
RFC Programming in ABAP

H
E

L
P

.B
C

F
E

S
D

E
2

Re lease 4 .6C

RFC Programming in ABAP SAP AG

2 April 2001

Copyright

© Copyright 2001 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose
without the express permission of SAP AG. The information contained herein may be changed
without prior notice.

Some software products marketed by SAP AG and its distributors contain proprietary software
components of other software vendors.

Microsoft®, WINDOWS®, NT®, EXCEL®, Word®, PowerPoint® and SQL Server® are registered
trademarks of
Microsoft Corporation.

IBM®, DB2®, OS/2®, DB2/6000®, Parallel Sysplex®, MVS/ESA®, RS/6000®, AIX®, S/390®,
AS/400®, OS/390®, and OS/400® are registered trademarks of IBM Corporation.

ORACLE® is a registered trademark of ORACLE Corporation.

INFORMIX®-OnLine for SAP and Informix® Dynamic Server
TM

 are registered trademarks of
Informix Software Incorporated.

UNIX®, X/Open®, OSF/1®, and Motif® are registered trademarks of the Open Group.

HTML, DHTML, XML, XHTML are trademarks or registered trademarks of W3C®, World Wide
Web Consortium,
Massachusetts Institute of Technology.

JAVA® is a registered trademark of Sun Microsystems, Inc.

JAVASCRIPT® is a registered trademark of Sun Microsystems, Inc., used under license for
technology invented and implemented by Netscape.

SAP, SAP Logo, R/2, RIVA, R/3, ABAP, SAP ArchiveLink, SAP Business Workflow, WebFlow,
SAP EarlyWatch, BAPI, SAPPHIRE, Management Cockpit, mySAP.com Logo and mySAP.com
are trademarks or registered trademarks of SAP AG in Germany and in several other countries
all over the world. All other products mentioned are trademarks or registered trademarks of their
respective companies.

 SAP AG RFC Programming in ABAP

April 2001 3

Icons

Icon Meaning

Caution

Example

Note

Recommendation

Syntax

RFC Programming in ABAP SAP AG

4 April 2001

Contents

RFC Programming in ABAP...5
RFC Basics... 6
The RFC Interface.. 7
RFC in SAP Systems... 8
Technical Requirements... 11
Calling Remote Function Modules in ABAP... 13
Introduction.. 14
Parameter Handling in Remote Calls .. 16
Calling Remote Functions Locally... 17
Calling Remote Functions BACK... 18
Using Transactional Remote Function Calls.. 19

Transactional Integrity of tRFCs... 22
qRFC With Send Queue .. 24

qRFC With Send Queue: Overview ... 26
Programming Serialization ... 28
Using .. 30
Transaction Sequence and Queue Assignment .. 32
Tools... 35

Using Asynchronous Remote Function Calls .. 38
Calling Requirements for Asynchronous RFCs ... 40
Receiving Results from an Asynchronous RFC... 41
Keeping the Remote Context ... 44
Parallel Processing with Asynchronous RFC... 45

Checking Authorizations for RFC.. 48
Using Pre-Defined Exceptions for RFC... 49
Writing Remote Function Modules in ABAP .. 50
Steps for Implementing Remote Function Modules .. 51
Programming Guidelines.. 52
Debugging Remote Function Modules ... 53
Maintaining Remote Destinations.. 54
Displaying, Maintaining and Testing Destinations .. 55
Entering Destination Parameters... 57
Types of Destinations ... 59
Maintaining Group Destinations.. 62
Maintaining Trust Relationships Between R/3 Systems ... 63

 SAP AG RFC Programming in ABAP

RFC Programming in ABAP

April 2001 5

RFC Programming in ABAP

RFC Programming in ABAP SAP AG

RFC Basics

6 April 2001

RFC Basics
This section gives a brief overview of the Remote Function Call (RFC) within an SAP System,
that is

� how the RFC Interface works

� the functionality that is provided by the RFC and

� it explains the technical requirements for RFC on R/2, R/3 and external systems on all
currently supported platforms.

The following background topics are available:

The RFC Interface [Page 7]

RFC in SAP Systems [Page 8]

Technical Requirements [Page 11]

 SAP AG RFC Programming in ABAP

The RFC Interface

April 2001 7

The RFC Interface
A remote function call is a call to a function module running in a system different from the caller's.
The remote function can also be called from within the same system (as a remote call), but
usually caller and callee will be in different systems.

In the SAP System, the ability to call remote functions is provided by the Remote Function Call
interface system (RFC). RFC allows for remote calls between two SAP Systems (R/3 or R/2), or
between an SAP System and a non-SAP System.

RFC consists of the following interfaces:

� A calling interface for ABAP programs

Any ABAP program can call a remote function using the CALL
FUNCTION...DESTINATION statement. The DESTINATION parameter tells the SAP
System that the called function runs in a system other than the caller's. RFC
communication with the remote system happens as part of the CALL FUNCTION
statement.

RFC functions running in an SAP System must be actual function modules, and must be
registered in the SAP System as "remote".

When both caller and called program are ABAP programs, the RFC interface provides
both partners to the communication. The caller may be any ABAP program, while the
called program must be a function module registered as remote.

� The topic Calling Remote Function Modules in ABAP [Page 13] provides details on
calling function modules registered as remote.

� The topic Writing Remote Function Modules in ABAP [Page 50] provides information
on writing function modules that you want to call remotely.

� Calling interfaces for non-SAP programs

When either the caller or the called partner is a non-ABAP program, it must be
programmed to play the other partner in an RFC communication.

To help implement RFC partner programs in non-SAP Systems, SAP provides

� External Interfaces [Ext.]

RFC-based and GUI-based interfaces can be used by external programs to call
function modules in SAP R/2 or R/3 systems and execute them in these systems.
Vice versa, ABAP programs in R/2 or R/3 can use the functions provided by external
programs via these interfaces.

If you want to see some scenarios within a programming example, see the
corresponding unit in the Tutorial: Communication Interfaces [Ext.].

RFC Programming in ABAP SAP AG

RFC in SAP Systems

8 April 2001

RFC in SAP Systems
In any R/3 System, CALL FUNCTION is an integral part of the ABAP language (in R/2 from
Release 5.0 onwards). It is used to perform a function (function module) in the same system
(R/2 or R/3).

REMOTE FUNCTION CALL (RFC) is an extension of CALL FUNCTION in a distributed
environment. Existing function modules can be executed from within a remote system (R/2 or
R/3) via an RFC call. This is done by adding a DESTINATION clause to the CALL FUNCTION
statement:

The destination parameter displays an entry in the RFCDES table (which is defined with
transaction sm59). This entry contains all necessary parameters to connect to and log in the
destination system.

