

BC Extended Applications
Function Library

 H
E

L
P

.B
C

D
W

B
L

IB
2

Re lease 4 .6C

BC Extended Applications Function Library SAP AG

Copyright

© Copyright 2001 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose
without the express permission of SAP AG. The information contained herein may be changed
without prior notice.

Some software products marketed by SAP AG and its distributors contain proprietary software
components of other software vendors.

Microsoft®, WINDOWS®, NT®, EXCEL®, Word®, PowerPoint® and SQL Server® are registered
trademarks of
Microsoft Corporation.

IBM®, DB2®, OS/2®, DB2/6000®, Parallel Sysplex®, MVS/ESA®, RS/6000®, AIX®, S/390®,
AS/400®, OS/390®, and OS/400® are registered trademarks of IBM Corporation.

ORACLE® is a registered trademark of ORACLE Corporation.

INFORMIX®-OnLine for SAP and Informix® Dynamic Server

TM
 are registered trademarks of

Informix Software Incorporated.

UNIX®, X/Open®, OSF/1®, and Motif® are registered trademarks of the Open Group.

HTML, DHTML, XML, XHTML are trademarks or registered trademarks of W3C®, World Wide
Web Consortium,
Massachusetts Institute of Technology.

JAVA® is a registered trademark of Sun Microsystems, Inc.

JAVASCRIPT® is a registered trademark of Sun Microsystems, Inc., used under license for
technology invented and implemented by Netscape.

SAP, SAP Logo, R/2, RIVA, R/3, ABAP, SAP ArchiveLink, SAP Business Workflow, WebFlow,
SAP EarlyWatch, BAPI, SAPPHIRE, Management Cockpit, mySAP.com Logo and mySAP.com
are trademarks or registered trademarks of SAP AG in Germany and in several other countries
all over the world. All other products mentioned are trademarks or registered trademarks of their
respective companies.

2 April 2001

 SAP AG BC Extended Applications Function Library

Icons

Icon Meaning

Caution

Example

Note

Recommendation

Syntax

April 2001 3

BC Extended Applications Function Library SAP AG

Contents

BC Extended Applications Function Library..7
Standardized dialogs .. 8
Overview... 9
Concept .. 10
Procedure... 11

Determine dialog type .. 12
Create dialog text Document.. 13

Confirmation prompt dialogs... 14
Dialogs for choosing from among alternatives.. 15
Dialogs for displaying, inputting and checking data... 16
Data print dialogs .. 18
Text display dialogs .. 19
Scrolling in tabular structures ... 20
Extended table maintenance.. 21
Overview... 22
Concept .. 23
Create maintenance dialog... 25
Calling the standard maintenance dialog ... 27
Call via function module... 28
Highest level entry .. 29
Middle level entry .. 30
Lowest level entry ... 33
Central address management.. 37
Overview... 38
Calendar ... 39
Overview... 40
Concept .. 41
Determine calendar ID .. 42
Calendar functions.. 43
Measurement units.. 44
Overview... 45
Concept .. 46
Check measurement unit table .. 49
Measurement unit conversion ... 50
s Conversion of measurement units and possible entries (F4) help..................................... 52
Change documents ... 54
Overview... 55
Concept .. 56
Procedure... 58

Define change document object .. 59
Set change document flag ... 61
Generate Update and INCLUDE Objects .. 62

4 April 2001

 SAP AG BC Extended Applications Function Library

Integrating the functionality into the program... 64
Writing the fields in the program ... 65

Creating change documents.. 69
Read and format change documents .. 70
Read and format planned changes ... 71
Delete change documents and planned changes.. 72
Archived change documents management.. 73
Create application log... 74
Overview... 75
Concept .. 76
Procedure... 77
Define application log objects ... 78
Create application log... 79
Display application log ... 80
Read application log ... 81
Delete application log ... 82
Platform-independent File Name Assignment ... 83
Overview... 84
Definitions of Platform-independent File Names.. 85
The Function Module FILE_GET_NAME ... 88
Using Platform-independent File Names in Programs.. 91
Reference ... 92
Number ranges .. 93
Overview... 94
Concept .. 95
Number range object types.. 97
Procedure... 100

Determine the number range object type... 101
Maintain number range object.. 102
Function module calls .. 105

Number range and group maintenance dialogs... 107
Number range and group read and maintain services.. 109
Number range object read and maintain services... 111
Number assignment and check ... 112
Utilities.. 113
Data Archiving - ADK.. 114
Overview... 115
ADK: Development Environment for Archiving Programs ... 116
Interaction between Program, ADK, and Archive File... 117
Archiving using ADK .. 119

Archiving Process .. 121
Archiving Objects ... 122
Standard Class... 124
Archiving Classes... 125
Archive Administration ... 127
Network Graphic .. 129

April 2001 5

BC Extended Applications Function Library SAP AG

Developing Archiving Programs ... 130
Defining Archiving Objects ... 131
Defining Standard Class Hierarchical Structure... 133
Tables From Which You Only Delete Entries .. 134
Archiving Object-Specific Customizing .. 135
Assigning Archiving Classes.. 138

Developing Archiving Programs ... 139
Standard Archiving Program.. 142
Archiving Using Archiving Classes .. 143

Developing Delete Programs ... 145
Developing Reload Programs .. 147
Developing Analysis Programs ... 149
Maintaining Network Graphic... 151
Creating ADK Indexes and Using Them to Access Archive ... 152
Archiving Classes ... 154
Developing Archiving Classes... 156

Specifying Function Groups... 157
Developing Function Modules.. 158
Developing Subprograms... 161

Initializing the Archiving Classes for Writing ... 163
Getting Data.. 165
Deleting Local Memory of Archiving Class ... 166
Declaring an Archive Handle Invalid... 167
Initializing Archiving Classes for Reading... 168
Copying Data From the Data Container ... 170
Deleting Archived Data ... 171
Discarding the Data Selected for Deletion.. 172
Reloading Archived Data .. 173

Defining Archiving Classes .. 174
Archiving Functions.. 176

6 April 2001

 SAP AG BC Extended Applications Function Library

 BC Extended Applications Function Library

BC Extended Applications Function Library

April 2001 7

BC Extended Applications Function Library SAP AG

Standardized dialogs

Standardized dialogs
This section explains how you can standardize the dialogs in your developments.

Overview [Page 9]

Concept [Page 10]

Procedures

Procedure [Page 11]

Determine dialog type [Page 12]

Create dialog text Document [Page 13]

References

Confirmation prompt dialogs [Page 14]

Dialogs for choosing from among alternatives [Page 15]

Dialogs for displaying, inputting and checking data [Page 16]

Data print dialogs [Page 18]

Text display dialogs [Page 19]

Scrolling in tabular structures [Page 20]

8 April 2001

 SAP AG BC Extended Applications Function Library

 Overview

Overview
Some dialog steps and functions are required frequently during the realization of application
development dialogs. These are available as function modules in self-contained modules. Their
use standardizes application dialogs, which in turn simplifies use.

April 2001 9

BC Extended Applications Function Library SAP AG

Concept

Concept
The function modules provide a standardized dialog box with function keys which are tested at
the end of the dialog. Depending on the function module, texts for information, for choices and/or
for the available function keys can be passed.

10 April 2001

 SAP AG BC Extended Applications Function Library

 Procedure

Procedure
No preparatory steps are necessary for the use of the function modules for standardized dialog
boxes, with the exception of the text display function modules (function group SP06). In this case,
the texts must be created previously.

To use standardized dialog boxes, perform the following steps:

1. Determine dialog type [Page 12]

If you want to use a function module from the function group SPO6: Create dialog text
Document [Page 13]

2. Choose the appropriate function module in the function group found in step 1.

3. Call this function module in the application.

April 2001 11

BC Extended Applications Function Library SAP AG

Determine dialog type

Determine dialog type
Determine what information you want to provide the user, and the decision logic you require.
Then choose the appropriate function group from the following table.

Situation Function group

The user is to be warned of potential data loss SPO1

The user should answer a question about further processing with Yes or No SPO1

The user is to be warned about potential data loss, and decide whether he
or she wants to continue with the action

SPO1

The user must choose between further processing alternatives SPO2

The user must continue the current action or cancel SPO2

The user is to input data (with or without check against a value table) SPO4

Data are to be displayed to the user SPO4

The user is to receive detailed information SPO6

The user is to be able to scroll in a displayed list STAB

The user is to print data from a table or a table view STRP

12 April 2001

 SAP AG BC Extended Applications Function Library

 Create dialog text Document

Create dialog text Document
To create a “Dialog text” (for function modules in the function group SP06), proceed as follows:

1. In the initial screen choose the function Tools → Abap/4 Workbench → Environment →
Documentation.

2. Position the cursor on the document class output field and press F4.

3. Choose the class Dialog text.

4. Enter a document name and choose Create.

5. Enter the text and save it.
Saving via the icon creates a raw document. Raw versions can not be transported or
translated. The document must be a final version for these actions to be possible. You
achieve this with the function Save final version. You must be authorized to save final
versions of documents in this development class.

April 2001 13

BC Extended Applications Function Library SAP AG

Confirmation prompt dialogs

Confirmation prompt dialogs
Function group SPO1
This function group contains the following function modules:

• POPUP_TO_CONFIRM_STEP
With this function module you create a dialog box in which you ask the user during an action,
whether he or she wishes to perform the step. You pass the title and a two-line question. The
user must choose Yes, No or Cancel.
The possible responses are provided by the function module.
In the interface, the response "Yes" is pre-selected, but "No" can also be pre-selected via a
parameter.
The user response (Yes, No or Cancel) is returned in a parameter.

• POPUP_TO_CONFIRM_WITH_MESSAGE
With this function module you create a dialog box in which you inform the user about a
specific decision point during an action. You pass a title, a three-line diagnosis text and a
two-line question, which he or she must answer with Yes, No or Cancel.
The possible responses are provided by the function module. In the interface the response
"Yes" is pre-selected, but "No" can also be pre-selected via a parameter.
The user response (Yes, No or Cancel) is returned in a parameter.

• POPUP_TO_CONFIRM_WITH_VALUE
With this function module you create a dialog box in which you ask the user, during an action,
whether he or she wishes to perform a processing step with a particular object. You pass a
title, a two-line decision question and the object, which is inserted between the two parts of
the question. The user must choose Yes, No or Cancel.
The possible responses are provided by the function module.
In the interface the response "Yes" is pre-selected, but "No" can also be pre-selected via a
parameter.
The user response (Yes, No or Cancel) is returned in a parameter.

• POPUP_TO_CONFIRM_LOSS_OF_DATA
With this function module you create a dialog box in which you ask the user, during an action,
whether he or she wishes to perform a processing step with loss of data. You pass the title
and the two-line question. The warning that data are lost and the possible responses are
provided by the function module. The user must answer "Yes", "No" or “Cancel”.

In the interface the response "No" is pre-selected and can not be changed.
The user response (Yes, No or Cancel) is returned in a parameter.

14 April 2001

 SAP AG BC Extended Applications Function Library

 Dialogs for choosing from among alternatives

Dialogs for choosing from among alternatives
Function group SPO2
This function group contains the following function modules:

• POPUP_TO_DECIDE
With this function module you create a dialog box in which you require the user to choose
between the two further processing alternatives offered, or to cancel the action.
The action, the question and the alternative actions are passed as parameters. In the
interface the alternative 1 is pre-selected, but alternative 2 can also be pre-selected via a
parameter.
The user action (Alternative 1, Alternative 2, or Cancel) is returned in a parameter.

• POPUP_TO_DECIDE_WITH_MESSAGE
With this function module you create a dialog box in which you inform the user about a
specific decision point via a diagnosis text, during an action. He or she can choose one of
two alternative actions offered or cancel the action.
The action, the diagnosis text, the question and the alternative actions are passed as
parameters.
The user action (Alternative 1, Alternative 2, or Cancel) is returned in a parameter.

April 2001 15

BC Extended Applications Function Library SAP AG

Dialogs for displaying, inputting and checking data

Dialogs for displaying, inputting and checking data
Function group SPO4
This function group contains the following function modules:

• POPUP_GET_VALUES
This function module sends a dialog box for data display and input.
The input fields are passed in a structure and must be defined in the Dictionary. You can also
specify individual field display attributes and a field text, if the key word from the Dictionary is
not to be displayed as field text in the dialog box, in the structure.
The standard help functionality (F1, F4) is supported.

• POPUP_GET_VALUES_DB_CHECKED
This function module sends a dialog box for data to be input und checked against the
database.
The input fields are passed in a structure and must be defined in the Dictionary. You can also
specify individual field display attributes and a field text in the structure, if the key word from
the Dictionary is not to be displayed as field text in the dialog box.
A comparison operator for checking the input data in the database is passed. You can
specify whether the check is for the existence or absence of an object. A foreign key
relationship check is supported.
The standard help functionality (F1, F4) is supported.
The user action is returned in a parameter.

• POPUP_GET_VALUES_USER_CHECKED
This function module sends a dialog box for data to be input and checked in an external sub-
routine (user exit). The input fields are passed in a structure and must be defined in the
dictionary. You can also specify individual field display attributes and a field text in the
structure, if the key word from the Dictionary is not to be displayed as field text in the dialog
box.
The Data input by the user in the dialog box are passed to the sub-routine specified in the
interface for checking. Errors found by the check are entered in an error structure and are
evaluated on return from the sub-routine by the function module.
The standard help functionality (F1, F4) is supported.
The user action (Continue or Cancel) is returned in a parameter.

• POPUP_GET_VALUES_USER_HELP
This function module sends a dialog box for data to be input with the possibility of a check in
an external sub-routine (user exit) and branching in a user F1 or F4 help.
The input fields are passed in a structure and must be defined in the Dictionary. You can also
specify individual field display attributes and a field text in the structure, if the key word from
the Dictionary is not to be displayed as field text in the dialog box.
You can pass the data which are entered by the user in a dialog box to a sub-routine which
must be specified in the interface for checking. Errors occurring in the check are stored in an
error structure and are analyzed by the function module upon return from the sub-routine.
The data, and an error message, if appropriate, are displayed again.
The standard help functionality (F1, F4) is supported.
User exits for a user F1 or F4 help can also be specified.
The user action (Continue or Cancel) is returned in a parameter.

• POPUP_GET_VALUES_USER_BUTTONS
This function module is like the previous function module

16 April 2001

 SAP AG BC Extended Applications Function Library

 Dialogs for displaying, inputting and checking data

POPUP_GET_VALUES_USER_HELP, with the additional possibility of passing one or two
additional pushbuttons and a standard pushbutton, which the user can name.

• POPUP_GET_VALUES_SET_MAX_FIELD
With this function module you can specify the maximum number of fields which can be
displayed in dialog boxes for this function group (SPO4). The specified value is stored in the
function group local memory and applies for the rest of the application. Dialog boxes which
display more then this number of fields are displayed with a scroll bar.

April 2001 17

BC Extended Applications Function Library SAP AG

Data print dialogs

Data print dialogs
Function group STRP
With the two function modules in this function group you can print database table or view records.
With a parameter you can control whether the table records are output with a standard list format
or whether the user can specify the print format in a dialog box. The user can choose fields,
specify a sort sequence and specify the column sequence and titles in these dialog boxes.
Standard output (without dialog box) error cases are caught by exceptions. Output with user-
defined format generates error messages in case of error.

• TABLE_PRINT_STRUCTURE_KNOWN
You pass data from tables whose structure is known in the program to this function module.

• TABLE_PRINT_STRUCTURE_UNKNOWN
You pass data from tables whose structure is not known in the program to this function
module. These structure data are fetched independently by the function module.

18 April 2001

 SAP AG BC Extended Applications Function Library

 Text display dialogs

Text display dialogs
Function group SPO6
With this function module you can display pre-prepared texts which exist in the system. These
texts must have been created as documents of the class “Dialog text “ with the documentation
maintenance transaction (Tools → ABAP/4 Workbench → Environment →
Documentation).

• POPUP_DISPLAY_TEXT
With this function module you display a text which exists in the system in a dialog box.

• POPUP_DISPLAY_TEXT_WITH_PARAMS
With this function module you display a text which exists in the system with parameters in a
dialog box. The parameter values are passed in a table. The use of numbered texts is
recommended, to make the parameter values translatable.
The parameter names must be passed in upper-case letters.

April 2001 19

BC Extended Applications Function Library SAP AG

Scrolling in tabular structures

Scrolling in tabular structures
Function group STAB
• SCROLLING_IN_TABLE

With this function module you enable the user to scroll in a list which you have created, e.g.
as a logical part of an internal table. You can enable either page-wise scrolling or positioning
on individual records.

20 April 2001

 SAP AG BC Extended Applications Function Library

 Extended table maintenance

Extended table maintenance
This section explains how you can use the extended table maintenance standard maintenance
dialog in your developments.

Overview [Page 22]

Concept [Page 23]

Procedure
Create maintenance dialog [Page 25]

Calling the standard maintenance dialog [Page 27]

References
Call via function module [Page 28]

Highest level entry [Page 29]

Middle level entry [Page 30]

Lowest level entry [Page 33]

April 2001 21

BC Extended Applications Function Library SAP AG

Overview

Overview
The extended table maintenance maintenance dialog provides the possibility of processing table
data in a consistent maintenance dialog, independently of whether access is to be made directly
via the table or via a view defined in the dictionary.

Integrating the maintenance dialog into user developments offers simplified access to table
contents, and has the following advantages, among others:

• The programming effort is considerably reduced.

• The operation is consistent, comprehensible and convenient.
The convenience is produced by comprehensive operating functionality, which guarantees the
comprehensibility and transparency of the maintenance procedures.

The maintenance dialog also allows table data to be viewed on two levels. You can branch from
an overview screen to a detail screen for a selected record.

The maintenance dialog can be used in its entirety as a standard maintenance dialog, or table or
view-specific modifications can be made.

22 April 2001

 SAP AG BC Extended Applications Function Library

 Concept

Concept
The following standard table maintenance dialog functionality is already available in the system
for user applications:

• A central program module, which contains all the maintenance functionality, including mark
functions for multiple record processing, the possibility of selecting all records processed,
recover deleted records, and much more besides.

• The maintenance transaction, which uses the table or view-specific components as well as
the central program module.

Internal processing sequence
The processing sequence is illustrated using views as an example, in the following figure:

Database

Buffer

Interface

Table1

Table 2

Table 3

001

001

001

Table 3
for example Company Code

View 1 View 2 View 3

Company Code DataCompany Data

F11 = Save F11 = Save

Insert
Delete
Copy
Select
etc.

Insert
Delete
Copy
Select
etc.

A work area, which can contain all existing views or be restricted by a selection, is fetched from
the database for processing on the screen. This work area is first loaded into internal tables. At
this point, a further selection for processing by field contents can be made.

Field contents are maintained in the internal tables. The database is not accessed automatically
after the maintenance of each individual view record. Changes made are only copied from the

April 2001 23

BC Extended Applications Function Library SAP AG

Concept

internal buffer to the database when the user chooses save. This buffering gives the
maintenance processing the form of a transaction. This enables the user to cancel changes
before the database access (user-controlled „Rollback“) and allows the calling main program to
check entries for consistency in context.

Maintenance dialog integration
The maintenance dialog can be integrated as follows:

• Maintenance transaction integration in a menu or an application.

• Maintenance dialog integration using function modules in an application with parameter
passing.
There are three possible entry levels, which differ according to the extent to which the
maintenance procedure can be controlled.

– Highest level
With this interface you call the complete maintenance dialog for a table or a view.
You can restrict the table entries which are read from the database using selections.

– Middle level
This level contains the actual maintenance dialog with the steps “Read, Edit, Save”
in this order. You must program preparatory actions, such as locking the data,
reading the Dictionary, etc., yourself.

− Lowest level
With this interface you control all maintenance procedures individually from your
program. You pass the actions to be performed to the function module as
parameters.
In this way you can easily integrate individual maintenance steps (“Read, Edit,
Save”) in your program.

24 April 2001

 SAP AG BC Extended Applications Function Library

 Create maintenance dialog

Create maintenance dialog
You can make the following maintenance components available with the table maintenance
dialog generation transaction (Tools → ABAP/4 Workbench → Development → Other
Tools → Gen.tab.maint.dialog):

• Generated objects
Generates all maintenance modules which are required to call the maintenance dialog.

• Table or view definition in the Dictionary
Processes the definition of the current table or view.
During the definition, table and field level access type authorizations can be specified.
It can also be specified whether there is to be a detail screen for each overview screen
record.

This is necessary for two-step procedures, but also for tables or views whose
records can not be completely displayed on the overview screen because of the
number or length of their fields. It can also be appropriate when complicated
maintenance procedures require long input field explanatory texts, e.g. by displaying
data from foreign key tables.

• Authorization groups
You can create authorization groups for tables or views.
The activities defined for an authorization group apply during the use of the maintenance
dialog for the tables or views in the authorization group.

• Authorization group assignment
You can group tables or views.

To be able to call the maintenance dialog, you must generate the table or view-specific
maintenance modules. Proceed as follows:

1. Choose Tools → ABAP/4 Workbench → Development → Other Tools →
Gen.tab.maint.dialog. You enter the maintenance transaction initial screen.

2. Enter the name of the table or view.

3. Mark the option “Generated objects”.

4. Choose Create/Change.

5. Confirm that the maintenance module is to be created in the following dialog box,.

Instead of steps 1. to 5. you can call the function Utilities → Gen.maint. dialog in the
Dictionary (Tools → ABAP/4 Workbench → Development → Dictionary) for the
table or view in question. You go to the maintenance screen for the generated object
for the current table.

6. Enter the data required for generation:

- Function group to which the maintenance module is to belong

April 2001 25

BC Extended Applications Function Library SAP AG

Create maintenance dialog

It is possible to store the maintenance modules for several tables or views. in one
function group

- Authorization group

- Maintenance type (one/two-step)

- Maintenance screen (one-step) or screens (two-step) number

- Recording routine (standard/individual or none)

7. Then choose Create. All required maintenance modules are now generated.

If you subsequently want to make changes, you must call the function Change, to re-
generate the maintenance module in question.

Then you can call the standard maintenance dialog or the maintenance function modules for the
table or view in question.

26 April 2001

 SAP AG BC Extended Applications Function Library

 Calling the standard maintenance dialog

Calling the standard maintenance dialog
If you want to call the standard maintenance dialog in your application, code the maintenance
dialog call in your program, and pass the name of the table or view as a parameter.

April 2001 27

BC Extended Applications Function Library SAP AG

Call via function module

Call via function module
When the maintenance dialog is called via function modules, three entry levels are distinguished:

• sssHighest level
Call of the complete maintenance dialog

• Middle level
You can control the maintenance dialog to a limited extent.

• Lowest level
You call the maintenance object-specific function modules yourself and control the dialog
completely.

