose child node you want to find

child_node_key
TYPE TM_NODEKEY

The node key of the last child node.

SAP Tree and Tree Model (BC-CI) SAP AG

node_get_next_sibling

304 April 2001

node_get_next_sibling
Use this method to find out the key of the next node at the same level as a given node.
CALL METHOD model->node_get_next_sibling
 EXPORTING node_key = node_key
 IMPORTING sibling_node_key = sibling_node_key.

Parameter and Type Opt. Description

node_key
TYPE TM_NODEKEY

Key of the node to which the item belongs

sibling_node_key
TYPE TM_NODEKEY

The node key of the next same-level node

 SAP AG SAP Tree and Tree Model (BC-CI)

node_get_nr_of_children

April 2001 305

node_get_nr_of_children
Use this method to find out how many child nodes a given node has.
CALL METHOD model->node_get_nr_of_children
 EXPORTING node_key = node_key
 IMPORTING nr_of_children = nr_of_children.

Parameter and Type Opt. Description

node_key
TYPE TM_NODEKEY

Key of the node

nr_of_children
TYPE I

The number of child nodes that the node has

SAP Tree and Tree Model (BC-CI) SAP AG

node_get_parent

306 April 2001

node_get_parent
Use this method to find out the key of the parent node of a given node.
CALL METHOD model->node_get_parent
 EXPORTING node_key = node_key
 IMPORTING parent_node_key = parent_node_key.

Parameter and Type Opt. Description

node_key
TYPE TM_NODEKEY

Key of the node

parent_node_key
TYPE TM_NODEKEY

The node key of the parent node

 SAP AG SAP Tree and Tree Model (BC-CI)

node_get_prev_sibling

April 2001 307

node_get_prev_sibling
Use this method to find out the key of the previous node at the same level as a given node.
CALL METHOD model->node_get_next_sibling
 EXPORTING node_key = node_key
 IMPORTING sibling_node_key = sibling_node_key.

Parameter and Type Opt. Description

node_key
TYPE TM_NODEKEY

Key of the node to which the item belongs

sibling_node_key
TYPE TM_NODEKEY

The node key of the previous same-level node

SAP Tree and Tree Model (BC-CI) SAP AG

node_get_user_object

308 April 2001

node_get_user_object
Use this method to retrieve the user object of a given node.
CALL METHOD model->node_get_user_object
 EXPORTING node_key = node_key
 IMPORTING user_object = user_object.

Parameter and Type Opt. Description

node_key
TYPE TM_NODEKEY

Key of the node

user_object
TYPE REF TO
OBJECT

The user object belonging to the node

 SAP AG SAP Tree and Tree Model (BC-CI)

print_tree

April 2001 309

print_tree
Use this method to print the contents of the tree.
CALL METHOD model->print_tree
 EXPORTING all_nodes = all_nodes
 title = title
 preview = preview.

Parameter and
Type

Opt. Description

all_nodes
TYPE AS4FLAG

Indicates how much of the tree should be printed:

� 'X': Print the whole tree

� ' ': Only print expanded nodes

title
TYPE STRING

X Title to be printed with the tree

preview
TYPE AS4FLAG

Flag indicating whether a print preview should be displayed
before the tree is printed:

� 'X': Display preview

� ' ': No preview

SAP Tree and Tree Model (BC-CI) SAP AG

get_nr_of_nodes

310 April 2001

get_nr_of_nodes
Use this method to find out the number of nodes in the tree model.
CALL METHOD model->get_nr_of_nodes
 IMPORTING nr_of_nodes = nr_of_nodes.

Parameter and Type Opt. Description

nr_of_nodes
TYPE I

The number of nodes in the tree

 SAP AG SAP Tree and Tree Model (BC-CI)

ensure_visible

April 2001 311

ensure_visible
Use this method to ensure that a specified node appears within the tree display at the frontend.
CALL METHOD model->ensure_visible
 EXPORTING node_key = node_key.

Parameter and Type Opt. Description

node_key
TYPE TM_NODEKEY

Key of the node that should be visible

SAP Tree and Tree Model (BC-CI) SAP AG

move_node

312 April 2001

move_node
Use this method to move a node within the tree model.
CALL METHOD model->move_node
 EXPORTING node_key = node_key
 relative_node_key = relative_node_key
 relationship = relationship.

Parameter and
Type

Opt. Description

node_key
TYPE
TM_NODEKEY

Key of the node you want to move

relative_node_ke
y
TYPE
TM_NODEKEY

Key of the node to which the node will be related in its new
position

relationship
TYPE I

The relationship between the new node and the node specified in
relative_node_key. Possible values are:

� CL_TREE_MODEL=>RELAT_FIRST_CHILD
Inserts the new node as the first child node of the node
specified in relative_node_key. This must be a folder.

� CL_TREE_MODEL=>RELAT_LAST_CHILD
Inserts the new node as the last child node of the node
specified in relative_node_key. This must be a folder.

� CL_TREE_MODEL=>RELAT_PREV_SIBLING
Inserts the new node directly before the related node at the
same level.

� CL_TREE_MODEL=>RELAT_NEXT_SIBLING
Inserts the new node directly after the related node at the same
level.

� CL_TREE_MODEL=>RELAT_FIRST_SIBLING
Inserts the new node as the first node at the same level as the
related node.

� CL_TREE_MODEL=>RELAT_LAST_SIBLING
Inserts the new node as the last node at the same level as the
related node.

Note: If relative_node_key is empty, the new node is inserted
as a root node. Where the above values contain the word FIRST
or PREV, it is inserted as the first root node. Where they contain
LAST or NEXT, it is inserted as the last.

 SAP AG SAP Tree and Tree Model (BC-CI)

move_node

April 2001 313

SAP Tree and Tree Model (BC-CI) SAP AG

scroll

314 April 2001

scroll
Use this method to scroll the tree control display.
CALL METHOD model->scroll
 EXPORTING scroll_command = scroll_command.

Parameter and
Type

Opt. Description

scroll_command
TYPE I

Specification of the scroll operation. Possible values:

� cl_tree_model=>scroll_up_line: Scrolls up one line

� cl_tree_model=>scroll_down_line: Scrolls down one
line

� cl_tree_model=>scroll_up_page: Scrolls up one page

� cl_tree_model=>scroll_down_page: Scrolls down one
page

� cl_tree_model=>scroll_home: Scrolls to the top of the
tree

� cl_tree_model=>scroll_end: Scrolls to the bottom of the
tree

 SAP AG SAP Tree and Tree Model (BC-CI)

set_ctx_menu_select_event_appl

April 2001 315

set_ctx_menu_select_event_appl
Use this method to specify whether the SELECT event of a context menu should be an
application event (triggers PAI) or a system event (does not trigger PAI). You must call this event
before set_registered_events.

CALL METHOD model->set_ctx_menu_select_event_appl
 EXPORTING appl_event = appl_event.

Parameter and Type Opt. Description

appl_event
TYPE AS4FLAG

Specifies whether the event should be an application event:

� 'X': Application event

� ' ': System event

SAP Tree and Tree Model (BC-CI) SAP AG

get_ctx_menu_select_event_appl

316 April 2001

get_ctx_menu_select_event_appl
Use this method to find out whether the SELECT event for context menus is registered as an
application event or a system event.
CALL METHOD model->get_ctx_menu_select_event_appl
 IMPORTING appl_event = appl_event.

Parameter and Type Opt. Description

appl_event
TYPE AS4FLAG

Specifies whether the event is an application event:

� 'X': Application event

� ' ': System event

 SAP AG SAP Tree and Tree Model (BC-CI)

set_default_drop

April 2001 317

set_default_drop
Use this method to set the default drop behavior for drag and drop operations in which the object
is dropped onto the control area.
CALL METHOD model->set_default_drop
 EXPORTING drag_drop = drag_drop.

Parameter and Type Opt. Description

drag_drop
TYPE REF TO
CL_DRAGDROP

The default description

SAP Tree and Tree Model (BC-CI) SAP AG

get_default_drop

318 April 2001

get_default_drop
Use this method to find out the default drop behavior for drag and drop operations in which the
object is dropped onto the control area.
CALL METHOD model->get_default_drop
 IMPORTING drag_drop = drag_drop.

Parameter and Type Opt. Description

drag_drop
TYPE REF TO
CL_DRAGDROP

The default description

 SAP AG SAP Tree and Tree Model (BC-CI)

set_folder_show_exp_image

April 2001 319

set_folder_show_exp_image
Use this method to select which icon will be displayed when a folder is expanded.
CALL METHOD model->set_folder_show_exp_image
 EXPORTING folder_show_exp_image = folder_show_exp_image.

Parameter and Type Opt. Description

folder_show_exp_imag
e
TYPE AS4FLAG

Flag specifying which icon will be displayed:

� 'X': The icon specified in the EXPANDED_IMAGE attribute
is always displayed when the folder is expanded

� ' ': The icon specified in the EXPANDED_IMAGE attribute
is only displayed for the last folder to be expanded. All
other open folders display the icon specified in the IMAGE
attribute.

For further information, refer to node_set_image [Page 298] and
node_set_expanded_image [Page 294].

SAP Tree and Tree Model (BC-CI) SAP AG

get_folder_show_exp_image

320 April 2001

get_folder_show_exp_image
Use this method to find out which icon is displayed when a folder is expanded.
CALL METHOD model->get_folder_show_exp_image
 IMPORTING folder_show_exp_image = folder_show_exp_image.

Parameter and Type Opt. Description

folder_show_exp_imag
e
TYPE AS4FLAG

Flag specifying which icon will be displayed:

� 'X': The icon specified in the EXPANDED_IMAGE attribute
is always displayed when the folder is expanded

� ' ': The icon specified in the EXPANDED_IMAGE attribute
is only displayed for the last folder to be expanded. All
other open folders display the icon specified in the IMAGE
attribute.

 SAP AG SAP Tree and Tree Model (BC-CI)

set_top_node

April 2001 321

set_top_node
Use this method to set the topmost node in the tree display.
CALL METHOD model->set_top_node
 EXPORTING node_key = node_key.

Parameter and
Type

Opt. Description

node_key
TYPE
TM_NODEKEY

The key of the node you want to appear at the top of the display

SAP Tree and Tree Model (BC-CI) SAP AG

get_top_node

322 April 2001

get_top_node
Use this method to find the topmost node in the tree display.
CALL METHOD model->set_top_node
 IMPORTING node_key = node_key.

Parameter and Type Opt. Description

node_key
TYPE TM_NODEKEY

The key of the node at the top of the display

 SAP AG SAP Tree and Tree Model (BC-CI)

get_first_root_node

April 2001 323

get_first_root_node
Use this method to find out the first root node in the tree.
CALL METHOD model->get_first_root_node
 IMPORTING node_key = node_key.

Parameter and Type Opt. Description

node_key
TYPE TM_NODEKEY

The key of the first root node in the tree

SAP Tree and Tree Model (BC-CI) SAP AG

get_last_root_node

324 April 2001

get_last_root_node
Use this method to get the key of the last root node in the tree.
CALL METHOD model->get_last_root_node
 IMPORTING node_key = node_key.

Parameter and Type Opt. Description

node_key
TYPE TM_NODEKEY

The key of the last root node in the tree

 SAP AG SAP Tree and Tree Model (BC-CI)

Methods of Class CL_SIMPLE_TREE_MODEL

April 2001 325

Methods of Class CL_SIMPLE_TREE_MODEL

SAP Tree and Tree Model (BC-CI) SAP AG

constructor

326 April 2001

constructor
The constructor method is called automatically when you instantiate the class
cl_simple_tree_model. To do this, you must declare a reference variable as follows:

DATA simple_model TYPE REF TO cl_simple_tree_model.

You can then create an instance using the CREATE OBJECT statement.

CREATE OBJECT simple_model
 EXPORTING node_selection_mode = node_selection_mode
 hide_selection = hide_selection.

Parameter Opt. Description

node_selection_mo
de

Specifies whether or not multiple nodes can be selected
simultaneously. Possible values are

� cl_simple_tree_model=>node_sel_mode_single
Only one node at a time may be selected

� cl_simple_tree_model=>node_sel_mode_multiple
Multiple nodes may be selected

hide_selection X Specifies whether the selection should be hidden. Possible
values are

� 'X' - hide selection

� ' ' - Show selection

 SAP AG SAP Tree and Tree Model (BC-CI)

add_node

April 2001 327

add_node
Use this method to add a single node to the simple tree model. The node is inserted in the tree
structure within the model, and transported to the visible tree at the frontend at the end of the
next PBO event.
CALL METHOD simple_model->add_node
 EXPORTING node_key = node_key
 relative_node_key = relative_node_key
 relationship = relationship
 isfolder = isfolder
 text = text
 hidden = hidden
 disabled = disabled
 style = style
 no_branch = no_branch
 expander = expander
 image = image
 expanded_image = expanded_image
 drag_drop_object = drag_drop_object
 user_object = user_object.

Parameter and Type Opt. Description

node_key
TYPE STRING

The key by which the node is identified in the tree. This must be
unique throughout the tree. You should only use letters, digits,
and the underscore character in node keys.

relative_node_key
TYPE STRING

X The key of a node to which the new node is related in position. If
the new node is the first or last root node, this parameter must
have the value ' '.

SAP Tree and Tree Model (BC-CI) SAP AG

add_node

328 April 2001

relationship
I

X The relationship between the new node and the node specified in
relative_node_key. Possible values are:

� CL_TREE_MODEL=>RELAT_FIRST_CHILD
Inserts the new node as the first child node of the node
specified in relative_node_key. This must be a folder.

� CL_TREE_MODEL=>RELAT_LAST_CHILD
Inserts the new node as the last child node of the node
specified in relative_node_key. This must be a folder.

� CL_TREE_MODEL=>RELAT_PREV_SIBLING
Inserts the new node directly before the related node at the
same level.

� CL_TREE_MODEL=>RELAT_NEXT_SIBLING
Inserts the new node directly after the related node at the
same level.

� CL_TREE_MODEL=>RELAT_FIRST_SIBLING
Inserts the new node as the first node at the same level as
the related node.

� CL_TREE_MODEL=>RELAT_LAST_SIBLING
Inserts the new node as the last node at the same level as
the related node.

Note: If relative_node_key is empty, the new node is
inserted as a root node. Where the above values contain the
word FIRST or PREV, it is inserted as the first root node. Where
they contain LAST or NEXT, it is inserted as the last.

isfolder
TYPE AS4FLAG

Specifies whether the new node should be a folder or a leaf.
Possible values:

� 'X': Node is a folder

� ' ': Node is a leaf

text
TYPE STRING

Text for the node

hidden
TYPE AS4FLAG

X Specifies whether the node should be hidden ('X') or visible
(' '). Default is visible.

disabled
TYPE AS4FLAG

X Specifies whether the node can be selected (' ') or not ('X').
The default is not disabled.

Note: If a node is disabled, actions such as double-clicking it
have no effect.

style
TYPE AS4FLAG

X Sets the colors of the text and the background for the node. The
possible values for this field are any static constant
CL_TREE_MODEL=>STYLE_*. For further details, refer to the
definition of CL_TREE_MODEL in the Class Builder.

 SAP AG SAP Tree and Tree Model (BC-CI)

add_node

April 2001 329

no_branch
TYPE AS4FLAG

X Specifies whether connecting lines should be drawn between the
nodes (' ') or not ('X'). The default is for the lines to be drawn.

expander
TYPE AS4FLAG

X May only be set for a folder. If you set this attribute, the closed
folder always displays a '+' symbol, even if it is empty. When the
user clicks on the folder, the event EXPAND_NO_CHILDREN is
triggered.

image
C(6)

X Specifies the image used for the node. Possible values:

� initial: The system uses the default values (leaf symbol for a
leaf, closed folder symbol for a folder)

� '@XY@': An SAP icon with the code XY.

� 'BNONE': No image is displayed. The node text begins at
the position in which the image would normally be displayed.
If you use this value for a node, you should also use it for all
of its other same-level nodes.

expanded_image
C(6)

X Specifies the image used for an open folder. The possible values
are the same as those listed above for the image parameter.

drag_drop_object
I

X Only relevant if you want the node to be drag and drop-enabled.
It contains the handle for a drag and drop object.

user_object
TYPE REF TO
OBJECT

X Can be assigned any reference to an application object

SAP Tree and Tree Model (BC-CI) SAP AG

add_nodes

330 April 2001

add_nodes
Use this method to add a set of nodes to the tree model. The nodes are inserted into the tree
structure within the model, and transported to the visible tree at the frontend at the end of the
next PBO event.
CALL METHOD simple_model->add_nodes
 EXPORTING node_table = node_table.

Parameter and Type Opt. Description

node_table
TYPE TREEMSNOTA

Internal table containing the nodes you want to add to the tree
model. Each row of the table represents a node. The data type
TREEMSNOTA has the line type TREEMSNODT [Page 451].

 SAP AG SAP Tree and Tree Model (BC-CI)

update_nodes

April 2001 331

update_nodes
Use this method to change the attributes of nodes in the tree model. You cannot use it to change
the RELATKEY or RELATSHIP attributes. If you want to move a node, use the MOVE_NODE
method.
CALL METHOD simple_model->update_nodes
 EXPORTING node_table = node_table.

Parameter and Type Opt. Description

node_table
TYPE TREEMSUNOT

An internal table in which each line represents one node whose
attributes you want to change. You specify the key of the node,
and enter a new value for each attribute that you want to change.
Each changeable attribute also has a corresponding flag with the
name U_<attribute>. You must check this flag for each
attribute that you change.

For example, if you want to change the hidden attribute for a
node from ' ' (not hidden) to 'X' (hidden), you would enter
'X' in the HIDDEN field and 'X' in the field U_HIDDEN (to
indicate that the field must be updated). If you want to change all
of the changeable attributes for a given node, you should check
the U_ALL field instead of all of the individual U_<attribute>
flag fields.

The data type TREEMSUNOT has the line type TREEMSUNO
[Page 454].

SAP Tree and Tree Model (BC-CI) SAP AG

set_registered_events

332 April 2001

set_registered_events
Use this method to register a set of events with the Control Framework. For further information,
refer to Processing Events in the Tree Model [Page 257].
CALL METHOD tree_model->set_registered_events
 EXPORTING events = events.

Parameter and Type Opt. Description

events
TYPE
CNTL_SIMPLE_EVE
NTS

Internal table in which each row represents an event that you
want to register.