RFC can be used between SAP Systems (R/3 and R/2 Systems). With R/2 in an IBM
environment, RFC is currently possible only with CICS as a DC system from Release 5.0D
onwards. In IMS environment, RFC will probably not be available before IMS >= 4.1 and
complete support of the LU6.2 protocol (via MVS/APPC).

The RFC API on OS/2, Windows, Windows NT and all R/3-based UNIX platforms makes it
possible to use the RFC functionality between an SAP System (R/3 from Release 2.1 and R/2
from Release 5.0D onwards) and a C program on the above platforms. It is of no significance to
the caller whether the remote function is provided in an SAP System or in a C program.

 SAP AG RFC Programming in ABAP

RFC in SAP Systems

April 2001 9

RFC frees the ABAP programmer from having to program his own communications routines.
When you make an RFC call, the RFC interface takes care of:

� Converting all parameter data to the representation needed in the remote system. This
includes character string conversions, and any hardware-dependent conversions needed (for
example, integer, floating point). All ABAP data types are supported.

There is no support for Dictionary structures.

� Calling the communication routines needed to talk to the remote system.

� Handling communications errors, and notifying the caller, if desired. (The caller requests
notification using the EXCEPTIONS parameter of the CALL FUNCTION statement.)

The RFC interface is effectively invisible to the ABAP programmer. Processing for calling remote
programs is built into the CALL FUNCTION statement. Processing for being called is generated
automatically (in the form of an RFC stub) for every function module registered as remote. This
stub serves as an interface between the calling program and the function module.

A distinction is made between an RFC client and RFC server. RFC client is the instance that
calls up the Remote Function Call to execute the function that is provided by an RFC server. In
the following, the functions that can be executed remotely will be called RFC functions and the
functions provided via RFC API will be called RFC calls.

All RFC functions available in a remote RFC server system, which are called by an RFC client,
are processed transactionally. This means that after execution of the first RFC function in the
RFC server system the complete context (all globally defined variables in the RFC server
program or in the main program of a function module) is available for further RFC functions. The
RFC connection is closed only

� when the context of the calling ABAP program has ended or

� explicitly by RfcAbort or RfcClose in the external program.

Until Release 3.0 the connection to an R/3 System must be established to a previously defined
application server. From Release 3.0 onwards, it is also possible to have an application server
assigned by the message server on the basis of a load balancing procedure. This applies both
for RFC between R/3 systems and between external systems and R/3 systems.

To make the execution of RFC functions reliable, safe and independent from the availability of
the RFC server or RFC server system, the transactional RFC (tRFC) was introduced for R/3
systems from Release 3.0 onwards. This ensures that the called function module is executed
only once in the RFC server system.

In transactional RFC calls, the data that belongs to an RFC function must first be stored
temporarily on the SAP database in the RFC client system. When processing is completed, this
must be reported back to the calling ABAP program. Everything else is handled by the tRFC
component in the R/3 System.

Since a database is not always available on external systems, the link to the tRFC interfaces is
implemented such that the client or server programs based on RFC API must take on some
administrative functions to ensure that the respective function module is executed “only once”.

RFC Programming in ABAP SAP AG

RFC in SAP Systems

10 April 2001

In an R/3 System, other R/3 Systems can be defined as trusted systems. Trusted
systems can access the called system (the trusting system) without having to provide
a password.
For more information, see Trusted System [Page 63].

 SAP AG RFC Programming in ABAP

Technical Requirements

April 2001 11

Technical Requirements
External Systems
systems must support TCP/IP.

� OS/2: TCP/IP for OS/2 from IBM.

� Windows 3.1/3.11: All TCP/IP products that support the socket interface.

� Windows NT/95: Microsoft standard

� UNIX platforms: Manufacturer’s standard

The RFCSDK for the respective platforms contains the following libraries and include files:

�
sa
prf
c.
h

This include file contains all
data types and structures
required and the prototypes
(declarations) of the RFC
calls.

�
sa
pit
ab
.h

This include file contains all
the RFC calls required to
manipulate internal

tables

�
lib
rfc

Depending on the platform,
the following libraries are
required:

OS/2: librfc.dll and librfc.lib for Compile/Link

Windows 3.1/3.11: librfc16.dll, librfc2.dll, librfc3.dll, librfc4.dll

and librfc5.dll and librfc16.lib for Compile/Link

Windows NT/95: librfc32.dll and librfc32.lib for Compile/Link

UNIX-Platforms: librfc.a

SAP R/3 Systems
For RFC between external systems and R/3, there are no specific requirements in the R/3
System, except that the R/3 System has to be Release >= 2.1.

Contrary to this, RFC between SAP R/2 in an IBM environment and SAP R/3 or external
systems requires an SAP Gateway to run on a machine that supports the SNA LU6.2 protocol
for the IBM host. The SNA product must also be installed on this machine, and the SAP gateway
must be operable with this product. This is necessary, because some SNA products are not
compatible on the same machines.

The following SNA products are currently supported:

� SNA services or SNA server on IBM-AIX systems

RFC Programming in ABAP SAP AG

Technical Requirements

12 April 2001

� SNAplusLink on HP-UX systems

� Communication Manager on OS/2

� SNA Server on WindowsNT systems

� SNALink SNA peer-to-peer 8.0 on SUN systems

� TRANSIT-SERVER and TRANSIT-CPIC on SNI-SINIX systems.

SAP R/2 Systems
� IBM host (CICS): Release 5.0D with the following components:

– 082

Communication via Remote Function Call (RFC)

– 153

SAP Intersystem Communication

– 080

Host communication with DOS, OS/2

– or 081

Host communication with other LU6.2 systems

� IBM host (IMS): Probably not before IMS >= 4.1 with MVS/APPC

� SNI host: Release 5.0D with the following components:

– 082

Communication via Remote Function Call (RFC)

– 153

SAP Intersystem Communication

– 083

Host communication via TCP/IP (BS2000)

 SAP AG RFC Programming in ABAP

Calling Remote Function Modules in ABAP

April 2001 13

Calling Remote Function Modules in ABAP
This section contains the following topics:

Introduction [Page 14]
Parameter Handling in Remote Calls [Page 16]

Calling Remote Functions Locally [Page 17]

Calling Remote Functions BACK [Page 18]

Using Transactional Remote Function Calls [Page 19]

Using Asynchronous Remote Function Calls [Page 38]

Checking Authorizations for RFC [Page 48]
Using Pre-Defined Exceptions for RFC [Page 49]

RFC Programming in ABAP SAP AG

Introduction

14 April 2001

Introduction
You can use the CALL FUNCTION statement to call remote functions, just as you would call local
function modules. However, you must include an additional DESTINATION clause to define
where the function should run:
CALL FUNCTION RemoteFunction

 DESTINATION Dest

 EXPORTING f1 =...

 f2 =...

 IMPORTING f3 =...

 TABLES t1 =...

 EXCEPTIONS......