28 April 2001

 SAP AG BC Extended Applications Function Library

 Highest level entry

Highest level entry
You can call the standard maintenance dialog via the function module
VIEW_MAINTENANCE_CALL. The function module performs the following activities:

• Authorization check

• Locking

• Fetching and formatting the necessary information from the Dictionary

• Selection, processing and saving the data

• Restrict the data selection in the sub-set field dialog

• Dynamic interface modification (menus and functions)

You can influence the maintenance dialog at run-time in the following ways:

• Selection conditions
You specify the selection conditions with which you wish to restrict the data
selection in the database, in an internal table.

• Interface
You can dynamically disactivate functions of the central standard interface
SAPLSVIM via an internal table.

Please see the function module documentation in the system for the interface
description.

April 2001 29

BC Extended Applications Function Library SAP AG

Middle level entry

Middle level entry
At this entry level, you call function modules to control the table maintenance.

Call the function module VIEW_MAINTENANCE.

For this function module, only the table or view name need be specified. The control function
module name for the maintenance dialog call is put together and then called.

The function module performs the selection, processing and saving of the data and the interface
layout. You must have already performed the following activities yourself before you call
VIEW_MAINTENANCE.

• Authorization check for the table/view
The function module VIEW_AUTHORITY_CHECK can be used.

• Lock the table/view
The function module VIEW_ENQUEUE can be used.

• Fetching and formatting the required information from the Dictionary
The function module VIEW_GET_DDIC_INFO can be used.

• Possibly restricting the data area in dialog
The function module TABLE_RANGE_INPUT can be used.

At run-time you can influence the maintenance dialog in the following ways:

• Selection conditions
You save the selection conditions with which you wish to restrict the data
selection in the database in an internal table.

• Interface
You can dynamically disactivate functions of the central standard interface
SAPLSVIM via an internal table.

Please see the function module documentation in the system for the interface
description.

Interface description

Import parameters

• CORR_NUMBER
Change request number of the change made, see function module
VIEW_MAINTENANCE_CALL documentation

• VIEW_ACTION
Action (Display, maintain or transport)
see function module VIEW_MAINTENANCE_CALL documentation

• VIEW_NAME
Name of the table/view to be processed

Export parameters

none

30 April 2001

 SAP AG BC Extended Applications Function Library

 Middle level entry

Tables

• DBA_SELLIST
Database access selection conditions.

Structure: INCLUDE STRUCTURE VIMSELLIST, see function module
VIEW_MAINTENANCE_CALL documentation.

All data which are read for table processing and are created by maintenance, are stored
at run-time in the internal table TOTAL.

The table TOTAL has the structure:

– INCLUDE STRUCTURE <view name> or <table name>

– INCLUDE STRUCTURE VIMFLAGTAB

• DPL_SELLIST
Selection conditions for the display of part of a work area on the maintenance screens.

Structure and documentation as for DBA_SELLIST.

The data are stored at run-time in the internal table EXTRACT. The table EXTRACT
always contains only the table records which were filtered out of the table TOTAL as a
result of a user action.

The table EXTRACT has the same structure as the table TOTAL

• EXCL_CUA_FUNCT
Interface functions which can be dynamically de-activated.

Structure: INCLUDE STRUCTURE VIMEXCLFUN, see function module
VIEW_MAINTENANCE_CALL documentation

• X_HEADER
Control block table for the view/table.

Structure: INCLUDE STRUCTURE VIMDESC.

The table contains the table or view header information from the Dictionary, such as sub-
set, selection conditions, maintenance status, delivery class. The table also contains
information about the table or view generation and event times for user form routines.
You can fill this table with the function module VIEW_GET_DDIC_INFO.

• X_NAMTAB
Control block table for the table/view fields.

Structure: INCLUDE STRUCTURE VIMDESC.

The table contains the table or view field information from the Dictionary, such as
structure field positions, key information and maintenance characteristics of the field. You
can fill this table with the function module VIEW_GET_DDIC_INFO.

Exceptions

• MISSING_CORR_NUMBER
Correction number missing

• NO_DATABASE_FUNCTION
Data processing module missing

April 2001 31

BC Extended Applications Function Library SAP AG

Middle level entry

• NO_EDITOR_FUNCTION
Control module missing

• NO_VALUE_FOR_SUBSET_IDENT
Sub-set field value missing

32 April 2001

 SAP AG BC Extended Applications Function Library

 Lowest level entry

Lowest level entry
For this entry level, the function modules generated for data processing are available.

Call the function module VIEW_MAINTENANCE_LOW_LEVEL. Knowledge of the view or table-
specific function module name for the data processing is not necessary, as it is put together by
the system and then called.

Pass the name of the table or view and the desired function when calling. You must evaluate the
returned user commands.

You must also perform all the activities which the maintenance dialog otherwise performs:

• Authorization check

• Lock

• Fetch and format the required information from the Dictionary

• Select, edit and save the data

• Restrict the data selection in dialog for subset fields

• Dynamic interface modification (menus and functions)

Interface description

Import parameters

• FCODE
desired function.

– 'READ' Read the data from the DB

– 'EDIT' process data

– 'RDED' Read and edit

– 'SAVE' Write the data to the DB

– 'ORGL' Re-set all marked entries

– 'ORGD' Re-set one entry

• VIEW_ACTION
Action (Display, maintain or transport).
see function module VIEW_MAINTENANCE_CALL documentation

• VIEW_NAME
Name of the table or view.

• CORR_NUMBER
Change request number for the changes made.
see function module VIEW_MAINTENANCE_CALL documentation

Export parameters

• LAST_ACT_ENTRY
Index of the record in table EXTRACT on which the cursor was positioned.

April 2001 33

BC Extended Applications Function Library SAP AG

Lowest level entry

• UCOMM
Last maintenance dialog user command.

You must process the following commands yourself on this entry level:

– 'SAVE' Save the data in the DB

– 'ORGL' Re-set all marked entries in the display table (EXTRACT)

If this command is returned, you must call the lowest entry level function module
again with this command and then with the previous command. You do not have to
write your own re-set program.

The lowest entry level was called with the module
VIEW_MAINTENANCE_LOW_LEVEL and the function 'EDIT'. The user has called
the function 'ORGL'. The module VIEW_MAINTENANCE_LOW_LEVEL has now to
be called first with the function 'ORGL'. The module runs in the background. Then
the module VIEW_MAINTENANCE_LOW_LEVEL has to be called again with the
function 'EDIT'.

– ‘ORGD' Re-set the entry in the display table (EXTRACT) header.

see command 'ORGL' for command processing.

− 'ANZG' Change action: Change -> Display

− 'AEND' Change action: Display -> Change

− ‘ENDE' End processing

− ‘BACK' Return to calling position

− 'ATAB' Fetch another table or view
This field also contains the commands which were realized in user modules in the
maintenance screens.

• UPDATE_REQUIRED
Flag: Entries changed, Save required.

The user has made changes which make it necessary to save the data before leaving
the maintenance dialog.

Tables

• CORR_KEYTAB
Table with the keys of the entries to be transported. The table is only used in transport mode.

Structure: INCLUDE STRUCTURE E071K

• DBA_SELLIST
Selection conditions for the database access.

Structure: INCLUDE STRUCTURE VIMSELLIST see function module
VIEW_MAINTENANCE _CALL documentation.

All data which are read in for the table processing or are created during maintenance,
are stored in the internal table TOTAL at run time.

The table TOTAL has the structure:

34 April 2001

 SAP AG BC Extended Applications Function Library

 Lowest level entry

– INCLUDE STRUCTURE <view name> or <table name>

– INCLUDE STRUCTURE VIMFLAGTAB

See also the function module VIEW_MAINTENANCE_CALL documentation.

• DPL_SELLIST
Selection conditions for the display of part of a work area on the maintenance screens.

Structure and documentation as DBA_SELLIST

The data are stored at run time in the internal table EXTRACT. The table EXTRACT
always only contains the table records which have been filtered out of the table TOTAL
as a result of a user action.

The table EXTRACT has the same structure as the table TOTAL

See also the documentation of the function module VIEW_MAINTENANCE_CALL

• EXCL_CUA_FUNCT
dynamically activated interface functions.

Structure: INCLUDE STRUCTURE VIMEXCLFUN, see function module
VIEW_MAINTENANCE_CALL documentation.

• TOTAL
Data table, contains all data which have been read in and changed, deleted or added during
the processing.

Structure:

– INCLUDE STRUCTURE <view name> or <table name>

– INCLUDE STRUCTURE VIMFLAGTAB

All data which are read in for the table processing or are created during maintenance are
stored at run time in the internal table TOTAL. After the function has been carried out,
the table gets a processing flag for each record processed.

• EXTRACT
Data display work table.

Structure as table TOTAL

The data are stored at run time in the internal table EXTRACT. The table EXTRACT
always only contains the table records which have been filtered out of the table TOTAL
as the result of a user action. After the function has been performed, the table contains
all the data found by the last selection for display.

• X_HEADER
Control block table for the table or view.

Structure: INCLUDE STRUCTURE VIMDESC

The table contains the Dictionary header information about the table or view, such as
sub-set, selection conditions, maintenance status, delivery class. The table also contains
the generation information and event time information for the table or view. You can fill
this table with the function module VIEW_GET_DDIC_INFO.

• X_NAMTAB
Control block table for the fields of the table or view.

Structure: INCLUDE STRUCTURE VIMDESC.

April 2001 35

BC Extended Applications Function Library SAP AG

Lowest level entry

The table contains the field information about the table or view, from the dictionary such
as the position of the field in the structure, key information and the maintenance
characteristics of the field. You can fill this table with the function module
VIEW_GET_DDIC_INFO.

Exceptions

• MISSING_CORR_NUMBER
Correction number missing

• SAVING_CORRECTION_FAILED
Error while saving the entries in a change request.

36 April 2001

 SAP AG BC Extended Applications Function Library

 Central address management

Central address management
Overview [Page 38]

April 2001 37

BC Extended Applications Function Library SAP AG

Overview

Overview
Addresses can arise in many different forms. There are, on the one hand, various kinds of
adddress, e.g. addresses of companies or of private individuals, they can also, e.g.
internationally, have a different structure. A central address management has been created to
simplify the address management across all applications, and to make access and processing
easier.

38 April 2001

 SAP AG BC Extended Applications Function Library

 Calendar

Calendar
This section explains which holiday and factory calendar data you can access in the system, and
use in your own developments.

Overview [Page 40]

Concept [Page 41]

Procedure
Determine calendar ID [Page 42]

References
Calendar functions [Page 43]

April 2001 39

BC Extended Applications Function Library SAP AG

Overview

Overview
Location-specific calendars can be defined in the SAP system. These can take account of both
regional holidays and location-specific conditions of service.

Function modules are available to enable you to use these data in your own developments.

40 April 2001

 SAP AG BC Extended Applications Function Library

 Concept

Concept
Public holidays can be defined and be combined into regionally valid holiday calendars. A holiday
calendar is identified in the system by a two-character calendar ID.

A holiday calendar is assigned to each factory calendar. The following information can also be
defined and stored:

• Definition of the working days

• Special conditions

The days which count as working days according to this definition are numbered sequentially
from 0 (unless otherwise defined). These numbers represent the factory date. The calendar date
can be directly accessed via the factory date, e.g. to calculate delivery dates.

The factory calendar is identified in the system by a two-character calendar ID.

Calendar hierarchy

Maintaining public
holiday calendar2.

Maintaining
public holidays1.

3. Maintaining factory
calendar

. . . Def. public
holiday n

Def. public
holiday 2

Def. public
holiday 1

Public holiday calendar K1
Def. weekdays/public
holidays, special rules

Define factory
calendar
ID: F1

Public holiday 1
. . .
Public holiday n

Define public holiday
calendar
ID: K1

April 2001 41

BC Extended Applications Function Library SAP AG

Determine calendar ID

Determine calendar ID
Some function modules only get general calendar data. They can be called without any
preparation. Others provide data about particular holiday or factory calendars. To call these
function modules, you need the relevant calendar ID. To find it, proceed as follows:

1. Call the calendar maintenance transaction in one of the following two ways:

- In the implementation guide for Global Settings choose → Maintain calendar →
Execute

- Call the transaction SCAL in the OK-Code field.

2. Choose the option “Holiday calendar” or “Factory calendar”.

3. Choose Display.
You receive a list of all holiday or factory calendars which exist in the system, with descriptive
text and ID.

4. Choose a calendar.
Call the function Display. definition, to get the definition of the chosen calendar.
Call the function Display calendar, to get a calendar overview. In the factory calendars
overview screen you can choose a year and display a calendar page for the chosen year with
the function Display year.

42 April 2001

 SAP AG BC Extended Applications Function Library

 Calendar functions

Calendar functions
All function modules are contained in the function group SCAL.

• DATE_COMPUTE_DAY
This function module returns the day of the week for the date passed.

• DATE_GET_WEEK
This function module returns the week for the date passed.

• WEEK_GET_FIRST_DAY
This function module returns the first day of the week passed. (This is always a Monday,
regardless of whether it is a working day or a holiday.)

• EASTER_GET_DATE
This function module returns the date of Easter Sunday for the year passed.

• FACTORYDATE_CONVERT_TO_DATE
This function module returns the calendar date for the factory date and the factory calendar
passed.

• DATE_CONVERT_TO_FACTORYDATE
This function module returns the factory date for the date and factory calendar passed. You
can specify with a parameter whether the next or the previous working day is returned if the
day is not a working day.

• HOLIDAY_CHECK_AND_GET_INFO
With this function module, you test whether a particular date in the holiday calendar passed
is a holiday. If so, the definition of the holiday is returned.

April 2001 43

BC Extended Applications Function Library SAP AG

Measurement units

Measurement units
This section explains which function modules you can use in your developments for processing
measurement units.

Overview [Page 45]

Concept [Page 46]

Procedure
Check measurement unit table [Page 49]

References
Measurement unit conversion [Page 50]

Conversion of measurement units and possible entries (F4) help [Page 52]

44 April 2001

 SAP AG BC Extended Applications Function Library

 Overview

Overview
Measurement units often have to be converted in applications. In multi-lingual systems, or with
language-dependent measurement units, there is also the problem of displaying the relationships
between measurement units correctly in the interface. For these reasons, SAP function modules
are provided, with which all tasks which arise in connection with measurement units can be
performed. The required information for each measurement unit is stored in a measurement unit
table, which is accessed by the function modules for performing conversions.

This includes conversion exits, which perform an automatic conversion between external and
internal format when using certain domains for screen input/output fields.

The function modules are buffered by default to minimize the number of database accesses
needed for the conversion. The buffer is created at the first call of a module in each function
group. This call therefore takes somewhat longer to complete. In general though, many modules
in both function groups are used repeatedly, so that the effort of creating the buffer is justified.

April 2001 45

BC Extended Applications Function Library SAP AG

Concept

Concept
Measurement units measure properties of business applications. These properties comprise
physical properties, that can be associated with dimensions in a measurement system, and
properties without dimension, that cannot be defined uniquely in a measurement system.

To use electronic data interchange (EDI) you must use the ISO code measurement units.
Furthermore, measurement units carry several other names for internal and external presentation
in the R/3 system.

Physical Properties
Physical properties are basic or derived. Derived properties are algebraic combinations of basic
properties. Which physical properties are viewed as basic and which as derived is a matter of
expediency. There are many different measurement systems with different basic properties. Each
basic property defines one basic dimension of a measurement system.

The SAP standard shipment uses the international measurement unit system (SI) with the seven
basic properties length, time, mass, temperature, electrical current, light intensity, and molarity.
The SI-System has seven basic dimensions.

The basic properties of each dimension can be measured in specific measurement units. The
measurement units of the seven basic SI system dimensions are meter (m), second (s), kilogram
(kg), Kelvin (K), ampere (A), candela (cd) and mol (mol).

The dimensions of all derived properties of a measurement system are algebraic combinations of
its basic dimensions. In the SI system, the measurement units of derived properties are
combinations of the SI units and some have their own names and abbreviations.

Derived property Measurement Unit Name

Speed m/s ---

Acceleration m/s2 ---

Force kg m/s2 Newton (N)

Energy kg m2/s2 joule (J)

You can define any number of other measurement units besides the SI units for each SI system
dimension. Different measurement units of one dimension have a linear relationship which allows
conversion between them and to the corresponding SI unit.

Dimension Measurement Unit Conversion to SI Unit

Length inch (") 0,0254 m

Mass ton (t) 1000 kg

46 April 2001

 SAP AG BC Extended Applications Function Library

 Concept

Temperature Celsius (°C) K - 273,14

Energy erg (erg) 0.0000001 J

Such definitions can be more convenient for some purposes (for example centimeters and
kilometers) or they are country specific (for example feet and miles).

As the relationships between the dimensions as well as the different measurement units of one
dimension are defined uniquely, they are maintained centrally in Customizing tables in the R/3
System. The dimensions of derived properties are defined in these tables by defining the
exponents of the underlying basic dimensions. The names of these Customizing tables start with
T006. You maintain these tables with the transactions CUNI and OMSC. The function modules
described in this section use these tables.

In the R/3 System, combinations of basic dimensions must be unique and can be related to one
derived dimension only. For example, energy (force times distance) and torque (force times
radius) cannot be defined in one R/3 System simultaneously.

In some applications (e.g. SAP Oil & Gas), the temperature and pressure values for which the
measurement units of certain dimensions (e.g. volume).are valid must be specified. The
measurement units of such dimensions are maintained as temperature and pressure-dependent.
The measurement units for this dimension are then defined for a specified temperature and
pressure. This is the case for example for natural gas whose volume depends on the
temperature and pressure. A basic measurement unit of the dimension volume in the inventory
describes the amount of gas under defined conditions.

Properties without Dimensions
Measurement units for properties without dimensions are important for business applications as
well as the measurement units for the seven physical properties of the SI system. These units
are used for countable properties. For example palette, box, piece etc. There are no unique
relationships between measurement units without dimensions. They depend on the business
applications. For example, a box can contain one, six, or twelve pieces.

Conversions between the measurement units without dimensions in the R/3 System are defined
material-specifically in the table MARM. You maintain table MARM with transactions MM01 and
MM02 in the applications. The function modules described in this section also use this table.

Abbreviations of Measurement Units – ISO Code
The ISO standard 31 describes measurement units. This standard does not prescribe official
abbreviations (ISO codes) for the measurement units. Recommendation 20 of WP.4 of the
UN/ECE (UN Economic Commission for Europe, Information Office, Palais des Nations, CH-
1211 Geneva, phone +4122917 2893, fax +4122917 0036, e-mail info.ece@unece.org,
http://www.unicc.org/unece/oes/info.htm) makes recommendations for the ISO codes of
measurement units. Since you need the ISO Code for electronic data exchange (EDI), you
should maintain the recommended ISO code for each measurement unit in the R/3 System
tables.

Internal and External Measurement Unit Formats
Measurement units in the R/3 System have different internal and external formats. The internal
presentation is language-independent, is only for internal processing, and does not appear on the
interface. The external format is language-dependent appears on screens. The external format
has different names for different uses:

April 2001 47

BC Extended Applications Function Library SAP AG

Concept

• commercial (three upper-case characters)

• technical (six-character)

• short text (ten-character)

• long text (thirty-character)

These names types are maintained language-dependently in table T006A. For example, the
commercial name of the dimension-less measurement unit piece is PC in English, ST (Stück) in
German, and PI (Pièce) in French.

The commercial and technical formats together with the language form a language-
dependent key for the corresponding internal format of the measurement unit.
Therefore, they must be maintained uniquely for each language.

The system uses the language-dependent key that is defined from the commercial and technical
formats in conversion exits. These conversion exits are called automatically in screens and by
the WRITE command if the domains of the data elements involved use the conversion exits
LUNIT (for technical measurement units) or CUNIT (for commercial measurement units).

48 April 2001

 SAP AG BC Extended Applications Function Library

 Check measurement unit table

Check measurement unit table
Before you use the measurement unit function modules, you should ensure that the required
measurement units and dimensions are maintained.

To do so, go to the implementation guide in section Global Settings → Check unit of
measurement.

April 2001 49

BC Extended Applications Function Library SAP AG

Measurement unit conversion

Measurement unit conversion
Function group SCV0
This function group contains the following function modules:

• BUFFER_CONTROL
If the default buffering is not wanted for the modules in this function group, you can switch it
off and on again by calling this module. You can also use the module to refresh the buffer (if,
e.g. the contents of the table T006 were changed during the program run).

• CONVERSION_FACTOR_GET
With this function module, you determine the conversion factors for the conversion of a
measurement unit into another using the measurement units table. This does not apply to
measurement units within a dimension.
The module also returns the number of decimal places to which the values in the unit
UNIT_OUT are to be rounded. This also applies to units with no dimension.
The following formula applies for the conversion:

(value in the unit UNIT_OUT) = (value in the unit UNIT_IN) * numerator/denominator +
additive constant.

• ROUND
With this function module, you round a value to the specified number of decimal places. You
can choose between three rounding types:

− Rounding up

− Rounding down

− Commercial rounding

The rounding is performed internally with the same field type as that of the field passed.
Rounding errors can thus occur when rounding a FLOAT value. If you want a high
degree of accuracy, the passed field should have the type P.

• SI_UNIT_GET
You pass either a unit or a dimension to this function module to get the SI unit. If you pass
both a unit and a dimension, the SI unit for the dimension is returned.

• UNIT_CONVERSION_WITH_FACTOR
With this function module, you convert a value according to the factor passed.

• UNIT_CORRESPONDENCE_CHECK
With this function module, you can check whether the two units passed belong to the same
dimension.

• UNIT_GET
With this function module, you get the appropriate measurement unit for the specified
dimension and conversion factor.

• UNIT_CONVERSION_SIMPLE
With this function module, you convert a value using the measurement unit table, and round
it, if appropriate.
You can also perform the rounding without conversion.
Conversion with this function module requires that the measurement unit table is maintained
for both units, and that both units belong to the same dimension, i.e. also that they have

50 April 2001

 SAP AG BC Extended Applications Function Library

 Measurement unit conversion

dimensions.
The rounding can, however, also be performed for units which have no dimension.

April 2001 51

BC Extended Applications Function Library SAP AG

s Conversion of measurement units and possible entries (F4) help

s Conversion of measurement units and possible
entries (F4) help
Function group SCVU
This function group contains the following function modules:

• BUFFER_CONTROL_SCVU
If you do not want the default buffering for the modules in this function group, you can switch
it off, and on again, by calling this module. You can also use the module to refresh the buffer
(e.g. if the contents of the table T006 were changed during the program run).

• CONVERSION_EXIT_CUNIT_INPUT
With this function module, you specify the internal measurement unit for a commercial
measurement unit (three-character external measurement unit).
It is automatically called when measurement units are input on the screen.

• CONVERSION_EXIT_CUNIT_OUTPUT
With this function module, you specify the language-dependent commercial measurement
unit (three-character external measurement unit) and the associated short and long text, for
an internal measurement unit.
It is automatically called when measurement units are output to the screen, and by the
WRITE command.

• CONVERSION_EXIT_LUNIT_INPUT
With this function module, you specify the internal measurement unit associated with a
technical measurement unit (six-character external measurement unit).
It is called automatically when measurement units are input on the screen.