When you fill the internal table for the events parameter, you can use the data type
CNTL_SIMPLE_EVENT to define a work area.

Structure of CNTL_SIMPLE_EVENT
Component Type Opt. Description

eventid I The ID of the event you want to register. These are all defined
as static constants in the relevant wrapper class. For further
information, refer to Tree Model Events [Ext.].

appl_event Specifies the type of the event:

� ' ': System event

� 'X': Application event

For further information, refer to Processing Events in the Tree
Model [Page 257].

 SAP AG SAP Tree and Tree Model (BC-CI)

get_registered_events

April 2001 333

get_registered_events
Use this method to return a list of the events that are registered at the Control Framework for the
control instance.

Events in this list are registered at the Control Framework. However, in order for the
event to be handled, you must also have registered its handler method using the SET
HANDLER statement.

CALL METHOD tree_model->get_registered_events
 IMPORTING events = events.

Parameter and Type Opt. Description

events
TYPE
CNTL_SIMPLE_EVEN
TS

Internal table in which each row represents an event that you
want to register.

SAP Tree and Tree Model (BC-CI) SAP AG

node_set_text

334 April 2001

node_set_text
Use this method to set the text for a node in the simple tree model.
CALL METHOD simple_tree->node_set_text
 EXPORTING node_key = node_key
 text =.text.

Although the text attribute is implemented with type STRING, and therefore has no
defined maximum length, only the first 100 characters of the text can be displayed in
the frontend control.

Parameter and Type Opt. Description

node_key
TYPE STRING

Key of the node for which you want to set the text

text
TYPE STRING

New node text

 SAP AG SAP Tree and Tree Model (BC-CI)

node_get_text

April 2001 335

node_get_text
Use this method to return the text of a node in the simple tree model.
CALL METHOD simple_tree->node_get_text
 EXPORTING node_key = node_key
 IMPORTING text =.text.

Parameter and Type Opt. Description

node_key
TYPE STRING

Key of the node for which you want to retrieve the text

text
TYPE STRING

Node text

SAP Tree and Tree Model (BC-CI) SAP AG

node_get_properties

336 April 2001

node_get_properties
Use this method to find out the properties of a given node.
CALL METHOD simple_tree->node_get_properties
 EXPORTING node_key = node_key
 IMPORTING properties = properties.

Parameter and Type Opt. Description

node_key
TYPE STRING

Key of the node for which you want to set the text

properties
TYPE TREEMSNODT

Properties of the node. For a full description of the structure of
this parameter, refer to Structure TREEMSNODT [Page 451].

 SAP AG SAP Tree and Tree Model (BC-CI)

get_tree

April 2001 337

get_tree
Use this method to return the contents of the tree in an internal table.
CALL METHOD simple_model->get_tree
 IMPORTING node_table = node_table.

Parameter and Type Opt. Description

node_table
TYPE TREEMSNOTA

Internal table containing the nodes in the tree model. Each row of
the table represents a node. The data type TREEMSNOTA has the
line type TREEMSNODT [Page 451].

SAP Tree and Tree Model (BC-CI) SAP AG

find

338 April 2001

find
Use this method to allow the user to search for a string within the tree. It displays a dialog box in
which the user can enter the search string and specify whether to search specifically or using the
ABAP operator CP.
CALL METHOD simple_model->find_first
 IMPORTING result_type = result_type
 result_node_key = result_node_key.

Parameter and Type Opt. Description

result_type
TYPE I

This parameter contains the reason why the search stopped. It
can have the following values:

� cl_simple_tree_model=>find_match
The search string was found.

� cl_simple_tree_model=>find_no_match
The search string was not found

� cl_simple_tree_model=>find_expander_node_hit
The search has encountered a node with the attribute
EXPANDER = 'X' and no child nodes. Note: This only
applies if you set the stop_at_expander_node
parameter.

result_node_key
TYPE STRING

The key of the node at which the search stopped

 SAP AG SAP Tree and Tree Model (BC-CI)

find_first

April 2001 339

find_first
Use this method to find the first occurrance of a string in the tree. The system searches the tree
from top to bottom, starting from a node that you specify.
CALL METHOD simple_model->find_first
 EXPORTING search_string = search_string
 pattern_search = pattern_search
 start_node = start_node
 stop_at_expander_node = stop_at_expander_node
 IMPORTING result_type = result_type
 result_node_key = result_node_key.

Parameter and Type Opt. Description

search_string
TYPE TM_NODEKEY

The string for which you want to search

pattern_search
TYPE AS4FLAG

X Flag indicating whether you want to search specifically or
generically. If you select this option, the search uses the
ABAP operator CP (contains pattern)

start_node
TYPE TM_NODEKEY

X The starting node for the search. If you do not specify a
starting node, the system searches from the root node of the
tree

stop_at_expander_node
TYPE AS4FLAG

X If you set this option, the search stops if it encounters a node
that has the attribute EXPANDER = 'X' but no child nodes.
The result_type and result_node_key attributes are
set accordingly. You can then load the child nodes into the
tree model before resuming the search using the
FIND_NEXT [Page 341] method.

result_type
TYPE I

This parameter contains the reason why the search stopped.
It can have the following values:

� cl_simple_tree_model=>find_match
The search string was found.

� cl_simple_tree_model=>find_no_match
The search string was not found

�
cl_simple_tree_model=>find_expander_node_h
it
The search has encountered a node with the attribute
EXPANDER = 'X' and no child nodes. Note: This only
applies if you set the stop_at_expander_node
parameter.

result_node_key
TYPE TM_NODEKEY

The key of the node at which the search stopped.

Caution: If the search string was not found, this parameter is
not filled. It may therefore be empty. However, it may also
contain a value from a previous search.

SAP Tree and Tree Model (BC-CI) SAP AG

find_first

340 April 2001

 SAP AG SAP Tree and Tree Model (BC-CI)

find_next

April 2001 341

find_next
You use this method n the following circumstances to resume a search that you started with the
find_first method:

� To find the next occurrence of the search string

� To resume a search which terminated because it encountered a node with the attribute
EXPANDER = 'X' and no child nodes.

It uses the same search criteria as you specified in find_first.

CALL METHOD simple_model->find_first
 IMPORTING result_type = result_type
 result_node_key = result_node_key.

Parameter and Type Opt. Description

result_type
TYPE I

This parameter contains the reason why the search stopped. It
can have the following values:

� cl_simple_tree_model=>find_match
The search string was found.

� cl_simple_tree_model=>find_no_match
The search string was not found

� cl_simple_tree_model=>find_expander_node_hit
The search has encountered a node with the attribute
EXPANDER = 'X' and no child nodes. Note: This only
applies if you set the stop_at_expander_node
parameter.

result_node_key
TYPE STRING

The key of the node at which the search stopped.

Note: If the search string was not found, this parameter is
empty.

SAP Tree and Tree Model (BC-CI) SAP AG

find_all

342 April 2001

find_all
Use this method to search for all occurrences of a search string within the tree model.
CALL METHOD simple_model->find_all
 EXPORTING search_string = search_string
 pattern_search = pattern_search
 start_node = start_node
 stop_at_expander_node = stop_at_expander_node
 result_type = result_type
 result_expander_node_key = result_expander_node_key
 result_node_key_table = result_node_key_table

Parameter and Type Opt. Description

search_string
TYPE STRING

The string for which you want to search

pattern_search
TYPE AS4FLAG

Flag indicating whether you want to search specifically or
generically. If you select this option, the search uses the
ABAP operator CP (contains pattern)

start_node
TYPE STRING

The starting node for the search. If you do not specify a
starting node, the system searches from the root node of
the tree

stop_at_expander_node
TYPE AS4FLAG

If you set this option, the search stops if it encounters a
node that has the attribute EXPANDER = 'X' but no
child nodes. The result_type and
result_node_key attributes are set accordingly. You
can then load the child nodes into the tree model before
resuming the search using the FIND_ALL_CONTINUE
[Page 344] method.

result_type
TYPE I

This parameter contains the reason why the search
stopped. It can have the following values:

� cl_simple_tree_model=>find_match
The search string was found.

� cl_simple_tree_model=>find_no_match
The search string was not found

� cl_simple_tree_model=>find_expander_
node_hit
The search has encountered a node with the
attribute EXPANDER = 'X' and no child nodes.

Note: This only applies if you set the
stop_at_expander_node parameter.

result_expander_node_key
TYPE STRING

The key of the node at which the search stopped.

Note: If the search string was not found, this parameter
is empty.

 SAP AG SAP Tree and Tree Model (BC-CI)

find_all

April 2001 343

result_node_key_table
TYPE TREEMNOTAB

An internal table containing the node keys of the nodes
in which the search string was found.

The data type TREEMNOTAB is an internal table whose
line type is a single STRING field.

SAP Tree and Tree Model (BC-CI) SAP AG

find_all_continue

344 April 2001

find_all_continue
Use this method to resume a search that you started using the FIND_ALL [Page 342] method
and which was interrupted because the search encountered a node with the attribute EXPANDER
= 'X' and no child nodes. The method uses the same search criteria as you used in the
FIND_ALL method.
CALL METHOD simple_model->find_all_continue
 IMPORTING result_type = result_type
 result_expander_node_key = result_expander_node_key
 result_node_key_table = result_node_key_table.

Parameter and Type Opt. Description

result_type
TYPE I

This parameter contains the reason why the search
stopped. It can have the following values:

� cl_simple_tree_model=>find_match
The search string was found.

� cl_simple_tree_model=>find_no_match
The search string was not found

� cl_simple_tree_model=>find_expander_
node_hit
The search has encountered a node with the
attribute EXPANDER = 'X' and no child nodes.

Note: This only applies if you set the
stop_at_expander_node parameter.

result_expander_node_key
TYPE STRING

The key of the node at which the search stopped.

Note: If the search string was not found, this parameter
is empty.

result_node_key_table
TYPE TREEMNOTAB

An internal table containing the node keys of the nodes
in which the search string was found.

The data type TREEMNOTAB is an internal table whose
line type is a single STRING field.

 SAP AG SAP Tree and Tree Model (BC-CI)

Methods of Class CL_ITEM_TREE_MODEL

April 2001 345

Methods of Class CL_ITEM_TREE_MODEL
The class CL_ITEM_TREE_MODEL contains methods and attributes that are shared by the
Column Tree Model and the List Tree Model. You can address its components as though they
belonged to either CL_COLUMN_TREE_MODEL or CL_LIST_TREE_MODEL.

SAP Tree and Tree Model (BC-CI) SAP AG

set_registered_events

346 April 2001

set_registered_events
Use this method to register a set of events with the Control Framework. For further information,
refer to Processing Events in the Tree Model [Page 257].
CALL METHOD tree_model->set_registered_events
 EXPORTING events = events.

Parameter and Type Opt. Description

events
TYPE
CNTL_SIMPLE_EVE
NTS

Internal table in which each row represents an event that you
want to register.

When you fill the internal table for the events parameter, you can use the data type
CNTL_SIMPLE_EVENT to define a work area.

Structure of CNTL_SIMPLE_EVENT
Component Type Opt. Description

eventid I The ID of the event you want to register. These are all defined
as static constants in the relevant wrapper class. For further
information, refer to Tree Model Events [Ext.].

appl_event Specifies the type of the event:

� ' ': System event

� 'X': Application event

For further information, refer to Processing Events in the Tree
Model [Page 257].

 SAP AG SAP Tree and Tree Model (BC-CI)

get_registered_events

April 2001 347

get_registered_events
Use this method to return a list of the events that are registered at the Control Framework for the
control instance.

Events in this list are registered at the Control Framework. However, in order for the
event to be handled, you must also have registered its handler method using the SET
HANDLER statement.

CALL METHOD tree_model->get_registered_events
 IMPORTING events = events.

Parameter and Type Opt. Description

events
TYPE
CNTL_SIMPLE_EVEN
TS

Internal table in which each row represents an event that you
want to register.

SAP Tree and Tree Model (BC-CI) SAP AG

find

348 April 2001

find
Use this method to allow the user to search for a string within the tree. It displays a dialog box in
which the user can enter the search string a specify whether to search specifically or using the
ABAP operator CP.
CALL METHOD item_model->find
 IMPORTING result_type = result_type
 result_item_key_table = result_item_key_table.

Parameter and Type Opt. Description

result_type
TYPE I

The reason why the search stopped. It can have the following
values:

� cl_item_tree_model=>find_match: The search string
was found

� cl_item_tree_model=>find_no_match: The search
string was not found

result_item_key_table
TYPE TREEMIKS

An internal table, each line of which represents a point at
which the search string was found. The line type has two
fields:

� node_key (type TM_NODEKEY)

� item_name (type TV_ITMNAME)

 SAP AG SAP Tree and Tree Model (BC-CI)

find_first

April 2001 349

find_first
Use this method to find the first occurrence of a string in the tree. The system searches the tree
from top to bottom, starting at a node that you specify. You can also restrict the search to certain
items within the tree structure.
CALL METHOD item_model->find_first
 EXPORTING search_string = search_string
 item_name_table = item_name_table
 pattern_search = pattern_search
 start_node = start_node
 stop_at_expander_node = stop_at_expander_node
 IMPORTING result_type = result_type
 result_item_key_table = result_item_key_table
 result_expander_node_key = result_expander_node_key.

Parameter and Type Opt. Description

search_string
TYPE TM_NODEKEY

The string for which you want to search

item_name_table
TYPE TREEMINAMT

X You can use this internal table to specify the names of items.
If you do, the system only searches for the search string in
items whose names are contained in the table.

pattern_search
TYPE AS4FLAG

X Flag indicating whether you want to search specifically or
generically. If you select this option, the search uses the
ABAP operator CP (contains pattern)

start_node
TYPE TM_NODEKEY

X The starting node for the search. If you do not specify a
starting node, the system searches from the root node of the
tree

stop_at_expander_nod
e
TYPE AS4FLAG

X If you set this option, the search stops if it encounters a node
that has the attribute EXPANDER = 'X' but no child nodes.
The result_type and result_node_key attributes are
set accordingly. You can then load the child nodes into the
tree model before resuming the search using the FIND_NEXT
[Page 351] method.

result_type
TYPE I

This parameter contains the reason why the search stopped.
It can have the following values:

� cl_item_tree_model=>find_match
The search string was found.

� cl_item_tree_model=>find_no_match
The search string was not found

� cl_item_tree_model=>find_expander_node_hit
The search has encountered a node with the attribute
EXPANDER = 'X' and no child nodes. Note: This only
applies if you set the stop_at_expander_node
parameter.

SAP Tree and Tree Model (BC-CI) SAP AG

find_first

350 April 2001

result_item_key_table
TYPE TREEMIKS

An internal table, each line of which represents a point at
which the search string was found. The line type has two
fields:

� node_key (type TM_NODEKEY)

� item_name (type TV_ITMNAME)

result_node_key
TYPE TM_NODEKEY

The key of the node at which the search stopped.

Caution: If the search string was not found, this parameter is
not filled. It may therefore be empty. However, it may also
contain a value from a previous search.

 SAP AG SAP Tree and Tree Model (BC-CI)

find_next

April 2001 351

find_next
Use this method to resume a search that you started using the find_first [Page 349] method (for
example, after the initial search stopped with result type find_expander_node_hit). The new
search inherits the same search criteria as the initial search.
CALL METHOD item_model->find_next
 IMPORTING result_type = result_type
 result_item_key_table = result_item_key_table
 result_expander_node_key = result_expander_node_key.

Parameter and Type Opt. Description

result_type
TYPE I

This parameter contains the reason why the search stopped.
It can have the following values:

� cl_item_tree_model=>find_match
The search string was found.

� cl_item_tree_model=>find_no_match
The search string was not found

� cl_item_tree_model=>find_expander_node_hit
The search has encountered a node with the attribute
EXPANDER = 'X' and no child nodes. Note: This only
applies if you set the stop_at_expander_node
parameter.

result_item_key_table
TYPE TREEMIKS

An internal table, each line of which represents a point at
which the search string was found. The line type has two
fields:

� node_key (type TM_NODEKEY)

� item_name (type TV_ITMNAME)

result_node_key
TYPE TM_NODEKEY

The key of the node at which the search stopped.

Caution: If the search string was not found, this parameter is
not filled. It may therefore be empty. However, it may also
contain a value from a previous search.

SAP Tree and Tree Model (BC-CI) SAP AG

find_all

352 April 2001

find_all
Use this method to find all occurrences of a search string within an item tree model instance.
CALL METHOD item_model->find_all
 EXPORTING search_string = search_string
 item_name_table = item_name_table
 pattern_search = pattern_search
 start_node = start_node
 stop_at_expander_node = stop_at_expander_node
 IMPORTING result_type = result_type
 result_item_key_table = result_item_key_table
 result_expander_node_key = result_expander_node_key.

Parameter and Type Opt. Description

search_string
TYPE TM_NODEKEY

The string for which you want to search

item_name_table
TYPE TREEMINAMT

X You can use this internal table to specify the names of items.
If you do, the system only searches for the search string in
items whose names are contained in the table.

pattern_search
TYPE AS4FLAG

X Flag indicating whether you want to search specifically or
generically. If you select this option, the search uses the
ABAP operator CP (contains pattern)

start_node
TYPE TM_NODEKEY

X The starting node for the search. If you do not specify a
starting node, the system searches from the root node of the
tree

stop_at_expander_nod
e
TYPE AS4FLAG

X If you set this option, the search stops if it encounters a node
that has the attribute EXPANDER = 'X' but no child nodes.
The result_type and result_node_key attributes are
set accordingly. You can then load the child nodes into the
tree model before resuming the search using the
FIND_ALL_CONTINUE [Page 354] method.

result_type
TYPE I

This parameter contains the reason why the search stopped.
It can have the following values:

� cl_item_tree_model=>find_match
The search string was found.

� cl_item_tree_model=>find_no_match
The search string was not found

� cl_item_tree_model=>find_expander_node_hit
The search has encountered a node with the attribute
EXPANDER = 'X' and no child nodes. Note: This only
applies if you set the stop_at_expander_node
parameter.

 SAP AG SAP Tree and Tree Model (BC-CI)

find_all

April 2001 353

result_item_key_table
TYPE TREEMIKS

An internal table, each line of which represents a point at
which the search string was found. The line type has two
fields:

� node_key (type TM_NODEKEY)

� item_name (type TV_ITMNAME)

result_node_key
TYPE TM_NODEKEY

The key of the node at which the search stopped.

Caution: If the search string was not found, this parameter is
not filled. It may therefore be empty. However, it may also
contain a value from a previous search.