The field Dest can be either a literal or a variable: its value is a logical destination (for example,
"hw1071_53") known to the local SAP System. Logical destinations are defined in the RFCDES
table (or the TRFCD table in R/2 Systems) via transaction sm59 or the following menu path:
Tools � Administration, Administration � Network � RFC destinations. You can also access
logical destinations via the Implementation Guide (IMG) by choosing Tools � Customizing �
Enterprise IMG. In the Implementation Guide, you can then choose Cross-application
components � ALE � Communication � Define RFC destination.

The remote function call concept, for example, allows you to access a function module in an R/2
System from an ABAP program in an R/3 System. If you want to read a customer record from
your R/2 System’s database, create a remotely callable function module in the R/2 environment
which retrieves customer records. Call this function from your R/3 System using a remote
function call and listing the destination for the target R/2 System:

R/3 System: Client
 CALL FUNCTION ‘RFC_CUSTOMER_GET’

DESTINATION ‘K50’

EXPORTING KUNNR = CUSTNO

TABLES CUSTOMER_T = ITAB

EXCEPTIONS NO_RECORD_FOUND = 01.

R/2 System: Server
 FUNCTION RFC CUSTOMER GET.

 (Read customer record)

 ENDFUNCTION.

Programming guidelines are available in the following topics:

Parameter Handling in Remote Calls [Page 16]
Calling Remote Functions Locally [Page 17]

Calling Remote Functions BACK [Page 18]

 SAP AG RFC Programming in ABAP

Introduction

April 2001 15

Using Transactional Remote Function Calls [Page 19]

Using Asynchronous Remote Function Calls [Page 38]

Using Pre-Defined Exceptions for RFC [Page 49]

RFC Programming in ABAP SAP AG

Parameter Handling in Remote Calls

16 April 2001

Parameter Handling in Remote Calls
When you make a remote function call, the system handles parameter transfer differently than it
does with local calls.

TABLES parameters
The actual table is transferred, but not the table header. If a table parameter is not specified, an
empty table is used in the called function.

The RFC uses a delta managing mechanism to minimize network load during parameter and
result passing. Internal ABAP tables can be used as parameters for function module calls. In a
local function module call, a parameter table is passed on by reference, and no new local copy
has to be created. RFC does not support the “by reference” mechanism, so the whole table has
to be exchanged between the RFC client and the RFC server. When the RFC server receives the
table entries, it creates a local copy of the internal table. Then only delta information is returned
to the RFC client. This information is not returned to the RFC client every time a table operation
occurs, however; instead, all collected delta information is passed on at once when the function
returns to the client.

The first time a table is passed, it is given an object-ID and registered as a "virtual global table" in
the calling system. This registration is kept alive as long as call-backs are possible between
calling and called systems. Thus, if multiple call-backs occur, the change-log can be passed back
and forth to update the local copy, but the table itself need only be copied once (the first time).

 SAP AG RFC Programming in ABAP

Calling Remote Functions Locally

April 2001 17

Calling Remote Functions Locally
Sometimes you want to call a remote function (that is, a function registered as remote in the SAP
System) from within the same system. This function can run either as a remote or a local call,
depending on the CALL FUNCTION statement. Whether the call runs as remote or local affects
parameter handling (as explained in Parameter Handling in Remote Calls [Page 16]).

The two options are:

� CALL FUNCTION...DESTINATION = 'NONE'

This is a remote call, even though DESTINATION = 'NONE' means that the remote
function will run in the same system as the caller. As a remote call, the function module
runs in its own roll area, and parameter values are handled as for other remote calls
(described in Parameter Handling in Remote Calls [Page 16]).
CALL FUNCTION ‘RFC_CUSTOMER_GET’

DESTINATION ‘NONE’

EXPORTING KUNNR = CUSTNO

TABLES CUSTOMER_T = ITAB

EXCEPTIONS NO_RECORD_FOUND = 01.

� CALL FUNCTION... [no DESTINATION used]

This is a local call, even though the function module is registered as remote. The module
does not run in a separate roll area, and is essentially like a normal function call.
Parameter transfer is handled as for normal function modules. In particular, if the call
leaves some EXPORTING parameters unspecified, it terminates abnormally.
CALL FUNCTION ‘RFC_CUSTOMER_GET’

EXPORTING KUNNR = CUSTNO

TABLES CUSTOMER_T = ITAB

EXCEPTIONS NO_RECORD_FOUND = 01.

You can also call a function for parallel processing within the same system. For details, see
Parallel Processing with Asynchronous RFC [Page 45].

RFC Programming in ABAP SAP AG

Calling Remote Functions BACK

18 April 2001

Calling Remote Functions BACK
The client and the server are determined at the start of an RFC. While a function is being
processed on the server, this server can call a function on the client. In other words, the remote
function can invoke its own caller (if the caller is itself a function module), or any function module
loaded with the caller. The called-back function then runs in the same program context as the
original caller.

You can trigger this call-back mechanism by using the special destination name “BACK”. If this
name is specified in an RFC call on the system acting as the server, the system uses the same
RFC connection that was established when the server received the first call. Once an RFC
connection is established, it is maintained until it is either explicitly closed or until the calling
program terminates. During a call-back, the system will always attempt to use existing RFC
connections before establishing a new one.

To perform a call-back, the syntax is:
CALL FUNCTION... DESTINATION 'BACK'

In the diagram, remote function B of System B invokes remote function A in the
calling System A.

Result AResult A

FUNCTION A.

ENDFUNCTION.

...

System ASystem A System BSystem B

CALL FUNCTION 'B'
 DESTINATION 'B'

...
...

Result BResult B

FUNCTION B.

 CALL FUNCTION 'A'
 DESTINATION

ENDFUNCTION.

...
...

'BACK'

 SAP AG RFC Programming in ABAP

Using Transactional Remote Function Calls

April 2001 19

Using Transactional Remote Function Calls
From Release 3.0 onwards, data can be transferred between two R/3 Systems reliably and
safely via transactional RFC (tRFC).

This type of RFC was renamed from asynchronous to transactional RFC, because
asynchronous RFC has another meaning in R/3 Systems.

The called function module is executed exactly once in the RFC server system. The remote
system need not be available at the time when the RFC client program is executing a tRFC. The
tRFC component stores the called RFC function together with the corresponding data in the R/3
database, including a unique transaction identifier (TID).

If a call is sent, and the receiving system is down, the call remains in the local queue until a later
time. The calling dialog program can proceed without waiting to see whether or not the remote
call was successful. If the receiving system does not become active within a certain amount of
time, the call is scheduled to run in batch.

Transactional RFCs use the suffix IN BACKGROUND TASK.

As with synchronous calls, the DESTINATION parameter defines a program context in the
remote system. As a result, if you call a function repeatedly (or different functions once) at the
same destination, the global data for the called functions may be accessed within the same
context.