• CONVERSION_EXIT_LUNIT_OUTPUT
With this function module, you specify the language-dependent technical measurement unit
(six-character external measurement unit) and its associated short and long text for an
internal measurement unit.
It is called automatically when measurement units are output to the screen, and by the
WRITE command.

• DIMENSION_CHECK
With this function module, you check whether the internal measurement unit corresponds to
the specified dimension. It may also be checked whether it is a commercial unit. It is
recommended, that you support the choice of valid measurement units for a specified
dimension with the function module UNIT_OF_MEASUREMENT_HELP.

• DIMENSION_GET
With this function module, you specify the dimension key and the dimension text, depending
on the contributions of the basic units.
As the seven possible contributions have the default value zero, you must only specify the
non-zero contributions under EXPORTING when calling.

• DIMENSION_GET_FOR_UNIT
With this function module, you specify the dimension key associated with a measurement
unit

• UNIT_OF_MEASUREMENT_HELP
With this function module, you display in a dialog box either all measurement units or all
commercial measurement units of a specified dimension (external measurement unit and

52 April 2001

 SAP AG BC Extended Applications Function Library

 s Conversion of measurement units and possible entries (F4) help

associated long text). If you do not specify a dimension, all measurement units are displayed.
You can control whether the measurement units are only displayed, or are offered for
selection, with a parameter.

April 2001 53

BC Extended Applications Function Library SAP AG

Change documents

Change documents
This section describes how you can log application changes, using change documents.

Overview [Page 55]

Concept [Page 56]

Procedure
Procedure [Page 58]

Define change document object [Page 59]

Set change document flag [Page 61]

Generate update and INCLUDE objects [Page 62]

Integrating the functionality into the program [Page 64]

Writing the fields in the program [Page 65]

References
Creating change documents [Page 69]

Read and format change documents [Page 70]

Read and format planned changes [Page 71]

Delete change documents and planned changes [Page 72]

Archived change documents management [Page 73]

54 April 2001

 SAP AG BC Extended Applications Function Library

 Overview

Overview
Many commercial objects are frequently changed. It is often useful, or even necessary, to be able
to trace the changes made. If changes are logged, you can find out at any time, what was
changed and when and how the change was made. This can sometimes make the analysis of
errors easier. In financial accounting, for example, change documents are used to make auditing
possible.

Changes are logged in change documents, which can be created for actual or planned changes.

April 2001 55

BC Extended Applications Function Library SAP AG

Concept

Concept
For changes to a commercial object to be able to be logged in a change document, the object
must have been defined in the system as a change document object. A change document
object definition contains the tables which represent a commercial object in the system. The
definition can also specify whether the deletion of individual fields is to be documented. If a table
contains fields whose values refer to units and currency fields, the associated table, containing
the units and currencies, can also be specified.

It must be specified for each table, whether a commercial object contains only one (single case)
or several (multiple case) records. For example, an order contains an order header and several
order items. Normally one record for the order header and several records for the order items are
passed to the change document creation when an order is changed.

The name under which a change document object is created is an object class.

The object class BANF was defined for the change document object “Purchase
requisition”, which consists of the tables EBAN (purchase requisition) and EBKN
(purchase requisition account assignment).

Changes to this commercial object can then be saved in the system under the object values of
this change document object, i.e. the object ID and a change document number. The object ID is
the key to the object value, i.e. all records which are defined as belonging to a given change
document object.

All changes to a commercial object constitute an object value under this key. This is for example
the order number for orders or the number range object name for number range objects. All
changes to a given order or to a given number range object can be accessed in this way.

The object value BANF with the object ID "3000000000" consists of the records of
the tables EBAN and EBKN with the order number "3000000000".

If changes are not yet to be made, but are planned, they can be logged as planned changes. A
planned date for the changes can be specified. The planned changes can be analyzed and
copied into the tables. You must program the copy yourself.

All logging functions are supported by SAP function modules. The application development must
contain certain INCLUDE programs. Old and new status are passed to the change document
creation. The included function modules determine the changes for all table fields which are
flagged as being change-relevant in the Dictionary.

Change document
A change document logs changes to a commercial object. The document is created
independently of the actual database change. The change document structure is as follows:

• Change document header
The header data of the change to an object ID in a particular object class are stored in the
change document header. The change document number is automatically issued.

• Change document item
The change document item contains the old and new values of a field for a particular change,

56 April 2001

 SAP AG BC Extended Applications Function Library

 Concept

and a change flag.
The change flag can take the following values:

– U(pdate)
Changed data. (Log entry for each changed field which was flagged in the Dictionary
as “change document-relevant”)

– I(nsert)
Data inserted.
Changes: Log entry for the whole table record
Planned changes: Log entry for each table record field

– D(elete)
Data were deleted (log entry for the whole table record)

– I(ndividual field documentation)
Delete a table record with field documentation
1 log entry per field of the deleted table entry, the deleted text is saved

• Change document number
The change document number is issued when a change is logged, i.e. when the change
document header is created by the change document creation function module (function
group SCD0).

The change number is not the same as the change document number. The change
document number is issued automatically by the function group SCD0 function
modules when a change document is created for a change document object. The
change number is issued by the user when changes are planned. The same
change number can be used for various change document objects.

Internal processing
When the object-specific update is called, the object-specific change document creation is called.
The object-specific change document header is written with a change document number. The
Dictionary is searched for which fields are to be logged for each table in the object definition. The
log records for these fields are then created as change document items according to the object
definition.

April 2001 57

BC Extended Applications Function Library SAP AG

Procedure

Procedure
To use the change document functionality in your application, proceed as follows:

1. Define the change document object

2. Check in the Dictionary, whether the data elements of the fields which are to be logged are
flagged appropriately.

3. Generate the update.

4. Program the appropriate calls in your program.

58 April 2001

 SAP AG BC Extended Applications Function Library

 Define change document object

Define change document object
Proceed as follows:

1. Call the change document maintenance transaction (Tools → ABAP/4 Workbench →
Development → Other tools → Change doc. object). An overview of existing change
document objects is displayed.

2. Choose the menu option Create.

3. Enter a name for the change document object which is to be created. It can be any name
starting with "Y" or "Z" (customer name area).

4. Choose Continue. A new window for inputting the associated tables appears.

5. Enter a descriptive short text for the change document object.

6. Make the following entries for each table whose changes are to be logged in the change
document for this change document object:

- Table name
Name of the table, as defined in the Dictionary

- Copy as internal table flag.
If the change data are to be passed in an internal table (multiple case), mark this field. If
it is not marked, the change data are passed in a work area (single case).

- Doc. for individual fields at delete flag
If you want separate log entries for each field when data are deleted, mark this field. If it
is not marked, the deletion of all relevant fields is entered in one document item.

- Ref. table name. (Name of the reference table)
If the currency and unit fields are defined in a reference table, rather than in the table
passed, you must pass the name of the reference table, and the field referred to, to the
function module. Create an INTTAB structure in the Dictionary, and define fields for this
structure, which are made up of the names of the associated reference table and the
reference fields.
Enter the name of this structure here.
In the individual case, the reference information is passed in the form of two extra work
areas (old, new). In the collective case, the internal tables are extended to include the
reference structure.

- Name of the old record fields
Only possible for single case, i.e. when passing change data in a work area: If you do not
want to use the * work area, enter an alternative work area name here.

7. After inputting all relevant tables, choose Insert entries. The new entries are copied into the
display.

8. Save your entries.

Transport change document object
The change document objects are a transport object type, a change request is made when the
object is created.

During transport the object-specific update is generated in the target system.

April 2001 59

BC Extended Applications Function Library SAP AG

Define change document object

60 April 2001

 SAP AG BC Extended Applications Function Library

 Set change document flag

Set change document flag
Now check whether the change document flag is set for the corresponding data element in the
Dictionary for the fields whose changes are to be logged. This is necessary so that the object-
specific function modules can identify which field of the defined object should be entered in the
change document during logging.

If the flag is not set, you can change it. The flag becomes effective after the activation.

If the flag is set by hand, it can have undesirable side-effects: If a table field in
another application, which is based on the data element in question, belongs to a
change document object, but was not previously logged, setting the flag will start
logging in this application as well.
It is therefore important to consider whether data elements are, or could be, change-
relevant when creating them, and to set the flag accordingly. If the data element is
not in any change document object via a table field, this has no negative effect on
the system.

April 2001 61

BC Extended Applications Function Library SAP AG

Generate Update and INCLUDE Objects

Generate Update and INCLUDE Objects
The generation creates INCLUDE objects, which contain general and specific data definitions
and the program logic for the update function module. Proceed as follows:

1. Call the change document maintenance transaction (Tools → ABAP/4 Workbench →
Development → Other tools → Change documents).

2. Position the cursor on a change document object and choose the menu option Generate
update pgm. A dialog box, in which you must make the following entries, is displayed:

– maximum 26 character INCLUDE name

This 26-character name (<K4>) is used to complete the name of the generated
INCLUDE program parts.

– Function group

Enter the name of the function group to which the change document update program is
to belong. If this function group does not yet exist in the system, it is automatically
created during generation. Exactly one function group must belong to each change
document object. Other function modules may not be assigned to this function group.

– FM structure prefix (12-char.)

Multiple-case table transfer structures are created at generation. Their names are
constructed from this prefix and the name of the multiple case tables. A value is
proposed.

An update-compatible function parameter must not be longer than 28 characters, so the
prefix and the longest table name must not be longer than 28 characters together.

– Error message ID

The application-specific error messages generated are stored under this message ID
(work area). A value is proposed.

– Error number

Number with which errors occurring in connection with this change document object can
be identified in the system. A value is proposed.

– Processing type

Update type flag:

– immediate

– delayed

– in dialog

– Special text handling flag

Select this field to log long text changes.

The old and new status of long texts is not logged. Only the fact that they have been
changed is noted.

3. Choose Generate.

The following INCLUDE objects are generated:

62 April 2001

 SAP AG BC Extended Applications Function Library

 Generate Update and INCLUDE Objects

− <Change document object>_WRITE_DOCUMENT

The object-specific update function module calls the following function modules with
object-specific parameters:

CHANGEDOCUMENT_OPEN

CHANGEDOCUMENT_SINGLE_CASE and/or

CHANGEDOCUMENT_MULTIPLE_CASE and possibly

CHANGEDOCUMENT_TEXT_CASE

CHANGEDOCUMENT_CLOSE

− F<K4>CDC

INCLUDE program part with FORM statement for calling the object-specific update
program.

− F<K4>CDT

INCLUDE program part containing two INCLUDE program parts (F<K4>CDF and
F<K4>CDV, see below), which contain the data definitions which are to be passed to
the update program. The data definitions correspond to the function group SCD0
function modules interface definition. The fields, record fields and tables are to be
filled in in the application program and passed to the update program.

− F<K4>CDF

INCLUDE program part with data definitions which are the same for all change
document objects.

− F<K4>CDV

INCLUDE program part with data definitions, which are specific to the change
document object.

− V<Dictionary structure name > (only for multiple case tables)

This structure comprises the following INCLUDE structures:

INCLUDE <table name>

INCLUDE KZ

INCLUDE <ref. table name>

The generated program parts contain the object-specific program code, and are
included in the application program per INCLUDE statement. The data definitions of
the change document-relevant fields correspond to the function group SCD0 function
module interface definitions.

If several change document objects are to be processed in one application program,
the update program must be generated for each change document object with a
different <K4> code (e.g. XX01, XX02, XX03 etc.).

April 2001 63

BC Extended Applications Function Library SAP AG

Integrating the functionality into the program

Integrating the functionality into the program
1. Include the generated program parts in your program code with an INCLUDE statement.

2. When application changes are made, complete the change-relevant fields as appropriate.

3. To create the change document, call the object-specifically generated update program with a
PERFORM statement using the name defined in F<K4>CDC.

The INCLUDE program part F<K4>CDT can only be included once, because it
contains a further INCLUDE program part (F<K4>CDF, with generally valid data
definitions), which is also contained in the other F<K4>CDT program parts (e.g.
FXX02CDT, FXX03CDT, etc.). It must be included in the global data definitions.
In this case the F<K4>CDT program part must be included for the first change
document object or <K4> code, which contains the INCLUDE program parts for
general (F<K4>CDF) and object-specific data definitions (F<K4>CDV), for all others
only the F<K4>CDV program parts.

64 April 2001

 SAP AG BC Extended Applications Function Library

 Writing the fields in the program

Writing the fields in the program
Complete the change document-relevant fields and tables as follows.

General data
These are the fields which are defined in the INCLUDE program part F<K4>CDF.

• OBJECTID
Object value (key) of the object

• TCODE
Transaction, with which the change was made

• UTIME
Change time

• UDATE
Change date

• USERNAME
Changed by

Object-specific data

These are the fields which are defined in the INCLUDE program part F<K4>CDV.

Single case tables:

• Table *<table name > or record fields <old record fields name > (with the table structure)
The table header record or the record fields must contain the original data.

• Table <table name >
The table header record must contain the new data.

• Table *<ref. table name >
(only if ref. tab. name was specified when the change document object was defined)
The table header record must contain the original currencies and units.

• UPD_<table name >
With this flag, you specify the processing logic.
The following values are possible:

- "D" (DELETE)
A change document item is to be created for the record in *<table name > or <old
record fields name > which is to be flagged as deleted. <table name > is not
processed.

- "I" (INSERT)
A change document item is to be created for the record in <table name > which is to
be flagged as created. *<table name > or <old record fields name > is not processed.

- "U" (UPDATE)
*<table name > or <old record fields name > and <table name > are compared and a
change document item is created for each changed field. The keys of *<table name >
or <old record fields name > and <table name > must be identical.

April 2001 65

BC Extended Applications Function Library SAP AG

Writing the fields in the program

- " " (space, no processing)
*<table name > or <old record fields name > and <table name > are not processed
by the update program. (If no changes have been made, the processing can be
skipped to save time.)

Multiple case tables:

These tables must be passed sorted by key.

• Y<table name >
The table must contain the original version of the changed or deleted records. The structure
consists of the table, as specified in the change document object definition under table name,
a processing flag (TYPE C, length 1) and possibly the structure of the associated currency
and units table, as specified in the definition of the change document object under Ref. table
name. It is created during the change document object INCLUDE generation and saved
under the name V<table name > in the Dictionary.

The processing flag can be switched from space to "D", if it is to be processed in the
application. Otherwise it has no effect.

• X<table name >
The table must contain the current version of the changed or created records. The structure
is the same as Y<table name > (see above).
The following values are possible for the processing flag:

- "I" (INSERT)
Records were created, or table records were deleted, then a record with the same
key was created in the same transaction, and this is to be documented as ”Delete”
and “Create” (special case), not as “Change”.

- "U" or " " (space) (UPDATE)

The parameter UPD_<table name > (see below) initially determines whether the record
is new or changed. The processing flag is only checked when, with the parameter value
"U", the following key comparison between the two tables TABLE_OLD and
TABLE_NEW finds two records with the same key.

Multiple case internal table processing flags can always contain space, with the
exception of the special case (in X<table name >). The possibility of setting the
processing flag to "D", "I" or "U" as well was created so that the tables could also be
used for other purposes in which such processing flags are useful, in application
programs.

• UPD_<table name >
With this flag you determine the processing logic.
The following values are possible:

- "D" (DELETE)
A change document item is to be created for each record in Y<table name > which is
to be flagged as deleted. X<table name> is not processed.

- "I" (INSERT)
A change document item is to be created for each record in X<table name> which is
to be flagged as created. Y<table name> is not processed.

66 April 2001

 SAP AG BC Extended Applications Function Library

 Writing the fields in the program

- "U" (UPDATE)
The keys of TABLE_OLD and TABLE_NEW are compared. The following cases are
distinguished:

– 1. Record exists in TABLE_OLD but not in TABLE_NEW: Change document
items are to be created for the record in TABLE_OLD which is to be deleted.

– 2. Record exists in TABLE_NEW but not in TABLE_OLD: A change
document item is to be created for the records in TABLE_NEW which are to be
flagged as created.

– 3. Record exists in both TABLE_OLD and TABLE_NEW: A change document
item is created for each changed field which is defined as change document-
relevant in the Dictionary.

- " " (space, no processing)
Y<table name> and X<table name > are not processed by the update program. (If no
changes have been made, the processing can be skipped to save time.)

Text changes:
If text changes are to be logged (according to the change document object definition), the
following fields are to be completed:

• ICDTXT_<Object>
This structure contains the change document-relevant texts with corresponding details:

- TEILOBJID
Key of the changed table record

- TEXTART
Text type of the changed texts

- TEXTSPR
Language key

- UPDKZ
Change flag for the table record: D(elete), I(nsert) or U(pdate)

• UPD_ICDTXT_<Object>
Change flag for the text table:

- " " (space)
Table is ignored by the update program

- "U"
Table is taken into account by the update program

Optional parameters
You can also use the following INCLUDE program part F<K4>CDF parameters:

• CDOC_PLANNED_OR_REAL
With this parameter you control whether the changes to be logged are actual or planned
changes.
Possible values

– “R” actual (real) changes

– “P” planned changes

April 2001 67

BC Extended Applications Function Library SAP AG

Writing the fields in the program

– “ “(space) if no plan number exists: actual change
 if a plan number exists: planned change

• CDOC_UPD_OBJECT
If the change document is relevant for determining which change action was performed for
the object, you can pass the action performed here.
Possible values:

– “I” the object was inserted.

– “U” the object was changed.

– “D” the object was deleted.

68 April 2001

 SAP AG BC Extended Applications Function Library

 Creating change documents

Creating change documents
Function group SCD0
Object-specific update change documents for a particular object ID are created with the function
modules in this function group.

These function modules are called, in the right order, by the object-specifically
generated update program, as soon as it is called. They are generally not required
for application developments. Only in exceptional cases, in which an individual
update is to be programmed, should the change document creation be programmed
by the user with these function modules.

• CHANGEDOCUMENT_OPEN
This function module is required by every change document creation. It initializes the internal
fields for a particular change document object ID.

• CHANGEDOCUMENT_MULTIPLE_CASE
This function module creates change document items. The change data are passed in tables.

• CHANGEDOCUMENT_SINGLE_CASE
This function module creates change document items. The change data are passed in a work
area.

• CHANGEDOCUMENT_TEXT_CASE
Change document-relevant texts are passed in a structure with this function module.

• CHANGEDOCUMENT_CLOSE
This function module is required for every change document creation. It writes the change
document header for a particular change document ID, and closes the document creation.

• CHANGEDOCUMENT_PREPARE_TABLES
With this function module, you compare the records in two tables, which you pass as
TABLE_OLD and TABLE_NEW.
You can specify via a parameter, whether these internal tables should be prepared for the
multiple case. Identical records are then deleted, and a processing flag is set in changed
records.

April 2001 69

BC Extended Applications Function Library SAP AG

Read and format change documents

Read and format change documents
Two function groups exist for these tasks:

Function group SCD1
With the function modules in this function group, you can read change documents.

• CHANGEDOCUMENT_READ_HEADERS
This function module reads the change document numbers, with the associated header
information, for a particular change document object. The search can be restricted by various
parameters (changed by, date, time).
You can use this function module in the database and in the archive.

• CHANGEDOCUMENT_READ_POSITIONS
This function module reads the change document items for a given change document object
number, and formats the old and new values according to their type.
You can use this function module in the database and in the archive.

• CHANGEDOCUMENT_PREPARE_POS
You format a previously read change document item for printing with this function module.

Function group SCD2
You can process change document objects by classes with the function modules in this group.

• CHANGEDOCUMENT_READ
With this function module, you read change document headers and the associated items for
a given object class and format the old and new values according to their type. The search
can be restricted by various parameters (changed by, date, time).
You can use this function module in the database and in the archive.

70 April 2001

 SAP AG BC Extended Applications Function Library

 Read and format planned changes

Read and format planned changes
Function group SCD3
With the function modules in this function group, you find the planned changes.

• PLANNED_CHANGES_READ_HEADERS
With this function module, you find the document headers of planned changes for a given
change document object. The search can be restricted by various parameters (changed by,
date, time, change number).

The change number is not the same as the change document number. The change
document number is automatically issued by the function group SCD0 function
modules when a change document object change document is created. The change
number is assigned by the user when changes are planned. The same change
number can be used for various change document objects.

• PLANNED_CHANGES_READ_POSITIONS
This function module reads the change document items for a given change document
number, and formats the old and new values according to their type.

April 2001 71

BC Extended Applications Function Library SAP AG

Delete change documents and planned changes

Delete change documents and planned changes
Function group SCD4
With the function modules in this function group, you delete log entries of changes or planned
changes.

• CHANGEDOCUMENT_DELETE
This function module deletes the change documents for a given change document object.
The deletion can be restricted to a given change document number and/or a change date.
An authorization check is made before the deletion.

• PLANNED_CHANGES_DELETE
With this function module, you delete planned changes. The deletion can be restricted to a
given change document object, a change document number, or specified change numbers.

The change number is not the same as the change document number. The change
document number is issued automatically by the function group SCD0 function
modules when a change document object change document is created. The change
number is issued by the user when changes are planned. The same change number
can be used for various change document objects.

72 April 2001

 SAP AG BC Extended Applications Function Library

 Archived change documents management

Archived change documents management
Function group SCD5
This function module is the archiving class for the change document (see also Archiving [Page
114] in the archiving section in this document):

• CHANGEDOCU_ARCHIVE_OBJECT
With this function module, you pass the objects for which change documents are to be
archived, to the archiving.

April 2001 73

BC Extended Applications Function Library SAP AG

Create application log

Create application log
This section explains how you can log events in the application log in your application.

The function modules described here (beginning with APPL_LOG_*) exist since Release 3.0.
New, more flexible and powerful function modules (beginning with BAL_*) exist since Release
4.6.

The three most important function modules are:

BAL_LOG_CREATE
Open a log

•

•

•

BAL_LOG_MSG_ADD
Put a message in the log

BAL_DSP_LOG_DISPLAY
Display log

Function module documentation exists for these and all other function modules. There is also a
complete technical documentation.

You can still use the old function modules (before Release 4.6). They now call the new function
modules from Release 4.6.

74 April 2001

 SAP AG BC Extended Applications Function Library

 Overview

Overview
Application events can be centrally logged in the application log. The advantage is system-wide
standardized and uniform event logging, which is convenient to analyze.

Several different logs (for various objects) can be written at the same time by an application.

The application log is, in principal, similar to the system log. Whereas system event information is
logged in the system log, relevant application events should be captured in the application log.

The application log can also be used as a message collector.

April 2001 75

BC Extended Applications Function Library SAP AG

Concept

Concept
Application log objects are defined in the system. The object definition assigns a work area. An
object can be divided into sub-objects.

Logging is performed object-specifically, via function modules.

An object log entry has the following structure:

• Log header with a unique log number.
It contains the information, who, when, with which program or which transaction, gave rise to
which event.
It also contains the problem class of the message in the log with the greatest urgency.