SAP Tree and Tree Model (BC-CI) SAP AG

find_all_continue

354 April 2001

find_all_continue
Use this method to resume a search that you started using the FIND_ALL [Page 352] method
and which was interrupted because the search encountered a node with the attribute EXPANDER
= 'X' and no child nodes. The method uses the same search criteria as you used in the
FIND_ALL method.
CALL METHOD item_model->find_all_continue
 IMPORTING result_type = result_type
 result_item_key_table = result_item_key_table
 result_expander_node_key = result_expander_node_key.

Parameter and Type Opt. Description

result_type
TYPE I

This parameter contains the reason why the search stopped.
It can have the following values:

� cl_item_tree_model=>find_match
The search string was found.

� cl_item_tree_model=>find_no_match
The search string was not found

� cl_item_tree_model=>find_expander_node_hit
The search has encountered a node with the attribute
EXPANDER = 'X' and no child nodes. Note: This only
applies if you set the stop_at_expander_node
parameter.

result_item_key_table
TYPE TREEMIKS

An internal table, each line of which represents a point at
which the search string was found. The line type has two
fields:

� node_key (type TM_NODEKEY)

� item_name (type TV_ITMNAME)

result_node_key
TYPE TM_NODEKEY

The key of the node at which the search stopped.

Caution: If the search string was not found, this parameter is
not filled. It may therefore be empty. However, it may also
contain a value from a previous search.

 SAP AG SAP Tree and Tree Model (BC-CI)

select_item

April 2001 355

select_item
Use this method to select a specific item in an item tree model. Selecting an item using this
method cancels any earlier selection the user may have made.
CALL METHOD item_model->select_item
 EXPORTING node_key = node_key
 item_name = item_name.

Parameter and Type Opt. Description

node_key
TYPE TM_NODEKEY

Node containing the item you want to select

item_name
TYPE TV_ITMNAME

Item that you want to select

This method is subject to the usual rules concerning item selection (for example, an
item with the attribute DISABLED = 'X' cannot be selected).

SAP Tree and Tree Model (BC-CI) SAP AG

get_selected_item

356 April 2001

get_selected_item
Use this method to find out which item is currently selected.
CALL METHOD item_model->get_selected_item
 IMPORTING node_key = node_key
 item_name = item_name.

Parameter and Type Opt. Description

node_key
TYPE TM_NODEKEY

Node containing the item that is selected

item_name
TYPE TV_ITMNAME

Selected item

 SAP AG SAP Tree and Tree Model (BC-CI)

get_item_selection

April 2001 357

get_item_selection
Use this method to find out whether item selection is enabled for the tree model instance. When
you instantiate the List or Column Tree Model, you specify whether the user should be able to
select individual items or whether clicking on an item automatically selects the entire node.
CALL METHOD item_model->get_item_selection
 IMPORTING item_selection = item_selection.

Parameter and Type Opt. Description

item_selection
TYPE AS4FLAG

Flag indicating whether item selection is allowed:

� 'X': Yes

� ' ': No

SAP Tree and Tree Model (BC-CI) SAP AG

delete_items

358 April 2001

delete_items
Use this method to delete a specific set of items.
CALL METHOD item_model->delete_items
 EXPORTING item_key_table = item_key_table.

Parameter and
Type

Opt. Description

item_key_table
TYPE
TREEMIKS

An internal table, each line of which represents an item that you
want to delete. The line type of TREEMIKS is TREEMIKEY, which
has the following structure:

� node_key (type TM_NODEKEY)

� item_name (type TV_ITMNAME)

 SAP AG SAP Tree and Tree Model (BC-CI)

delete_all_items_of_nodes

April 2001 359

delete_all_items_of_nodes
Use this method to delete all of the items belonging to a specified set of nodes.
CALL METHOD item_model->delete_all_items_of_nodes
 EXPORTING node_key_table = node_key_table.

Parameter and
Type

Opt. Description

node_key_table
TYPE
TREEMNOTAB

An internal table, each line of which represents a node of the tree
model instance whose items you want to delete. The internal
table has the line type TM_NODEKEY.

SAP Tree and Tree Model (BC-CI) SAP AG

item_set_chosen

360 April 2001

item_set_chosen
Use this method to change the selection of an item with the type checkbox.
CALL METHOD item_model->item_set_chosen
 EXPORTING node_key = node_key
 item_name = item_name
 chosen = chosen.

Parameter and Type Opt. Description

node_key
TYPE TM_NODEKEY

Key of the node containing the checkbox

item_name
TYPE TV_ITMNAME

Name of the checkbox item

chosen
TYPE AS4FLAG

Parameter containing the new state of the checkbox:

� 'X': Checkbox is selected

� ' ': Checkbox is not selected

 SAP AG SAP Tree and Tree Model (BC-CI)

item_set_disabled

April 2001 361

item_set_disabled
Use this method to set the disabled attribute of an item. A disabled item cannot be selected.
CALL METHOD item_model->item_set_disabled
 EXPORTING node_key = node_key
 item_name = item_name
 disabled = disabled

Parameter and Type Opt. Description

node_key
TYPE TM_NODEKEY

The key of the node to which the relevant item belongs

item_name
TYPE TV_ITMNAME

The item whose disabled attribute you want to change

disabled
TYPE AS4FLAG

New value for the disabled attribute. Possible values:

� 'X': Item disabled

� ' ': Item not disabled

SAP Tree and Tree Model (BC-CI) SAP AG

item_set_editable

362 April 2001

item_set_editable
Use this method to set the editable attribute of a checkbox item.
CALL METHOD item_model->item_set_editable
 EXPORTING node_key = node_key
 item_name = item_name
 editable = editable.

Parameter and
Type

Opt. Description

node_key
TYPE
TM_NODEKEY

The key of the node to which the relevant item belongs

item_name
TYPE
TV_ITMNAME

The name of the item whose editable attribute you want to change

editable
TYPE AS4FLAG

The new value for the editable attribute. Possible values:

� 'X': Checkbox can be changed

� ' ': Checkbox cannot be changed

 SAP AG SAP Tree and Tree Model (BC-CI)

item_set_font

April 2001 363

item_set_font
Use this method to set the font for an item.
CALL METHOD item_model->item_set_font
 EXPORTING node_key = node_key
 item_name = item_name
 font = font

Parameter and
Type

Opt. Description

node_key
TYPE
TM_NODEKEY

Key of the node to which the item belongs

item_name
TYPE
TV_ITMNAME

Name of the item

font
TYPE I

Font to be used for the item. Possible values:

� cl_item_tree_model=>item_font_default: The default
font is used. This is a fixed font for a list tree and a proportional
font for a column tree.

� cl_item_tree_model=>item_font_fixed: A fixed font is
used

� cl_item_tree_model=>item_font_variable: A
proportional font is used

SAP Tree and Tree Model (BC-CI) SAP AG

item_set_hidden

364 April 2001

item_set_hidden
Use this method to set the hidden attribute for an item.
CALL METHOD item_model->item_set_hidden
 EXPORTING node_key = node_key
 item_name = item_name
 hidden = hidden.

Parameter and
Type

Opt. Description

node_key
TYPE
TM_NODEKEY

Key of the node to which the item belongs

item_name
TYPE
TV_ITMNAME

Name of the item

hidden
TYPE AS4FLAG

Flag to indicate whether the item should be hidden. Possible
values:

� 'X': Hidden

� ' ': Visible

 SAP AG SAP Tree and Tree Model (BC-CI)

item_set_style

April 2001 365

item_set_style
Use this method to set the style of an item.
CALL METHOD item_model->item_set_style
 EXPORTING node_key = node_key
 item_name = item_name
 style = style

Parameter and
Type

Opt. Description

node_key
TYPE
TM_NODEKEY

Key of the node to which the item belongs

item_name
TYPE
TV_ITMNAME

Name of the item

style
TYPE I

The style of the item. Possible values:

� cl_item_tree_model=>style_inherited: The item has
the same style as the node to which it belongs.

� cl_item_tree_model=>style_default: The item has the
default text and background colors

� cl_item_tree_model=>style_intensified

� cl_item_tree_model=>style_inactive

� cl_item_tree_model=>style_intensified_critical

� cl_item_tree_model=>style_emphasized_negative

� cl_item_tree_model=>style_emphasized_positive

� cl_item_tree_model=>style_emphasized

� Any further constants of the form
cl_item_tree_model=>style_*

SAP Tree and Tree Model (BC-CI) SAP AG

item_set_text

366 April 2001

item_set_text
Use this method to set the text for an item.
CALL METHOD item_model->item_set_text
 EXPORTING node_key = node_key
 item_name = item_name
 text = text.

Parameter and
Type

Opt. Description

node_key
TYPE
TM_NODEKEY

The key of the node to which the relevant item belongs

item_name
TYPE
TV_ITMNAME

The item whose text you want to change

text
TYPE
TM_ITEMTEXT

The text for the item.

Note: Although the text is implemented as a string and can
therefore be of any length, only the first 100 characters will actually
be displayed in the frontend control.

 SAP AG SAP Tree and Tree Model (BC-CI)

item_get_text

April 2001 367

item_get_text
Use this method to retrieve the text of a given item.
CALL METHOD item_model->item_get_text
 EXPORTING node_key = node_key
 item_name = item_name
 IMPORTING text = text.

Parameter and Type Opt. Description

node_key
TYPE TM_NODEKEY

The key of the node to which the relevant item belongs

item_name
TYPE TV_ITMNAME

The name of the item whose text you want to retrieve

text
TYPE TM_ITEMTXT

The text of the item

SAP Tree and Tree Model (BC-CI) SAP AG

item_set_image

368 April 2001

item_set_image
Use this method to set an icon for an item.
CALL METHOD item_tree->item_set_image
 EXPORTING node_key = node_key
 item_name = item_name
 image = image.

Parameter and Type Opt. Description

node_key
TYPE TM_NODEKEY

Key of the node to which the item belongs

item_name
TYPE TV_ITMNAME

Name of the item

image
TYPE TV_IMAGE

Image for the item. Possible values:

� ' ': No image

� '@XY@': The SAP icon with the code XY

 SAP AG SAP Tree and Tree Model (BC-CI)

Methods of Class CL_LIST_TREE_MODEL

April 2001 369

Methods of Class CL_LIST_TREE_MODEL

SAP Tree and Tree Model (BC-CI) SAP AG

constructor

370 April 2001

constructor
The constructor method is called automatically when you instantiate the class
cl_list_tree_model. To do this, you must declare a reference variable as follows:

DATA list_model TYPE REF TO cl_list_tree_model.

You can then create an instance using the CREATE OBJECT statement.

CREATE OBJECT list_model
 EXPORTING node_selection_mode = node_selection_mode
 hide_selection = hide_selection
 item_selection = item_selection
 with_headers = with_headers
 hierarchy_header = hierarchy_header
 list_header = list_header.

Parameter and Type Opt. Description

node_selection_mo
de
TYPE I

Specifies whether or not multiple nodes can be selected
simultaneously. Possible values are

� cl_list_tree_model=>node_sel_mode_single
Only one node at a time may be selected

� cl_list_tree_model=>node_sel_mode_multiple
Multiple nodes may be selected

hide_selection
TYPE AS4FLAG

X Specifies whether the selection should be hidden. Possible
values are

� 'X' - hide selection

� ' ' - Show selection

item_selection
TYPE AS4FLAG

Specifies whether individual items can be selected. Possible
values are:

� 'X' - Items may be selected individually

� ' ' - The node can only be selected as a whole

with_headers
TYPE AS4FLAG

Specifies whether the tree should have one header or two.
Possible values are:

� 'X' - The control has both a hierarchy header and a list
header. Each can be scrolled separately

� ' ' - The control only has a hierarchy header.

Note: You should only use the List Tree Model with headers
where it is not practicable to use the Column Tree Model.

hiearachy_header
TYPE TREEMHHDR

Contains details of the hierarchy header. The parameter has
the structure TREEMHHDR [Page 457].

list_header
TYPE TREEMLHDR

Contains deatils of the list header. The parameter has the
structure TREEMLHDR [Page 457].

 SAP AG SAP Tree and Tree Model (BC-CI)

constructor

April 2001 371

SAP Tree and Tree Model (BC-CI) SAP AG

add_node

372 April 2001

add_node
Use this method to add a node to the List Tree Model. The node is initially only added to the tree
model at the backend. It is automatically transferred to the tree display at the frontend at the end
of the next PBO event.
CALL METHOD list_model->add_node
 EXPORTING node_key = node_key
 relative_node_key = relative_node_key
 relationship = relationship
 isfolder = isfolder
 hidden = hidden
 disabled = disabled
 style = style
 no_branch = no_branch
 expander = expander
 image = image
 expanded_image = expanded_image
 drag_drop_id = drag_drop_id
 last_hitem = last_hitem
 user_object = user_object
 items_incomplete = items_incomplete
 item_table = item_table.

Parameter and Type Opt. Description

node_key
TYPE STRING

The key by which the node is identified in the tree. This must be
unique throughout the tree. You should only use letters, digits,
and the underscore character in node keys.

relative_node_key
TYPE STRING

X The key of a node to which the new node is related in position. If
the new node is the first or last root node, this parameter must
have the value ' '.

 SAP AG SAP Tree and Tree Model (BC-CI)

add_node

April 2001 373

relationship
I

X The relationship between the new node and the node specified in
relative_node_key. Possible values are:

� CL_TREE_MODEL=>RELAT_FIRST_CHILD
Inserts the new node as the first child node of the node
specified in relative_node_key. This must be a folder.

� CL_TREE_MODEL=>RELAT_LAST_CHILD
Inserts the new node as the last child node of the node
specified in relative_node_key. This must be a folder.

� CL_TREE_MODEL=>RELAT_PREV_SIBLING
Inserts the new node directly before the related node at the
same level.

� CL_TREE_MODEL=>RELAT_NEXT_SIBLING
Inserts the new node directly after the related node at the
same level.

� CL_TREE_MODEL=>RELAT_FIRST_SIBLING
Inserts the new node as the first node at the same level as
the related node.

� CL_TREE_MODEL=>RELAT_LAST_SIBLING
Inserts the new node as the last node at the same level as
the related node.

Note: If relative_node_key is empty, the new node is
inserted as a root node. Where the above values contain the
word FIRST or PREV, it is inserted as the first root node. Where
they contain LAST or NEXT, it is inserted as the last.

isfolder
TYPE AS4FLAG

Specifies whether the new node should be a folder or a leaf.
Possible values:

� 'X': Node is a folder

� ' ': Node is a leaf

hidden
TYPE AS4FLAG

X Specifies whether the node should be hidden ('X') or visible
(' '). Default is visible.

disabled
TYPE AS4FLAG

X Specifies whether the node can be selected (' ') or not ('X').
The default is not disabled.

Note: If a node is disabled, actions such as double-clicking it
have no effect.

style
TYPE AS4FLAG

X Sets the colors of the text and the background for the node. The
possible values for this field are any static constant
CL_TREE_MODEL=>STYLE_*. For further details, refer to the
definition of CL_TREE_MODEL in the Class Builder.

no_branch
TYPE AS4FLAG

X Specifies whether connecting lines should be drawn between the
nodes (' ') or not ('X'). The default is for the lines to be drawn.

SAP Tree and Tree Model (BC-CI) SAP AG

add_node

374 April 2001

expander
TYPE AS4FLAG

X May only be set for a folder. If you set this attribute, the closed
folder always displays a '+' symbol, even if it is empty. When the
user clicks on the folder, the event EXPAND_NO_CHILDREN is
triggered.

image
TYPE C(6)

X Specifies the image used for the node. Possible values:

� initial: The system uses the default values (leaf symbol for a
leaf, closed folder symbol for a folder)

� '@XY@': An SAP icon with the code XY.

� 'BNONE': No image is displayed. The node text begins at
the position in which the image would normally be displayed.
If you use this value for a node, you should also use it for all
of its other same-level nodes.

expanded_image
TYPE C(6)

X Specifies the image used for an open folder. The possible values
are the same as those listed above for the image parameter.

drag_drop_id
TYPE I

X Only relevant if you want the node to be drag and drop-enabled.
It contains the handle for a drag and drop object.

last_hitem
TYPE STRING

X The name of the last item to appear under the hierarchy heading

user_object
TYPE REF TO
OBJECT

X Can be assigned any reference to an application object

items_incomplete
TYPE AS4FLAG

X Flag indicating that the items table is incomplete. In this case,
you load the items on demand. For further information, refer to
Loading Items on Demand [Page 256].

item_table
TYPE TREEMLITAB

Table of items for the node with the line type TREEMLITEM. For
further information, refer to the documentation of the structure in
the ABAP Dictionary.

 SAP AG SAP Tree and Tree Model (BC-CI)

add_nodes

April 2001 375

add_nodes
Use this method to add a set of nodes to the List Tree Model. The nodes are initially only added
to the tree model on the application server. They are transferred to the tree display at the
frontend at the end of the next PBO event.
CALL METHOD list_model->add_nodes
 EXPORTING node_table = node_table.

Parameter and Type Opt. Description

node_table
TYPE TREEMLNOTA

Internal table, each line of which represents a node to be added
to the List Tree Model. The internal table has the line type
TREEMLNODT [Page 458].

SAP Tree and Tree Model (BC-CI) SAP AG

update_nodes

376 April 2001

update_nodes
Use this method to change the attributes of nodes in the tree model. You cannot use it to change
the RELATKEY or RELATSHIP attributes. If you want to move a node, use the MOVE_NODE
method.
CALL METHOD list_model->update_nodes
 EXPORTING node_table = node_table.

Parameter and Type Opt. Description

node_table
TYPE TREEMLUNOT

An internal table in which each line represents one node whose
attributes you want to change. You specify the key of the node,
and enter a new value for each attribute that you want to change.
Each changeable attribute also has a corresponding flag with the
name U_<attribute>. You must check this flag for each
attribute that you change.

For example, if you want to change the hidden attribute for a
node from ' ' (not hidden) to 'X' (hidden), you would enter
'X' in the HIDDEN field and 'X' in the field U_HIDDEN (to
indicate that the field must be updated). If you want to change all
of the changeable attributes for a given node, you should check
the U_ALL field instead of all of the individual U_<attribute>
flag fields.

The line type of data type TREEMLUNOT is made up as follows:

� It includes the structure TREEMLNODT [Page 458]. In these
fields, you can enter the changed values.