The system logs the remote call request in the database tables ARFCSSTATE and ARFCSDATA
with all of its parameter values. You can display the log file using transaction SM58. When the
calling program reaches a COMMIT WORK, the remote call is forwarded to the requested system
for execution.

All tRFCs with a single destination that occur between one COMMIT WORK and the next belong
to a single logical unit of work (LUW). For more information on LUWs, TIDs and on checking the
status of transactional calls, see Transactional Integrity of tRFCs [Page 22].

Transactional RFC requests are transferred, with parameter data in byte-stream form, using
TCP/IP or X400.

RFC Programming in ABAP SAP AG

Using Transactional Remote Function Calls

20 April 2001

Transaction
SM58

DBDB

Transactional RFC Log file example

Caller Function Module Target system Date Time Status text

SMITH GET_DATA P30 07.01.97 14:00 --

ARFCSDATA

ARFCSSTATE

ABAP/4 progam
CALL FUNCTION ...
 IN BACKGROUND TASK
 DESTINATION ...
 EXPORTING ...
 TABLES ...

CALL FUNCTION ...
 IN BACKGROUND TASK
 DESTINATION ...
 EXPORTING ...
 TABLES ...

COMMIT WORK.

As an example, you can use transactional RFCs for specific types of update procedures. Some
complex dialogs require that several related database tables be updated during different phases
within a transaction. If the update functions needed are located on a remote machine, and if it is
not essential that the table changes be carried out immediately before continuing the dialog, you
can use transactional RFC calls. Instead of having to wait for each separate update procedure to
be completed, the user can proceed to the end of the transaction without delay. Transactional
RFC processing ensures that all the planned updates are carried out when the program reaches
the COMMIT WORK statement.

As with synchronous remote calls, the EXPORTING and TABLES parameters need
not be specified for transactional remote function calls.

You may not call remote functions with the transactional mechanism if EXPORT
parameters are specified in the functions interface. An IMPORTING parameter in
your CALL FUNCTION statement results in a compiler error.

Note also that you cannot make asynchronous calls to functions that perform call-
backs.

When the Remote System is Unavailable
If the remote system is unavailable, the SAP System schedules the report RSARFCSE for
background processing with the relevant transaction ID as variant. This report, which forwards

 SAP AG RFC Programming in ABAP

Using Transactional Remote Function Calls

April 2001 21

asynchronous calls for execution, is called repeatedly until it succeeds in connecting with the
desired system.

When scheduled in batch, RSARFCSE runs automatically at set intervals (the default is every
fifteen minutes, for up to 30 attempts). You can customize this interval and the length of time the
program should go on trying. To do this, use the extension programs SABP0000 and SABP0003
(or see the SAP Extension Concept and CALL CUSTOMER-FUNCTION).

In transaction SM59 (menu path: Tools � Administration, Administration � Network � RFC
destinations) you can select Destination�TRFC options which enables you to configure each
destination. Thus you can determine the number of connection attempts up to the task and the
time between repeat attempts.

If the system is not reachable within the specified amount of time, the system stops calling
RSARFCSE, and the status CPICERR is written to the ARFCSDATA table. Within another
specified time (the default is eight days), the corresponding entry in the ARFCSSTATE table is
deleted (this limit can also be customized). (It is still possible to start such entries in transaction
SM59 manually.)

RFC Programming in ABAP SAP AG

Transactional Integrity of tRFCs

22 April 2001

Transactional Integrity of tRFCs
You can execute function modules in background tasks in another R/3 System or an external
program. When you call function modules in this way, they are not executed at once, but wait
until a COMMIT WORK is triggered.

Transactional RFCs receive there name from the fact that the associated remote function call
mechanism guarantees transactional integrity for all calls made with the IN BACKGROUND TASK
suffix. As with database updates, LUW's (logical units of work) are created for calls that are
scheduled to run in background tasks. All tRFCs with a single destination that occur between one
COMMIT WORK and the next belong to a single LUW. Within a given LUW, all calls:

� execute in the order they were called

� run in the same program context in the target system

� run as a single transaction: they are either committed or rolled back as a unit.

LUW's are identified by transaction ID's that are unique world-wide. The transaction ID can be
determined from an ABAP program by calling function module ID_OF_BACKGROUNDTASK. (You
must call this function after the first asynchronous CALL, and before the related COMMIT WORK.)

Because the RFC is like a transaction, database operations are either all executed or, if a
function module terminates, all rolled back. If an LUW runs successfully, you cannot execute it
again. In some cases, it may be necessary to program the roll back of an LUW, (for example,
because a table is locked). To do this, you call the function module
RESTART_OF_BACKGROUNDTASK which performs a rollback and ensures that the LUW is
executed again later.

Normally, the LUW is executed immediately after COMMIT WORK in the specified target system.
However, if you want it to start at a particular time, you can set a start time with the function
module START_OF_BACKGROUNDTASK which must also be called within the LUW, i.e. after the
first CALL... IN BACKGROUND TASK and before COMMIT WORK.

For more information on the transactional RFC, see the online help in the ABAP
Editor.

Checking the Status of Transactional Calls
All transactional remote function calls are stored in the tables ARFCSSTATE and ARFCSDATA
and each LUW is identified by a unique ID. When a COMMIT WORK occurs, the calls attached to
this ID are executed in the relevant target system. The system function module
ARFC_DEST_SHIP transports the data to the target system and the function module
ARFC_EXECUTE executes the stored function calls. If an error or an exception occurs during one
of the calls, all the database operations started by the preceding calls are rolled back and an
appropriate error message is written to the file ARFCSSTATE.

There are two methods for checking on the status of a transaction ID:

� From an ABAP program
The function module ID_OF_BACKGROUNDTASK returns the ID of the LUW. You call this
module after the first CALL... IN BACKGROUND TASK and before COMMIT WORK.

 SAP AG RFC Programming in ABAP

Transactional Integrity of tRFCs

April 2001 23

 CALL FUNCTION ‘ID_OF_BACKGROUNDTASK’ IMPORTING TASK-ID =
TID.

Once you have identified the ID of the LUW, you can use the function module
STATUS_OF_BACKGROUNDTASK to determine the status of the transactional RFC.

 CALL FUNCTION ‘STATUS_OF_BACKGROUNDTASK’

EXPORTING TID = TASK-ID

IMPORTING ERRORTAB = ERTAB

EXCEPTIONS COMMUNICTATION = 01

(Connection not available: will try
again later)

RECORDED = 02

(ARFC is scheduled)

ROLLBACK = 03

(Rollback triggered in target
system)

� Online

Call transaction SM58 (Tools � Administration � Monitoring � Transactional RFC).
This tool lists only those transactonal RFCs that could not be carried out successfully or
that had to be planned as batch jobs. The list includes the LUW ID and an error
message. Error messages displayed in SM58 are taken from the target system. To
display the text of the message, double-click on the message.