• Any number of log messages with their urgency.
The messages are divided into problem classes according to their urgency.

The log data are initially collected in local memory, and are then written to the database. This
procedure speeds up processing and reduces the number of database accesses. It is also
possible to write log data to the database individually, to avoid losing the log records collected up
to that point in the event of termination of the application, for example if the system crashes.

The logged data can be read in the database and displayed on the screen. It is also possible to
read and to display the log data which is buffered in local memory with a log number (Message
collector).

The logs have an expiry date, by which time at the latest they must be in the database. They can
later be removed from the database again, by a delete program.

Detailed information, either for the whole log or for each individual log message, can be saved in
two ways:

• Text module with any number of parameters

• User exit with any number of parameters

When the log is analyzed either the text module with the specified parameters is displayed, or the
user exit is performed, on request.

Additional information can be saved in an INDX-type table, which is used by the user exit
analysis.

In this way it is possible, for example, to save lists which can be displayed when the log is
analyzed, with the help of the user exit.

Classifying attributes can also be specified (importance of the log, or of the message).

If you want to perform your own log analysis, you can use the function modules to read from the
database or from local memory.

Logs can be deleted if necessary.

76 April 2001

 SAP AG BC Extended Applications Function Library

 Procedure

Procedure
Before you can log events, you must first define an object, and possibly sub-objects. Application
log objects are maintained in an extra maintenance transaction.

You can then create and analyze the object log by calling the appropriate function modules.

April 2001 77

BC Extended Applications Function Library SAP AG

Define application log objects

Define application log objects
1. Call the maintenance transaction with Tools → ABAP/4 Workbench → Development →

Other tools → Application log.

2. Choose New entries. An empty input area is displayed.

3. Enter an object name according to the naming convention:

- first character “Y” or “Z”

- second and third character: application ID (e.g. FI)

- fourth position, any character

4. Enter a descriptive short text.

5. Save your entries.

6. If you want to define sub-objects:

a) Choose the line with the object.

b) Choose Table view → Other view. A structure overview is displayed for selection.

c) Position the cursor on “Sub-objects”, and choose Choose. The sub-object display
window for the chosen object is displayed.

d) Choose New entries.

e) Enter a sub-object name (beginning with “Y” or “Z”) and a descriptive short text.

f) Save your entries.

If several systems are being used, the object data must be transported. Sub-object
data are not automatically transported with the object. They must each be entered
separately in a change request.

78 April 2001

 SAP AG BC Extended Applications Function Library

 Create application log

Create application log
Function group SLG0
You write the application log records with these function modules.

• APPL_LOG_WRITE_HEADER
With this function module, you write the log header data in local memory.

• APPL_LOG_WRITE_LOG_PARAMETERS
With this function module, you write the name of the log parameters and the associated
values for the specified object or sub-object in local memory.
If this function module is called repeatedly for the same object or sub-object, the existing
parameters are updated accordingly.
If you do not specify an object or sub-object with the call, the most recently used is assumed.

• APPL_LOG_WRITE_MESSAGES
With this function module you write one or more messages, without parameters, in local
memory.

• APPL_LOG_WRITE_SINGLE_MESSAGE
With this function module you write a single message, without parameters, in local memory. If
no header entry has yet been written for the object or sub-object, it is created.
If you do not specify an object or sub-object with the call, the most recently used is assumed.

• APPL_LOG_WRITE_MESSAGE_PARAMS
With this function module you write a single message, with parameters, in local memory.
Otherwise the function module works like APPL_LOG_WRITE_SINGLE_MESSAGE.

• APPL_LOG_SET_OBJECT
With this function module, you create a new object or sub-object for writing in local memory.
With a flag you can control whether the APPL_LOG_WRITE_… messages are written in
local memory or are output on the screen.

• APPL_LOG_INIT
This function module checks whether the specified object or sub-object exists and deletes all
existing associated data in local memory.

• APPL_LOG_WRITE_DB
With this function module you write all data for the specified object or sub-object in local
memory to the database.
If the log for the object or sub-object in question is new, the log number is returned to the
calling program.

April 2001 79

BC Extended Applications Function Library SAP AG

Display application log

Display application log
Function group SLG3
With these function modules you display logs for analysis.

• APPL_LOG_DISPLAY
With this function module you can analyze logs in the database.

• APPL_LOG_DISPLAY_INTERN
With this function module you can analyze logs in local memory, e.g. when you have only
collected log records at runtime and do not want to write to the database.

80 April 2001

 SAP AG BC Extended Applications Function Library

 Read application log

Read application log
Function group SLG1
If you want to analyze the log yourself, you can read the logs with these function modules.

• APPL_LOG_READ_DB
With this function module you read the log data in the database for an object or sub-object
according to specified selection conditions.

• APPL_LOG_READ_INTERN
With this function module you read all log data whose log class has at least the specified
value, from local memory, for the specified object or sub-object.

April 2001 81

BC Extended Applications Function Library SAP AG

Delete application log

Delete application log
Function group SLG2
With this function module you delete logs.

• APPL_LOG_DELETE
With this function module you delete logs in the database according to specified selection
conditions.

82 April 2001

 SAP AG BC Extended Applications Function Library

 Platform-independent File Name Assignment

Platform-independent File Name Assignment
This section explains how to use platform-independent file names in your application programs to
address files to be stored.

Overview [Page 84]

Definitions of Platform-independent File Names [Page 85]

The Function Module FILE GET NAME [Page 88]

Using Platform-independent File Names in Programs [Page 91]

Reference [Page 92]

April 2001 83

BC Extended Applications Function Library SAP AG

Overview

Overview
Application data must often be stored in files outside the database. Depending on the particular
operating system in use, files are stored in different directories, and file and path names must
comply with different syntax requirements. Therefore, many SAP application programs use
platform-independent logical file names and call the function module FILE_GET_NAME when
storing data in files. The function module takes a logical file name as input and returns the
corresponding platform-specific file name and path.

By using this function module, you can assign file names in your application programs in a
standardized way and independently of different hardware and software platforms.

To achieve this, logical file names and paths must be defined in the system. These definitions are
maintained in the implementation guide in section Basis Components → System Administration
→ Platform-independent File Names, or with transactions FILE and SF01.

Definitions used by SAP applications are delivered with the system and possibly adjusted in the
implementation process. See the application-specific documentation for information on which
applications use which logical file names. Further definitions can be added according to
requirements.

84 April 2001

 SAP AG BC Extended Applications Function Library

 Definitions of Platform-independent File Names

Definitions of Platform-independent File Names
The conversion of a platform-independent file name to a platform-specific one is controlled by
definitions that are stored in tables. These definitions refer to the following objects:

• Operating systems and Syntax groups
All operating systems are assigned to syntax groups. A syntax group is a group of operating
systems that share a common syntax for file names and paths. The definition of a syntax
group specifies, for instance, how long file names may be, and whether file name extensions
are permitted or not.

• Logical file name
A logical file name is a platform-independent descriptive name for a file to be stored in the file
system. Its definition applies to all clients of an R/3 system. In addition, it is possible to
specify client-specific definitions of a logical file name.

• Physical file name
A physical file name is assigned to every logical file name.

• Logical path
A logical path is a platform-independent descriptive name for a path where files are to be
stored. For the conversion of a logical file name to work for different platforms, it is necessary
that a logical path be assigned to that logical filename.

• Physical path
One or more physical paths are assigned to a logical path, each one applying to a different
syntax group (platform).

The following figure shows the relationships between these objects that determine how a logical
file name is converted to a platform-specific file name:

operating system logical file name

physical file name

syntax group logical path

physical path

platform-specific file name

Parameters in physical file names and paths
Physical file names and paths may contain the following keywords enclosed in angle brackets
which are replaced at runtime:

Table: Keywords

Keyword Substitution Value

<OPSYS> operating system according to function module FILE_GET_NAME

April 2001 85

BC Extended Applications Function Library SAP AG

Definitions of Platform-independent File Names

<INSTANCE> instance of R/3-system

<SYSID> name of R/3-system according to system field SY-SYSID.

<DBSYS> database system according to system field SY-DBSYS

<SAPRL> R/3-Release according to system field SY-SAPRL

<HOST> host name according to system field SY-HOST

<CLIENT> client according to system field SY-MANDT

<LANGUAGE> logon language according to system field SY-LANGU

<DATE> date according to system field SY-DATUM

<YEAR> year according to system field SY-DATUM, 4-character

<SYEAR> year according to system field SY-DATUM, 2-character

<MONTH> month according to system field SY-DATUM

<DAY> day according to system field SY-DATUM

<WEEKDAY> week day according to system field SY-FDAYW

<TIME> time according to system field SY-UZEIT

<STIME> hour and minute according to system field SY-UZEIT

<HOUR> hour according to system field SY-UZEIT

<MINUTE> minute according to system field SY-UZEIT

<SECOND> second according to system field SY-UZEIT

<PARAM_1> value of Parameter 1 in function module FILE_GET_NAME

<PARAM_2> value of Parameter 2 in function module FILE_GET_NAME

<P=name> value of profile parameter of current system

<V=name> value of variable as defined in variable table

<F=name> value of export parameter OUTPUT of a function module

All physical paths must contain the keyword <FILENAME> as a placeholder for the
file name.

Inclusion of these parameters in physical file names and paths helps to both differentiate and
standardize the assignment of file names. The keyword <TIME>, for instance, can be useful
when a file needs to be stored several times in a row within a short time interval. Apart from the
system fields, the following keywords, in particular, give you considerable flexibility in assigning
file names:

• <PARAM_1> and <PARAM_2> are replaced by values that are passed explicitly to the
function module FILE_GET_NAME in your program.

• <P=name> is replaced by values of profile parameters of the current system. To get the list
of profile parameters and their values, start report RSPARAM.

86 April 2001

 SAP AG BC Extended Applications Function Library

 Definitions of Platform-independent File Names

• <V=name> is replaced by values of variables from the customizing tables for platform-
independent file names.

• <F=name> is replaced by values that are returned by function modules. The names of these
function modules must have the prefix "FILENAME_EXIT_". Note that in the keyword such a
function module is addressed only with the part of its name that follows this prefix. For
example, when the function module FILENAME_EXIT_EXAMPLE is used, the appropriate
keyword would read <F=EXAMPLE>.
The function module used must have the export parameter OUTPUT and no reference type
must be specified for this parameter. Import parameters must have default values. Table
parameters are not supported.

April 2001 87

BC Extended Applications Function Library SAP AG

The Function Module FILE_GET_NAME

The Function Module FILE_GET_NAME
Platform-independent file names are used in applications programs by the function module
FILE_GET_NAME. For a given logical file name, the function module generates the
corresponding platform-specific file name at runtime, based on definitions stored in customizing
tables for converting platform-independent file names.

The following table gives an overview of its import and export parameters and of its exceptions.

Table: Interface of function module FILE_GET_NAME

IMPORT parameter Function

CLIENT Logical file names can be client-specific. Here you can specify
the client to be used. The current client as stored in the system
field SY-MANDT is used as default.

LOGICAL_FILENAME Here you specify the logical filename. (Uppercase letters must
be used!)

OPERATING_SYSTEM Here you can specify the operating system for which to
generate the appropriate file name. The application server's
operating system as stored in the system field SY-OPSYS is
used as default.

PARAMETER_1

PARAMETER_2

Here you can specify values that substitute the placeholders
<PARAM_1> and <PARAM_2> in physical file names and
paths.

USE_PRESENTATION
_SERVER

Specifies that the presentation server's operating system be
used as the basis for generating a platform-specific file name.

WITH_FILE_EXTENSION Specifies that the logical file name's data format be used as
filename extension.

USE_BUFFER Specifies that the customizing tables for converting platform-
independent file names be buffered in main memory.

EXPORT parameter Function

EMERGENCY_FLAG If the returned value is not SPACE, then no physical path has been
found for the logical filename under the current operating system. In
this case the path specified in the profile parameter DIR_GLOBAL
will be used as physical path.

FILE_FORMAT Returns the data format defined for the logical file name. You can
use this parameter to decide in which mode to open the file. It is
also required as a parameter for DOWNLOAD of files to the
presentation server.

FILE_NAME Returns the fully instantiated platform-specific file name and path.

Exceptions Function

FILE_NOT_FOUND Raised if logical file name is not defined.

88 April 2001

 SAP AG BC Extended Applications Function Library

 The Function Module FILE_GET_NAME

OTHERS Raised if other errors occur.

If the function module cannot find a physical path for the current operating system
(see parameter EMERGENCY_FLAG), this may have various causes:

– the operating system is not defined in the customizing tables

– the operating system is not assigned to a syntax group

– no physical path is assigned to the logical path for the relevant syntax group

– no logical path is assigned to the logical file name.

Assume that in the customizing tables for platform-independent file names the
following definitions exist for the logical file name DATA_FILE and the logical path
DATA_PATH:

DATA_FILE phys. file: file<PARAM_1>

 data format: BIN

 logical path: DATA_PATH

DATA_PATH syntax group: UNIX phys. path: /tmp/<FILENAME>
 syntax group: DOS phys. path: c:\tmp\<FILENAME>

Assume also that the application server's operating system has been assigned to
syntax group UNIX while the presentation server's operating system has been
assigned to syntax group DOS.

The following two calls of the function module will then return the respective values.
CALL FUNCTION 'FILE_GET_NAME'

 EXPORTING
 LOGICAL_FILENAME = 'DATA_FILE'
 PARAMETER_1 = '01'

 IMPORTING
 EMERGENCY_FLAG = FLAG
 FILE_FORMAT = FORMAT
 FILE_NAME = FNAME

 EXCEPTIONS
 FILE_NOT_FOUND = 1
 OTHERS = 2.

Returned values:
FLAG:
FORMAT: BIN
FNAME: /tmp/file01

April 2001 89

BC Extended Applications Function Library SAP AG

The Function Module FILE_GET_NAME

CALL FUNCTION 'FILE_GET_NAME'

 EXPORTING
 LOGICAL_FILENAME = 'DATA_FILE'
 USE_PRESENTATION_SERVER = X
 WITH_FILE_EXTENSION = X

 IMPORTING
 EMERGENCY_FLAG = FLAG
 FILE_FORMAT = FORMAT
 FILE_NAME = FNAME

 EXCEPTIONS
 FILE_NOT_FOUND = 1
 OTHERS = 2.

Returned values:
FLAG:
FORMAT: BIN
FNAME: c:\tmp\FILE.BIN

90 April 2001

 SAP AG BC Extended Applications Function Library

 Using Platform-independent File Names in Programs

Using Platform-independent File Names in Programs
1. Make sure that the customizing tables contain definitions for the logical file name you want to

use, and that these definitions produce the intended file name conversion. Use transaction
FILE to inspect existing definitions or to specify new ones. (For details refer to the
implementation guide in section Basis Components → System Administration → Platform-
independent File Names [Page 83].)

2. Make sure the physical paths referred to in these definitions do actually exist in the file
system at runtime. If necessary, create the respective directories or consult your system
administrator.

3. Test the file name conversion by calling the function module FILE_GET_NAME, using
transaction SE37.

4. Include a call of the function module in your program. (In the ABAP/4 editor you can do this
with function Edit → Insert statement...)

For more information on storing files on the application server and on the presentation server
please refer to Working with Files in the ABAP/4 User's Guide.

Problems with storing files may sometimes be due to a mismatch between the paths
defined for platform-independent file names and the file system. Generation of a
valid platform-specific file name by the function module FILE_GET_NAME is not
sufficient; the path generated must also exist in the file system at runtime.

April 2001 91

BC Extended Applications Function Library SAP AG

Reference

Reference
• FILE_GET_NAME

With this function module you can generate a platform-specific file name for a platform-
independent logical file name in your application program at runtime.

92 April 2001

 SAP AG BC Extended Applications Function Library

 Number ranges

Number ranges
This section explains how you can use the automatic number assignment in your applications.

Overview [Page 94]

Concept [Page 95]

Number range object types [Page 97]

Procedure
Procedure [Page 100]

Determine the number range object type [Page 101]

Maintain number range object [Page 102]

Function module calls [Page 105]

References
Number range and group maintenance dialogs [Page 107]

Number range and group read and maintain services [Page 109]

Number range object read and maintain services [Page 111]

Number assignment and check [Page 112]

Utilities [Page 113]

April 2001 93

BC Extended Applications Function Library SAP AG

Overview

Overview
It is often necessary to directly access individual records in a data structure. This is done using
unique keys. Number ranges are used to assign numbers to individual database records for a
commercial object, to complete the key. Such numbers are e.g. order numbers or material
master numbers.

These numbers provide, apart from unique identification of a data record, the possibility of
encoding differentiating information for an object. One could tell from the number e.g., to which
material type a material belongs.

The R/3 number range management also monitors the number status, so that numbers which
have already been issued are not re-issued.

All dialogs, database accesses or other activities which are necessary for the maintenance of
number range objects and number ranges and number allocation in user developments, can be
performed using SAP function modules.

94 April 2001

 SAP AG BC Extended Applications Function Library

 Concept

Concept
A commercial object, for which part of the key is to be generated via number ranges, is defined
as a number range object in the SAP system. If this commercial object contains sub-objects,
e.g. company codes or controlling areas, this differentiation can also be made in the number
ranges. This happens by specifying a field for the sub-object when defining the number range
objects. (Example: company code as sub-object of documents)

The number range interval within a commercial object and sub-object never overlap. The number
range intervals in various sub-objects of a commercial object can overlap.

A number range interval is assigned to a commercial object via the number range number. This
assignment is usually saved in a table belonging to the commercial object, the group table. The
field Element must be all or part of this table’s key. Elements which refer to the same number
range interval form a group. You can decide whether you want to make this assignment possible
for the user during the number range object maintenance (via the assignment of elements to
groups) or whether you want to program it yourself.

When a new material master is created, the material type should determine from
which number range interval a number to complete the material master key should
be assigned. The commercial object is the material master, the group table the
material type table, with the element field material type as key field. The number
range numbers for the various element values (material types) are saved in this
table. Material types are e.g. semi-finished or finished products.

A number range contains a number range interval with a defined character set. The number
range interval consists of numeric or alpha-numeric characters (only for external number
ranges) and is delimited by the fields From number and To number. Either one interval, or
several if financial years are to be distinguished, is assigned to a number range.

The number range number identifies a number range for the system and makes system-internal
access to the number range interval possible. It can be numerical or alpha-numeric. This number
is generally assigned system-internally. If you do not need grouping or if you want to program the
group table maintenance for the grouping yourself, you must enter the number range number
during interval maintenance yourself.

If financial years are to be distinguished in the number assignment, there can be several
intervals. Separate intervals are then specified for each financial year. Number ranges can be
external (number to be assigned manually by the user) or internal (number assigned
automatically by the system).

A commercial object can either have only one number range (external or internal) or two number
ranges (external and internal).

The various distinctions between commercial objects gives rise to eight Number range object
types [Page 97].

Element and group
Element is the field in the group table according to whose value a commercial object can be
grouped. The grouping is done by number range assignment.

April 2001 95

BC Extended Applications Function Library SAP AG

Concept

Element values to which the same number ranges are assigned constitute a group. For the
material master, for example, the groups are managed in the material type table. The groups can
be maintained via the standard maintenance dialog for number range intervals. If you do not want
to do this, you must program it yourself.

Groups can be either dependent or independent of sub-objects. This depends on whether the
sub-object is a group table field.

The following table shows as an example the grouping of material types and the associated
number range assignment.

Grouping material types

Group Material type Internal no. range External no.range

Group 1 Finished 01 02

Group 1 Semi-finished 01 02

Group 2 Raw material 03 04

The material types Finished and Semi-finished form one group, and the material type Raw
material another.

Until financial year
Fixed time periods (financial years) are assigned to number range intervals within a number
range with a year value. These intervals can overlap within a number range. In this case the
financial year or until financial year, as well as the assigned number, must be part of the
application table key.

96 April 2001

 SAP AG BC Extended Applications Function Library

 Number range object types

Number range object types

The description "with group" means that the assignment of number ranges to
elements, i.e. the grouping, should be done via the standard maintenance dialog.

• Objects without sub-objects

without group
(1) one, two or several number ranges

with group
(2) one number range, external or internal, per group
(3) two number ranges, external and internal, per group

• Objects with sub-objects

without group
(4) one, two or several number ranges

with group, independent of sub-object
(5) one number range, external or internal, per group
(6) two number ranges, external and internal, per group

with group, dependent on sub-object
(7) one number range, external or internal, per group
(8) two number ranges, external and internal, per group

All eight object types can also be distinguished by until financial years.

The definition of an object controls the number range maintenance dialog. If you, e.g. specify a
group table, the assignment of number ranges to element values in the group table can be
carried out by the user in the standard maintenance dialog.

The following illustration provides an overview of the object types.

April 2001 97

BC Extended Applications Function Library SAP AG

Number range object types

The eight number range object types

With
group

With
group

2 Number
ranges

category 6

1 Number
range

category 7

2 Number
ranges

category 8

Group
dependent on

sub-object

Group in-
dependent of

sub-object

With
sub-object

2 Number
ranges

category 3

1 Number
range

category 2

Without
sub-object

Object

1 Number
range

category 5

Without group
category 1

Without group
category 4

The following illustration shows, using two examples, the relationships between the concepts
described in the previous sections.

98 April 2001

 SAP AG BC Extended Applications Function Library

 Number range object types

Examples of number range object types 1 and 3

...

...

100 ... 199 200 ... 299 300 ... 399 400 ... 499

Number range 01

internal external

NoRg 02 NoRg 03

internal external

NoRg 04 NoRg 05

NoRg Object

Accounting documents Material master

Element

Fini Semi Raw ...

Group 01 Group 02

Material type

Object category 4 Object category 3
NoRg Object

0037 1980 ...

0037 1990 ...

accounting document table material master table
... FINI

FINI
... RAW

SEMI

...

...

00100
00101
00400
00200

CLOCK RADIO
TOASTER
IRON PIN
TRANSISTOR

...

...

...

...

Example of Example of

1980 1990 2000
1 ... 50 1 ... 50 51 ... 100

To-Fiscal Year

GI
GR

001
001

April 2001 99

BC Extended Applications Function Library SAP AG

Procedure

Procedure
If you want to use the SAP number range functionality in your application, proceed as follows:

1. Determine which type the new number range object is to have, and create the definition.

2. Maintain the number range intervals for the new object, or have them maintained by the end
users.

3. Use the Number assignment and check [Page 112] function modules in your application
program.

100 April 2001

 SAP AG BC Extended Applications Function Library

 Determine the number range object type

Determine the number range object type
To determine the type of number range to be used, you must clarify the following points:

• How many number ranges are required: 1, 2 or more?

• Are the number ranges dependent on a sub-object (company code, plant, controlling area,
etc.)?

• Is a group to be formed (e.g. by material type)?

• If so, is the group dependent on the sub-object?

• Is the number range to depend on the financial year?