� For each changeable value, there is a flag field
u_<attribute>, which must have the value 'X' for each
attribute you change.

 SAP AG SAP Tree and Tree Model (BC-CI)

add_items

April 2001 377

add_items
Use this method to add new items to a node.
CALL METHOD list_model->add_items
 EXPORTING item_table = item_table.

Parameter and
Type

Opt. Description

item_table
TYPE
TREEMLITAC

Internal table, each line of which represents an item.

It has the following structure:

� node_key: Contains the key of the node to which you want to
add the item

� Fields of the structure TREEMLITEM [Page 461]: Contains the
remaining item attributes

SAP Tree and Tree Model (BC-CI) SAP AG

update_items

378 April 2001

update_items
Use this method to update existing items in the List Tree Model.
CALL METHOD list_tree->update_items
 EXPORTING item_table = item_table.

Parameter and
Type

Opt. Description

item_table
TYPE
TREEMLITAD

An internal table in which each line represents one item whose
attributes you want to change. You specify the key of the node, the
name of the item, and enter a new value for each attribute that you
want to change. Each changeable attribute also has a
corresponding flag with the name U_<attribute>. You must
check this flag for each attribute that you change.

For example, if you want to change the hidden attribute for an item
from ' ' (not hidden) to 'X' (hidden), you would enter 'X' in the
HIDDEN field and 'X' in the field U_HIDDEN (to indicate that the
field must be updated). If you want to change all of the changeable
attributes for a given item, you should check the U_ALL field
instead of all of the individual U_<attribute> flag fields.

TREEMLITAD has the line type TREEMLITEF, which is made up as
follows:

� node_key: The key of the node to which the item belongs

� The included structure TREEMLITEM [Page 461]. In these
fields, you can enter the changed values.

� For each changeable value, there is a flag field
u_<attribute>, which must have the value 'X' for each
attribute you change.

 SAP AG SAP Tree and Tree Model (BC-CI)

hierarchy_header_set_t_image

April 2001 379

hierarchy_header_set_t_image
Use this method to set a new image for the hierarchy heading.
CALL METHOD list_model->hierarchy_header_set_t_image
 EXPORTING t_image = t_image.

Parameter and
Type

Opt. Description

t_image
TYPE C(6)

The image you want to display in the hierarchy heading. Possible
values:

� ' ': No image

� '@XY@': An SAP icon with the code XY

� 'BNONE': No icon. The display position of the heading is then
brought forward to start where the image would otherwise have
appeared.

SAP Tree and Tree Model (BC-CI) SAP AG

hierarchy_header_set_width

380 April 2001

hierarchy_header_set_width
Use this method to set the width of the hierarchy heading.
CALL METHOD list_model->hierarchy_header_set_width
 EXPORTING width = width.

Parameter and Type Opt. Description

width
TYPE I

� The width of the hiearchy heading in characters.

 SAP AG SAP Tree and Tree Model (BC-CI)

hierarchy_header_set_text

April 2001 381

hierarchy_header_set_text
Use this method to set a new text for the hierarchy heading.
CALL METHOD list_model->hierarchy_header_set_text
 EXPORTING text = text.

Parameter and Type Opt. Description

text
TYPE C(132)

� The new text for the hierarchy heading

SAP Tree and Tree Model (BC-CI) SAP AG

hierarchy_header_set_tooltip

382 April 2001

hierarchy_header_set_tooltip
Use this method to set a new tooltip for the hierarchy heading. The tooltip is displayed whenever
the mouse pointer is positioned over the heading.
CALL METHOD list_model->hierarchy_header_set_tooltip
 EXPORTING tooltip = tooltip.

Parameter and Type Opt. Description

tooltip
TYPE C(132)

The text for the tooltip

 SAP AG SAP Tree and Tree Model (BC-CI)

hierarchy_header_adjust_width

April 2001 383

hierarchy_header_adjust_width
Use this method to set a new width for the hierarchy heading. You specify the width in
characters.
CALL METHOD list_model->hierarchy_header_adjust_width
 EXPORTING width = width

Parameter and Type Opt. Description

width
TYPE I

The new width of the hierarchy heading.

SAP Tree and Tree Model (BC-CI) SAP AG

hierarchy_header_get_width

384 April 2001

hierarchy_header_get_width
Use this method to return the current width of the hierarchy heading.
CALL METHOD list_model->hierarchy_header_get_width
 IMPORTING width = width.

Parameter and Type Opt. Description

width The width of the hierarchy heading in characters

 SAP AG SAP Tree and Tree Model (BC-CI)

hierarchy_header_get_props

April 2001 385

hierarchy_header_get_props
Use this method to find out the current properties of the hierarchy heading.
CALL METHOD list_model->hierarchy_header_get_props
 IMPORTING properties = properties

Parameter and
Type

Opt. Description

properties A structure containing the properties of the hierarchy heading. It has
the type TREEMHHDR [Page 457].

SAP Tree and Tree Model (BC-CI) SAP AG

list_header_set_t_image

386 April 2001

list_header_set_t_image
Use this method to set a new image for the list heading.
CALL METHOD list_model->list_header_set_t_image
 EXPORTING t_image = t_image.

Parameter and
Type

Opt. Description

t_image
TYPE C(6)

The image you want to display in the list heading. Possible values:

� ' ': No image

� '@XY@': An SAP icon with the code XY

� 'BNONE': No icon. The display position of the heading is then
brought forward to start where the image would otherwise have
appeared.

 SAP AG SAP Tree and Tree Model (BC-CI)

list_header_set_text

April 2001 387

list_header_set_text
Use this method to set a new text for the list heading.
CALL METHOD list_model->list_header_set_text
 EXPORTING text = text.

Parameter and Type Opt. Description

text
TYPE C(132)

� The new text for the list heading

SAP Tree and Tree Model (BC-CI) SAP AG

list_header_set_tooltip

388 April 2001

list_header_set_tooltip
Use this method to set a new tooltip for the list heading. The tooltip is displayed whenever the
mouse pointer is positioned over the list heading.
CALL METHOD list_model->list_header_set_tooltip
 EXPORTING tooltip = tooltip.

Parameter and Type Opt. Description

tooltip
TYPE C(132)

The text for the tooltip

 SAP AG SAP Tree and Tree Model (BC-CI)

list_header_get_properties

April 2001 389

list_header_get_properties
Use this method to return the current properties of the list heading.
CALL METHOD list_model->list_header_get_properties
 IMPORTING properties = properties

Parameter and
Type

Opt. Description

properties A structure containing the properties of the list heading. It has the
type TREEMLHDR [Page 457].

SAP Tree and Tree Model (BC-CI) SAP AG

node_set_last_hierarchy_item

390 April 2001

node_set_last_hierarchy_item
Use this method to specify which item should be the last to appear beneath the hierarchy
heading. All subsequent items then appear under the list heading.
CALL METHOD list_model->node_set_last_hierarchy_item
 EXPORTING node_key = node_key
 last_hierarchy_item = last_hierarchy_item.

Parameter and Type Opt. Description

node_key
TYPE STRING

Key of the relevant node

last_hierarchy_item
TYPE C(12)

Last item of the node to be displayed below the hierarchy item

 SAP AG SAP Tree and Tree Model (BC-CI)

node_get_properties

April 2001 391

node_get_properties
Use this method to return the properties of a node.
CALL METHOD list_model->node_get_properties
 EXPORTING node_key = node_key
 IMPORTING properties = properties.

Parameter and
Type

Opt. Description

node_key
TYPE STRING

The key of the node whose properties you want to find out

properties
TYPE
TREEMLNODT

A structure containing the properties of the node. This has the type
TREEMLNODT [Page 458].

SAP Tree and Tree Model (BC-CI) SAP AG

node_get_item

392 April 2001

node_get_item
Use this method to find out the attributes of a single item of a node.
CALL METHOD list_model->node_get_item
 EXPORTING node_key = node_key
 item_name = item_name
 IMPORTING item = item.

Parameter and
Type

Opt. Description

node_key
TYPE STRING

The key of the relevant node

item_name
TYPE C(12)

The name of the item whose attributes you want to find out

item
TYPE
TREEMLITEM

A structure containing the attributes of the item. It has the type
TREEMLITEM [Page 461].

 SAP AG SAP Tree and Tree Model (BC-CI)

node_get_items

April 2001 393

node_get_items
Use this method to find out the attributes of all of the items of a given node.
CALL METHOD list_model->node_get_items
 EXPORTING node_key = node_key
 IMPORTING item_table = item_table.

Parameter and
Type

Opt. Description

node_key
TYPE STRING

The key of the node whose item information you want to retrieve

item_table
TYPE
TREEMLITAB

An internal table, each line of which contains the attributes of one
item of the node. The table has the line type TREEMLITEM [Page
461].

SAP Tree and Tree Model (BC-CI) SAP AG

item_set_alignment

394 April 2001

item_set_alignment
Use this method to set the alignment of an item in the List Tree Model.
CALL METHOD list_model->item_set_alignment
 EXPORTING node_key = node_key
 item_name = item_name
 alignment = alignment.

Parameter and Type Opt. Description

node_key
TYPE STRING

Key of the node to which the relevant item belongs

item_name
TYPE C(12)

Name of the item whose alignment you want to set

alignment
TYPE I

The alignment of the item. Possible values:

� cl_item_tree_model=>align_left

� cl_item_tree_model=>align_right

� cl_item_tree_model=>align_auto
The item is not aligned, but the display width is
adjusted to the length of the item

 SAP AG SAP Tree and Tree Model (BC-CI)

item_set_length

April 2001 395

item_set_length
Use this method to set the length of an item in the List Tree Model.
CALL METHOD list_model->item_set_length
 EXPORTING node_key = node_key
 item_name = item_name
 length = length.

Parameter and Type Opt. Description

node_key
TYPE STRING

Key of the node to which the relevant item belongs

item_name
TYPE C(12)

Name of the item whose length you want to adjust

length
TYPE I

New length of the item in characters.

SAP Tree and Tree Model (BC-CI) SAP AG

get_tree

396 April 2001

get_tree
Use this method to return the contents of the List Tree Model instance in a series of internal
tables.
CALL METHOD list_model->get_tree
 EXPORTING root_node_key = root_node_key
 IMPORTING node_table = node_table
 item_table = item_table.

Parameter and
Type

Opt. Description

root_node_key
TYPE STRING

The root node of the tree

node_table
TYPE
TREEMLNOTA

Internal table, each line of which represents a node of the List
Tree Model instance. The table has the line type TREEMLNODT
[Page 458].

item_table
TYPE
TREEMLITAC

Internal table, each line of which represents an item from the List
Tree Model instance. It is structured as follows:

� node_key: The key of the node to which the item belongs.

� The included structure TREEMLITEM [Page 461], which
contains the attributes of the items.

 SAP AG SAP Tree and Tree Model (BC-CI)

set_item_provider

April 2001 397

set_item_provider
Use this method to specify a reference variable that points to the source for items that are to be
loaded on demand [Page 256].
CALL METHOD list_model->set_item_provider
 EXPORTING item_provider = item_provider.

Parameter and Type Opt. Description

item_provider
TYPE REF TO
IF_LIST_TREE_MO
DEL_ITEM_PROV

Reference variable pointing to the object from which the items
are loaded. For further information, refer to Loading Items on
Demand [Page 256].

SAP Tree and Tree Model (BC-CI) SAP AG

get_with_headers

398 April 2001

get_with_headers
Use this method to find out if the List Tree Model instance has headings.
CALL METHOD list_model->get_with_headers
 IMPORTING with_headers = with_headers.

Parameter and
Type

Opt. Description

with_headers
TYPE AS4FLAG

Indicates whether the List Tree Model instance has headings.
Possible values:

'X': Yes

' ': No

 SAP AG SAP Tree and Tree Model (BC-CI)

Methods of Class CL_COLUMN_TREE_MODEL

April 2001 399

Methods of Class CL_COLUMN_TREE_MODEL

SAP Tree and Tree Model (BC-CI) SAP AG

constructor

400 April 2001

constructor
The constructor method is called automatically when you instantiate the class
cl_column_tree_model. To do this, you must declare a reference variable as follows:

DATA column_model TYPE REF TO cl_column_tree_model.

You can then create an instance using the CREATE OBJECT statement.

CREATE OBJECT column_model
 EXPORTING node_selection_mode = node_selection_mode
 hide_selection = hide_selection
 item_selection = item_selection
 hierarchy_column_name = hierarchy_colunm_name
 hierarchy_header = hierarchy_header.

Parameter and Type Opt. Description

node_selection_mode
TYPE I

Specifies whether or not multiple nodes can be selected
simultaneously. Possible values are

� cl_column_tree_model=>node_sel_mode_single
Only one node at a time may be selected

�
cl_column_tree_model=>node_sel_mode_multip
le
Multiple nodes may be selected

hide_selection
TYPE AS4FLAG

X Specifies whether the selection should be hidden. Possible
values:

� 'X': Selection is hidden

� ' ': Selection is visible

item_selection
TYPE AS4FLAG

X Specifies whether items can be selected individually.
Possible values:

� 'X': Items can be selected individually

� ' ': Items cannot be selected individually. Clicking on an
item selects the whole node.

hierarchy_column_nam
e
TYPE C(12)

The name of the column that appears under the hierarchy
heading.

hierarchy_header
TYPE TREEMHHDR

A structure containing information about the hierarchy
heading. For full details, refer to Structures for Headings of
Item Trees [Page 457].

 SAP AG SAP Tree and Tree Model (BC-CI)

add_node

April 2001 401

add_node
Use this method to add a node to the Column Tree Model. Initially, the node is only added to the
tree on the application server. It is transferred to the tree display at the frontend at the end of the
next PBO event.
CALL METHOD column_model->add_node
 EXPORTING node_key = node_key
 relative_node_key = relative_node_key
 relationship = relationship
 isfolder = isfolder
 hidden = hidden
 disabled = disabled
 style = style
 no_branch = no_branch
 expander = expander
 image = image
 expanded_image = expanded_image
 drag_drop_id = drag_drop_id
 user_object = user_object
 items_incomplete = items_incomplete
 item_table = item_table.

Parameter and
Type

Opt. Description

node_key
TYPE STRING

The key by which the node is identified in the tree. This must be
unique throughout the tree. You should only use letters, digits,
and the underscore character in node keys.

relative_node_ke
y
TYPE STRING

X The key of a node to which the new node is related in position. If
the new node is the first or last root node, this parameter must
have the value ' '.

SAP Tree and Tree Model (BC-CI) SAP AG

add_node

402 April 2001

relationship
TYPE I

X The relationship between the new node and the node specified in
relative_node_key. Possible values are:

� CL_TREE_MODEL=>RELAT_FIRST_CHILD
Inserts the new node as the first child node of the node specified
in relative_node_key. This must be a folder.

� CL_TREE_MODEL=>RELAT_LAST_CHILD
Inserts the new node as the last child node of the node specified
in relative_node_key. This must be a folder.

� CL_TREE_MODEL=>RELAT_PREV_SIBLING
Inserts the new node directly before the related node at the
same level.

� CL_TREE_MODEL=>RELAT_NEXT_SIBLING
Inserts the new node directly after the related node at the same
level.

� CL_TREE_MODEL=>RELAT_FIRST_SIBLING
Inserts the new node as the first node at the same level as the
related node.

� CL_TREE_MODEL=>RELAT_LAST_SIBLING
Inserts the new node as the last node at the same level as the
related node.

Note: If relative_node_key is empty, the new node is inserted
as a root node. Where the above values contain the word FIRST
or PREV, it is inserted as the first root node. Where they contain
LAST or NEXT, it is inserted as the last.

isfolder
TYPE AS4FLAG

Specifies whether the node is a folder. Possible values:

� 'X': Node is a folder

� ' ': Node is a leaf

hidden
TYPE AS4FLAG

X Specifies whether the node is hidden. Possible values:

� 'X': Node is hidden

� ' ': Node is visible

disabled
TYPE AS4FLAG

X Specifies whether the node can be selected (' ') or not ('X'). The
default is not disabled.

Note: If a node is disabled, actions such as double-clicking it have
no effect.

style
TYPE I

X Sets the colors of the text and the background for the node. The
possible values for this field are any static constant
CL_TREE_MODEL=>STYLE_*. For further details, refer to the
definition of CL_TREE_MODEL in the Class Builder.

no_branch
TYPE AS4FLAG

X Specifies whether connecting lines should be drawn between the
nodes (' ') or not ('X'). The default is for the lines to be drawn.

 SAP AG SAP Tree and Tree Model (BC-CI)

add_node

April 2001 403

expander
TYPE AS4FLAG

X May only be set for a folder. If you set this attribute, the closed
folder always displays a '+' symbol, even if it is empty. When the
user clicks on the folder, the event EXPAND_NO_CHILDREN is
triggered.

image
TYPE C(6)

X Specifies the image used for the node. Possible values:

� initial: The system uses the default values (leaf symbol for a
leaf, closed folder symbol for a folder)

� '@XY@': An SAP icon with the code XY.

� 'BNONE': No image is displayed. The node text begins at the
position in which the image would normally be displayed. If you
use this value for a node, you should also use it for all of its
other same-level nodes.

expanded_image
TYPE C(6)

X Specifies the image used for an open folder. The possible values
are the same as those listed above for the image parameter.

drag_drop_id
TYPE I

X Only relevant if you want the node to be drag and drop-enabled. It
contains the handle for a drag and drop object.

user_object
TYPE REF TO
OBJECT

X Can be assigned any reference to an application object

items_incomplet
e
TYPE AS4FLAG

X Flag indicating that the items table is incomplete. In this case, you
load the items on demand.

item_table
TYPE
TREEMCITAB

Table containing details of the items of the node. The internal table
TREEMCITAB has the line type TREEMCITEM [Page 464].

SAP Tree and Tree Model (BC-CI) SAP AG

add_nodes

404 April 2001

add_nodes
Use this method to add a set of nodes to the Column Tree Model. Initially, the nodes are only
added to the tree on the application server. They are transferred to the tree display at the
frontend at the end of the next PBO event.
CALL METHOD column_model->add_nodes
 EXPORTING node_table = node_table.

Parameter and
Type

Opt. Description

node_table
TYPE
TREEMCNOTA

Internal table containing the nodes you want to add to the tree.
The table has the structure TREEMCNODT [Page 466].

 SAP AG SAP Tree and Tree Model (BC-CI)

update_nodes

April 2001 405

update_nodes
Use this method to change the attributes of one or more nodes in the Column Tree Model.