Transaction SM58 also lets you control your transactional RFC at various stages. If the
call ends abnormally during the sending process, you may need to use the Rollback
LUW function to manually rollback the LUW before attempting a resend. If the target
system was unavailable, you can use the Backgr.job function to display the batch job
created for your call. Execute funct. module lets you restart the call after the occurrence
of a temporary error (such as a syntax error).

If a LUW runs successfully in the target system, the function module ARFC_DEST_CONFIRM is
triggered and confirms the successful execution in the target system. Finally, the entries in the
Tables ARFCSSTATE and ARFCSDATA are deleted.

RFC API
You can also execute programs asynchronously in 'C'-implemented function modules
(connection type TCP/IP in transaction SM59, see Types of Destinations [Page 59]).
Implementation of the function modules occurs as usual in connection with the RFC API. This
contains the function modules ARFC_DEST_SHIP and ARFC_DEST_CONFIRM which call the
appropriate functions.

For more information on this topic, refer to The RFC API [Ext.].

RFC Programming in ABAP SAP AG

qRFC With Send Queue

24 April 2001

qRFC With Send Queue
To guarantee an LUW sequence dictated by the application, the tRFC is serialized using queues.
It is therefore called queued RFC (qRFC). Due to the serialization, in R/3 a send queue for tRFC
was created. This results in the general term qRFC with send queue.

In addition, there are applications that want to determine themselves the exact moment in which
to process the LUW in the target system. These are usually applications on an external (non
SAP) system that does not have a kind of send queue. qRFC with recipient queue including an
appropriate enhancement of the RFC library is currently under development (scheduled for
delivery in the next release).

Motivation
What Does tRFC Perform Right Now?
� tRFC guarantees that a called function module is executed in the target system exactly

once.

� All tRFC calls terminated with the statement COMMIT WORK belong to one LUW (Logical
Unit of Work). Each LUW automatically receives a transaction ID.

� Within an LUW, all function modules are executed in the target system in the sequence in
which they are called in the send system.

� tRFC calls with the addition AS SEPARATE UNIT map a separate LUW each in the target
system. Such a sub LUW contains exactly one tRFC call and is processed independent of
the actual (superior) LUW. This sub LUW receives its own transaction ID.

� If within an LUW several destinations are used, all tRFC calls that belong to one destination
also form a sub LUW. However, since this bundling happens only internally, there is no
separate transaction ID assigned to the sub LUW.

Disadvantages of tRFC
tRFC processes all LUWs independent of one another. Due to the amount of activated tRFC
processes, this procedure can reduce performance significantly in both the send and the target
systems.
In addition, the sequence of LUWs defined in the application cannot be kept. Therefore, there is
no guarantee that the transactions are executed in the sequence dictated by the application. The
only guarantee is that all LUWs are transferred sooner or later.

Use and Availability
The typical applications for which the serialization of tRFC was implemented use distributed
environments:

� ALE (Application Link Enabling)

� APO (Advanced Planner and Optimizer)

� SFA (Sales Force Automation)

qRFC with send queue is released with Release 4.5B.

 SAP AG RFC Programming in ABAP

qRFC With Send Queue

April 2001 25

As a special feature for APO, the serialization is provided as a special release for
APO systems of Release 3.1H or 4.5A, respectively.

Other Topics
qRFC With Send Queue: Overview [Page 26]

Programming Serialization [Page 28]

Using "Mixed Mode" [Page 30]

Transaction Sequence and Queue Assignment [Page 32]

Tools [Page 35]

RFC Programming in ABAP SAP AG

qRFC With Send Queue: Overview

26 April 2001

qRFC With Send Queue: Overview
This topic assumes that the processing sequence of the transactions is defined in the application
program and that more than one queue can be used for one transaction.

Characteristics
The characteristics of qRFC with send queue are:

� Queued RFC with send queue enforces a serialization on the side of the send system. The
target system has no information about the serialization in the send system. This allows
communication with any R/3 target system as of Release 3.0.

� qRFC with send queue is an enhancement of tRFC. It transfers an LUW (transaction) only if
it has no predecessors (in reference to the sequence defined in different application
programs) in the participating queues. In addition, after executing a qRFC transaction, the
system tries to start all waiting qRFC transactions automatically according to the sequence.

� For queue administration, the system needs a queue name and a queue counter for each
qRFC transaction. Each tRFC call to be serialized is assigned to a queue name that can be
determined by the application. The application passes the queue name with the call of
function module TRFC_SET_QUEUE_NAME. This function module is called immediately
before each tRFC call to be serialized. See also Programming Serialization [Page 28].
A queue name is a text of up to 24 bytes length. You can choose any text, but you must not
use * (asterisk).

You should start queue names with your application initials to prevent different
applications from using the same names unintentionally (for example, SFA_… or
APO_…).

� There is no queue configuration, since this is a logical queue. There are no separate tables
for the individual queues. For an R/3 system, there is only one table for the send queues. All
entries for queues of all participating LUWs are stored in the queue table TRFCQOUT.

� If the tRFC calls to be serialized are distributed to several destinations, the system bundles
them per destination and processes them independent of one another. This results in sub
LUWs within one LUW, as known from the old tRFC. In this case, there is no guarantee that
the sequence of the sub LUWs is kept; the only guarantee is that all sub LUWs are processed
sooner or later. In contrast to the old tRFC, each sub LUW receives its own transaction ID for
easier queue handling.

� The sequence of the tRFC calls to be serialized with or without the option AS SEPARATE
UNIT within one LUW is guaranteed, even if the calls are assigned to different queues.

� When sending the COMMIT WORK, the system determines a counter that acts as criterion for
the sequence of LUW processing in a queue. For two LUWs that are interdependent from the
application's point of view, a COMMIT WORK for the second LUW can be executed only after
the COMMIT WORK for the first LUW has been terminated.

� "Mixed mode" is supported: One LUW can contain normal tRFC calls as well as tRFC calls to
be serialized, with ot without the addition AS SEPARATE UNIT. The sequence of the tRFC
calls is guaranteed.

 SAP AG RFC Programming in ABAP

qRFC With Send Queue: Overview

April 2001 27

� The "normal" tRFC calls within an LUW in "mixed mode" and the tRFC calls to be
serialized that share the same destination form a sub LUW in reference to their
assignment. If within one LUW no qRFC call was defined for a certain destination, the
"normal" tRFC calls form a sub LUW by themselves.

In the old tRFC, all calls with different destinations are assigned to a common transaction
ID, but internally to different sub LUWs. For the new tRFC, however, each bundle of
tRFC/qRFC calls with the same destination receives its own transaction ID for better
queue handling. For compatibility reasons, an application must first of all call function
module TRFC_QUEUE_INITIALIZE if it uses "mixed mode" within an LUW and if the first
call is a tRFC call. See also Using "Mixed Mode" [Page 30].