From the answers to these questions, using the illustration “Eight number range object types”,
you can uniquely determine the type.

April 2001 101

BC Extended Applications Function Library SAP AG

Maintain number range object

Maintain number range object
1. Call the number range transaction (Tools → ABAP/4 Workbench → Development →

Other Tools → Number ranges).

2. Enter an object name and choose Create. An input window appears for the development
class in which you want to save the number range object.

3. Enter a development class, and choose Save. The object definition fields window now
appears.

4. To define the number range object, enter the following fields:

– Short text
Object short text (length 20), number range maintenance dialog explanations

– Long text
Object long text (length 60), number range maintenance dialog explanations

– Number length domains
The domains determine the lengths of the numbers to be issued. They must be of
type NUMC or CHAR, and have a field length of 1-20. Choose an appropriate
domain from the Dictionary or create a new one.

– Percent warnings
This value specifies from what percent free interval a warning is issued when
numbers are assigned. It must lie between 0.1 and 99,9.

– Number range transaction
If you enter a transaction code here, You can maintain the intervals for just this
object by calling this code.

Create sub-object
If you want differentiate a number range object, enter the data element according to whose value
you want to differentiate:

• Data element sub-object (object types 4-8)
This data element must exist and be active in the Dictionary and have a check table. The
domains must have a field length between 1 and 6.

Distinguishing by financial year
If the commercial object records are to be distinguished by financial year, mark the field:

• Until financial year flag. (all object types)

Create groups
If the commercial objects are to be grouped by elements, you can specify, by completing the
following fields, that the group table is to be maintained via the standard maintenance dialog.
Otherwise you must program the assignment yourself.

• Group table (object types 2, 3, 5-8)
Enter the name of the table which contains the grouping element, e.g. for the material
master, the material type table. The table must exist and be active in the Dictionary and
contain the number range element field as key. If the groups depend on the sub-object, the
sub-object must be part of the key. Otherwise the group table must not have any other key

102 April 2001

 SAP AG BC Extended Applications Function Library

 Maintain number range object

fields.
A group table can only be assigned to at most one number range object.

• Sub-object field in group table. (object types 7 and 8)
If the commercial object is differentiated by sub-object, and the groups are dependent on the
sub-object, enter here the group table field which contains the sub-object value (object types
7 and 8). The sub-object field must be part of the key.

• No. range element field (object types 2, 3, 5-8)
If the commercial object is to be grouped, enter here the group table field which contains the
value according to which groups are to be formed. The number range element field must be
part of the key.

• Int./ext.no. range no. field (object types 3, 6, 8)
Enter here the group table fields for internal and external number ranges, if the application is
to support both external and internal number assignment. A group table must be specified at
the same time. The fields must have the format char (2) or num (2).

• No. range no. field (object types 2, 5, 7)
Enter here the group table field for the number ranges, if the application is to support only
one number range (external or internal). The field must be part of the key and have the
format char (2) or num (2).
Whether it is an external or internal number range is indicated when the interval for this
number range is created.

Group maintenance element text display
If the element text is to be displayed during group maintenance, mark this field:

• Display element text

You must also maintain the following element text table entries with the text entries maintenance
function:

• Element text table

• Language field

• Sub-object field
This field only appears in the interface when the groups are defined as being dependent on
sub-objects.

• Element field

• Text field

When you have saved the input data, number range intervals can be created for the object.

Delete number range object
To be able to delete a number range object, you must first delete the number range intervals
which belong to it.

Maintain number ranges
Have the end-user create number ranges with intervals, using the implementation guide. You can
find information about this in the system administration document in the section on number
ranges.

April 2001 103

BC Extended Applications Function Library SAP AG

Maintain number range object

Transport number range objects
When number range objects are maintained, they are entered in a change request. When the
transport is released, various consistency checks are made, to avoid the transport of objects with
errors. Error messages or warnings appear in the transport log. If errors occur, the export or
import is refused.

104 April 2001

 SAP AG BC Extended Applications Function Library

 Function module calls

Function module calls
The function modules distinguish between the following objects:

• Number range objects

• Number range intervals and groups

The following illustration shows the context of the function groups and their possible connections
to application programs.

Function groups overview

Menu

Application
program

Function group

SNR0

Function group

SNR1

Function group

SNR2

Function group

SNR3

Function group

SNR4

Tools

Number check and
assignment

Services for reading
and maintaining
and maint. dialog of

CALL FUNCTION ... CALL FUNCTION

CALL FUNCTION ...

CALL FUNCTION ...

CALL FUNCTION ...

CALL FUNCTION ...

...

...

...

...

Driver
SNUM

Services for reading
and maintaining
num. range intervals
and groups

Maintenance dialog
for number ranges,
intervals, and
groups

num. range objects

Call via parameter
transaction acc. to
def. of num.range object

DB

If you want to work with the standard number range functionality, you only need the
function modules in the function group SNR3.

April 2001 105

BC Extended Applications Function Library SAP AG

Function module calls

106 April 2001

 SAP AG BC Extended Applications Function Library

 Number range and group maintenance dialogs

Number range and group maintenance dialogs
Function group SNR0
The function modules in this function group constitute the dialog with which number ranges,
number range intervals and number range groups can be maintained.

The function modules which are labeled "*" can only be used for the object types 2
and 3 and 5-8 (see illustration in number range object types).

• NUMBER_RANGE_SHOW
This function module displays the groups which exist for a particular number range object,
with their number range intervals.
After return, the return code chosen by the user (Back or Cancel) is available.

• NUMBER_RANGE_ELEMENTS_SHOW *
This function module displays all elements, which are assigned to a number range interval.
After return, the return code chosen by the user (Back or Cancel) is available.

• NUMBER_RANGE_INTERVAL_MAINTAIN
With this function module the maintenance dialog for number range intervals for a given
number range object is offered. A parameter specifies the processing type. Possible
processing types are:

- Maintain intervals

- Change number status

- Display intervals

- Create new groups (only for object types 2 and 3 and 5-8)

The dialog path is determined by the object type.
After return, the return code chosen by the user (Back or Cancel) is available.

• NUMBER_RANGE_GROUP_MAINTAIN *
This function module is the maintenance dialog (Create, Change, Display) for number range
groups for a given number range object. A processing flag determines whether the object is
to be displayed only or whether it can be maintained. Groups are deleted by deleting their
intervals.
After return, the return code chosen by the user (Back or Cancel) is available.

• NUMBER_RANGE_SUBOBJECT_COPY (only object types 4-8)
This function module enables you to copy number range objects from groups and intervals of
an existing sub-object of a given number range object to another of its existing sub-objects.
After return, the return code chosen by the user (Back or Cancel) is available.

• NUMBER_RANGE_SUBOBJECT_GET (only object types 4-8)
This function module provides a dialog box in which the user can enter a sub-object for a
given number range object. If the specified sub-object already exists for the number range
object, it is returned in the export parameter. If it does not exist, either an exception is raised
or the return code "A" for user abort is returned.

April 2001 107

BC Extended Applications Function Library SAP AG

Number range and group maintenance dialogs

108 April 2001

 SAP AG BC Extended Applications Function Library

 Number range and group read and maintain services

Number range and group read and maintain services
Function group SNR1
The function modules in this group perform all number range, number range interval and group
read and maintenance database accesses.

Function modules marked with "*" can only be used for the object types 2 and 3 and
5-8 (see illustration in number range object types).

• NUMBER_RANGE_ENQUEUE
With this function module, you lock the number range object which is to be maintained, and
its groups and intervals, for access by other users. Lock errors are returned as exceptions.

• NUMBER_RANGE_DEQUEUE
With this function module, you unlock the number range object which has been maintained.

• NUMBER_RANGE_ELEMENT_LIST *
This function module gets the elements which are assigned to a particular number range
interval for a number range object. The elements found are passed in a table. Errors are
returned as exceptions.

• NUMBER_RANGE_ELEMENT_TEXT_LIST *
With this function module you can find element texts in the specified language for a given
number range object. The texts are returned in a table. Execution errors are returned as
exceptions.

• NUMBER_RANGE_GROUP_LIST *
This function module gets information about groups and the associated group and element
texts for a specified number range object. The information is put in a table. The table can be
used to change the element assignment or the group text. The change request is to be
passed to the function module NUMBER_RANGE_GROUP_UPDATE.
Errors are returned as exceptions.

• NUMBER_RANGE_GROUP_UPDATE *
With this function module, already assigned elements can be assigned to other intervals, or
the assignment can be withdrawn. Group texts can also be maintained. All change requests
are checked. Request errors are returned in an error table.

The changes are passed in an internal table and are copied into the local memory of the
function group.
Before you call this function module, you must lock the number range object in question
with NUMBER_RANGE_ENQUEUE, and unlock it again with
NUMBER_RANGE_DEQUEUE after writing the changes to the database.
To copy the contents of local memory to the database, call the function module
NUMBER_RANGE_UPDATE_CLOSE.

• NUMBER_RANGE_INTERVAL_LIST
This function module gets the existing intervals to a given number range object, and puts
them in a table. The table can be passed to the function module
NUMBER_RANGE_INTERVAL_UPDATE to change intervals.

• NUMBER_RANGE_INTERVAL_UPDATE
With this function module you maintain intervals for a given number range object.

April 2001 109

BC Extended Applications Function Library SAP AG

Number range and group read and maintain services

The changes are passed in an internal table, and are copied into local memory.
Before you call this function module, you must lock the number range object in question with
NUMBER_RANGE_ENQUEUE, and unlock it again with NUMBER_RANGE_DEQUEUE,
after the changes have been written to the database.
To copy the contents of local memory to the database, call the function module
NUMBER_RANGE_UPDATE_CLOSE.

• NUMBER_RANGE_OBJECT_GET_INFO
This function module gets information for a given number range object. This information is
put in a table structure, which must be declared like the table structure INROI.

• NUMBER_RANGE_SUBOBJECT_LIST (only object types 4-8)
This function module gets the existing sub-objects of a given number range object, and puts
them in the table passed.

• NUMBER_RANGE_SUBOBJ_GET_INFO
This function module gets information about the existing sub-objects of a given number range
object. This information is put in a table structure, which must be declared like the table
structure INROI.

• NUMBER_RANGE_UPDATE_CLOSE
With this function module you write changes which have been made to local memory to the
database, with NUMBER_RANGE_GROUP_UPDATE and
NUMBER_RANGE_INTERVAL_UPDATE. After calling this function module, you should
unlock the changed number range object.

• NUMBER_RANGE_UPDATE_INIT
With this function module, you can initialize local memory if you want to discard the changes
which have not yet been copied to the database.

110 April 2001

 SAP AG BC Extended Applications Function Library

 Number range object read and maintain services

Number range object read and maintain services
Function group SNR2
The function modules in this group perform all read and maintenance accesses to number range
objects in the database.

• NUMBER_RANGE_OBJECT_MAINTAIN
This function module provides all the screens needed to maintain a given number range
object, with the possibility of branching to interval maintenance and change document
display.
An export parameter states which action the user has performed with the number range
object.

• NUMBER_RANGE_OBJECT_CLOSE
With this function module, you write all changes to a given number range object, which were
put in local memory with NUMBER_RANGE_OBJECT_UPDATE, to the database. If intervals
are affected by the changes, they are updated. Change documents are created for all
changes. A flag states whether intervals have been updated.

• NUMBER_RANGE_OBJECT_DELETE
With this function module, you can delete either the whole definition of a given number range
object, including texts, or only the texts. The deletion is performed directly in the database.
The function module provides no connection to the correction and transport system.

• NUMBER_RANGE_OBJECT_INIT
With this function module, you initialize local memory for a given number range object.
You only need this call when you offer number range object maintenance in a user
transaction, in which you want to provide the possibility of canceling changes which have not
been saved.

• NUMBER_RANGE_OBJECT_LIST
This function module gets a list of all number range objects with their texts and attributes.
The information is put in a table.
The contents of local memory are not taken into account.

• NUMBER_RANGE_OBJECT_READ
This function module gets the texts and attributes of a given number range object. The
records returned can be used for changes with the function modules
NUMBER_RANGE_OBJECT_UPDATE and NUMBER_RANGE_OBJECT_DELETE.

• NUMBER_RANGE_OBJECT_UPDATE
This function module copies new number range objects or changes to existing number range
objects into local memory, after error checks.
The function module does not provide a connection to the correction and transport system.

April 2001 111

BC Extended Applications Function Library SAP AG

Number assignment and check

Number assignment and check
Function group SNR3
The function modules in this group manage the number assignment.

• NUMBER_CHECK
You only need this function module for external number assignment. It checks whether a
number range object number lies in a specified number range interval.

• NUMBER_GET_INFO
This function module gets information for a specified number range object number range
interval.

• NUMBER_GET_NEXT
You need this function module for internal number assignment. It assigns the next free
number(s) in a number range interval of a specified number range object. If the last number
in the interval has been issued, the number assignment begins again with the first number in
the interval.
The return code states whether the assigned number was assigned without any problem, or
whether it lies in the critical range.

112 April 2001

 SAP AG BC Extended Applications Function Library

 Utilities

Utilities
Function group SNR4
• NUMBER_RANGE_INTERVAL_INIT

With this function module you initialize all internal number range intervals of a specified
number range object or sub-object.

April 2001 113

BC Extended Applications Function Library SAP AG

Data Archiving - ADK

Data Archiving - ADK
This section explains how you can create your own archiving programs using the Archive
Development Kit (ADK).

114 April 2001

 SAP AG BC Extended Applications Function Library

 Overview

Overview
Data archiving compresses system data and stores it on external storage media. The archived
data can then be deleted in the system. Space can then be re-used, and the archived data is
stored safely.

Data archiving is recommended in the following cases:

• The database is occupied by mass data that must be stored externally

• Master data is no longer required

SAP provides the Archive Development Kit (ADK) for the realization of secure and efficient
archiving procedures, to support and simplify the development of archiving programs.

The ADK is designed to be used in client/server architecture. The system load is shared among
the database and application servers. This makes efficient use of system resources.

At the same time, data localization and the provision of access function modules support object
oriented procedures, which in turn help you to keep your data consistent.

The ADK provides the interfaces, function modules, example programs and documentation you
need to develop your own archiving programs.

This includes:

• Connection to the storage system

• Compression during archiving

• The possibility of archiving while the system is running

• Greater ease of use

• Network graphic for showing object dependencies

• Access to individual data objects in the archive

You can use the program RSARCH09 to copy old transaction F040 archiving
procedures.

You must identify from which archiving objects you want to copy the old control data
into the new archive management by entering the name of the archiving object under
which the control data is to be copied into the new archive management, in the field
Reorg. variant in the table TR01 (System → Services → Table maintenance).

When the control data has been successfully copied, the program RSARCH09
deletes the entry in table TR01, so the old archiving program can no longer be
executed through transaction F040.

April 2001 115

BC Extended Applications Function Library SAP AG

ADK: Development Environment for Archiving Programs

ADK: Development Environment for Archiving Programs
The Archive Development Kit (ADK) supports the development of standardized archiving
programs and their delete, read, and reload programs.

The data archiving functions include the following components:

• Archiving Objects [Page 122] and their methods

• Standard Class [Page 124] (generally valid) with its methods

• Archiving Classes [Page 125] (created by the user) with their methods

• Archive Management [Page 127]

• Network Graphic [Page 129]

• Authorization check (see Archive Management [Page 127])

• Generator for archiving programs

These components provide an environment in which you can develop your own archiving
program. Sample programs are also provided.

The archiving object and standard class methods are provided as function modules. You do not
need to know the technical details of the archiving procedures, as they are localized in the
function modules. You can use all the ADK functions because your archiving programs
communicate with these function modules.

The ADK performs many of the necessary archiving activities for you. You can develop simple
programs very quickly using the standard class (which already exists in the system) function
modules and appropriate control parameters.

If you want to develop more complex, object-oriented archiving programs, you should use the
functions provided in dedicated archiving classes (provided by an expert in the area), which
contain, all the information specific to the area data to be archived. This offers you the advantage
that you no longer need detailed knowledge of the business object in question, because you
need not concern yourself with the technical realization. You only need to call the appropriate
function modules, which then perform the technical processing for you.

The development of an archiving program is based on the definition of an Archiving Object [Page
122], which specifies which tables comprise a business object. Archiving objects are complex
objects of interdependent tables. They can contain sub-objects used repeatedly in the system,
such as change documents.

116 April 2001

 SAP AG BC Extended Applications Function Library

 Interaction between Program, ADK, and Archive File

Interaction between Program, ADK, and Archive File
The following graphic illustrates the various SAP System components involved in archiving
sessions.

DB

Storage system with tertiary
storage media

ABAP program

Archivefile

manualHSM

L
D
B

Archiving
class

ArchiveLink

 DB interface

ADK:
Conversionof:
Codepage, recordstructures,
number formats, for example
DEC/HPinteger conversion

SAP System

As of Release 4.6C, the Content Management Service (CMS) is used to store archive files in an
external storage system, instead of SAP ArchiveLink.

Hierarchical Storage Management (HSM) manages archive files on external storage media as
though they were a system component, independently of the medium on which they are actually
stored.

April 2001 117

BC Extended Applications Function Library SAP AG

Interaction between Program, ADK, and Archive File

118 April 2001

 SAP AG BC Extended Applications Function Library

 Archiving using ADK

Archiving using ADK
Use
The ADK archiving concept and data flow are illustrated in the following graphic.

archiving object definition

archiving object data
container with data packetsArchiving program

...

..
..

..

archiving
object methods

with handle

local memory

change
documents

internal
data
area

standard class
with handle

. . .

. . .

archiving classes with handle

local memory

SAPscript
text

The archive
groups all
archive files
in an
archiving
object.

April 2001 119

BC Extended Applications Function Library SAP AG

Archiving using ADK

Explanations
• The archiving program selects the data to be archived to the archive file from the database

according to specified criteria. Records can be marked for subsequent deletion by the delete
program. A single table field is the smallest recognizable entity in the program.

• The data object to be archived or read from the archive file is passed to a logical data
container. The archiving object standard class or archiving class methods access this data
container. The smallest recognizable entries when reading or writing to the data container
are table entries (for archive programs) and archiving class data packets (for read programs).
The data is passed between the data container and the archive file using the archiving object
methods.

• The archive contains the archived data objects of an archiving object, and consists of
several archive files. In Customizing, you set the maximum archive file size (in MB) and the
maximum number of data objects that can be added to an archive file. If the maximum file
size or maximum number of data objects is reached while writing to an archive file, the
archive file is closed and a new file is opened. The program accesses the archive file using
archiving object function modules. For these function modules, a data object is the smallest
recognizable unit.

Identifying archive files and archiving sessions
An archiving sessions consists of the archiving program and the archive files created by the
program. Each archiving session has a unique ID, which is assigned by the ADK and stored in
archive management along with other data, such as the sizes and names of the corresponding
archive files.

If archive reads or writes are programmed, the ADK displays a dialog box at runtime that includes
a list of the available archiving sessions. For a program to be run in the background, you can use
this list to select the relevant archiving sessions.

At program runtime, a temporary number, the archive handle, is assigned. The archive handle is
used to identify the previously selected archiving sessions (read or write programs) or the new
archiving session generated (write program). This means that archived data can be read within a
program and written to the archive in parallel.

120 April 2001

 SAP AG BC Extended Applications Function Library

 Archiving Process

Archiving Process
Process Flow
The full archiving process consists of at least two activities:

• Writing the data to be archived from the database to the archive file
The data objects to be archived are written sequentially to the archive file. A data object
consists of a record sequence according to the object definition. The data is compressed by
object.

This program can generally be executed during dialog processing. The program is
executed in the background by choosing Archive in Archive Administration
(transaction SARA). The system looks for the next free background process,
preferably on the database server. You select a server for archiving using Server
selection in archiving object-specific Customizing.

• Deleting archived data from the database
The program first reads the archived data in the archive file. After reading, the data is usually
deleted from the database. Sometimes only a delete indicator is set and the deletion is
carried out later. The program can then pass the archive files to the Content Management
Service (CMS), if a storage system is connected to the CMS.
In archiving object-specific Customizing [Page 135]archiving object-specific Customizing, you
can specify whether the delete program is to be called automatically after the system closes
an archive file.

As of Release 4.6C, the Content Management Service (CMS) is used to store
archive files in an external storage system, instead of SAP ArchiveLink. This means
archive files can be created wherever you specify and they no longer have to be
created in the basic directory of the storage system.

Other archiving activities such as archiving analyses are also possible.

As of Release 4.6C, the Content Management Service (CMS) can be used to store
archive files in an external storage system before the data contained in the files is
deleted from the database during the delete phase.

April 2001 121

BC Extended Applications Function Library SAP AG

Archiving Objects

Archiving Objects
Definition
If the data for a business object is to be archived, you must first determine which data belongs to
the object, how it is to be archived, and which processing options should be available. This
definition is saved in the system as an archiving object.

The archiving object specifies the database tables from which archiving data is to be taken.
Archiving classes, which are tailored to particular logical objects (for example, change
documents), can be used.

An accounting document with all its items, change documents, and long texts is an
archiving object.

Use
Archiving object methods
Each archiving object automatically has certain methods that can be used by archiving programs.

• For all access types:
– Open archive file for writing

ARCHIVE_OPEN_FOR_WRITE

– Open archive file for reading
ARCHIVE_OPEN_FOR_READ

– Open archive file to reload
ARCHIVE_OPEN_FOR_MOVE

– Open archive file to delete
ARCHIVE_OPEN_FOR_DELETE

These function modules return an identifying number (archive handle), with which
you can access the associated archive file and its data container from the program.

– Close archive file

• For write access:
– Get new data object (initialize data container)

ARCHIVE_NEW_OBJECT

– Write data object from data container to archive file
ARCHIVE_SAVE_OBJECT

If archiving classes are used, this is the point at which the archive class data is read
from the database and written to the data container.

• For read access (incl. reload):

122 April 2001

 SAP AG BC Extended Applications Function Library

 Archiving Objects

– Read next data object from the archive into the data container
ARCHIVE_GET_NEXT_OBJECT

• For all access types:
– Close archive file(s)

ARCHIVE_CLOSE_FILE

How data is transferred from the database to the data container depends on whether there are
archiving classes for the relevant tables:

• Archiving classes exist
The data is passed by the archiving class function modules.

• No archiving classes exist
The data must first be copied into the program area using user program logic, and can then
be written to the data container using the standard class function modules.

April 2001 123

BC Extended Applications Function Library SAP AG

Standard Class

Standard Class
Definition
The standard class is a set of function modules available to all archiving objects. These function
modules are used for general access to archived data.

The function modules can read and write data records and execute simple conversions during
reading, such as changing the code page, the number format, or the record layout. Archived data
cannot be deleted from the database or reloaded using the standard class. If you use the
standard class for an archiving object, you must program these actions yourself.

This standard class is for general use, it must therefore be told which archiving object it is dealing
with. This information is passed in control parameters.