You cannot use this method to change the RELATKEY or RELATSHIP attributes of a
node. To move a node, use the method MOVE_NODE [Page 312].

CALL METHOD column_model->update_nodes
 EXPORTING node_table = node_table.

Parameter and
Type

Opt. Description

node_table
TYPE
TREEMCUNOT

An internal table in which each line represents one node whose
attributes you want to change. You specify the key of the node,
and enter a new value for each attribute that you want to change.
Each changeable attribute also has a corresponding flag with the
name U_<attribute>. You must check this flag for each
attribute that you change.

For example, if you want to change the hidden attribute for a
node from ' ' (not hidden) to 'X' (hidden), you would enter
'X' in the HIDDEN field and 'X' in the field U_HIDDEN (to
indicate that the field must be updated). If you want to change all
of the changeable attributes for a given node, you should check
the U_ALL field instead of all of the individual U_<attribute>
flag fields.

The line type of the table is made up as follows:

� The included structure TREEMCNODT [Page 466]

� For each changeable value, there is a flag field
u_<attribute>, which must have the value 'X' for each
attribute you change.

SAP Tree and Tree Model (BC-CI) SAP AG

add_items

406 April 2001

add_items
Use this method to add new items to a node in the Column Tree Model.
CALL METHOD column_model->add_items
 EXPORTING item_table = item_table.

Parameter and
Type

Opt. Description

item_table
TYPE
TREEMCITAC

Internal table, each line of which represents an item.

It has the following structure:

� node_key: Contains the key of the node to which you want to
add the item

� Fields of the structure TREEMCITEM [Page 464]: Contains the
remaining item attributes

 SAP AG SAP Tree and Tree Model (BC-CI)

update_items

April 2001 407

update_items
Use this method to change the items of a node in the Column Tree Model.
CALL METHOD column_model->update_items
 EXPORTING item_table = item_table.

Parameter and
Type

Opt. Description

item_table
TYPE
TREEMCITAD

An internal table in which each line represents one item whose
attributes you want to change. You specify the key of the node, the
name of the item, and enter a new value for each attribute that you
want to change. Each changeable attribute also has a
corresponding flag with the name U_<attribute>. You must
check this flag for each attribute that you change.

For example, if you want to change the hidden attribute for an item
from ' ' (not hidden) to 'X' (hidden), you would enter 'X' in the
HIDDEN field and 'X' in the field U_HIDDEN (to indicate that the
field must be updated). If you want to change all of the changeable
attributes for a given item, you should check the U_ALL field instead
of all of the individual U_<attribute> flag fields.

TREEMCITAD has the line type TREEMCITEF, which is made up as
follows:

� node_key: The key of the node to which the item belongs

� The included structure TREEMCITEM [Page 464]. In these
fields, you can enter the changed values.

� For each changeable value, there is a flag field
u_<attribute>, which must have the value 'X' for each
attribute you change.

SAP Tree and Tree Model (BC-CI) SAP AG

add_column

408 April 2001

add_column
Use this method to add a new column to the Column Tree Model. The column is not inserted
under the hierarchy heading.
CALL METHOD column_model->add_column
 EXPORTING name = name
 hidden = hidden
 disabled = disabled
 alignment = alignment
 width = width
 header_image = header_image
 header_text = header_text
 header_tooltip = header_tooltip.

Parameter and
Type

Opt. Description

name
TYPE
TV_ITMNAME

Name of the column

hidden
TYPE AS4FLAG

X Flag indicating whether the column is hidden. Possible values:

� 'X': Column is hidden

� ' ': Column is visible

disabled
TYPE AS4FLAG

X Flag indicating whether the column is disabled. Disabled columns
cannot be selected.

� 'X': Column is disabled

� ' ': Column is not disabled

alignment
TYPE I

X Alignment of the column. Possible values:

� cl_column_tree_model=>align_left

� cl_column_tree_model=>align_right

� cl_column_tree_model=>align_center

width
TYPE I

Width of the column in characters

header_image
TYPE
TV_IMAGE

X Icon to be displayed in the column heading. Possible values:

� ' ': No icon

� '@XY@': The SAP icon with code XY

header_text
TYPE
TV_HEADING

The text of the column heading

header_tooltip
TYPE
TV_HEADING

X Text of the column heading tooltip. This is displayed whenever the
mouse pointer is positioned over the heading.

 SAP AG SAP Tree and Tree Model (BC-CI)

add_column

April 2001 409

SAP Tree and Tree Model (BC-CI) SAP AG

add_hierarchy_column

410 April 2001

add_hierarchy_column
Use this method to insert a new column within the hierarchy area. The column heading appears
below the hierarchy heading.
CALL METHOD column_model->add_hierarchy_column
 EXPORTING name = name
 hidden = hidden
 disabled = disabled.

Parameter and
Type

Opt. Description

name
TYPE
TV_ITMNAME

Name of the column

hidden
TYPE AS4FLAG

X Indicates whether the column should be hidden ('X') or visible
(' ')

disabled
TYPE AS4FLAG

X Indicates whether the column should be disabled ('X') or
enabled
(' ')

 SAP AG SAP Tree and Tree Model (BC-CI)

insert_column

April 2001 411

insert_column
Use this method to insert a new column in the Column Tree Model after an existing column.

If you want to add a column to the end of the Column Tree Model, use the
add_column [Page 408] method.

CALL METHOD column_model->insert_column
 EXPORTING name = name
 predecessor_column = predecessor_column
 hidden = hidden
 disabled = disabled
 alignment = alignment
 width = width
 header_image = header_image
 header_text = header_text
 header_tooltip = header_tooltip.

Parameter and
Type

Opt. Description

name
TYPE
TV_ITMNAME

Name of the column

predecessor_colu
mn
TYPE
TV_ITMNAME

X The column after which you want to insert the new column

hidden
TYPE AS4FLAG

X Flag indicating whether the column is hidden. Possible values:

� 'X': Column is hidden

� ' ': Column is visible

disabled
TYPE AS4FLAG

X Flag indicating whether the column is disabled. Disabled
columns cannot be selected.

� 'X': Column is disabled

� ' ': Column is not disabled

alignment
TYPE I

X Alignment of the column. Possible values:

� cl_column_tree_model=>align_left

� cl_column_tree_model=>align_right

� cl_column_tree_model=>align_center

width
TYPE I

Width of the column in characters

SAP Tree and Tree Model (BC-CI) SAP AG

insert_column

412 April 2001

header_image
TYPE TV_IMAGE

X Icon to be displayed in the column heading. Possible values:

� ' ': No icon

� '@XY@': The SAP icon with code XY

header_text
TYPE
TV_HEADING

The text of the column heading

header_tooltip
TYPE
TV_HEADING

X Text of the column heading tooltip. This is displayed whenever
the mouse pointer is positioned over the heading.

 SAP AG SAP Tree and Tree Model (BC-CI)

insert_hierarchy_column

April 2001 413

insert_hierarchy_column
Use this method to insert a column at a given position under the hierarchy header. If you want to
add a hierarchy column at the right-hand end, use the add_hierarchy_column [Page 410]
method.
CALL METHOD column_model->insert_hierarchy_column
 EXPORTING name = name
 hidden = hidden
 disabled = disabled.

Parameter and
Type

Opt. Description

name
TYPE
TV_ITMNAME

Name of the column

hidden
TYPE AS4FLAG

X Indicates whether the column should be hidden ('X') or visible
(' ')

disabled
TYPE AS4FLAG

X Indicates whether the column should be disabled ('X') or
enabled
(' ')

predecessor_colu
mn
TYPE
TV_ITMNAME

X Name of the column after which you want to insert the new
column

SAP Tree and Tree Model (BC-CI) SAP AG

delete_column

414 April 2001

delete_column
Use this method to delete a column from the Column Tree Model.
CALL METHOD column_model->delete_column
 EXPORTING column_name = column_name.

Parameter and Type Opt. Description

column_name
TYPE TV_ITMNAME

The name of the column you want to delete

 SAP AG SAP Tree and Tree Model (BC-CI)

hierarchy_header_adjust_width

April 2001 415

hierarchy_header_adjust_width
Use this method to adjust the width of the hierarchy header in the Column Tree Model so that all
of the items below it are fully visible. Only expanded nodes are taken into account.
CALL METHOD column_model->hierarchy_header_adjust_width
 EXPORTING include_heading = include_heading.

Parameter and
Type

Opt. Description

include_heading
TYPE AS4FLAG

X Specifies whether the heading should be included in the
calculation for the width adjustment ('X') or not (' ').

SAP Tree and Tree Model (BC-CI) SAP AG

hierarchy_header_set_text

416 April 2001

hierarchy_header_set_text
Use this method to set a new text for the hierarchy heading.
CALL METHOD column_model->hierarchy_header_set_text
 EXPORTING text = text.

Parameter and Type Opt. Description

text
TYPE TV_HEADING

New heading text

 SAP AG SAP Tree and Tree Model (BC-CI)

hierarchy_header_set_tooltip

April 2001 417

hierarchy_header_set_tooltip
Use this method to set a new tooltip for the hierarchy heading. The tooltip is displayed whenever
the mouse pointer is positioned over the hierarchy heading.
CALL METHOD column_model->hierarchy_header_set_tooltip
 EXPORTING toltip = tooltip.

Parameter and Type Opt. Description

tooltip
TYPE TV_HEADING

X The new tooltip text

SAP Tree and Tree Model (BC-CI) SAP AG

hierarchy_header_set_t_image

418 April 2001

hierarchy_header_set_t_image
Use this method to set a new icon for the hierarchy heading.
CALL METHOD column_model->set_t_image
 EXPORTING .

Parameter and
Type

Opt. Description

t_image
TYPE
TV_IMAGE

The new icon for the hierarchy heading in the form '@XY@'. For no
icon, use the value ' '.

 SAP AG SAP Tree and Tree Model (BC-CI)

hierarchy_header_set_width

April 2001 419

hierarchy_header_set_width
Use this method to set a new width for the hierarchy heading.
CALL METHOD column_model->hierarchy_header_set_width
 EXPORTING width = width.

Parameter and Type Opt. Description

width
TYPE I

The new width of the hierarchy heading in characters

SAP Tree and Tree Model (BC-CI) SAP AG

update_hierarchy_header

420 April 2001

update_hierarchy_header
Use this method to change the attributes of the hierarchy header. There are four attributes that
you can change using this method. For each attribute that you change, you must also set the
corresponding UPDATE_<attribute name> parameter to 'X'.

CALL METHOD column_model->update_hierarchy_header
 EXPORTING t_image = t_image
 width = width
 heading = heading
 tooltip = tooltip
 update_t_image = update_t_image
 update_width = update_width
 update_heading = update_heading
 update_tooltip = update_tooltip.

Parameter and
Type

Opt. Description

t_image
TYPE
TV_IMAGE

X A new icon for the hierarchy heading in the form '@XY@'. For no
icon, use the value ' '.

width
TYPE I

X The new width of the hierarchy heading

heading
TYPE
TV_HEADING

X The new heading text for the hierarchy heading

tooltip
TYPE
TV_HEADING

X The new tooltip for the hierarchy heading. The tooltip is displayed
whenever the mouse pointer is positioned over the hierarchy
heading.

update_t_image
TYPE AS4FLAG

X 'X' if you entered a new value for t_image

update_width
TYPE AS4FLAG

X 'X' if you entered a new value for width

update_heading
TYPE AS4FLAG

X 'X' if you entered a new value for heading

update_tooltip
TYPE AS4FLAG

X 'X' if you entered a new value for tooltip

 SAP AG SAP Tree and Tree Model (BC-CI)

hierarchy_header_get_width

April 2001 421

hierarchy_header_get_width
Use this method to return the width in characters of the hierarchy heading.
CALL METHOD column_model->hierarchy_header_get_width
 IMPORTING width = width.

Parameter and Type Opt. Description

width
TYPE I

Width of the hierarchy heading

SAP Tree and Tree Model (BC-CI) SAP AG

hierarchy_header_get_props

422 April 2001

hierarchy_header_get_props
Use this method to return the current properties of the hierarchy heading.
CALL METHOD column_model->hierarchy_header_get_props
 IMPORTING properties = properties.

Parameter and
Type

Opt. Description

properties
TYPE
TREEMHHDR

A structure containing the current properties of the hierarchy
heading. For further information, refer to Structures for Headings of
Item Trees [Page 457].

 SAP AG SAP Tree and Tree Model (BC-CI)

get_hierarchy_columns

April 2001 423

get_hierarchy_columns
Use this method to return the names of the columns under the hierarchy heading.
CALL METHOD column_model->get_hierarchy_columns
 IMPORTING column_table = column_table.

Parameter and
Type

Opt. Description

column_table
TYPE
TREEMCHCLS

Table containing the columns under the hierarchy heading. It has
the line type TREEMCHCL.

Structure TREEMCHCL
Component and Type Description

name
TYPE TV_ITMNAME

The name of the column

hidden
TYPE AS4FLAG

Flag indicating whether the column is hidden ('X') or not (' ')

disabled
TYPE AS4FLAG

Flag indicating whether the column is disabled ('X') or not (' ')

SAP Tree and Tree Model (BC-CI) SAP AG

get_nr_of_columns

424 April 2001

get_nr_of_columns
Use this method to find out the number of columns in the Column Tree Model.
CALL METHOD column_model->get_nr_of_columns
 IMPORTING nr_of_columns = nr_of_columns.

Parameter and Type Opt. Description

nr_of_columns
TYPE I

The number of columns in the tree model

 SAP AG SAP Tree and Tree Model (BC-CI)

get_first_column

April 2001 425

get_first_column
Use this method to find out the name of the first column in the Column Tree Model instance.
CALL METHOD column_model->get_first_column
 IMPORTING column_name = column_name.

Parameter and Type Opt. Description

column_name
TYPE TV_ITMNAME

The name of the first column in the tree model instance

SAP Tree and Tree Model (BC-CI) SAP AG

get_last_column

426 April 2001

get_last_column
Use this method to find out the name of the last column in the Column Tree Model instance.
CALL METHOD column_model->get_last_column
 IMPORTING column_name = column_name.

Parameter and Type Opt. Description

column_name
TYPE TV_ITMNAME

The name of the last column in the tree model instance

 SAP AG SAP Tree and Tree Model (BC-CI)

get_widths_of_columns

April 2001 427

get_widths_of_columns
Use this mehtod to find out the widths of all of the columns in the Column Tree Model instance.
CALL METHOD column_model->get_widths_of_columns
 IMPORTING widths_of_columns = widths_of_columns.

Parameter and
Type

Opt. Description

widths_of_column
s
TYPE
TREEV_COWT

An internal table containing the widths of the columns. It has the
line type TREEV_COWI.

Structure TREEV_COWI
Component and Type Description

name
TYPE TV_ITMNAME

Name of the column

width_pix
TYPE I

Width of the column in pixels

width_char
TYPE I

Width of the column in characters

SAP Tree and Tree Model (BC-CI) SAP AG

get_column_order

428 April 2001

get_column_order
Use this method to find out the order of the columns in the Column Tree Model instance.
CALL METHOD column_model->get_column_order
 IMPORTING columns = columns.

Parameter and
Type

Opt. Description

columns
TYPE
TREEV_CONA

An internal table in which each line contains the name of a column.
The order in which they are listed is their order in the tree model.
The table has the line type TV_ITMNAME.

 SAP AG SAP Tree and Tree Model (BC-CI)

set_column_order

April 2001 429

set_column_order
Use this method to set the order of the columns in the Column Tree Model.
CALL METHOD column_model->set_column_order
 EXPORTING columns = columns.

Parameter and
Type

Opt. Description

columns
TYPE
TREEV_CONA

An internal table with line type TV_ITMNAME, each line of which
should contain the name of a column. The columns will appear in
the order in which you list them in the table.

SAP Tree and Tree Model (BC-CI) SAP AG

set_column_order_frozen

430 April 2001

set_column_order_frozen
In a column tree, the user can swap the positions of columns using the mouse. Use this method
to disable and enable this feature.
CALL METHOD column_model->set_column_order_frozen
 EXPORTING frozen = frozen.

Parameter and
Type

Opt. Description

frozen
TYPE AS4FLAG

Specifies whether the column order is frozen. Possible values:

� 'X': Column order is frozen (cannot be changed by the user)

� ' ': Column order is not frozen (can be changed by the user)

 SAP AG SAP Tree and Tree Model (BC-CI)

column_set_disabled

April 2001 431

column_set_disabled
Use this method to set the disabled attribute of a column in the tree model. A disabled column
cannot be selected.
CALL METHOD column_model->column_set_disabled
 EXPORTING column_name = column_name
 disabled = disabled.

Parameter and
Type

Opt. Description

column_name
TYPE
TV_ITMNAME

The name of the column in the tree model instance

disabled
TYPE AS4FLAG

Flag indicating whether the column should be disabled. Possible
values:

� 'X': Column is disabled

� ' ': Column is not disabled

SAP Tree and Tree Model (BC-CI) SAP AG

column_set_heading_image

432 April 2001

column_set_heading_image
Use this method to set a new icon for a column heading.
CALL METHOD column_model->column_set_heading_image
 EXPORTING .

Parameter and
Type

Opt. Description

column_name
TYPE
TV_ITMNAME

The name of the column in the tree model instance

image
TYPE
TV_IMAGE

The image you want to display in the column heading. Possible
values:

� '@XY@': The SAP icon with the code XY

� ' ': No image

 SAP AG SAP Tree and Tree Model (BC-CI)

column_set_heading_text

April 2001 433

column_set_heading_text
Use this method to set a new text for a column heading in the Column Tree Model.
CALL METHOD column_model->column_set_heading_text
 EXPORTING column_name = column_name
 text = text.

Parameter and Type Opt. Description

column_name
TYPE TV_ITMNAME

The name of the column in the tree model instance

text
TYPE TV_HEADING

The new text for the column heading

SAP Tree and Tree Model (BC-CI) SAP AG

column_set_heading_tooltip

434 April 2001

column_set_heading_tooltip
Use this method to set a new tooltip for a column heading. The tooltip is displayed whenever the
mouse pointer is positioned over the heading.
CALL METHOD column_model->column_set_heading_tooltip
 EXPORTING column_name = column_name
 tooltip = tooltip.