� The "normal separate" tRFC calls (with addition AS SEPARATE UNIT) within an LUW in
"mixed mode" are treated as before (individual transaction ID).

� The "separate" tRFC calls to be serialized are processed depending on the queue, but
independent of the actual LUW.

� A side effect and advantage of qRFC with send queue compared to the old tRFC is the
minimum load the serialization bears on send and target systems (due to low parallelizing).
However, choosing queue names carelessly (using too many names) can neutralize this
advantage.
This is a classical dilemma: Better performance due to more serialization versus faster
processing due to more parallelizing. Therefore, each application must carefully weigh up
how to define queue names usefully and how to assign them to the individual function calls.

Which Problems Can Occur?
Note the following general serialization problems:

If, for example, due to network/communication problems the first LUW in a queue cannot be
executed, not only this queue keeps pending, but also all other LUWs that are interdependent
with this queue. The resulting "jam" could cause a database problem.
However, as soon as the communication problem is solved, all transactions and thus all queues
can be processed automatically one after the other.

RFC Programming in ABAP SAP AG

Programming Serialization

28 April 2001

Programming Serialization
The procedure below describes how to program the queued RFC with send queue in its basic
form (that is, without the addition AS SEPARATE UNIT and without "mixed mode").

Prerequisites
� The R/3 send system has Release 4.5B.

� All required destinations are maintained in table RFCDEST of the send system.

� To achieve a good performance of the application, determine the number and the
assignment of the queue names carefully.

Procedure
To implement the qRFC with send queue, proceed as follows:

1. Assign queue names for the subsequent function call(s).

2. To pass the queue name, call function module TRFC_SET_QUEUE_NAME immediately
before each function call.

3. Call the function module using CALL FUNCTION … IN BACKGROUND TASK.

4. Repeat steps 2 and 3 (and 1 if required) for all other function calls.

5. Close the LUW using COMMIT WORK.

6. Repeat steps 1 to 5 for all other LUWs of the application.

REPORT

...

DATA Q_NAME LIKE TRFCQOUT-QNAME.

Q_NAME = 'BASIS_TEST_Q1'.

CALL FUNCTION ' TRFC_SET_QUEUE_NAME '

 EXPORTING

 QNAME = Q_NAME.

CALL FUNCTION 'RFC_FUNCTION_1'

 IN BACKGROUND TASK

 DESTINATION 'DEST'

 EXPORTING ...

 TABLES

 ...

Q_NAME = 'BASIS_TEST_QM'.

CALL FUNCTION ' TRFC_SET_QUEUE_NAME '

 SAP AG RFC Programming in ABAP

Programming Serialization

April 2001 29

 EXPORTING

 QNAME = Q_NAME.

CALL FUNCTION 'RFC_FUNCTION_N'

 IN BACKGROUND TASK

 DESTINATION 'DEST'

 EXPORTING ...

 TABLES

COMMIT WORK.

* NEXT LUW

...

Result
The system stores the queue specifications in table TRFCQOUT.

With each COMMIT WORK, the system determines a counter that is used to keep the sequence
of transaction processing.

As an introduction, execute the simple demo program RSTRFCT0.

RFC Programming in ABAP SAP AG

Using "Mixed Mode"

30 April 2001

Using "Mixed Mode"
The special feature of "mixed mode" is that qRFC calls with send queue and normal tRFC calls
are processed together within one LUW. For more information characterizing "mixed mode", see
qRFC With Send Queue: Overview [Page 26].

Prerequisites
See Programming Serialization [Page 28].

Procedure
When implementing "mixed mode" within an LUW, note the following:

If within an LUW in "mixed mode" the first call is a normal tRFC call, you must first of all call
function module TRFC_QUEUE_INITIALIZE. This assures that the current LUW is processed via
qRFC with send queue.
If within an LUW in "mixed mode" the first call is a qRFC call, this initialization is done by function
module TRFC_SET_QUEUE_NAME.

This program sequence is an example of how to implement an LUW in "mixed mode":
REPORT

...

DATA Q_NAME LIKE TRFCQOUT-QNAME.

CALL FUNCTION 'TRFC_QUEUE_INITIALIZE'.

CALL FUNCTION 'RFC_FUNCTION_1' " tRFC call -> NO QUEUE

 IN BACKGROUND TASK

 DESTINATION 'DEST'

 EXPORTING ...

 TABLES

 ...

Q_NAME = 'BASIS_TEST_Q1'.

CALL FUNCTION 'TRFC_SET_QUEUE_NAME'

 EXPORTING

 QNAME = Q_NAME.

CALL FUNCTION 'RFC_FUNCTION_2' " qRFC call -> Q1

 IN BACKGROUND TASK

 DESTINATION 'DEST'

 EXPORTING ...

 TABLES

 SAP AG RFC Programming in ABAP

Using "Mixed Mode"

April 2001 31

 ...

CALL FUNCTION 'RFC_FUNCTION_N-1' "tRFC call -> NO QUEUE

 IN BACKGROUND TASK

 DESTINATION 'DEST'

 EXPORTING ...

 TABLES

Q_NAME = 'BASIS_TEST_QM'.

CALL FUNCTION 'TRFC_SET_QUEUE_NAME'

 EXPORTING

 QNAME = Q_NAME.

CALL FUNCTION 'RFC_FUNCTION_N' " qRFC call -> QM

 IN BACKGROUND TASK

 DESTINATION 'DEST'

 EXPORTING ...

 TABLES

 ...

COMMIT WORK.

Result
Because of the transaction characteristics, the normal tRFC calls and the qRFC calls with the
same destination form a unit. If, however, within the current LUW there are no qRFC calls for a
destination, the system bundles the normal tRFC calls into a sub LUW.

The normal tRFC calls with the addition AS SEPARATE UNIT map a separate LUW in the target
system.

qRFC calls with the addition AS SEPARATE UNIT are processed depending on the queue, but
independent of the actual LUW.

To start programming in "mixed mode", refer to the demo program RSTRFCT1.

RFC Programming in ABAP SAP AG

Transaction Sequence and Queue Assignment

32 April 2001

Transaction Sequence and Queue Assignment
The sample scenario below is designed to show the dependencies between the send sequence
of the LUWs and the queue assignment of the individual calls. An example demonstrates which
queue assignment exists after a certain transaction has been sent. Try demo program
RSTRFCT3 as well.

Sample Scenario
Queue Usage
The diagram shows the transaction sequence as dictated by the application as well as the
respective queue usage of the individual calls:
For example, transaction T3 contains two qRFC calls assigned to queue Q1 and two calls
assigned to queue Q3.
In contrast, transaction T6 contains only the qRFC call with the addition AS SEPARATE UNIT,
assigned to queue Q6.