Standard class tasks
• Write data records for the data container

• Read data from the data container

• Automatic conversion while reading

– Code page

– Number format, for example, DEC/HP integer conversion

– Simple structure changes

Prerequisites
The archiving object must be defined in the system in transaction AOBJ.

When is the standard class used?
The standard class methods should always be used when no archiving class exists for the
relevant table.

If the data to be archived contains sub-objects used repeatedly in the system as service
functions, such as change documents, you should consider developing an archiving class.

124 April 2001

 SAP AG BC Extended Applications Function Library

 Archiving Classes

Archiving Classes
Definition
Archiving classes make possible object-oriented processing of the data to be archived. They
simplify access to the data of business entities for archiving.

An archiving class is a set of function modules and subprograms for a business object, which is
usually used repeatedly as a service function in the system and is archived with the data where it
is used, rather than independently, for example, SAPscript texts, change documents, or purchase
requisitions. It collects the data and passes it as a data packet to the data container. This data
packet can only be processed by the archiving class’ own function modules.

Because of the localization of the data, the calling program no longer needs to know the
particular data structures and hierarchies. By using archiving classes, you can easily archive data
of which you have no detailed knowledge.

The development of archiving classes involves an initial additional work load, but this is
recovered in simplified program development and consistent data. It is worth making sure that
archiving classes are created for the data you have to archive.

If tables to be archived overlap between two archiving objects, you do not
necessarily have to development an archiving class. The tables can be checked to
determine which data is to be deleted. Developing archiving classes is complicated
and therefore you should check each time whether a class really needs to be
developed, or whether you can implement checks and processes for overlapping
archiving objects.

Use of and advantages of using archiving classes
Provide archiving classes if complex logical objects used for service functions during archiving of
application data need to be archived as well. This prevents data inconsistencies. This is
especially true when a logical object is to be archived as well, but the processing logic cannot be
covered by the standard class methods.

For data that represents a business object, you should create an archiving class when you can
answer one of the following questions with “Yes”:

• Is the data used repeatedly in the system in the same form and is it also archived in the
various contexts?

• Will other applications use and archive my data structures?

Archiving objects can be created with the archiving classes if necessary. An archiving class can
be used in any number of archiving objects. This can either be done statically, by specification in
ADK, or dynamically in the archiving program (by calling an ADK function module).

The archiving object “FI document” data is copied into the data container with the
standard class. Archiving classes are used to transfer long text and change
document data between the database and the data container.

The use of archiving classes has the following advantages:

April 2001 125

BC Extended Applications Function Library SAP AG

Archiving Classes

• Re-use without extra work

• Simple extension of the archiving object using new classes

• Dynamic inclusion in archiving objects

• Consideration of the object itself, not its physical data structure

• Data integrity

• Modularity of the data and methods

• Central implementation of archiving functions

Archiving classes are used to:
• Communicate with the archiving object function modules

• Get complex data

• Prepare data packets for the data container

• Read archived data packets from the data container

• Delete archived data from the database

• Write archived data back to the database

Prerequisites for using archiving classes
Detailed knowledge of the data structure is necessary for the development of archiving classes.

For an existing archiving class to be used, it must be assigned to the archiving object in question.
There are two possibilities:

• Static connection
A permanent assignment is made using a table entry in ADK (transaction AOBJ). The
function modules are connected to the archiving object when the archive file is opened. (This
is the normal type of connection.)

• Dynamic connection
The archiving class is connected to the archiving program by a call of function module
ARCHIVE_REGISTER_CLASS. Use this procedure when the system only determines at
runtime (for example, by user input) which sub-objects of the archiving objects are to be
archived. A dynamic connection must be used to include a class in another class.

For more information, see Using Archiving Classes [Page 154].

126 April 2001

 SAP AG BC Extended Applications Function Library

 Archive Administration

Archive Administration
Use
Programs that process archived or to-be-archived data, generally have a long runtime. Therefore,
they must always run in the background.

The ADK provides archive administration with which you can generate background jobs for all
archiving programs (archive, delete, analyze, and reload). Call archive administration using
transaction SARA. On the initial screen, enter the name of the archiving object and choose Enter.
A list of the available actions for the selection appears.

The Management action is always available. You use this to display all archiving sessions that
have been executed for this object. The list includes the following information about each
archiving session:

• Date and time

• User that executed the session

• Archive file name and path

• Status (whether deleted or moved to storage system)

• Archive file size and number of data objects in archive file

Creating notes
You can create notes about each archiving session, for example, about the archive file location
or other information.

Authorization check
Access to the archiving object programs is controlled using authorization object S_ARCHIVE.
The ADK checks this authorization when an archive file is opened for one of the following
actions:

• Write

• Delete

• Read

• Reload

The following authorizations can be assigned per archiving object and application (for example,
FI or BC):

• All authorizations:

– Write, read, and reload archives

– Execute delete program

– Change mode in archive management (notes)

• Change mode in archive management

• Read and analyze archives, display mode in archive management

Additional application-specific authorization checks may be made for database accesses.

April 2001 127

BC Extended Applications Function Library SAP AG

Archive Administration

128 April 2001

 SAP AG BC Extended Applications Function Library

 Network Graphic

Network Graphic
Definition
In the ADK, the network graphic enables you to display archiving object dependencies in the
archiving process (transaction SARA: choose Goto → Network graphic). The archiving object
hierarchy displayed allows you to easily determine the sequence in which the data must be
archived for optimal data storage.

Structure
Each node in the graphic represents an archiving object and includes the following information:

• Name of the archiving object

• Name of the application

• Short description

• Date of the last archiving
Color legend:

• Green
Last archiving and delete successful

• Yellow
Archiving running or
Archiving finished or

Delete running or
Delete terminated

• Red
Not yet archived or
Archiving terminated

April 2001 129

BC Extended Applications Function Library SAP AG

Developing Archiving Programs

Developing Archiving Programs
To develop programs for archiving application data with the ADK, proceed as follows:

1. Define archiving objects [Page 131]

2. Define standard class hierarchical structure [Page 133] (optional)

3. Customizing settings [Page 135] (optional)

4. Assign archiving classes [Page 138] (optional)

5. Program development:

– Develop archiving program [Page 139]

– Develop delete program [Page 145]

– Develop reload program [Page 147]

– Develop analysis program [Page 149] (optional)

6. Maintain network graphic [Page 151]

Examples
To explain how the function modules work, the ADK includes sample programs for the archiving
objects EXAMPLE and BC_SBOOK:

• Generate archive files

RSARCH04 and SBOOKA

• Read archiving files

RSARCH05 and SBOOKR

• Read archive files for deleting data and maintain indexes

RSARCH06 and SBOOKD

• Read archive files for reloading data

RSARCH07 and SBOOKL

• Read individual data objects in the archive using an index

RSARCH13

130 April 2001

 SAP AG BC Extended Applications Function Library

 Defining Archiving Objects

Defining Archiving Objects
Procedure
1. Call transaction AOBJ.

2. Choose New entries and enter the following data:

− Object name
Name of the archiving object

− Text
Short description

− Work area
Organizational category for assigning archive files

− Application component
Used for assigning archive files

The programs specified below must already exist in the system, because checks are
carried out when an archiving object is created.

− Write program
Name of the program that writes the archive files.

− Delete program
Name of the program that deletes the data from the database after the archiving
program. If the Start at end checkbox is selected, the delete programs do not start until
the write programs are finished.

− Reload program (optional, but recommended)
Name of the program with which the data can be loaded from the archive back into the
database.

− Preproc. prog. (optional, only when absolutely necessary)
Name of the program with which data is to be prepared for archiving.

− Post-processing program (optional, only when absolutely necessary)
Name of the program with which data is to be processed after it has been archived. If, for
example, the data is only marked for deletion in the delete program, the actual deletion
can be executed in the post-processing program.

− Prog. generated indicator (program generated)
The program is generated.

− Cross-client indicator
Archiving is client-independent.

− End dialog indicator
Archiving is not to be executed in dialog mode.

− Build indx prg and Prg. for IdxDel indicators
Name of the programs for building and deleting indexes.

− ArchiveSelectnLive indicator

April 2001 131

BC Extended Applications Function Library SAP AG

Defining Archiving Objects

The Archive selection pushbutton appears in the management transaction for building
and removing indexes.

− Build index indicator
An index can be created for this archiving object. For more information, see Creating
ADK Indexes and Using Them to Access Archive [Page 152].

The actual index creation can be controlled by a Customizing [Page 135] entry.

− “Invalid” indicator fixed indicator

If this is selected, the “Invalid” indicator for archiving sessions cannot be reset in archive
management after it is set.

− No reload files indicator

If this field is selected, no new archiving session is generated when reloading archiving
sessions. The reload program is not authorized to call the function module
ARCHIVE_SAVE_OBJECT.

− Archive hints
Name of a document containing help text for the object-specific archiving program.

− Delete hints
Name of a document containing help text for the object-specific delete program.

− Reload hints
Name of a document containing help text for the object-specific reload program.

− Prep.Prog. hints
If a preprocessing program is planned, you can enter the document that contains the
help text for the preprocessing program.

− Post-proc. hints
If a post-processing program is planned, you can enter the document that contains the
help text for the post-processing program.

− Read info

Name of a document containing the help text for object-specific read programs.

The help function documents are created using the documentation maintenance
transaction (SE61).

3. Save your entries and return to the initial screen of transaction AOBJ.

Result
Your new archiving object is included in the list of objects in the system. You can now create
additional information about your archiving object by selecting the line and choosing one of the
actions under Navigation.

132 April 2001

 SAP AG BC Extended Applications Function Library

 Defining Standard Class Hierarchical Structure

Defining Standard Class Hierarchical Structure
In the archiving hierarchy, interdependent tables are described as segments in a structure. Their
dependencies must be represented in the structure of the standard class. In archiving classes
program logic creates the structure.

Procedure
To define the structure of the tables in your archiving object, proceed as follows:

1. Select the archiving object in the list on the initial screen of transaction AOBJ, and choose
Structure Definition under Dialog Structure. The hierarchy maintenance screen appears.

2. Choose New Entries, and enter the following data:

• Record number
Organizational numbering without any functional significance. We recommend you
use sequential values for transparency.

• Parent segment
Structure name of the superior segment (this field is empty for the top segment)

• Segment
Structure name

• Structure
Name of the structure, if you are working with a logical database and the structure
name under Segment is a pseudonym for a real structure.

• Do not delete indicator
Identifies the segments not to be deleted. If the delete program is generated, a
segment so marked is not deleted. This information is also used in the Display of
Tables and Archiving Objects [Ext.] (transaction DB15).

Save your entries, and return to the initial screen of transaction AOBJ.

April 2001 133

BC Extended Applications Function Library SAP AG

Tables From Which You Only Delete Entries

Tables From Which You Only Delete Entries
Data archiving includes tables from which entries are only deleted and not archived. There are
the following types of tables:

• Tables whose entries are deleted but not archived:
This can include tables whose entries can be rebuilt at any time using documents in the
system (for example, index or match code tables).

• Archived structures and views:
This can include tables used in structures and views. The structure and views are not
themselves deleted.

To assign tables from which you only delete entries to an archiving object, proceed as follows:

1. Select the relevant archiving object on the initial screen of transaction AOBJ. Under Dialog
Structure, choose Tables From Which You Only Delete Entries. The hierarchy maintenance
screen appears.

2. Choose New entries and enter the relevant tables in the Table name field.

3. Save your entries and return to the initial screen of transaction AOBJ.

134 April 2001

 SAP AG BC Extended Applications Function Library

 Archiving Object-Specific Customizing

Archiving Object-Specific Customizing
Procedure
To maintain the archiving control parameters for an archiving object, proceed as follows:

Select the archiving object in the list on the initial screen of transaction AOBJ, and choose
Customizing settings under Dialog Structure.

Variants must be maintained for each client. All other values are cross-client.

You can set the following parameters:

Logical file name
Logical name for the archive file used for platform-independent data storage.

You must have maintained the logical file name using transaction FILE (Logical File

Path Definition).

Server selection
You use this to select the servers where the archiving programs are to run in the background.

Archive file size
If one of the following parameters is exceeded during writing of an archive file, the system
automatically creates a new archive file.

• Maximum size in MB

• Max. number of data objects

The absolute maximum size of an archive file is 2 GB.

Settings for delete program
The archived data records in the database are usually deleted. Under certain circumstances,
however, this deletion is only logical, that is, when the Delete indicator is set The physical
deletion occurs later in a postprocessing program.

Commit counter
Number of data objects after which the delete program sends COMMIT to the database.

Test session variant
Specify the delete program variant for the test session.

Production session variant
Specify the delete program variant for the production system.

April 2001 135

BC Extended Applications Function Library SAP AG

Archiving Object-Specific Customizing

Use the Variant pushbutton to maintain variants for the delete program.

The program variants specified under Test session and Production session are
client-dependent. They must be created in each client under the same name, with
the same parameters.

• Deletion jobs

− Not scheduled

The delete jobs are not automatically started.

− Start automatic.

The delete jobs are started automatically by the write program immediately after an
archive file is finished. If files are to be stored in a storage system, you can specify
whether the data is to be deleted from the database before or after the files are
successfully stored.

− After event

The delete jobs are started by events. The name of the event must be entered in the
Event field. If the event requires a parameter be set, enter the parameter in the
Parameter field.

− Build index

Controls whether the archived data objects are to be added to the index.

The Build index check box is only displayed if the indicator is set in transaction AOBJ
(Definition of Archiving Objects).

Postprocessing program settings
If you have selected an archiving object that uses a postprocessing program, you can maintain
the following parameters:

• Production session variant

Use this to set a production variant of the postprocessing program.

Use the Variant pushbutton to maintain the production session variants.

• Start automatic.

Controls whether the postprocessing program is automatically called after the delete is
finished.

136 April 2001

 SAP AG BC Extended Applications Function Library

 Archiving Object-Specific Customizing

The postprocessing program then only starts when the last delete program of the
archiving session has completed and no archive file has the status Archiving
completed, Archiving running, or Delete running.

Data storage in storage system
If a storage system is connected through the Content Management Service and you want to store
files in a storage system, you can set the following:

• Content Repository
Name of the Content Repository

• Start automatic.
Controls whether an archive file is automatically stored in the Content Repository.

• Sequence
The time point at which the files are moved to the Content Repository is determined by
how the archive files are processed after they are created:

- Delete before storage
The files are moved to the Content Repository after the delete program has
processed the file in production mode. If the delete program is running in test mode,
the files are not automatically stored after the delete program has finished.

- Store before delete
The files are moved to the Content Repository after the write program has written the
archive file and before the delete program starts. This means the delete program
cannot process the files until they are successfully stored.

The Delete prog. reads from stor.system check box specifies whether the delete
program reads the data to be deleted from the storage system or the file system.

If the delete program option Start automatic. is selected, the delete program is called after file
storage is completed. In this case, it makes no difference whether the delete program is
running in test mode or production mode. Similarly, if the After event option is selected, the
delete jobs are scheduled and automatically started after the specified event occurs.

Save your entries, and return to the initial screen of transaction AOBJ.

April 2001 137

BC Extended Applications Function Library SAP AG

Assigning Archiving Classes

Assigning Archiving Classes
If you want to use existing archiving classes or have developed an archiving class, you must
assign this class to the relevant archiving object, so that the ADK can find the required interfaces
during archiving. You can either specify this statically, if archiving is always to be structured in the
same way, or dynamically by calling function module ARCHIVE_REGISTER_CLASS in your
archiving program, if you want use input parameters to control, for example, whether particular
sub-objects are to be archived or not.

Procedure
To specify static assignment, proceed as follows:

1. Select the archiving object in the list on the initial screen of transaction AOBJ, and choose
Archiving classes used under Dialog Structure. The assignment maintenance screen
appears.

2. Choose New entries, and enter the desired archiving classes. You can use the F4 help,
which lists the existing archiving classes in the system.

3. Save your entries and go back to the initial screen of transaction AOBJ.

138 April 2001

 SAP AG BC Extended Applications Function Library

 Developing Archiving Programs

Developing Archiving Programs
Purpose
Archiving programs write the data to an archiving object in an archive file. These programs can
be adjusted to individual requirements. The data objects to be archived can either be called
directly in the archiving program or through a logical database.

All archiving programs have one thing in common. They use the ADK function modules (function
group ARCH), to save their data by objects in archive files. All archive file access methods are
covered by these function modules (see also Standard Archiving Programs [Page 142]).

For the development of archiving programs it is also advantageous if archiving classes are
defined. These contain the program logic for the data transfer between the database and the
data container (see also Archiving Using Archiving Classes [Page 143]). If no archiving classes
exist, the archiving program must get the data from the database. The data is passed to the data
container through the ADK standard class.

Guidelines
• To avoid loss of data, the archiving program must not delete any data in the database itself.

(Deletion is performed by an independent delete program.)

• The archiving program can change the database, to set an archiving indicator, for example.
This should only happen when absolutely necessary, as every change increases the
database load and the archiving runtime.

• As archiving programs run in online operation, the data selection should not severely affect
performance of the R/3 System.

• Every time the ADK creates a new archive file a COMMIT (not the ABAP command COMMIT
WORK) is sent to the database.

Extensive documentation is available for all ADK function modules

Process Flow
Function modules call sequence
1. Open archiving – ARCHIVE_OPEN_FOR_WRITE

This archiving object function module is called once only for each archiving session (per
archiving object) and returns a unique handle which is required for all further archive
operations. The function module performs the following tasks for the archiving object passed:

− Controls whether an archive file is to be created

− Controls whether the delete program should be called in test mode

− Creates a header entry in archive management

− Includes the static archiving classes

− Opens the first archive file

April 2001 139

BC Extended Applications Function Library SAP AG

Developing Archiving Programs

− Writes the header entry in the first archive file (for example, information about the ABAP
Dictionary (Nametab) tables involved)

2. Dynamically include archiving classes – ARCHIVE_REGISTER_CLASS
If you want to use archiving classes, and they are to be included dynamically, you must call
this function module and pass the handle for each archiving class. The function module
writes the information to the archive file (for use by the succeeding programs).

Must be called directly after ARCHIVE_OPEN_FOR_WRITE.

The following steps (3 - 5) must be called in a loop for all data objects to be archived.
3. Get new data object – ARCHIVE_NEW_OBJECT

You call this function module for each data object. Only then can you pass data to archiving
object function modules. The function module performs the following tasks:

− Initializes data container

− Calls the archiving class initialization subprograms

− Passes ADK index entry value through OBJECT_ID (if required)
The composition of this character string value must not be changed, and each value
passed must be unique (see also Creating an ADK index and Using it to Access
Individual Data Objects in the Archive [Page 152]).

If you have saved a data object in the archive file using function module
ARCHIVE_SAVE_OBJECT and you want to archive additional data, you must call
this function module again.

4. Build the data object
Call either the standard class function module ARCHIVE_PUT_RECORD or archiving class
function modules. These are subject to a naming convention, in which “class” represents the
archiving class name: class_ARCHIVE_OBJECT.

You must decide whether the data passed should be deleted by the delete program or
not. The archiving class function modules provide the parameter
OBJECT_DELETE_FLAG for this purpose.
The function module ARCHIVE_PUT_RECORD provides you with this function through
the parameter RECORDS_FLAGS.
The archiving class function modules select the data for you and optimize database
access. First they collect the requests and only then access the database when the
function module ARCHIVE_SAVE_OBJECT is called. These function modules recognize
the data object to which the data belongs through the handle that must be passed to the
function module interfaces.

If you have already passed data you do not actually want to archive, call function
module ARCHIVE_NEW_OBJECT. The system then discards the passed standard
class and archiving class data.

5. Store data object in archive file – ARCHIVE_SAVE_OBJECT
You must call the function module ARCHIVE_SAVE_OBJECT to request the actual archiving
of a data object. It performs the following tasks:

140 April 2001

 SAP AG BC Extended Applications Function Library

 Developing Archiving Programs

− Gets the archiving class data packets

− Compresses the standard class data

− Collects the statistics data

− Updates the archive management records

− Writes the data object to the archive file (from the data container in which the records
were stored by the archiving classes and the standard class)

− Closes the archive file when it reaches the specified maximum size or contains the
specified maximum number of objects, and opens a new one

− Calls the delete program after an archive file has been closed

− Locks the data container, so that no more data can be written to the data container after
a data object has been written to the archive file.

End of the loop (step 5.)
6. End archiving I – ARCHIVE_WRITE_STATISTICS

You use this function module to generate statistics about the archived data at the end of
archiving. Data records passed by the standard classes (ARCHIVE_PUT_RECORD) are
listed individually.

7. End archiving II – ARCHIVE_CLOSE_FILE
You end archiving by calling this function module. The handle passed becomes invalid and
can no longer be used.

This call must not be forgotten, otherwise the last (physical) archive file to be
processed is lost, and archiving is incomplete. The function module does the
following:

– Updates the archive management records

– Closes the current archive file

– Releases the included archiving classes

– Discards the current handle

– Calls the delete program for the archive (if automatic deletion is specified)

April 2001 141

BC Extended Applications Function Library SAP AG

Standard Archiving Program

Standard Archiving Program
The following simplified illustration describes the logic of an archiving program for an archiving
object without archiving classes. The archiving object ABC consists of the entity table A with two
dependent tables B and C.

ADKDatabase

ABAP program with
internal tables

Data container with
current data object

ARCHIVE_PUT_RECORD

ARCHIVE_PUT_RECORD

ARCHIVE_PUT_RECORD

ARCHIVE_NEW_OBJECT

Request data container

ARCHIVE_OPEN_FOR_WRITE

ARCHIVE_CLOSE_FILE

Select
data

Write data record
to data container

_

_

_

_

_

_

_ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _

ARCHIVE_SAVE _OBJECT

Archive file

A

B

C

Definition archiving object XYZ

A Table

 B Table

 C Table

A

B

B

B

C

C

C

Write data object
to archive file

1

B

2

3

3

3

4

5

The program opens the archive file for writing, and receives a number (archive handle) that
identifies the file for all further data container and archive file accesses.

A new data container must be requested for each record in the entity table A. All dependent
records B and C are appended to it individually, until the data object is complete.

The complete data object is written to the archive file.

After all data objects to be archived have been written to the archive file, the archive file is
closed.

142 April 2001

 SAP AG BC Extended Applications Function Library

 Archiving Using Archiving Classes

Archiving Using Archiving Classes
Purpose
The following illustration shows the logic of an archiving program which processes archiving
object data using archiving classes, in simplified form. The archiving object consists of the entity
table A with two dependent archiving classes B and C. These archiving classes contain, in turn, n
tables.