Parameter and Type Opt. Description

column_name
TYPE TV_ITMNAME

The name of the column in the tree model instance

tooltip
TYPE TV_HEADING

The text for the new tooltip

 SAP AG SAP Tree and Tree Model (BC-CI)

column_set_hidden

April 2001 435

column_set_hidden
Use this method to hide a column in the Column Tree Model. You also use it to make a hidden
column visible again.
CALL METHOD column_model->column_set_hidden
 EXPORTING column_name = column_name
 hidden = hidden.

Parameter and
Type

Opt. Description

column_name
TYPE
TV_ITMNAME

The name of the column in the tree model instance

hidden
TYPE AS4FLAG

Flag to indicate whether or not the column is hidden. Possible
values:

� 'X': Hidden

� ' ': Visible

SAP Tree and Tree Model (BC-CI) SAP AG

column_set_width

436 April 2001

column_set_width
Use this method to set the width of a column in the Column Tree Model.
CALL METHOD column_model->column_set_width
 EXPORTING column_name = column_name
 width = width.

Parameter and Type Opt. Description

column_name
TYPE TV_ITMNAME

The name of the column in the tree model instance

width
TYPE I

New width of the column in characters

 SAP AG SAP Tree and Tree Model (BC-CI)

update_column

April 2001 437

update_column
Use this method to change the attributes of a column header. There are four attributes that you
can change using this method. For each attribute that you change, you must also set the
corresponding UPDATE_<attribute name> parameter to 'X'.

CALL METHOD column_model->update_column
 EXPORTING name = name
 hidden = hidden
 disabled = disabled
 alignment = alignment
 header_image = header_image
 header_text = header_text
 header_tooltip = header_tooltip
 width = width
 update_hidden = update_hidden
 update_disabled = update_disabled
 update_alignment = update_alignment
 update_header_image = update_header_image
 update_header_text = update_header_text
 update_header_tooltip = update_header_tooltip
 update_width = update_width.

Parameter and Type Opt. Description

name
TYPE TV_ITMNAME

Name of the column

hidden
TYPE AS4FLAG

X Flag indicating whether the column is hidden. Possible
values:

� 'X': Column is hidden

� ' ': Column is visible

disabled
TYPE AS4FLAG

X Flag indicating whether the column is disabled. Disabled
columns cannot be selected.

� 'X': Column is disabled

� ' ': Column is not disabled

alignment
TYPE I

X Alignment of the column. Possible values:

� cl_column_tree_model=>align_left

� cl_column_tree_model=>align_right

� cl_column_tree_model=>align_center

header_image
TYPE TV_IMAGE

X Icon to be displayed in the column heading. Possible
values:

� ' ': No icon

� '@XY@': The SAP icon with code XY

SAP Tree and Tree Model (BC-CI) SAP AG

update_column

438 April 2001

header_text
TYPE TV_HEADING

X The text of the column heading

header_tooltip
TYPE TV_HEADING

X Text of the column heading tooltip. This is displayed
whenever the mouse pointer is positioned over the
heading.

width
TYPE I

Width of the column in characters

update_hidden
TYPE AS4FLAG

X 'X' if you entered a new value in hidden

update_disabled
TYPE AS4FLAG

X 'X' if you entered a new value in disabled

update_alignment
TYPE AS4FLAG

X 'X' if you entered a new value in alignment

update_header_image
TYPE AS4FLAG

X 'X' if you entered a new value in header_image

update_header_text
TYPE AS4FLAG

X 'X' if you entered a new value in header_text

update_header_tooltip
TYPE AS4FLAG

X 'X' if you entered a new value in header_tooltip

update_width
TYPE AS4FLAG

X 'X' if you entered a new value in width

 SAP AG SAP Tree and Tree Model (BC-CI)

adjust_column_width

April 2001 439

adjust_column_width
Use this method to adjust the widths of a selected range of columns so that their entire contents
are visible. The method only takes into account nodes that are already expanded.
CALL METHOD column_model->adjust_column_width
 EXPORTING start_column = start_column
 end_column = end_column
 all_columns = all_columns
 include_heading = include_heading.

Parameter and
Type

Opt. Description

start_column
TYPE
TV_ITMNAME

X The name of the first column in the range

end_column
TYPE
TV_ITMNAME

X The name of the last column in the range

all_columns
TYPE AS4FLAG

X Flag: Adjust the width of all columns, taking into account the
column headings as well (all_columns = 'X')

include_heading
TYPE AS4FLAG

X Flag: Indicates whether the column headings should be taking
into account when calculating the required width
(include_heading = 'X')

SAP Tree and Tree Model (BC-CI) SAP AG

column_get_width

440 April 2001

column_get_width
Use this method to find out the width of a particular column.
CALL METHOD column_model->column_get_width
 EXPORTING column = column
 IMPORTING width = width.

Parameter and Type Opt. Description

column
TYPE TV_ITMNAME

Name of the column

width
TYPE I

Width of the column in characters

 SAP AG SAP Tree and Tree Model (BC-CI)

column_get_next_sibling

April 2001 441

column_get_next_sibling
Use this method to find out the name of the next same-level column in the tree model.
CALL METHOD column_model->column_get_next_sibling
 EXPORTING column = column
 IMPORTING sibling_column_name = sibling_column_name.

Parameter and Type Opt. Description

column
TYPE TV_ITMNAME

Name of the column

sibling_column_name
TYPE TV_ITMNAME

Name of the next column.

SAP Tree and Tree Model (BC-CI) SAP AG

column_get_prev_sibling

442 April 2001

column_get_prev_sibling
Use this method to find out the name of the column preceding any given column in the Column
Tree Model.
CALL METHOD column_model->column_get_prev_sibling
 EXPORTING column = column
 IMPORTING sibling_column_name = sibling_column_name.

Parameter and Type Opt. Description

column
TYPE TV_ITMNAME

Name of the column

sibling_column_name
TYPE TV_ITMNAME

Name of the previous column.

 SAP AG SAP Tree and Tree Model (BC-CI)

column_get_properties

April 2001 443

column_get_properties
Use this method to find out the properties of a given column.
CALL METHOD column_model->column_get_properties
 EXPORTING column = column
 IMPORTING properties = properties.

Parameter and Type Opt. Description

column
TYPE TV_ITMNAME

Name of the column

properties
TYPE TREEMCCOL

A structure containing various attributes of the column

SAP Tree and Tree Model (BC-CI) SAP AG

node_get_item

444 April 2001

node_get_item
Use this method to return the properties of an item of a node.
CALL METHOD column_model->node_get_item
 EXPORTING node_key = node_key
 item_name = item_name
 IMPORTING item = item.

Parameter and Type Opt. Description

node_key
TYPE TM_NODEKEY

The key of the node to which the item belongs

item_name
TYPE TV_ITMNAME

The item whose properties you want to find out

item
TYPE TREEMCITEM

A structure containing the properties of the node. For further
information, refer to Structure TREEMCITEM [Page 464]

If you want to find out the properties of all of the items of a given node, use the
method node_get_items [Page 445].

 SAP AG SAP Tree and Tree Model (BC-CI)

node_get_items

April 2001 445

node_get_items
Use this method to find out the properties of all of the items belonging to a given node in the
Column Tree Model.
CALL METHOD column_model->node_get_items
 EXPORTING node_key = node_key
 IMPORTING item_table = item_table.

Parameter and Type Opt. Description

node_key
TYPE TM_NODEKEY

The key of the relevant node

item_table
TYPE TREEMCITAB

An internal table, each line of which represents one item of the
node specified in node_key. The internal table has the line
type TREEMCITEM [Page 464].

SAP Tree and Tree Model (BC-CI) SAP AG

node_get_properties

446 April 2001

node_get_properties
Use this method to find out the properties of a node in the Column Tree Model.
CALL METHOD column_model->node_get_properties
 EXPORTING node_key = node_key
 IMPORTING properties = properties

Parameter and Type Opt. Description

node_key
TYPE TM_NODEKEY

The key of the node whose properties you want to find out

properties
TYPE TREEMSNOD

A structure containing the properties of the node. For further
information, refer to Structure TREEMSNOD [Page 469].

 SAP AG SAP Tree and Tree Model (BC-CI)

get_table

April 2001 447

get_table
Use this method to return the contents of the Column Tree Model instance in a series of internal
tables.
CALL METHOD column_model->get_tree
 EXPORTING root_node_key = root_node_key
 IMPORTING node_table = node_table
 item_table = item_table.

Parameter and
Type

Opt. Description

root_node_key
TYPE STRING

The root node of the tree

node_table
TYPE
TREEMCNOTA

Internal table, each line of which represents a node of the List
Tree Model instance. The table has the line type TREEMCNODT
[Page 466].

item_table
TYPE
TREEMCITAC

Internal table, each line of which represents an item from the List
Tree Model instance. It is structured as follows:

� node_key: The key of the node to which the item belongs.

� The included structure TREEMCITEM [Page 464], which
contains the attributes of the items.

SAP Tree and Tree Model (BC-CI) SAP AG

set_print_short_header_width

448 April 2001

set_print_short_header_width
Use this method when you want to print the Column Tree Model to set the cut-off point for
headings in the print output.

If the width required to print the tree is greater than the value you specify in the width parameter
of this method, the width of the headings will not be included in the calculation for the overall
width required.
CALL METHOD column_model->set_print_short_header_width
 EXPORTING width = width.

Parameter and
Type

Opt. Description

width
TYPE I

Width beyond which the headings are disregarded in the
calculation of the overall width required to print the trees

 SAP AG SAP Tree and Tree Model (BC-CI)

set_item_provider

April 2001 449

set_item_provider
Use this method to specify a reference variable that points to the source for items that are to be
loaded on demand [Page 256].
CALL METHOD column_model->set_item_provider
 EXPORTING item_provider = item_provider.

Parameter and Type Opt. Description

item_provider
TYPE REF TO
IF_COLUMN_TREE_
MODEL_ITEM_PROV

Reference variable pointing to the object from which the items
are loaded. For further information, refer to Loading Items on
Demand [Page 256]

SAP Tree and Tree Model (BC-CI) SAP AG

Important Data Structures

450 April 2001

Important Data Structures

 SAP AG SAP Tree and Tree Model (BC-CI)

Structure TREEMSNODT

April 2001 451

Structure TREEMSNODT
Definition
TREEMSNODT is a data structure that describes the attributes of a single node in a Simple Tree
Model. Its definition is stored centrally in the ABAP Dictionary, and you can use it to define the
data types of your own parameters.

TREEMSNODT is also the line type of the internal table type TREEMSNOTA.

Use
You can use TREEMSNODT to type the actual parameter properties of the method
node_get_properties in class cl_simple_tree_model and to type a work area for internal
tables with the type TREEMSNOTA (methods add_nodes and get_tree of the same class).

Structure
Component Type Description

node_key
TM_NODEKE
Y

The key by which the node is identified in the tree. This must
be unique thorughout the tree. You should only use letters,
digits, and the underscore character in node keys.

relatkey
TM_NODEKE
Y

The key of a node to which the new node is related in
position. If the new node is the first or last root node, this
parameter must have the value ' '.

SAP Tree and Tree Model (BC-CI) SAP AG

Structure TREEMSNODT

452 April 2001

relatship I The relationship between the new node and the node specified
in relatkey. Possible values are:

� CL_TREE_MODEL=>RELAT_FIRST_CHILD
Inserts the new node as the first child node of the node
specified in relative_node_key. This must be a folder.

� CL_TREE_MODEL=>RELAT_LAST_CHILD
Inserts the new node as the last child node of the node
specified in relative_node_key. This must be a folder.

� CL_TREE_MODEL=>RELAT_PREV_SIBLING
Inserts the new node directly before the related node at the
same level.

� CL_TREE_MODEL=>RELAT_NEXT_SIBLING
Inserts the new node directly after the related node at the
same level.

� CL_TREE_MODEL=>RELAT_FIRST_SIBLING
Inserts the new node as the first node at the same level as
the related node.

� CL_TREE_MODEL=>RELAT_LAST_SIBLING
Inserts the new node as the last node at the same level as
the related node.

Note: If relatkey is empty, the new node is inserted as a
root node. Where the above values contain the word FIRST
or PREV, it is inserted as the first root node. Where they
contain LAST or NEXT, it is inserted as the last.

hidden AS4FLAG Specifies whether the node should be hidden ('X') or visible
(' '). Default is visible.

disabled AS4FLAG Specifies whether the node can be selected (' ') or not ('X').
The default is not disabled.

Note: If a node is disabled, actions such as double-clicking it
have no effect.

isfolder AS4FLAG Specifies whether the new node should be a folder or a leaf.
Possible values:

� 'X': Node is a folder

' ': Node is a leaf

 SAP AG SAP Tree and Tree Model (BC-CI)

Structure TREEMSNODT

April 2001 453

n_image TV_IMAGE Specifies the image used for the node. Possible values:

� initial: The system uses the default values (leaf symbol for
a leaf, closed folder symbol for a folder)

� '@XY@': An SAP icon with the code XY.

� 'BNONE': No image is displayed. The node text begins at
the position in which the image would normally be
displayed. If you use this value for a node, you should also
use it for all of its other same-level nodes.

exp_image TV_IMAGE Specifies the image used for an open folder. The possible
values are the same as those listed above for the image
parameter.

style I Sets the colors of the text and the background for the node.
The possible values for this field are any static constant
CL_TREE_MODEL=>STYLE_*. For further details, refer to the
definition of CL_TREE_MODEL in the Class Builder.

no_branch AS4FLAG Specifies whether connecting lines should be drawn between
the nodes (' ') or not ('X'). The default is for the lines to be
drawn.

expander AS4FLAG May only be set for a folder. If you set this attribute, the
closed folder always displays a '+' symbol, even if it is empty.
When the user clicks on the folder, the event
EXPAND_NO_CHILDREN is triggered.

dragdropid I Only relevant if you want the node to be drag and drop-
enabled. It contains the handle for a drag and drop object.

userobject REF TO
OBJECT

Can be assigned any reference to an application object

text
TM_NODETX
T

Text of a node

SAP Tree and Tree Model (BC-CI) SAP AG

Structure TREEMSUNO

454 April 2001

Structure TREEMSUNO
Definition
TREEMSUNO is a data structure that you use to pass changes in node attributes to the simple tree
model. Its definition is stored centrally in the ABAP Dictionary, and you can use it to define the
data types of your own parameters.

TREEMSUNO is also the line type of the internal table type TREEMSUNOT.

Use
You use this structure to specify the line type of the actual parameter NODE_TABLE in the method
UPDATE_NODES of CL_SIMPLE_TREE_MODEL. You can also use it to create a work area for the
internal table.

In the structure, you specify the key of the node you want to change, and the new values of each
of the relevant changeable attributes. Each attribute also has a corresponding flag field in the
structure with the name U_<attribute>. You must check this corresponding flag for each
attribute that you want to change.

Structure
Component Type Description

node_key STRING The key by which the node is identified in the tree. This must
be unique thorughout the tree. You should only use letters,
digits, and the underscore character in node keys.

relatkey STRING The key of a node to which the new node is related in position.
If the new node is the first or last root node, this parameter
must have the value ' '.

 SAP AG SAP Tree and Tree Model (BC-CI)

Structure TREEMSUNO

April 2001 455

relatship I The relationship between the new node and the node specified
in relatkey. Possible values are:

� CL_TREE_MODEL=>RELAT_FIRST_CHILD
Inserts the new node as the first child node of the node
specified in relative_node_key. This must be a folder.

� CL_TREE_MODEL=>RELAT_LAST_CHILD
Inserts the new node as the last child node of the node
specified in relative_node_key. This must be a folder.

� CL_TREE_MODEL=>RELAT_PREV_SIBLING
Inserts the new node directly before the related node at the
same level.

� CL_TREE_MODEL=>RELAT_NEXT_SIBLING
Inserts the new node directly after the related node at the
same level.

� CL_TREE_MODEL=>RELAT_FIRST_SIBLING
Inserts the new node as the first node at the same level as
the related node.

� CL_TREE_MODEL=>RELAT_LAST_SIBLING
Inserts the new node as the last node at the same level as
the related node.

Note: If relatkey is empty, the new node is inserted as a root
node. Where the above values contain the word FIRST or
PREV, it is inserted as the first root node. Where they contain
LAST or NEXT, it is inserted as the last.

hidden AS4FLAG Specifies whether the node should be hidden ('X') or visible
(' ').

disabled AS4FLAG Specifies whether the node can be selected (' ') or not ('X').

isfolder AS4FLAG Specifies whether the new node should be a folder or a leaf.
Possible values:

� 'X': Node is a folder

' ': Node is a leaf

n_image C(6) Specifies the image used for the node. Possible values:

� initial: The system uses the default values (leaf symbol for a
leaf, closed folder symbol for a folder)

� '@XY@': An SAP icon with the code XY.

� 'BNONE': No image is displayed. The node text begins at
the position in which the image would normally be displayed.
If you use this value for a node, you should also use it for all
of its other same-level nodes.

SAP Tree and Tree Model (BC-CI) SAP AG

Structure TREEMSUNO

456 April 2001

exp_image C(6) Specifies the image used for an open folder. The possible
values are the same as those listed above for the image
parameter.

style I Sets the colors of the text and the background for the node.
The possible values for this field are any static constant
CL_TREE_MODEL=>STYLE_*. For further details, refer to the
definition of CL_TREE_MODEL in the Class Builder.

no_branch AS4FLAG Specifies whether connecting lines should be drawn between
the nodes (' ') or not ('X'). The default is for the lines to be
drawn.

expander AS4FLAG May only be set for a folder. If you set this attribute, the closed
folder always displays a '+' symbol, even if it is empty.

dragdropid I Only relevant if you want the node to be drag and drop-
enabled. It contains the handle for a drag and drop object.

userobject REF TO
OBJECT

Can be assigned any reference to an application object

text STRING Node text

u_all AS4FLAG Indicates that all changeable attributes have been modified

u_hidden AS4FLAG

u_disabled AS4FLAG

u_isfolder AS4FLAG

u_n_image AS4FLAG

u_exp_image AS4FLAG

u_style AS4FLAG

u_no_branch AS4FLAG

u_expander AS4FLAG

u_dragdropid AS4FLAG

u_userobject AS4FLAG

u_text AS4FLAG

Indicates that the corresponding attribute has been modified

 SAP AG SAP Tree and Tree Model (BC-CI)

Structures for Headings of Item Trees

April 2001 457

Structures for Headings of Item Trees
Definition
The two structures TREEMHHDR and TREEMLHDR are used to define headings in the List Tree
Model and Column Tree Model.