T1T1 Q1 Q1 Q2 Q2 Q3 Q3

T3T3

T2T2

T4T4

T5T5

T6T6

Q5Q5 Q6 Q6 Q7 Q7

Q1 Q1 Q3 Q3

Q2 Q2 Q4 Q4

Q6 Q7S Q8S Q7 Q7

Q6S

T7T7

Q4 Q4

Q8

Q7S

 SAP AG RFC Programming in ABAP

Transaction Sequence and Queue Assignment

April 2001 33

Assignment of the Queues
Before Sending
From the queue usage shown in the above example the following initial assignment for the
individual queues results:

Q1Q1

Q3Q3

Q2Q2

Q4Q4

Q5Q5

Q6Q6

Q7Q7

T3Q1N1T1Q1N2 T3Q1N2

T1Q2N1 T4Q2N1

T1Q3N1 T1Q3N2 T3Q3N1 T3Q3N2

T1Q4N1 T1Q4N2 T4Q4N1

T2Q5N1 T2Q5N2

T2Q6N1 T2Q6N2 T5Q6N1 T6Q6S1

T2Q7N1

T2Q8N1 T5Q8S1

Normal qRFC call

Separate qRFC call

Q8Q8

T1Q2N2 T4Q2N2

T4Q4N2

T2Q7N2 T5Q7S1 T5Q7N1 T5Q7N2 T7Q7S1

T1Q1N1

After Sending T1
After transaction T1 was sent successfully, the transactions T3 and T4 are prerared for sending.
This results in the following queue assignment:

RFC Programming in ABAP SAP AG

Transaction Sequence and Queue Assignment

34 April 2001

Q1Q1

Q3Q3

Q2Q2

Q4Q4

Q5Q5

Q6Q6

Q7Q7

T2Q5N1 T2Q5N2

T2Q6N1 T2Q6N2 T5Q6N1 T6Q6S1

T2Q7N1

T2Q8N1 T5Q8S1Q8Q8

T2Q7N2 T5Q7S1 T5Q7N1 T5Q7N2 T7Q7S1

First, the calls of T1 are sent in all involved queues (Q1, Q2, Q3, and Q4).
All other independent transactions that share queue participants with T1 are prepared for sending
afterwards. In this case, these are transactions T3 and T4.
The transactions T2, T5, T6, and T7 remain in wait mode until T3 and T4 have been sent
successfully.
Only after this the waiting transactions are started automatically one after another.

 SAP AG RFC Programming in ABAP

Tools

April 2001 35

Tools
Tools
Passing Queue Names
TRFC_SET_QUEUE_NAME
This function module passes a queue name for only one function call immediately before a "call
function … in background task" (tRFC call) and indicates that the current LUW must be
processed via tRFC with send queue. The queue name passed is valid only for the subsequent
tRFC call.

Reading Queue Entries
TRFC_GET_QUEUE_INFO and TRFC_GET_QUEUE_INFO_DETAILS
Use these function modules to read the current contents of one or all queues of table
TRFCQUOT in a more or less detailed form.

RSTRFCQR
This ABAP program uses the two function modules mentioned above to display the current
contents of the send queue table TRFCQUOT.

RSTRFCQD
This ABAP program deletes all entries of single or all transactions. Use this program for test
purposes or in emergencies only. If you delete the entries of a transaction, this transaction is no
longer serialized. You may have to start it manually again.

Initializing in "Mixed Mode"
TRFC_QUEUE_INITIALIZE
Calling this parameter-free function module at the beginning of a qRFC LUW in "mixed mode"
(using tRFC as well as qRFC) indicates that the current LUW must be processed via qRFC with
send queue. However, this is necessary only if the first call is a normal tRFC call. If the first call is
a qRFC call, the initialization is done by the function module TRFC_SET_QUEUE_NAME. See
also demo program RSTRFCT1.

SM58
Transaction SM58, which you used as tRFC monitor for displaying and editing the tRFC
transactions, now also allows processing qRFC transactions. If you delete a tRFC entry with this
transaction, the system automatically deletes the corresponding entries in the send queue table,
if they exist. If you start an LUW, the system does not immediately transfer this LUW but first
checks whether this LUW needs serialization or whether it must wait due to predecessors in the
queue.

RFC Programming in ABAP SAP AG

Tools

36 April 2001

Stopping Queues, Continuing Them, and Querying Their Statuses
You can stop and continue processing of one or more queues (using generic specification). In
addition, you can query the status of a queue.
Use the following function modules:

TRFC_QOUT_STOP
Specify a queue name (single or generic, such as BASIS_TEST_*) and a destination to stop
processing one or more queues. Depending on the FORCE parameter, you can stop processing
at once (parameter FORCE = 'X') or process all requests that exist in the queue at the moment
the STOP occurs and stop afterwards (FORCE = ' '). You can also stop an empty queue. In this
case, all transactions assigned to this queue are not sent immediately. See also demo program
RSTRFCQ1.

TRFC_QOUT_STATE
Specify the name of a queue and a destination to query the status of this queue. See also demo
program RSTRFCQ2.
A queue can have one of these statuses:

� RUNNING
� CPICERR
� SYSFAIL
� STOPPING
� STOP
� WAITSTOP

Status SYSFAIL results from a serious error and is triggered by an exception in the R/3 kernel of
the target system or in the called function module. In this status the queue remains. There is no
automatic repetition. You can use SM58 to send this LUW again or to delete it. If you delete it,
the system automatically deletes the corresponding entries in the queue table TRFCQOUT.
In status CPICERR an automatic repetition depends on the configuration of the destination in
SM59 (by default set to "Yes").

TRFC_QOUT_RESTART
Specify a queue name (single or generic, such as BASIS_TEST_*) and a destination to continue
processing one or more queues, regardless of whether the queues were stopped before by a
queue stop function module (parameter FORCE) or by statuses CPICERR or SYSSFAIL. See
also demo program RSTRFCQ3.

TRFC_QOUT_RESTART_COND
Specify a queue name (single or generic, such as BASIS_TEST_*) and a destination to continue
processing one or more queues depending on whether processing of one or more other queues
is terminated. Calling this function automatically stops the queues to be continued at this
moment, if no other STOP call (depending on how parameter FORCE is set) was issued before.
See also demo program RSTRFCQ4.

 SAP AG RFC Programming in ABAP

Tools

April 2001 37

Sample Programs
� RSTRFCT0, RSTRFCT1, RSTRFCT2, and RSTRFCT3 are sample or test programs for

qRFC with send queue.

� With programs RSTRFCQ1, RSTRFCQ2, RSTRFCQ3, and RSTRFCQ4 you can stop
processing one or more queues, continue processing with or without condition, or query the
status of a queue.

RFC Programming in ABAP SAP AG

Using Asynchronous Remote Function Calls

38 April 2001

Using Asynchronous Remote Function Calls
Asynchronous remote function calls (aRFCs) are similar to transactional RFCs, in that the user
does not have to wait for their completion before continuing the calling dialog. There are three
characteristics, however, that distinguish asynchronous RFCs from transactional RFCs:

� When the caller starts an asynchronous RFC, the called server must be available to
accept the request.