D a t a b a s e

A B A P

D a t a C o n t a i n e r

L o c a l M e m o r y
A r c h i v i n g
C l a s s e s

A R C H I V E _ P U T _ R E C O R D

B _ A R C H I V E _ O B J E C T

A R C H I V E _ C L O S E _ F I L E
A D K : B _ F R E E _ D A T A

C _ F R E E _ D A T A

A D K : B _ G E T _ D A T A
C _ G E T _ D A T A

f r o m t h e D a t a b a s e

C _ A R C H I V E _ O B J E C T

A R C H IV E _ O P E N _ F O R _ W R I T E
A D K : B _ I N I T _ W R I T E

C _ I N I T _ W R I T E

A R C H I V E _ N E W _ O B J E C T
A D K : B _ R E N E W _ D A T A

C _ R E N E W _ D A T A

W r i t e D a t a R e c o r d t o
D a t a C o n t a in e r

I n v o k e A r c h i v in g
C l a s s

_
_

_ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _

A R C H I V E _ S A V E _ O B J E C T
A r c h i v e

F i l e
A

A

B

C

K e y

K e y

D e l f l .

D e l f l .

B

B

C

C

A D K
D e f in i t i o n o f A r c h iv in g O b je c t A B C

S e l e c t

A T a b le
B A r c h iv in g C la s s
C A r c h iv in g C l a s s

Process Flow
When the archive file is opened, ADK calls the subprogram *_INIT_WRITE for archiving classes
B and C. ADK determines which archiving classes must be called for the current archiving object
as follows:

• Which archiving classes belong to the archiving object is determined either statically in
transaction AOBJ (action Assigning archive classes), or dynamically in the program, before
the archive is opened.

• The ADK determines the function group the required subprograms are assigned to using the
assignment of function groups to archiving classes defined in transaction ACLA (Define
Archiving Classes).

A new data container, in which the data object is constructed when writing, must first be
requested for each record in table A.

The program puts a table A record in the data container and passes the key to archiving classes
B and C, which save it in an internal table.

April 2001 143

BC Extended Applications Function Library SAP AG

Archiving Using Archiving Classes

The program issues the command to write the data object to the archive file. The B and C
records, which depend on A, are read from the database by the archiving classes and put in the
data container, and the complete data object is written to the archive file.

After all data objects to be archived have been written to the archive file, the archive file is
closed.

You can also develop an archiving program using only archiving classes. In this
case, only the selection logic of the data objects to be archived must be programmed
in the archiving program.

144 April 2001

 SAP AG BC Extended Applications Function Library

 Developing Delete Programs

Developing Delete Programs
Purpose
For data security reasons, the archiving program itself must not delete any data in the database.
The archived data must therefore be deleted in the database by a separate delete program.

The delete program uses the function modules to read the archives and then deletes the data
from the database. This ensures that no data can be lost during archiving, and makes online
archiving possible.

The delete programs can be adjusted to individual requirements. The data for the data objects to
be deleted can be read either directly in the delete program or through a logical database. The
ADK function modules read the data by object from the archive files.

You can use control parameters in Archive Object-Specific Customizing [Page 135] to specify
whether the delete program should be called automatically as soon as the archiving program
closes an archive file, and whether the index should be updated (see also Creating an ADK Index
and Using it to Access Individual Data Objects in the Archive [Page 152]). You can also create
delete program test and production variants in archive Customizing.

A delete program always only processes one archive session file at a time. Several delete
programs can run in parallel and process one archive session file each.

Guidelines
The delete programs must determine which data is to be deleted from the database by reading
the archive files. This guarantees that only data that has been legibly stored in the archives is
deleted from the database.

The archiving classes’ function modules must be called to delete the data. These function
modules do not send COMMIT WORK and do not delete the data immediately, they call
PERFORM ON COMMIT.

The delete programs must use function module ARCHIVE_GET_CUSTOMIZING_DATA to get
the value of the object counter, which controls after how many data objects a COMMIT WORK is
called by the delete program.

Process Flow
Function module call sequence
1. Initialize delete – ARCHIVE_OPEN_FOR_DELETE

This function module is called only once, at the start of the delete program. It performs the
following tasks:

− Opens the archive file to read

− Provides a handle for archive access

− Includes all archiving classes listed in the archive file

− Sets the status information in archive management

− Passes the archive files to the Content Management Service (CMS)

April 2001 145

BC Extended Applications Function Library SAP AG

Developing Delete Programs

2. Read next data object from archive file – ARCHIVE_GET_NEXT_OBJECT
As for all archive read accesses, you read the next archived data object using this function
module. It performs the following tasks:

− Reads an archived data objects from the archive file

− Supplies the archiving classes with data packets

• Provides the data container for the standard class

This function module must be called in a loop, until no more data objects can be
provided.

3. Delete archived data from the database
The function module ARCHIVE_DELETE_OBJECT_DATA deletes the data from the
database for all archiving classes of the last data object to be read using
ARCHIVE_GET_NEXT_OBJECT, if the OBJECT_DELETE_FLAG was set to ‘X’ in the
archiving program when the data was written. This function module must therefore be called
in the delete program only once per data object read (ARCHIVE_GET_NEXT_OBJECT).
You must read the standard class data from the data object yourself and delete it from the
database. Put the standard class read function module (ARCHIVE_GET_NEXT_RECORD)
in a loop until the data object can provide no more records. If your archiving program has
stored information in the RECORD_FLAGS field, you can use this information in the delete
program to determine which data should actually be deleted from the database.

4. End delete – ARCHIVE_CLOSE_FILE
This function module performs the following tasks:

− Closes the archive file

− Releases the included archiving classes

− Discards the current handle

146 April 2001

 SAP AG BC Extended Applications Function Library

 Developing Reload Programs

Developing Reload Programs
Purpose
A reload program must be provided for archiving objects whose archived data need to be
reloaded into the database. The program must always process all the archived data of an
archiving session.

You can again use the ADK function modules for this purpose. They allow selective reloading of
the data objects. Data objects not to be reloaded are stored in new archive files.

Reload programs must be written with great care, because the archive of the reloaded data
objects can no longer be accessed from archive management. This prevents duplicate archiving
of objects, and guarantees that the R/3 System can be revised.

ADK creates a new archive file during reloading, into which the data objects not reloaded must
be copied. The old archive file is retained, although access through archive management is no
longer possible meaning the reloaded data must be re-archived.

Process Flow
Function module call sequence
1. Open reload – ARCHIVE_OPEN_FOR_MOVE

This function module passes two handles as parameters:

- ARCHIVE_READ_HANDLE
This corresponds to the handle returned by function module
ARCHIVE_OPEN_FOR_READ. You can perform all read operations with it.

- ARCHIVE_WRITE_HANDLE
This handle enables you to write data objects that are not to be written back to the
database, into a new archive. You can therefore only call function module
ARCHIVE_SAVE_OBJECT using this handle.

This function module:

• Opens the existing archive for reading

• Opens a new archive for writing

• Creates a header entry in the archive management

• Includes the archiving classes of the current archive

To use the same commit counter for the reload program as for the delete program, use
function module ARCHIVE_GET_CUSTOMIZING_DATA.

Both function modules are called only once, at the start of the reload program.

The steps 2 and 3 must be called in a loop for all archived data objects.
2. Read archived data object from archive file – ARCHIVE_GET_NEXT_OBJECT

As for all archive read accesses, you use this function module to read the next archived data
object (with the handle ARCHIVE_READ_HANDLE).

This function module:

− Reads an archived data object from the archive file

April 2001 147

BC Extended Applications Function Library SAP AG

Developing Reload Programs

− Supplies the archiving classes with data packets

− Provides the data container for the standard class

− Passes the archived data objects to the WRITE_HANDLE data container

This function module must be called in a loop, until the archive file cannot provide
any more data objects.

3. Reload archived data into the database
The data in all archiving classes from the last data object read in by
ARCHIVE_GET_NEXT_OBJECT is reloaded into the database by function module
ARCHIVE_RELOAD_OBJECT_DATA. This function module need only be called once for
each data object (ARCHIVE_GET_NEXT_OBJECT) in the reload program.
You must program the reloading of the standard class data into the database yourself.

If the last data object read is not to be reloaded, transfer it to the new archive file using
ARCHIVE_SAVE_OBJECT. Otherwise you lose data, as you can no longer access the
old archive file through archive management.

With this call (step 3) you end the loop, after all archive file data objects have been
processed

4. End reload – ARCHIVE_CLOSE_FILE
You use this function module to end the reload procedure.

This function module:

− Closes the archive file

− Updates the archive management records

− Releases the included archiving classes

− Discards the current handle

You only need to pass one of the two handles with the call. The archiving object
automatically determines the second handle.

148 April 2001

 SAP AG BC Extended Applications Function Library

 Developing Analysis Programs

Developing Analysis Programs
Purpose
To analyze the data contained in archive files, you can use the function modules to develop an
analysis program to read the archive.

You can use the function modules of the archiving classes to access the archiving classes’
archived data as if the data was still in the database. There is one restriction: you cannot access
all the data in an archiving file at the same time. You can only access the last data object to be
read. Interactive reporting using archived data therefore requires some extra effort.

Process Flow
The following illustration shows how a read or analysis program can access archived data.

ADK
Database

ABAP/ Program with
Internal Tables

Data Container
with Current
Data Object

ARCHIVE_GET_NEXT_RECORD

ARCHIVE_GET_NEXT_RECORD

ARCHIVE_GET_NEXT_RECORD

ARCHIVE_OPEN_FOR_READ

ARCHIVE_CLOSE_FILE

Read Data Record from
Data Container

_

_

_

_

_

_

_ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _

Read Data
Object from
Archive File

ARCHIVE_GET_NEXT _OBJECT

Archive
File

A

B

C

Definition of Archiving Object ABC

A Table
B Table
C Table

A

B

B

B

C

C

The program opens the archive file for reading. Each record in the table is completely read from
the archive file into the data container.

April 2001 149

BC Extended Applications Function Library SAP AG

Developing Analysis Programs

From there the program reads the records individually into its internal table.

The analysis is performed when all data objects have been read in from the archive.

The archive file is closed again.

Function module call sequence
1. Open archive for read – ARCHIVE_OPEN_FOR_READ

This function module is only called once at the start of the read or analysis program and
returns the handle for read operations.

This function module:

− Opens the existing archive for read

− Includes the archiving classes of the existing archive

2. Read next data object – ARCHIV_GET_NEXT_OBJECT
Call this function module in a loop for all data objects in the archive file.
You use this function module to read the opened archive file’s data objects sequentially into
the data container.

3. Read the next data object record

− ARCHIVE_GET_NEXT_RECORD (standard class)
Call this function module in a loop for all the standard class records of the last data
object to be read.
You use this function module to read the current data object’s next standard class data
record into the data container for further processing in the program. The first call for a
data object automatically reads the first record.

− Archiving class function modules
You use these function modules to read the archiving class data into the data container
for further processing in the program. For more information, see Developing Function
Modules [Page 158].

4. End analysis – ARCHIVE_CLOSE_FILE
You use this function module to end the analysis.

This function module:

− Closes the archive files

− Releases the included archiving classes

− Discards the current handle

150 April 2001

 SAP AG BC Extended Applications Function Library

 Maintaining Network Graphic

Maintaining Network Graphic
Procedure
If your archiving object depends on other applications, you must include all necessary data in the
network graphic. Proceed as follows:

Call transaction AOBJ. A list of the existing archiving objects in the system appears.

If your archiving object has predecessors that must be archived first, proceed as follows:

1. Select your archiving object and choose the action Maintain network graphic under Dialog
Structure.
You may have to scroll in the navigation area to find the desired action.

2. Choose New entries.

3. Enter the objects whose data must be archived immediately before those of your archiving
object.

4. Save your entries and return to the initial screen of transaction AOBJ.

If the archiving of data for your archiving object is a prerequisite for the archiving of other data in
the system, that is, when your archiving object is the predecessor of other objects:

1. Select the successor archiving object in the object list in the initial screen of transaction
AOBJ, and choose Maintain network graphic under Dialog Structure.
You may have to scroll in the navigation area to find the desired action.

2. Choose New entries.

3. Enter the name of your archiving object.

4. Save your entries, and return to the initial screen of transaction AOBJ.

5. Continue for all archiving objects for which your object is the predecessor.

April 2001 151

BC Extended Applications Function Library SAP AG

Creating ADK Indexes and Using Them to Access Archive

Creating ADK Indexes and Using Them to Access
Archive
Purpose
The index is usually maintained by the delete program during the archiving processes, but it can
also be maintained for already existing archive files.

If you are using the Archive Information System (SAP AS) [Ext.], you do not need to
nor does it make sense to use the ADK index.

Prerequisites
• The Create index indicator is set in the Definition of the Archiving Object [Page 131].

• A unique value was passed for the function module ARCHIVE_NEW_OBJECT parameter
OBJECT_ID when writing the archive. This value is used for creating the index.

Process Flow
Create index in delete program
The index entry is written by calling function module ARCHIVE_ADMIN_SAVE_INDEX after you
have read the data object from the archive file for deletion. You pass the name of the archiving
object, the index entry and the archive file key, which you have previously read using function
module ARCHIVE_GET_INFORMATION. For examples of how to implement this, see the
sample programs RSARCH06 and SBOOKD.

The index entry can be in any format. You pass a character string constructed according to your
requirements. Always use the same character string format.

The value of this character string can be passed to the archive file using parameter OBJECT_ID
when the archive is written and copied from the archive file when the function module
ARCHIVE_GET_NEXT_OBJECT is called.

You should get the value for MAINTAIN_INDEX using function module
ARCHIVE_GET_CUSTOMIZING_DATA before calling the function module for
saving the index entry (ARCHIVE_ADMIN_SAVE_INDEX) so that index creation can
be controlled externally. This prevents unnecessary entries.

This value is maintained for the corresponding archiving object Archive Customizing
[Page 135] before every archiving session.

Creating index after archiving
1. You use program RSARCH15 to add the archived data objects for individual archiving

sessions for an archiving object to the index after archiving.

152 April 2001

 SAP AG BC Extended Applications Function Library

 Creating ADK Indexes and Using Them to Access Archive

Accessing individual data objects using an index
Function module ARCHIVE_READ_OBJECT is used to access individual data objects in an
archive file using an index. You pass the archiving object name and the index entry. ADK opens
the file containing the relevant data object and reads the data object into the data container.

The index must have been created either when writing the archive or afterwards.

You receive the archive handle for the opened archiving file and can now access the individual
datasets in the data container using either the standard class methods
(ARCHIVE_GET_NEXT_RECORD) or, if the archiving object uses archiving classes, using the
methods of the archiving class. RSARCH13 and SBOOKS are sample programs that illustrate
the use of the ADK index.

April 2001 153

BC Extended Applications Function Library SAP AG

Archiving Classes

Archiving Classes
Definition
Archiving classes should be used when complex logical objects are to be archived as service
functions during the archiving of application data. This ensures data is consistent. Archiving class
are required, for example, when a logical object is to be archived but processing logic cannot be
covered by the standard class methods.

For data that represents a business object, you should create an archiving class when you can
answer one of the following questions with “Yes”:

• Is the data used repeatedly in the system in the same form, and is it also archived in the
various contexts?

• Will other applications use and archive my data structures?

Structure

Archiving class services
Archiving classes offer the following services:

• Function module for writing archives

• Function module for generic reading of archived data

A function module with standard interface is also required for classes that already have a
class-specific read module, so that external programs and tools, such as SAP AS, can
use them. For classes that do not have a function module for reading, assign a module
with standard interface.

• Automatic conversion when reading archives

– Code page adjustment

– Number format adjustment

– Changes in record structure

• Optional: Function modules for converting archives

All function module interfaces for archiving classes contain the parameter
ARCHIVE_HANDLE.

Function modules
Every archiving class must provide a function module, with which the archiving program informs
the system which data is to be archived for a class. This function module is subject to a naming
convention; it must begin with the name of the archiving class and end with
“_ARCHIVE_OBJECT”.

Archiving class Function module

154 April 2001

 SAP AG BC Extended Applications Function Library

 Archiving Classes

CHANGEDOCU
(change
documents)

CHANGEDOCU_ARCHIVE_OBJECT

TEXT
(SAPscript texts)

TEXT_ARCHIVE_OBJECT

A function module for reading archived data is usually also provided for analysis programs. This
function module is not subject to a naming convention; it is never called directly by the ADK. This
function module may be able to read in the database and in the archive file.

This is controlled by parameter ARCHIVE_HANDLE. If the value “0” is passed for the
ARCHIVE_HANDLE, the function module reads in the database, otherwise it reads
in the archive file belonging to the archive handle.

The archiving class receives the data to read through a subprogram called when function module
ARCHIVE_GET_NEXT_OBJECT is called by the ADK.

ADK interface
The archiving class function group contains standardized subprograms that ADK always needs
when calling function modules of the archiving object.

When adding an existing archiving class to an archiving object, you do not need to be familiar
with the subprograms as they are called in the background by the ADK function modules.

April 2001 155

BC Extended Applications Function Library SAP AG

Developing Archiving Classes

Developing Archiving Classes
Procedure
To create an archiving class, proceed as follows:

1. Specify Function Group [Page 157]

2. Develop Function Modules [Page 158]

3. Develop Subprograms [Page 161]

4. Assign Archiving Class [Page 138]

5. Define Archiving Class [Page 174]

Function group SFIL is an example of an archiving class you can find in the system.

As an archiving class can be included in various archiving objects, and several
archiving sessions could be processed in one archiving program, several data
packets (of an archiving class) must be able to be processed at the same time. At
the same time, this places higher demands on the internal memory organization of
the function group.

156 April 2001

 SAP AG BC Extended Applications Function Library

 Specifying Function Groups

Specifying Function Groups
Use
You can use an existing function group for your archiving class. It does not matter which function
modules are included in addition to the archiving classes. ADK recognizes the archiving class
subprograms from the naming convention.

You can, however, also create your own function group for your archiving class, if this, for
example, improves transparency.

You can also use an existing function module, adjusted as necessary, for reading in the
database.

Whether you put the archiving class function modules in the same function group as the read
function module is up to you. The interfaces of the existing function modules for reading the
change documents were extended, and they communicate internally with the new function group
to read the desired data. If the parameter ARCHIVE_HANDLE is passed with the initial value "0",
these function modules read directly from the database.

April 2001 157

BC Extended Applications Function Library SAP AG

Developing Function Modules

Developing Function Modules
Process Flow
Specify which services you want to provide using the archiving class. A write function module
must always be provided (class_ARCHIVE_OBJECT). It is also useful to provide a read function
module for analysis programs.

Declaring global data
First describe the required data and structures in INCLUDE LxxxxTOP. Bear in mind that the
archiving class can be called by several programs at the same time and you must therefore be
able to administer instances. The instances are distinguished by the identifying number (archive
handle) and the object key.

The following internal tables are required:

• Table containing the key fields used for archiving

• Table for registering handles and access modes

• Table containing all the table entries in a data object to be archived from the class. This table
must contain the STRUCTURE field for the table name of the entry and a SEGMENT field for
the data.

Function module class_ARCHIVE_OBJECT
This function module is subject to a naming convention where “class” is the archiving class name
in the object definition. The interface of a function module is tailored to the requirements of the
data to be archived. There are two parameters, however, that are in every function module of this
type:

• ARCHIVE_HANDLE: Handle for the archiving session

• OBJECT_DELETE_FLAG: Delete indicator for the data to be archived from the archiving
class. The calling delete program uses this parameter to control whether the class data is to
be deleted later by the delete program. The class is responsible (implementation of class
ARCHIVE_OBJECT) for determining whether a set delete indicator actually triggers deletion
of data. For example, the function module could ignore a “delete request” from a “non-
authorized” calling program. However, the function module must adhere to a delete indicator
that is not set (data is not deleted). The interface must accept the key of the data to be
archived.

The class is responsible for how it “remembers” the data. It is advisable to only “remember” the
data key initially. The key could, for example, be saved in an internal table defined in the main
program. You only need to provide the data to the data object when the subprogram
class_GET_DATA is called by the ADK function module ARCHIVE_SAVE_OBJECT. We
recommend you use array operations for this.

The class must “remember” the data until the subprogram class_FREE_DATA (by
ARCHIVE_CLOSE_FILE) or class_RENEW_DATA (by ARCHIVE_NEW_OBJECT) is called by
the ADK function modules.

158 April 2001

 SAP AG BC Extended Applications Function Library

 Developing Function Modules

Read function module (class-specific, standard method)
This function module is not subject to a naming convention, as it is only called directly from the
program (not from ADK). If you have already developed a database read function module, you
can use it here. You must just extend it by one parameter used to pass the handle. This
parameter must always be called ARCHIVE_HANDLE. You use this to specify whether the data
is to be read from the database or from the archive. If the handle is passed with the initial value
“0”, the function module reads directly in the database, otherwise it takes the data from the data
packet in its local memory.

For examples, see the function modules READ_TEXT (archiving class TEXT) and
MEAS_DOCUM_READ_ARCHIVE_OBJECT (archiving class MEAS_DOCUM).

Read function module: class_ARCHIVE_GET_TABLE (recommended
method)
In order for generic tools, such as SAP AS, to be able to access data from an archiving class, a
read function module must exists for this archiving class. The function module must follow certain
conventions (Example: function module TEXT_ARCHIVE_GET_TABLE):

• The name of the function module must be constructed as follows:
<CLASS>_ARCHIVE_GET_TABLE, where <CLASS> is the name of the archiving class.
This name was chosen to be similar to the function module ARCHIVE_GET_TABLE.

• The interface must import ARCHIVE_HANDLE and RECORD_STRUCTURE and output the
data in T_DATA (compare interface in TEXT_ARCHIVE_GET_TABLE). In addition, the
function module can generate the exception INVALID_STRUCTURE.

The returned data must have the structure RECORD_STRUCTURE. Otherwise this
will not work.

• The function module must be able to read all “direct data” from its archiving class (that is, not
the data the archiving class saves using other classes).

When called, all data must be returned to T_DATA in the structure as specified in
RECORD_STRUCTURE. Only the data for the current data object is to be returned. If the
function module is unable to return any data to the passed structure, the exception
INVALID_STRUCTURE can be triggered.

For data belonging to subordinate archiving classes, SAP AS can call the relevant function
module itself.

SAP AS attempts to read all the tables of a class that are entered in transaction ACLA for an
archiving class. This means that the read function module must return exactly these tables.

Additional information:
SAP AS reads a data object as follows:

1. It reads all the data of an archiving object archived through the standard class. The exact
structures do not need to be determined first. SAP AS reads all records using
ARCHIVE_GET_NEXT_RECORD.

2. Using function module ARCHIVE_GET_INFORMATION, SAP AS determines to which
classes the data in the archive file are assigned.

April 2001 159

BC Extended Applications Function Library SAP AG

Developing Function Modules

3. The name of the read function module is determined for each class. Then SAP AS checks
whether the function module exists (if not, the following does not work).

4. SAP AS then uses table CLASS_DEF to determine which structures the classes are aware
of.

5. The corresponding read function module is then called for every class and its structures.

160 April 2001

 SAP AG BC Extended Applications Function Library

 Developing Subprograms

Developing Subprograms
Process Flow
ADK requires class-specific subprograms for controlling the communication between the
archiving class and the archive. You must provide these subprograms in the archiving class
(LxxxxFnn) function group.