Use
The structures are used as follows:

Structure Defines List Column

TREEMHHDR A hierarchy heading � �

TREEMLHDR A list heading �

Structure
TREEMHDR
Component Description

t_image
TYPE C(6)

Icon or image to be used in the heading

heading
TYPE
C(132)

Text of the heading

tooltip
TYPE
C(132)

Text that is displayed when the mouse pointer is positioned over the heading

width
TYPE I

Width of the heading

TREEMLHDR
Component Description

t_image
TYPE C(6)

Icon or image to be used in the heading

heading
TYPE
C(132)

Text of the heading

tooltip
TYPE
C(132)

Text that is displayed when the mouse pointer is positioned over the heading

SAP Tree and Tree Model (BC-CI) SAP AG

Structure TREEMLNODT

458 April 2001

Structure TREEMLNODT
Definition
TREEMLNODT is a data structure that describes the attributes of a single node in a List Tree
Model. Its definition is stored centrally in the ABAP Dictionary, and you can use it to define the
data types of your own parameters.

TREEMLNODT is also the line type of the internal table type TREEMLNOTA.

Use
You can use TREEMLNODT to specify the type of a work area for the actual parameter
node_table in method add_nodes of class cl_list_tree_model.

Structure
Component Type Description

node_key STRING The key by which the node is identified in the tree. This must be
unique thorughout the tree. You should only use letters, digits,
and the underscore character in node keys.

relatkey STRING The key of a node to which the new node is related in position. If
the new node is the first or last root node, this parameter must
have the value ' '.

 SAP AG SAP Tree and Tree Model (BC-CI)

Structure TREEMLNODT

April 2001 459

relatship I The relationship between the new node and the node specified in
relatkey. Possible values are:

� CL_TREE_MODEL=>RELAT_FIRST_CHILD
Inserts the new node as the first child node of the node
specified in relative_node_key. This must be a folder.

� CL_TREE_MODEL=>RELAT_LAST_CHILD
Inserts the new node as the last child node of the node
specified in relative_node_key. This must be a folder.

� CL_TREE_MODEL=>RELAT_PREV_SIBLING
Inserts the new node directly before the related node at the
same level.

� CL_TREE_MODEL=>RELAT_NEXT_SIBLING
Inserts the new node directly after the related node at the
same level.

� CL_TREE_MODEL=>RELAT_FIRST_SIBLING
Inserts the new node as the first node at the same level as the
related node.

� CL_TREE_MODEL=>RELAT_LAST_SIBLING
Inserts the new node as the last node at the same level as the
related node.

Note: If relatkey is empty, the new node is inserted as a root
node. Where the above values contain the word FIRST or PREV,
it is inserted as the first root node. Where they contain LAST or
NEXT, it is inserted as the last.

hidden AS4FLAG Specifies whether the node should be hidden ('X') or visible ('
'). Default is visible.

disabled AS4FLAG Specifies whether the node can be selected (' ') or not ('X').
The default is not disabled.

Note: If a node is disabled, actions such as double-clicking it
have no effect.

isfolder AS4FLAG Specifies whether the new node should be a folder or a leaf.
Possible values:

� 'X': Node is a folder

' ': Node is a leaf

SAP Tree and Tree Model (BC-CI) SAP AG

Structure TREEMLNODT

460 April 2001

n_image C(6) Specifies the image used for the node. Possible values:

� initial: The system uses the default values (leaf symbol for a
leaf, closed folder symbol for a folder)

� '@XY@': An SAP icon with the code XY.

� 'BNONE': No image is displayed. The node text begins at the
position in which the image would normally be displayed. If
you use this value for a node, you should also use it for all of
its other same-level nodes.

exp_image C(6) Specifies the image used for an open folder. The possible values
are the same as those listed above for the image parameter.

style I Sets the colors of the text and the background for the node. The
possible values for this field are any static constant
CL_TREE_MODEL=>STYLE_*. For further details, refer to the
definition of CL_TREE_MODEL in the Class Builder.

no_branch AS4FLAG Specifies whether connecting lines should be drawn between the
nodes (' ') or not ('X'). The default is for the lines to be
drawn.

expander AS4FLAG May only be set for a folder. If you set this attribute, the closed
folder always displays a '+' symbol, even if it is empty. When the
user clicks on the folder, the event EXPAND_NO_CHILDREN is
triggered.

dragdropid I Only relevant if you want the node to be drag and drop-enabled.
It contains the handle for a drag and drop object.

userobject REF TO
OBJECT

Can be assigned any reference to an application object

itemsincom AS4FLAG Indicates that the item specification is incomplete. For further
information, refer to Loading Items on Demand [Page 256].

last_hitem C(12) The last item to appear under the hierarchy heading in the tree
display

Integration

 SAP AG SAP Tree and Tree Model (BC-CI)

Structure TREEMLITEM

April 2001 461

Structure TREEMLITEM
Definition
TREEMLITEM is a structure that is used to define the line type of the internal table TREEMLITAB.
This internal table is used in the List Tree Model to specify the items that belong to a particular
node.

Use
You can use TREEMLITAB to specify the type of the actual parameter you are going to pass to
the items_table parameter in the add_node method of cl_list_tree_model.

Structure
Component and
Type

Description

item_name
TYPE C(12)

Name of the item

class
TYPE I

Class of the item. Possible values:

� cl_item_tree_model=>item_class_text: Item is a text

� cl_item_tree_model=>item_class_button: Item is a pushbutton

� cl_item_tree_model=>item_class_checkbox: Item is a
checkbox

� cl_item_tree_model=>item_class_link: Item is a link

font
TYPE I

Font in which the item is to be displayed. Possible values:

� cl_item_tree_model=>item_font_default: Use the default font

� cl_item_tree_model=>item_font_fixed: Use a fixed font

� cl_item_tree_model=>item_font_prop: Use a proportional font

disabled
TYPE AS4FLAG

Flag to indicate whether the item should be disabled (disabled items
cannot be selected). Possible values:

� 'X': Item is disabled

� ' ': Item can be selected

editable
TYPE AS4FLAG

Flag to indicate whether the item can be edited. Possible values:

� 'X': Item can be edited

� ' ': Item cannot be edited

hidden
TYPE AS4FLAG

Flag to indicate whether the item is hidden. Possible values:

� 'X': Item is hidden

� ' ': Item is not hidden

SAP Tree and Tree Model (BC-CI) SAP AG

Structure TREEMLITEM

462 April 2001

t_image
TYPE C(6)

The image or icon to be displayed as part of the icon. Possible values:

� ' ': No icon

� '@XY@': The SAP icon with the code XY

� 'BNONE': No icon. The text is shifted so that it begins in the position
where the image would otherwise have been.

chosen
TYPE AS4FLAG

Flag to indicate whether the item should be chosen. Possible values:

� 'X': Chosen

� ' ': Not chosen

style
TYPE I

Style of the item. Possible values:

� cl_tree_model=>style_default

� cl_tree_model=>style_emphasized

� cl_tree_model=>style_emphasized_negative

� cl_tree_model=>style_emphasized_positive

� cl_tree_model=>style_inactive

� cl_tree_model=>style_inherited

� cl_tree_model=>style_intensified_critical

txtisqinfo
TYPE AS4FLAG

Flag to indicate whether the quickinfo of the item should become its text.
Possible values:

� 'X': Quickinfo is used as the item text

� ' ': Quickinfo is not used as the item text

text
TYPE STRING

Text of the item

alignment
TYPE I

Alignment of the item. Possible values:

� cl_item_tree_model=>align_left

� cl_item_tree_model=>align_right

� cl_item_tree_model=>align_auto
The item is not aligned, but the display width is adjusted to the length of
the item

length
TYPE I

Length of the item in characters

ignoreimag
TYPE AS4FLAG

Controls the width of the item. Possible values:

� 'X': The length of the item is the length of the entire item. Icons occupy
space that is then not available for text.

� ' ': The length of the item is the length of its text. Checkboxes and
icons are then added to the length of the item.

 SAP AG SAP Tree and Tree Model (BC-CI)

Structure TREEMLITEM

April 2001 463

usebgcolor
TYPE AS4FLAG

� 'X': The background color of the item is slightly different from the
background color of the control

� ' ': The background color of the item is the same color as the
background color of the control.

SAP Tree and Tree Model (BC-CI) SAP AG

Structure TREEMCITEM

464 April 2001

Structure TREEMCITEM
Definition
TREEMCITEM is a structure that is used to define the line type of the internal table TREEMCITAB.
This internal table is used in the Column Tree Model to specify the items that belong to a
particular node.

Use
You can use TREEMCITAB to specify the type of the actual parameter you are going to pass to
the items_table parameter in the add_node method of cl_column_tree_model.

Structure
Component and
Type

Description

item_name
TYPE C(12)

Name of the item

class
TYPE I

Class of the item. Possible values:

� cl_item_tree_model=>item_class_text: Item is a text

� cl_item_tree_model=>item_class_button: Item is a pushbutton

� cl_item_tree_model=>item_class_checkbox: Item is a
checkbox

� cl_item_tree_model=>item_class_link: Item is a link

font
TYPE I

Font in which the item is to be displayed. Possible values:

� cl_item_tree_model=>item_font_default: Use the default font

� cl_item_tree_model=>item_font_fixed: Use a fixed font

� cl_item_tree_model=>item_font_prop: Use a proportional font

disabled
TYPE AS4FLAG

Flag to indicate whether the item should be disabled (disabled items
cannot be selected). Possible values:

� 'X': Item is disabled

� ' ': Item can be selected

editable
TYPE AS4FLAG

Flag to indicate whether the item can be edited. Possible values:

� 'X': Item can be edited

� ' ': Item cannot be edited

hidden
TYPE AS4FLAG

Flag to indicate whether the item is hidden. Possible values:

� 'X': Item is hidden

� ' ': Item is not hidden

 SAP AG SAP Tree and Tree Model (BC-CI)

Structure TREEMCITEM

April 2001 465

t_image
TYPE C(6)

The image or icon to be displayed as part of the icon. Possible values:

� ' ': No icon

� '@XY@': The SAP icon with the code XY

� 'BNONE': No icon. The text is shifted so that it begins in the position
where the image would otherwise have been.

chosen
TYPE AS4FLAG

Flag to indicate whether the item should be chosen. Possible values:

� 'X': Chosen

� ' ': Not chosen

style
TYPE I

Style of the item. Possible values:

� cl_tree_model=>style_default

� cl_tree_model=>style_emphasized

� cl_tree_model=>style_emphasized_negative

� cl_tree_model=>style_emphasized_positive

� cl_tree_model=>style_inactive

� cl_tree_model=>style_inherited

� cl_tree_model=>style_intensified_critical

txtisqinfo
TYPE AS4FLAG

Flag to indicate whether the quickinfo of the item should become its text.
Possible values:

� 'X': Quickinfo is used as the item text

� ' ': Quickinfo is not used as the item text

text
TYPE STRING

Text of the item

SAP Tree and Tree Model (BC-CI) SAP AG

Structure TREEMCNODT

466 April 2001

Structure TREEMCNODT
Definition
TREEMCNODT is a data structure that describes the attributes of a single node in a Column Tree
Model. Its definition is stored centrally in the ABAP Dictionary, and you can use it to define the
data types of your own parameters.

TREEMCNODT is also the line type of the internal table type TREEMCNOTA.

Use
You can use TREEMCNODT to specify the type of a work area for the actual parameter
node_table in method add_nodes of class cl_column_tree_model.

Structure
Component Type Description

node_key STRING The key by which the node is identified in the tree. This must be
unique thorughout the tree. You should only use letters, digits,
and the underscore character in node keys.

relatkey STRING The key of a node to which the new node is related in position. If
the new node is the first or last root node, this parameter must
have the value ' '.

 SAP AG SAP Tree and Tree Model (BC-CI)

Structure TREEMCNODT

April 2001 467

relatship I The relationship between the new node and the node specified in
relatkey. Possible values are:

� CL_TREE_MODEL=>RELAT_FIRST_CHILD
Inserts the new node as the first child node of the node
specified in relative_node_key. This must be a folder.

� CL_TREE_MODEL=>RELAT_LAST_CHILD
Inserts the new node as the last child node of the node
specified in relative_node_key. This must be a folder.

� CL_TREE_MODEL=>RELAT_PREV_SIBLING
Inserts the new node directly before the related node at the
same level.

� CL_TREE_MODEL=>RELAT_NEXT_SIBLING
Inserts the new node directly after the related node at the
same level.

� CL_TREE_MODEL=>RELAT_FIRST_SIBLING
Inserts the new node as the first node at the same level as the
related node.

� CL_TREE_MODEL=>RELAT_LAST_SIBLING
Inserts the new node as the last node at the same level as the
related node.

Note: If relatkey is empty, the new node is inserted as a root
node. Where the above values contain the word FIRST or PREV,
it is inserted as the first root node. Where they contain LAST or
NEXT, it is inserted as the last.

hidden AS4FLAG Specifies whether the node should be hidden ('X') or visible ('
'). Default is visible.

disabled AS4FLAG Specifies whether the node can be selected (' ') or not ('X').
The default is not disabled.

Note: If a node is disabled, actions such as double-clicking it
have no effect.

isfolder AS4FLAG Specifies whether the new node should be a folder or a leaf.
Possible values:

� 'X': Node is a folder

' ': Node is a leaf

SAP Tree and Tree Model (BC-CI) SAP AG

Structure TREEMCNODT

468 April 2001

n_image C(6) Specifies the image used for the node. Possible values:

� initial: The system uses the default values (leaf symbol for a
leaf, closed folder symbol for a folder)

� '@XY@': An SAP icon with the code XY.

� 'BNONE': No image is displayed. The node text begins at the
position in which the image would normally be displayed. If
you use this value for a node, you should also use it for all of
its other same-level nodes.

exp_image C(6) Specifies the image used for an open folder. The possible values
are the same as those listed above for the image parameter.

style I Sets the colors of the text and the background for the node. The
possible values for this field are any static constant
CL_TREE_MODEL=>STYLE_*. For further details, refer to the
definition of CL_TREE_MODEL in the Class Builder.

no_branch AS4FLAG Specifies whether connecting lines should be drawn between the
nodes (' ') or not ('X'). The default is for the lines to be
drawn.

expander AS4FLAG May only be set for a folder. If you set this attribute, the closed
folder always displays a '+' symbol, even if it is empty. When the
user clicks on the folder, the event EXPAND_NO_CHILDREN is
triggered.

dragdropid I Only relevant if you want the node to be drag and drop-enabled.
It contains the handle for a drag and drop object.

userobject REF TO
OBJECT

Can be assigned any reference to an application object

itemsincom AS4FLAG Indicates that the item specification is incomplete.

 SAP AG SAP Tree and Tree Model (BC-CI)

Structure TREEMSNOD

April 2001 469

Structure TREEMSNOD
Definition
TREEMSNOD is a data structure that describes the attributes of a single node in a Column Tree
Model. Its definition is stored centrally in the ABAP Dictionary, and you can use it to define the
data types of your own parameters.

Structure
node_key TM_NODEKEY The key by which the node is identified in the tree. This

must be unique thorughout the tree. You should only use
letters, digits, and the underscore character in node keys.

relatkey TM_NODEKEY The key of a node to which the new node is related in
position. If the new node is the first or last root node, this
parameter must have the value ' '.

relatship I The relationship between the new node and the node
specified in relatkey. Possible values are:

� CL_TREE_MODEL=>RELAT_FIRST_CHILD
Inserts the new node as the first child node of the node
specified in relative_node_key. This must be a
folder.

� CL_TREE_MODEL=>RELAT_LAST_CHILD
Inserts the new node as the last child node of the node
specified in relative_node_key. This must be a
folder.

� CL_TREE_MODEL=>RELAT_PREV_SIBLING
Inserts the new node directly before the related node at
the same level.

� CL_TREE_MODEL=>RELAT_NEXT_SIBLING
Inserts the new node directly after the related node at the
same level.

� CL_TREE_MODEL=>RELAT_FIRST_SIBLING
Inserts the new node as the first node at the same level
as the related node.

� CL_TREE_MODEL=>RELAT_LAST_SIBLING
Inserts the new node as the last node at the same level
as the related node.

Note: If relatkey is empty, the new node is inserted as a
root node. Where the above values contain the word FIRST
or PREV, it is inserted as the first root node. Where they
contain LAST or NEXT, it is inserted as the last.

hidden AS4FLAG Specifies whether the node should be hidden ('X') or
visible (' '). Default is visible.

SAP Tree and Tree Model (BC-CI) SAP AG

Structure TREEMSNOD

470 April 2001

disabled AS4FLAG Specifies whether the node can be selected (' ') or not
('X'). The default is not disabled.

Note: If a node is disabled, actions such as double-clicking
it have no effect.

isfolder AS4FLAG Specifies whether the new node should be a folder or a leaf.
Possible values:

� 'X': Node is a folder

' ': Node is a leaf

n_image TV_IMAGE Specifies the image used for the node. Possible values:

� initial: The system uses the default values (leaf symbol
for a leaf, closed folder symbol for a folder)

� '@XY@': An SAP icon with the code XY.

� 'BNONE': No image is displayed. The node text begins
at the position in which the image would normally be
displayed. If you use this value for a node, you should
also use it for all of its other same-level nodes.

exp_image TV_IMAGE Specifies the image used for an open folder. The possible
values are the same as those listed above for the image
parameter.

style I Sets the colors of the text and the background for the node.
The possible values for this field are any static constant
CL_TREE_MODEL=>STYLE_*. For further details, refer to
the definition of CL_TREE_MODEL in the Class Builder.

no_branch AS4FLAG Specifies whether connecting lines should be drawn
between the nodes (' ') or not ('X'). The default is for the
lines to be drawn.

expander AS4FLAG May only be set for a folder. If you set this attribute, the
closed folder always displays a '+' symbol, even if it is
empty. When the user clicks on the folder, the event
EXPAND_NO_CHILDREN is triggered.

dragdropid I Only relevant if you want the node to be drag and drop-
enabled. It contains the handle for a drag and drop object.

userobject REF TO
OBJECT

Can be assigned any reference to an application object

 SAP AG SAP Tree and Tree Model (BC-CI)

Methods of the Control Framework

April 2001 471

Methods of the Control Framework

SAP Tree and Tree Model (BC-CI) SAP AG

Methods of Class CL_GUI_CFW

472 April 2001

Methods of Class CL_GUI_CFW
The class CL_GUI_CFW contains static methods that apply to all instantiated custom controls
when you call them.

 SAP AG SAP Tree and Tree Model (BC-CI)

dispatch

April 2001 473

dispatch
Use this method to dispatch application events (see Event Handling [Ext.]) to the event handlers
registered for the events. If you do not call the method within the PAI event of your application
program, it is called automatically by the system after the PAI has been processed. The method
returns a return code from which you can tell if the call was successful.

CALL METHOD cl_gui_cfw=>dispatch
 IMPORTING return_code = return_code.

Parameters Description

return_code cl_gui_cfw=>rc_found: The event was successfully directed to a handler
method.

cl_gui_cfw=>rc_unknown: The event was not registered in the event list.

cl_gui_cfw=>rc_noevent: No event was triggered in a control. The function
code was therefore a normal one (for example, from a menu entry).

cl_gui_cfw=>rc_nodispatch: No handler method could be assigned to the
event.

An event can only be dispatched once. After that, it is "spent". Consequently,
attempting to dispatch the events a second time does not trigger the handler events
again.

SAP Tree and Tree Model (BC-CI) SAP AG

flush

474 April 2001

flush
Use this method to synchronize the automation queue [Ext.]. The buffered operations are sent to
the frontend using GUI RFC. At the frontend, the automation queue is processed in the sequence
in which you filled it.

If an error occurs, an exception is triggered. You must catch and handle this error. Since it is not
possible to identify the cause of the error from the exception itself, there are tools available in the
Debugger and the SAPgui to enable you to do so.

Debugger: Select the option Automation Controller: Always process requests synchronously.
The system then automatically calls the method cl_gui_cfw=>flush after each method called
by the Automation Controller.

SAPGUI: In the SAPgui settings, under Trace, select Automation. The communication between
the application server and the Automation Controller is then logged in a trace file that you can
analyze at a later date.

CALL METHOD cl_gui_cfw=>flush
 EXCEPTIONS CNTL_SYSTEM_ERROR = 1
 CNTL_ERROR = 2.

Do not use any more synchronizations in your program than are really necessary.
Each synchronization opens a new RFC connection to the SAPgui.

 SAP AG SAP Tree and Tree Model (BC-CI)

get_living_dynpro_controls

April 2001 475

get_living_dynpro_controls
This method returns a list of reference variables to all active custom controls.
CALL METHOD cl_gui_cfw=>get_living_dynpro_controls
 IMPORTING control_list = control_list.

Parameters Description
control_list List of reference variables of active custom controls.

The list has the type CNTO_CONTROL_LIST (defined in class CL_GUI_CFW).

SAP Tree and Tree Model (BC-CI) SAP AG

set_new_ok_code

476 April 2001

set_new_ok_code
You may only use this method in the handler method of a system event. It sets an OK_CODE that
triggers PAI processing. This means that data is transferred from the screen to the program, and
you can take control of the program in your PAI modules.

CALL METHOD cl_gui_cfw=>set_new_ok_code
 EXPORTING new_code = new_code
 IMPORTING rc = rc.

Parameters Description

new_code Function code that you want to place in the OK_CODE field
(SY-UCOMM).

return_code cl_gui_cfw=>rc_posted: The OK_CODE was set successfully and the
automatic field checks and PAI will be triggered after the event handler
method has finished.

cl_gui_cfw=>rc_wrong_state: The method was not called from the handler
method of a system event.

cl_gui_cfw=>rc_invalid: The OK_CODE that you set is invalid.

 SAP AG SAP Tree and Tree Model (BC-CI)

update_view

April 2001 477

update_view
Calling the flush [Page 474] method only updates the automation queue if the queue contains
return values.

If you have a queue with no return values, and want to ensure that it is synchronized, you can
use the Control Framework method CL_GUI_CFW=>UPDATE_VIEW. You should only use this
method if you absolutely need to update the GUI. For example, you might have a long-running
application in which you want to provide the user with regular updates on the status of an action.

CALL METHOD cl_gui_cfw=>update_view
 EXCEPTIONS CNTL_SYSTEM_ERROR = 1
 CNTL_ERROR = 2.

SAP Tree and Tree Model (BC-CI) SAP AG

Methods of Class CL_GUI_OBJECT

478 April 2001

Methods of Class CL_GUI_OBJECT
The class CL_GUI_OBJECT contains important methods for custom control wrappers. The only
one relevant for application programs is the is_valid [Page 479] method.

 SAP AG SAP Tree and Tree Model (BC-CI)

is_valid

April 2001 479

is_valid
This method informs you whether a custom control for an object reference still exists at the
frontend.

CALL METHOD my_control->is_valid
 IMPORTING result = result.

Parameters Description

result 0: Custom control is no longer active at the frontend

1: Custom control is still active

SAP Tree and Tree Model (BC-CI) SAP AG

free

480 April 2001

free
Use this method to destroy a custom control at the frontend. Once you have called this method,
you should also initialize the object reference (FREE my_control).

CALL METHOD my_control->free
 EXCEPTIONS cntl_error = 1
 cntl_system_error = 2.

 SAP AG SAP Tree and Tree Model (BC-CI)

Methods of Class CL_GUI_CONTROL

April 2001 481

Methods of Class CL_GUI_CONTROL
The class CL_GUI_CONTROL contains methods that you need to set control attributes (for
example, displaying the control), register events, and destroy controls.

SAP Tree and Tree Model (BC-CI) SAP AG

finalize

482 April 2001

finalize
This method is redefined by the relevant control wrapper. It contains specific functions for
destroying the corresponding control. This method is called automatically by the free [Page 480]
method, before the control is destroyed at the frontend.
CALL METHOD my_control->finalize.

 SAP AG SAP Tree and Tree Model (BC-CI)

set_registered_events

April 2001 483

set_registered_events
Use this method to register the events of the control. See also: Event Handling [Ext.]

CALL METHOD my_control->set_registered_events
 EXPORTING events = events
 EXCEPTIONS cntl_error = 1
 cntl_system_error = 2
 illegal_event_combination = 3.

Parameters Description

events Table of events that you want to register for the custom control my_control.

The table events is a list of the events that you want to register. It is defined with reference to
table type CNTL_SIMPLE_EVENTS. The table type is based on the structure
CNTL_SIMPLE_EVENT, which consists of the following fields:

Field Description

EVENTID Event name

APPL_EVENT Indicates whether the event is a system event (initial) or an application event
(X).

The values that you assign to the field EVENTID are control-specific and therefore described in
the documentation of the individual controls.

SAP Tree and Tree Model (BC-CI) SAP AG

get_registered_events

484 April 2001

get_registered_events
This method returns a list of all events registered for custom control my_control.

CALL METHOD my_control->get_registered_events
 IMPORTING events = events
 EXCEPTIONS cntl_error = 1.

Parameters Description

events Table of events that you want to register for the custom control my_control.

The table events is a list of the events that you want to register. It is defined with reference to
table type CNTL_SIMPLE_EVENTS. The table type is based on the structure
CNTL_SIMPLE_EVENT, which consists of the following fields:

Field Description

EVENTID Event name

APPL_EVENT Indicates whether the event is a system event (initial) or an application event
(X).

The values that you assign to the field EVENTID are control-specific and therefore described in
the documentation of the individual controls.

For general information about event handling, refer to the Event Handling [Ext.]
section of the SAP Control Framework documentation.

 SAP AG SAP Tree and Tree Model (BC-CI)

is_alive

April 2001 485

is_alive
This method informs you whether a custom control for an object reference still exists at the
frontend.

CALL METHOD my_control->is_alive
 RETURNING state = state.

Parameters Description

state my_control->state_dead: Custom control is no longer active at the frontend

my_control->state_alive: Custom control is active on the current screen.

my_control->state_alive_on_other_dynpro: Custom control is not
active on the current screen, but is still active (but invisible) at the frontend.

SAP Tree and Tree Model (BC-CI) SAP AG

set_alignment

486 April 2001

set_alignment
Use this method to align the custom control within its container:

CALL METHOD my_control->set_alignment
 EXPORTING alignment = alignment
 EXCEPTIONS cntl_error = 1
 cntl_system_error = 2.

Parameters Description

alignment Control alignment

The alignment parameter may consist of combinations of the following alignments:

Name Description

my_control->align_at_left Alignment with left-hand edge

my_control->align_at_right Alignment with right-hand edge

my_control->align_at_top Alignment with top edge

my_control->align_at_bottom Alignment with bottom edge

You can combine these parameters by adding the components:

alignment = my_control->align_at_left + my_control->align_at_top.

 SAP AG SAP Tree and Tree Model (BC-CI)

set_position

April 2001 487

set_position
Use this method to place the control at a particular position on the screen.

The position of the control is usually determined by its container.

CALL METHOD my_control->set_position
 EXPORTING height = height
 left = left
 top = top
 width = width
 EXCEPTIONS cntl_error = 1
 cntl_system_error = 2.

Parameters Description

height Height of the control

left Left-hand edge of the control

top Top edge of the control

width Width of the control

SAP Tree and Tree Model (BC-CI) SAP AG

set_visible

488 April 2001

set_visible
Use this method to change the visibility of a custom control.

CALL METHOD my_control->set_visible
 EXPORTING visible = visible
 EXCEPTIONS cntl_error = 1
 cntl_system_error = 2.

Parameters Description

visible X: Custom control is visible

' ': Custom control is not visible

 SAP AG SAP Tree and Tree Model (BC-CI)

get_focus

April 2001 489

get_focus
This static method returns the object reference of the control that has the focus.

CALL METHOD cl_gui_control=>get_focus
 IMPORTING control = control
 EXCEPTIONS cntl_error = 1
 cntl_system_error = 2.

Parameters Description

control Object reference (TYPE REF TO cl_gui_control) to the control that has the
focus.

SAP Tree and Tree Model (BC-CI) SAP AG

set_focus

490 April 2001

set_focus
Use this static method to set the focus to a custom control.

CALL METHOD cl_gui_control=>set_focus
 EXPORTING control = control
 EXCEPTIONS cntl_error = 1
 cntl_system_error = 2.

Parameters Description

control Object reference (TYPE REF TO cl_gui_control) to the control on which
you want to set the focus.

 SAP AG SAP Tree and Tree Model (BC-CI)

get_height

April 2001 491

get_height
This method returns the height of the control.

CALL METHOD control->get_height
 IMPORTING height = height
 EXCEPTIONS cntl_error = 1.

Parameters Description

height Current height of the control

SAP Tree and Tree Model (BC-CI) SAP AG

get_width

492 April 2001

get_width
This method returns the width of the control.

CALL METHOD control->get_width
 IMPORTING width = width
 EXCEPTIONS cntl_error = 1.

Parameters Description

width Current width of the control

 SAP AG SAP Tree and Tree Model (BC-CI)

Methods of the Class CL_DRAGDROP

April 2001 493

Methods of the Class CL_DRAGDROP
The class CL_DRAGDROP contains methods that describe the drag and drop [Page 106] behavior
of a custom control.

SAP Tree and Tree Model (BC-CI) SAP AG

constructor

494 April 2001

constructor
The constructor creates an instance for the description of the drag and drop behavior of a control.

CREATE OBJECT dragdrop.

 SAP AG SAP Tree and Tree Model (BC-CI)

add

April 2001 495

add
This method adds a new description to the drag and drop behavior. You can store any number of
descriptions, but you may not add the same description more than once.

CALL METHOD dragdrop->add
 EXPORTING flavor = flavor
 dragsrc = dragsrc
 droptarget = droptarget
 effect = effect
 effect_in_ctrl = effect_in_ctrl
 EXCEPTIONS already_defined = 1
 obj_invalid = 2.

Parameters Description

flavor Description of the new flavor

dragsrc 'X': The description is a drag source

droptarget 'X': The description is a drop target

effect Drop effect of the description between different custom controls. The following
effects are supported:

dragdrop->copy: Appearance of the mouse when using drag and drop to
copy.

dragdrop->move: Appearance of the mouse when using drag and drop to
move.

dragdrop->none: Drag and drop is not possible.

effect_in_ctrl Drop effect of the description in the same custom control. The following effects
are supported:

dragdrop->copy: Appearance of the mouse when using drag and drop to
copy.

dragdrop->move: Appearance of the mouse when using drag and drop to
move.

dragdrop->none: Drag and drop is not possible.

dragdrop->use_default_effect: Uses the same effect specified in the
effect parameter.

Exceptions Description

already_defined The specified flavor has already been defined.

obj_invalid The object has already been destroyed using the method destroy [Page 498].

SAP Tree and Tree Model (BC-CI) SAP AG

add

496 April 2001

If you use the copy and move effects when you define the flavor, the system uses
the move effect when the user drags an object normally, and the copy effect when
the user presses and holds the CTRL key while dragging.

 SAP AG SAP Tree and Tree Model (BC-CI)

clear

April 2001 497

clear
Deletes the contents of the instance. Once you have called this method, you cannot perform any
more drag and drop operations on the corresponding custom control.

CALL METHOD dragdrop->clear
 EXCEPTIONS obj_invalid = 1.

Exceptions Description

obj_invalid The object has already been destroyed using the method destroy [Page 498].

SAP Tree and Tree Model (BC-CI) SAP AG

destroy

498 April 2001

destroy
Deletes the contents of the instance. The instance itself is also destroyed. Once you have called
this method, you cannot perform any more drag and drop operations on the corresponding
custom control.

CALL METHOD dragdrop->destroy.

 SAP AG SAP Tree and Tree Model (BC-CI)

get

April 2001 499

get
Returns the complete description of a flavor.

CALL METHOD dragdrop->get

 EXPORTING flavor = flavor
 IMPORTING isdragsrc = isdragsrc
 isdroptarget = isdroptarget
 effect = effect
 effect_in_ctrl = effect_in_ctrl
 EXCEPTIONS not_found = 1
 obj_invalid = 2.

Parameters Description

flavor Name of the flavor

dragsrc 'X': The description is a drag source

droptarget 'X': The description is a drop target

effect Drop effect of the description between different custom controls. The following
effects are supported:

dragdrop->copy: Appearance of the mouse when using drag and drop to
copy.

dragdrop->move: Appearance of the mouse when using drag and drop to
move.

dragdrop->none: Drag and drop is not possible.

effect_in_ctrl Drop effect of the description in the same custom control. The following effects
are supported:

dragdrop->copy: Appearance of the mouse when using drag and drop to
copy.

dragdrop->move: Appearance of the mouse when using drag and drop to
move.

dragdrop->none: Drag and drop is not possible.

dragdrop->use_default_effect: Uses the same effect specified in the
effect parameter.

Exceptions Description

already_defined The specified flavor has already been defined.

If you use the copy and move effects when you define the flavor, the system uses
the move effect when the user drags an object normally, and the copy effect when
the user presses and holds the CTRL key while dragging.

SAP Tree and Tree Model (BC-CI) SAP AG

get

500 April 2001

 SAP AG SAP Tree and Tree Model (BC-CI)

get_handle

April 2001 501

get_handle
This method returns the handle of the drag and drop position. In most cases, you will not need to
use this method. However, for tabular mass data interfaces (such as the SAP Tree), you must
copy this handle into the interface table.

CALL METHOD dragdrop->get_handle
 IMPORTING handle = handle
 EXCEPTIONS obj_invalid = 1.

Parameters Description

handle Handle of the drag and drop description

Exceptions Description

obj_invalid The object has already been destroyed using the method destroy [Page 498].

SAP Tree and Tree Model (BC-CI) SAP AG

modify

502 April 2001

modify
Use this method to change an existing flavor.

CALL METHOD dragdrop->modify
 EXPORTING flavor = flavor
 dragsrc = dragsrc
 droptarget = droptarget
 effect = effect
 effect_in_ctrl = effect_in_ctrl
 EXCEPTIONS not_found = 1
 obj_invalid = 2.

Parameters Description

flavor Name of the flavor

dragsrc 'X': The description is a drag source

droptarget 'X': The description is a drop target

effect Drop effect of the description between different custom controls. The following
effects are supported:

dragdrop->copy: Appearance of the mouse when using drag and drop to
copy.

dragdrop->move: Appearance of the mouse when using drag and drop to
move.

dragdrop->none: Drag and drop is not possible.

effect_in_ctrl Drop effect of the description in the same custom control. The following effects
are supported:

dragdrop->copy: Appearance of the mouse when using drag and drop to
copy.

dragdrop->move: Appearance of the mouse when using drag and drop to
move.

dragdrop->none: Drag and drop is not possible.

dragdrop->use_default_effect: Uses the same effect specified in the
effect parameter.

Exceptions Description

not_found The specified flavor does not exist

obj_invalid The object has already been destroyed using the method destroy [Page 498].

If you use the copy and move effects when you define the flavor, the system uses
the move effect when the user drags an object normally, and the copy effect when
the user presses and holds the CTRL key while dragging.

 SAP AG SAP Tree and Tree Model (BC-CI)

modify

April 2001 503

SAP Tree and Tree Model (BC-CI) SAP AG

remove

504 April 2001

remove
Use this method to delete a flavor.

CALL METHOD dragdrop->remove
 EXPORTING flavor = flavor
 EXCEPTIONS not_found = 1
 obj_invalid = 2.

Parameters Description

flavor Name of the flavor

Exceptions Description

not_found The specified flavor does not exist

obj_invalid The object has already been destroyed using the method destroy [Page 498].

 SAP AG SAP Tree and Tree Model (BC-CI)

Methods of the Class CL_DRAGDROPOBJECT

April 2001 505

Methods of the Class CL_DRAGDROPOBJECT
The class CL_DRAGDROPOBJECT describes the context of a drag and drop operation [Page
106]. It contains information about the source object, the flavor of the drag and drop operation,
and information about the source and target.

SAP Tree and Tree Model (BC-CI) SAP AG

set_flavor

506 April 2001

set_flavor
You can only use this method within event handling for the ONGETFLAVOR event. Use the
newflavor parameter to determine the flavor that you want to use in the drag and drop
operation. You receive a list of available flavors as an event parameter.

CALL METHOD dragdropobject->set_flavor
 EXPORTING newflavor = newflavor
 EXCEPTIONS illegal_state = 1
 illegal_flavor = 2.

Parameters Description

newflavor Name of the flavor

Exceptions Description

invalid_state You did not call the method from within event handling for ONGETFLAVOR.

obj_invalid You used a flavor that is not supported by the current drag and drop situation.

 SAP AG SAP Tree and Tree Model (BC-CI)

abort

April 2001 507

abort
Terminates the drag and drop operation immediately. No further events are triggered.

CALL METHOD dragdropobject->abort.