ADK needs these subprograms whenever an archiving object method is called by the program.

• ARCHIVE_OPEN_FOR_READ or WRITE

– class_INIT_WRITE
Initializes the archiving class for writing (passes the archive handle)

– class_INIT_READ
Initializes the archiving class for reading

• ARCHIVE_NEW_OBJECT

– class_RENEW_DATA
Initializes the archiving class for a new data object

This subprogram discards the current archiving class key when writing, or all the
data if reading the archive.

• ARCHIVE_SAVE_OBJECT

– class_GET_DATA (“GET” from the ADK perspective)
Provides data in data container for archiving (the class passes the archived data to
the ADK).

• ARCHIVE_CLOSE_FILE

– class_FREE_DATA
Declares an archive handle invalid when closing an archive

• ARCHIVE_GET_NEXT_OBJECT

– class_PUT_DATA (“PUT” from the ADK perspective)
Copies data from the data container after reading the archive (the ADK passes the
data read to the class).

• ARCHIVE_DELETE_OBJECT_DATA

– class_DELETE_ARCHIVE_OBJ
Deletes the data contained in the data container from the database

To avoid data inconsistencies, this subprogram uses PERFORM ON COMMIT to call
another subprogram, in which the data is actually deleted from the database
according to global internal tables.

• ARCHIVE_ROLLBACK_WORK

– class_ROLLBACK_WORK
Discards the data marked for deletion from the database by the archiving class

• ARCHIVE_RELOAD_OBJECT_DATA

April 2001 161

BC Extended Applications Function Library SAP AG

Developing Subprograms

– class_ARCHIVE_RELOAD_OBJ
Reloads the data in the data container into the database

162 April 2001

 SAP AG BC Extended Applications Function Library

 Initializing the Archiving Classes for Writing

Initializing the Archiving Classes for Writing
Use
The name of this subprogram starts with the name of the archiving class and ends with
"_INIT_WRITE".

Tasks
This subprogram initializes the archiving class for archiving data.

The classes are informed by this subprogram that archiving methods must be provided for this
ARCHIVE_HANDLE. The archiving classes can pass a data packet to the ADK through an
internal table. The data packet is returned when the archive is read by the class_INIT_READ
subprogram. This table must have been compressed using function module
TABLE_COMPRESS, or be empty.

As explained in conjunction with the information about the global data declaration, several
archives may have been opened for an archiving class. The archiving class receives a unique
ARCHIVE_HANDLE for each opened archive.

When called
This subprogram is called by the ADK whenever a new archive file is opened for writing. As
several archive files can be created in one archiving session, this subprogram is called for each
archive file. The ARCHIVE_HANDLE remains the same.

Interface
FORM class_INIT_WRITE TABLES INIT_TAB

 USING HANDLE

 CHANGING LEN

Parameters
The parameter INIT_TAB indicates the table in which the archiving class can save data it needs
for initialization when it reads the archive, and which should be valid for all the data objects in an
archive file. Control data can, for example, be stored there so that the appropriate control data is
used when the archive is subsequently analyzed, rather than the current values at that time.

The parameter HANDLE contains the ARCHIVE_HANDLE for initialization. The archiving class
function modules should note that only write operations are allowed with this handle and must
refuse all other calls by raising the exception WRONG_ACCESS_TO_ARCHIVE.

The result of the compression by function module TABLE_COMPRESS is passed to the
archiving through the parameter LEN. The function module parameter is called
COMPRESSED_SIZE.

You must register the additional archiving classes that you want to use in your archiving class in
this subprogram (ARCHIVE_REGISTER_CLASS). Registration ensures that the classes are
called in the correct order.

April 2001 163

BC Extended Applications Function Library SAP AG

Initializing the Archiving Classes for Writing

164 April 2001

 SAP AG BC Extended Applications Function Library

 Getting Data

Getting Data
The name of this subprogram starts with the name of the archiving class, and ends with
"_GET_DATA".

Tasks
This subprogram gathers the data the archiving program has requested for archiving a data
object. This data is passed using a table, which must be in compressed form.

We recommend you get the data using this subprogram rather than in the function module
class_ARCHIVE_OBJECT, as the archiving program requests can be collected by the function
module and be efficiently processed in this subprogram. An archiving program can also request
data for archiving, but discard them later by calling the function module
ARCHIVE_NEW_OBJECT before they are saved in the archive.

When called
The ADK calls this subprogram whenever the function module ARCHIVE_SAVE_OBJECT is
called in the archiving program for an ARCHIVE_HANDLE.

Interface
FORM class_GET_DATA TABLES DATA_TABLE STRUCTURE ARCH_PACKA

 USING HANDLE

 CHANGING LEN

Parameters
The data packet of the data object which is to be written is passed to the data object in the form
of a compressed table using the parameter DATA_TABLE. The compression must have been
performed by the function module TABLE_COMPRESS.

The parameter HANDLE contains the ARCHIVE_HANDLE, for which the data packet was
requested.

The result of the compression by the function module TABLE_COMPRESS is passed to the
archiving via the parameter LEN. The function module parameter is called
COMPRESSED_SIZE.

April 2001 165

BC Extended Applications Function Library SAP AG

Deleting Local Memory of Archiving Class

Deleting Local Memory of Archiving Class
The name of this subprogram starts with the name of the archiving class, and ends with
"_RENEW_DATA".

Tasks
This subprogram discards all the data of an archiving class for the current data object by deleting
it from the archiving class memory. This task must be performed when data for a new data object
are expected.

When called
This subprogram is called at two different events:

• The archiving program has called the function module ARCHIVE_NEW_OBJECT.

• The program which reads an archive file has called the function module
ARCHIVE_GET_NEXT_OBJECT. This subprogram is then called before the subprogram
class_PUT_DATA.

Interface
FORM class_RENEW_DATA USING HANDLE.

Parameters
The parameter HANDLE contains the ARCHIVE_HANDLE for which the subprogram was called.

166 April 2001

 SAP AG BC Extended Applications Function Library

 Declaring an Archive Handle Invalid

Declaring an Archive Handle Invalid
The name of this subprogram starts with the name of the archiving class, and ends with
"_FREE_DATA".

Tasks
This is a clean-up subprogram. All handle information which is passed via the interface, can be
deleted from the function group memory. No more calls are made to this handle. If a program
calls the function modules of the archiving class with this handle, after this subprogram has been
called by the archiving, the function module is to raise the exception
WRONG_ACCESS_TO_ARCHIVE.

When called
This subprogram is called whenever an ARCHIVE_HANDLE becomes invalid. An
ARCHIVE_HANDLE becomes invalid whenever the function module ARCHIVE_CLOSE_FILE is
called for this handle.

Interface
FORM class_FREE_DATA USING HANDLE

Parameters
The parameter HANDLE contains the ARCHIVE_HANDLE that is to be declared invalid.

April 2001 167

BC Extended Applications Function Library SAP AG

Initializing Archiving Classes for Reading

Initializing Archiving Classes for Reading
Use
The name of this subprogram starts with the name of the archiving class and ends with
"_INIT_READ".

Tasks
This subprogram initializes the archiving class for reading from archives.

The classes are informed that methods must be provided for reading archived data for this
ARCHIVE_HANDLE.

Several different archives can be opened for an archiving class. The archiving class receives a
unique ARCHIVE_HANDLE for each ARCHIVE_OPEN_FOR_*.

When called
The ADK calls this subprogram whenever a new archive file is opened for reading. As several
archive files can be read for one ARCHIVE_HANDLE, this subprogram is called once per archive
file, but then always only for the archive file which is about to be read.

Interface
FORM class_INIT_READ TABLES INIT_TAB

 USING HANDLE

 RELEASE_NUMBER

 CODE_PAGE

 NUMBER_FORMAT

 DATE

Parameters
The parameter INIT_TAB indicates the table in which the archiving class stored data during
class_INIT_WRITE, which it needs for the read initialization of the archive, and which should be
valid for all the data objects in an archive file. Control data can, for example be stored there, so
that the appropriate control data is used when the archive is subsequently analyzed, rather than
the current values at that time.

The parameter HANDLE contains the ARCHIVE_HANDLE for which the initialization should run.
The archiving class function modules should note that only write operations are allowed with this
handle and must refuse all other calls by raising the exception
WRONG_ACCESS_TO_ARCHIVE.

The parameter RELEASE_NUMBER contains the R/3 System release number at the time when
the archive was written.

The parameter CODE_PAGE contains the name of the code page which was active at the time
that the archive was written. You can use this parameter, to adjust the data to the current code
page with the ABAP language element TRANSLATE.

168 April 2001

 SAP AG BC Extended Applications Function Library

 Initializing Archiving Classes for Reading

You get the number format which was valid at the time of archiving via the parameter
NUMBER_FORMAT. You can also use this parameter for the ABAP language element
TRANSLATE, to adjust the data to the current number format.

The parameter DATE contains the date on which the archive was written.

April 2001 169

BC Extended Applications Function Library SAP AG

Copying Data From the Data Container

Copying Data From the Data Container
The name of this subprogram starts with the name of the archiving class and ends with
"_PUT_DATA".

Tasks
This subprogram copies data from the data object, so that they can be read by the archiving
class function modules.

When called
This subprogram is called whenever the function module ARCHIVE_GET_NEXT_OBJECT is
called in the archiving program and data for this archiving class exist in the data object.

Interface
FORM class_PUT_DATA TABLES DATA_TABLE STRUCTURE ARCH_PACKA

 USING HANDLE

Parameters
The data packet read from the data object is passed to the archiving class in the form of a
compressed table of line type ARCH_PACKA, using the parameter DATA_TABLE. Compression
must be though function module TABLE_COMPRESS. The parameter HANDLE contains the
ARCHIVE_HANDLE for which the data packet is requested. The result of the compression is
passed to the ADK though the function module TABLE_COMPRESS through parameter LEN.
The corresponding parameter of the function module TABLE_COMPRESS is
COMPRESSED_SIZE.

The parameter HANDLE contains the ARCHIVE_HANDLE to which the data is passed.

 "class_PUT_DATA" is the earliest point the conversion routines for structure,
code page, and number format adjustment can be called. This is because this is the
point where all required nametab information is available.

170 April 2001

 SAP AG BC Extended Applications Function Library

 Deleting Archived Data

Deleting Archived Data
The name of this subprogram begins with the name of the archiving class and ends with
"_DELETE_ARCHIVE_OBJ".

Function
Every archiving class must provide a subprogram that deletes the archived data from the
database. The archiving class decides whether this data is actually deleted, or whether only a
reference may be deleted, thus avoiding inconsistencies.

The archiving classes automatically know which data were archived, so they do not need to be
given this information. The data which were most recently read by the function module
ARCHIVE_GET_NEXT_OBJECT, and were marked for deletion when the archive was written,
are automatically deleted.

The class receives the data to be deleted via the call of the subprogram class_PUT_DATA by the
archiving. The data format corresponds exactly to the format which was passed to the archiving
with the subprogram class_GET_DATA when archiving

Call
The subprogram is called automatically by the ARCHIVE_DELETE_OBJECT_DATA function
module. This function module is called only once for each data object which is read by
ARCHIVE_GET_NEXT_OBJECT.

Interface
FORM class_DELETE_ARCHIVE_OBJ USING HANDLE

Parameters
The interface of this subprogram consists of only the parameter ARCHIVE_HANDLE, which
specifies the associated archiving object.

The subprogram must save the data to be deleted in global tables, and call an
additional subprogram with PERFORM ON COMMIT. This subprogram is then
processed by the R/3 System when the delete program calls COMMIT WORK. The
actual delete operations should then be passed to the database in the subprogram
called.

The R/3 System calls the subprogram only once each COMMIT WORK, however
often this PERFORM ON COMMIT is called. If ROLLBACK WORK is called by the
function module ARCHIVE_ROLLBACK_WORK, the PERFORM command is not
executed.

April 2001 171

BC Extended Applications Function Library SAP AG

Discarding the Data Selected for Deletion

Discarding the Data Selected for Deletion
The name of this subprogram begins with the name of the archiving class, and always ends with
"_ROLLBACK_WORK".

Function
The class data selected by the subprogram class_DELETE_ARCHIVE_OBJ and prepared for
the delete program in the global internal tables subprogram, is discarded.

Call
This subprogram is called by the ARCHIVE_ROLLBACK_WORK function module.

Interface
FORM class_ROLLBACK_WORK USING HANDLE

Parameters
The parameter HANDLE contains the ARCHIVE_HANDLE for which the subprogram was called.
The function module class_ROLLBACK_WORK calls the subprogram for all handles.

172 April 2001

 SAP AG BC Extended Applications Function Library

 Reloading Archived Data

Reloading Archived Data
The name of this subprogram begins with the name of the archiving class, and ends with
"_RELOAD_ARCHIVE_OBJ".

Function
This subprogram reloads archived data from the archive into the database. The archiving class
knows automatically, which data were archived. and which data were deleted from the database
by the archiving. Data can not be reloaded selectively in the archiving classes. All the data in an
archiving class, for the most recently read data object, are always reloaded.

Call
The subprogram is called automatically by the ARCHIVE_RELOAD_OBJECT_DATA function
module. this function module is called only once for each data object read by
ARCHIVE_GET_NEXT_OBJECT.

Interface
FORM class_RELOAD_ARCHIVE_OBJ USING HANDLE

Parameters
The interface of this subprogram consists only of the parameter ARCHIVE_HANDLE, which
specifies the associated archiving object.

When programming the subprogram, you can specify which data from the archiving
class can be reloaded, and which not. This can be useful if reloading certain data
would cause database collisions, for example, if the database already contains data
with the same key, which would be overwritten by the reload.

April 2001 173

BC Extended Applications Function Library SAP AG

Defining Archiving Classes

Defining Archiving Classes
You must specify which function group contains the archiving class, so that ADK knows where it
can find the subprograms belonging to the archiving class.

Proceed as follows:

1. Call the transaction ACLA. A list of the existing archiving classes in the system appears.

2. Choose New entries.

3. Enter the archiving class name, a short text, and the associated function group.

4. Save your entries.

The following must be specified to ensure that the ADK uses the structures specified for
automatic conversion of code page, number format, and structure changes:

• All structures or tables to be archived where the additional Do not delete data option is set.

To ensure Repository information is complete, including the display of the tables of an archive
object to be archived (transaction DB15), the following additional information must be specified in
transaction ACLA:

• Tables from which you only delete data

• The archiving classes used by archiving classes

Proceed as follows:

1. Select the archiving class and choose Tables to be Archived.

2. Choose New entries.

3. Enter all structures to be archived. If you do not want data to be deleted during archiving,
select the Do not delete indicator.

4. Choose Tables from Which You Only Delete Entries.

5. Enter all tables from which entries are to be deleted but not archived.

6. Choose Archiving Classes Used.

7. Enter all classes used in the class you created.

Conversion routines
If structures, code pages, or number formats need to be converted for reading, the ADK gets the
data from class (packed) and generates conversion routines, which are then called by the class.
The prerequisite for this is that all nametab information has been read. This is not the case when
class_init_read is run.

The ADK reads an archive file in the following sequence:

1. HeadA (%A)

2. HeadB (%B)

3. HeadN (%N) (Nametab)

4. %Class (for example, CHANGEDOCU)

5. %Package

174 April 2001

 SAP AG BC Extended Applications Function Library

 Defining Archiving Classes

6. %N

7. %N____* class_init_read (* corresponds to the time at which all nametab information is
available)

8. %Class (Text)

9. %N (table to archive, ACLA)

10. %N____* class_init_read (*corresponds to the time at which all nametab information is
available)

11. %Start (Start of a data object)

12. %Class (Start of class data)

13. %Class (Start of class data)

The ADK function module ARCHIVE_CONVERSION_FORMROUTINE checks whether a
conversion was successful.

This is only possible if the archiving class is correctly defined in transaction ACLA. Each structure
is checked separately using the name of the structure as the passed value.

All structures should be carefully and correctly registered in transaction ACLA to
ensure the ADK can generate the conversion routine.

Optimizing performance
Class data is always archived in the context of a data object, such as SAPscript texts in an FI
document. Each text from a document (data object) is read separately. This should be taken into
account when developing archiving classes to prevent performance problems.

Take the following into account:

• Data should first be read in the first data access (subprogram "_GET_DATA") and not in
function module class_ARCHIVE_OBJECT as this function module collects the requests of
the archiving program, but the requests are efficiently (in terms of performance) fulfilled by
the subprogram. An archiving program may also request data that it later discards before
archiving the data, using ARCHIVE_NEW_OBJECT.

• A “pre-get” should be provided. This additional function module reports the keys to used for
reading, such as in archiving class TEXT or MEAS_DOCUM).

• Function module ARCHIVE_DELETE_OBJECT_DATA calls the subprogram for deleting
class data. This function module gets the corresponding key. The delete phase should not be
started immediately, but instead at PERFORM ON COMMIT (for example,
TEXT_DELETE_ARCHIVE_OBJECT). COMMIT WORK is sent by the delete program after a
set number of data objects <commit counter>. If an error occurs during the delete phase, all
deletions are reset. The internal tables containing the keys marked for deletion are reset by
the subprogram "_ROLLBACK_WORK".

April 2001 175

BC Extended Applications Function Library SAP AG

Archiving Functions

Archiving Functions
Function group ARCH
• ARCHIVE_CLOSE_FILE

With this function module, you close all archive files gathered under one handle,
independently of whether they were opened for reading, writing or reloading.

• ARCHIVE_DELETE_OBJECT_DATA
With this function module, you call the delete subprograms of the archive classes for the
current data object.

• ARCHIVE_GET_CUSTOMIZING_DATA
This function module returns the Commit counter and the create index indicator. The Commit
counter determines, after how many data objects a COMMIT WORK is issued. The create
index indicator specifies whether the delete program should insert the archived and deleted
data objects in the index.

• ARCHIVE_GET_FIRST_RECORD (standard class only)
With this function module you set the record pointer to the first record in the data container in
the data object which was previously read by ARCHIVE_GET_NEXT_OBJECT, and read this
record.
This function module combines the functions of the ARCHIVE_SET_RECORD_CURSOR
and ARCHIVE_GET_NEXT_RECORD function modules.
If you only need the fields RECORD_FLAGS and RECORD_STRUCTURE, you can use the
function module ARCHIVE_GET_RECORD_INFO.

• ARCHIVE_GET_INFORMATION
With this function module you get current information for a handle, such as date, release,
SAP System, and archive name.

• ARCHIVE_GET_OPEN_FILES
With this function module, you fill a table with the file names of all archive files which are
currently being processed by the ADK function modules.

• ARCHIVE_GET_NEXT_OBJECT
With this function module, you read the next data object for a handle, from an archive which
is open for reading in the data container. This call is a prerequisite for the function module
ARCHIVE_GET_NEXT_RECORD or ARCHIVE_GET_FIRST_RECORD and the archiving
classes call.
If you use archiving classes, their data is accessible through their function modules after they
have been called.

• ARCHIVE_GET_NEXT_RECORD (standard class only)
With this function module, you sequentially read the next record in a data container in a data
object which was read by ARCHIVE_GET_NEXT_OBJECT. The first call automatically reads
the first record.

The following function modules (ARCHIVE_GET_NEXT_STRUCT_SPECIF and
ARCHIVE_GET_RECORD_INFO) were developed for the easy implementation of
logical database archive read operations. They can, of course, also be used in other
programs.

176 April 2001

 SAP AG BC Extended Applications Function Library

 Archiving Functions

• ARCHIVE_GET_NEXT_STRUCT_SPECIF (standard class only)
With this function module you read archives with specified structures with logical databases.
The group change logic is integrated.
You can, however, also use the function module ARCHIVE_GET_NEXT_RECORD, but in
this case you must program the hierarchy step group change logic yourself.

• ARCHIVE_GET_RECORD_INFO (standard class only)
With this function module, you get information in logical databases about archived datasets.

• ARCHIVE_GET_TABLE
With this function module, you read several records from a data object which was read by
ARCHIVE_GET_NEXT_OBJECT, into an internal table.

• ARCHIVE_GET_WITH_CURSOR (standard class only)
With this function module, you can directly read standard class datasets in a data object. You
get the necessary record pointer during sequential access to a data object record via the
parameter RECORD_CURSOR.
This function module is useful for ”remembering“ records via the record pointer for later
further processing.

• ARCHIVE_NEW_OBJECT
With this function module you request a new data container to write for a handle.

• ARCHIVE_OPEN_FOR_MOVE
With this function module you open one or several archive files for reloading archived data.
You receive an archive handle for the archive file to be read and another archive handle for
writing those data objects, which are not to be reloaded. This facilitates the selective
reloading of individual data objects from archives into the R/3 System.

• ARCHIVE_OPEN_FOR_READ
With this function module you open an existing archive file for reading. A handle is created,
via which this file can be read. You can also open several archive files at the same time.
They all share one handle.
Function modules which read using this handle treat all the files with this handle like a single
file.

• ARCHIVE_OPEN_FOR_WRITE
With this function module you create a new archive file and a handle, with which you have
write access to this file.
If you have not specified a file name in the Archiving-Object Specific Customizing [Page 135],
the platform independent logical file name ARCHIVE_DATA_FILE is automatically used, to
determine a valid, platform-independent file name.
You can also specify via control parameters, whether the delete program for the archived
data should be automatically called after writing.

• ARCHIVE_PUT_RECORD (standard class only)
With this function module you pass a data set to the data container which was previously
requested with the function module ARCHIVE_NEW_OBJECT.
All data sets which you pass to the data container are written to the archive file together by
the function module ARCHIVE_SAVE_OBJECT.

• ARCHIVE_PUT_TABLE (standard class only)
With this function module, you pass an internal table to the data container which was
previously requested by ARCHIVE_NEW_OBJECT. The internal table records are entered in
the data container as single records.

April 2001 177

BC Extended Applications Function Library SAP AG

Archiving Functions

• ARCHIVE_REGISTER_CLASS
With this function module, you dynamically assign archiving classes to an archiving object.

• ARCHIVE_RELOAD_OBJECT_DATA (only for archiving classes)
With this function module, you call the reload subprograms of the archiving classes.

• ARCHIVE_ROLLBACK_WORK
If a ROLLBACK WORK has to be carried out in a delete or reload program, it should be done
by calling this function module, not by the ABAP command ROLLBACK WORK. This function
module guarantees the correct resetting of the data for all archiving classes used.

• ARCHIVE_SAVE_OBJECT
With this function module, you write a data object into the archive file. As well as the data
passed by ARCHIVE_PUT_RECORD, the data which were passed via the archiving classes
are taken into account.

• ARCHIVE_SET_RECORD_CURSOR (standard class only)
With this function module you set the standard class record pointer of the last data object to
be read. You can then read the next record with ARCHIVE_GET_NEXT_RECORD.

• ARCHIVE_WRITE_STATISTICS (standard class only)
With this function module, you create a statistics print-out for the data object which you have
written to the archive files with ARCHIVE_SAVE_OBJECT.

178 April 2001