The parameters of asynchronous RFCs are not logged to the database, but sent directly
to the server.

� Asynchronous RFCs allow the user to carry on an interactive dialog with the remote
system.

� The calling program can receive results from the asynchronous RFC.

You can use asynchronous remote function calls whenever you need to establish communication
with a remote system, but do not want to wait for the function’s result before continuing
processing. Asynchronous RFCs can also be sent to the same system. In this case, the system
opens a new session (or window) and allows you to switch back and forth between the calling
dialog and the called session.

To start a remote function call asynchronously, use the following syntax:
CALL FUNCTION RemoteFunction STARTING NEW TASK taskname

Destination ...

EXPORTING...

TABLES ...

EXCEPTIONS...

The following calling parameters are available:

� TABLES

passes references to internal tables. All table parameters of the function module
must contain values.

� EXPORTING

passes values of fields and field strings from the calling program to the function
module. In the function module, the correponding formal parameters are defined
as import parameters.

� EXCEPTIONS

see Using Pre-Defined Exceptions for RFC [Page 49]

RECEIVE RESULTS FROM FUNCTION func is used within a FORM routine to
receive the results of an asynchronous remote function call. The following receiving
parameters are available:

� IMPORTING

� TABLES

 SAP AG RFC Programming in ABAP

Using Asynchronous Remote Function Calls

April 2001 39

� EXCEPTIONS

The addition KEEPING TASK prevents an asynchronous connection from being
closed after receiving the results of the processing. The relevant remote context (roll
area) is kept for re-use until the caller terminates the connection.

Call a transaction asynchronally and display it in an amodal window:
DATA: MSG_TEXT(80) TYPE C. “Message text

...

* Asynchronous call to transaction SM59 ->

* Create a new session

CALL FUNCTION ‘ABAP4_CALL_TRANSACTION’ STARTING NEW TASK
‘TEST’

DESTINATION ‘NONE’

EXPORTING

TCODE = ‘SM59’

EXCEPTIONS

COMMUNICATION_FAILURE= 1 MESSAGE MSG_TEXT

SYSTEM_FAILURE = 2 MESSAGE MSG_TEXT

IF SY-SUBRC NE 0.

WRITE: MSG_TEXT.

ELSE.

WRITE: ‘O.K.’

ENDIF.

Details are explained in the following topics:

Calling Requirements for Asynchronous RFCs [Page 40]

Receiving Results from an Asynchronous RFC [Page 41]

Keeping the Remote Context [Page 44]

Parallel Processing with Asynchronous RFC [Page 45]

RFC Programming in ABAP SAP AG

Calling Requirements for Asynchronous RFCs

40 April 2001

Calling Requirements for Asynchronous RFCs
When you call a remote function with the optional suffix STARTING NEW TASK, the system starts
the function in a new session. Rather than waiting for the remote call to be completed, the user
can resume processing as soon as the function module has been started in the target system.

The remotely called function module can, for example, display a new screen using CALL
SCREEN, allowing the user to enter a dialog that connects him or her directly to the remote
system:

Client System
CALL FUNCTION ‘TRAVEL_CREATE_FLIGHT’

 STARTING NEW TASK ‘FLIGHT’

 DESTINATION ‘S11’.

Server System
FUNCTION TRAVEL_CREATE_FLIGHT.

 CALL SCREEN 100.

ENDFUNCTION.

If you do not specify a destination, the asynchronous RFC mechanism starts a new session
within the calling system.

You must not use IMPORTING when calling aRFCs.

 SAP AG RFC Programming in ABAP

Receiving Results from an Asynchronous RFC

April 2001 41

Receiving Results from an Asynchronous RFC
To receive results from an asynchronously called function, use the following syntax:
CALL FUNCTION RemoteFunction

 STARTING NEW TASK Task

 PERFORMING RETURN_FORM ON END OF TASK.

Once the called function is completed, the next dialog step in the calling program (such as AT
USER-COMMAND) guides the system into the FORM routine that checks for results. This FORM
routine consists of a special syntax and must be called with a using parameter that refers to the
name of the task:
Client System

CALL FUNCTION ‘TRAVEL_CREATE_FLIGHT’

 STARTING NEW TASK ‘FLIGHT’

 DESTINATION ‘S11’

 PERFORMING RETURN_FLIGHT ON END OF TASK.

...

FORM RETURN_FLIGHT USING TASKNAME.

 RECEIVE RESULTS FROM FUNCTION ‘TRAVEL_CREATE_FLIGHT’

IMPORTING FLIGHTID = SFLIGHT-ID

EXCEPTIONS SYSTEM_FAILURE MESSAGE SYSTEM_MSG.

 SET USER-COMMAND ‘OKCD’.

ENDFORM.

� If a function module returns no result, the addition PERFORMING RETURN_FORM
ON END OF TASK can be omitted.

� If an asynchronous call calls several consecutive function modules with the same
destination, you must assign a different task name to each.

� A calling program which starts an asynchronous RFC with PERFORMING cannot
switch roll areas or change to an internal mode. This is because the
asynchronous function module call reply cannot be passed on to the relevant
program. You can perform a roll area switch with SUBMIT or CALL
TRANSACTION.

� If the calling program which has executed the asynchronous call is terminated,
despite the fact that it is expecting replies, these replies from the asynchronous
call cannot be delivered.

� You can use the WAIT statement with PERFORMING form ON END OF TASK
to wait for the reply to a previously started asynchronous call. In this case, WAIT
must be in the same program context.

RFC Programming in ABAP SAP AG

Receiving Results from an Asynchronous RFC

42 April 2001

� The program processing continues after WAIT if either the condition of a logical
expression was satisfied by the subroutine that performs the task in question, or
a specified time period has been exceeded. For more information on the WAIT
statement, see the online help in the ABAP editor.

The key word RECEIVE occurs only with the function module call CALL FUNCTION func
STARTING NEW TASK taskname. If the function module returns no results, this part need not
be defined.

The key word RECEIVE is new from R/3 Release 3.0 onwards. Therefore, both
partner systems, client and server, must have Release 3.0 of the R/3 System.

For more information on RECEIVE, see the online help in the ABAP editor.

The effect of the SET USER-COMMAND ‘OKCD’ statement is exactly as if the user had entered
the function in the command field and pressed ENTER. This means that the current positioning
of the list and the cursor is taken into account.

No call-backs are supported.

The SET USER-COMMAND ‘OKCD’ statement replaces the REFRESH SCREEN
command. REFRESH SCREEN is no longer maintained and should therefore not be
used.

DATA: INFO LIKE RFCSI,

* Result of RFC_SYSTEM_INFO function

MSG(80) VALUE SPACE.

* Exception handling

CALL FUNCTION ‘RFC_SYSTEM_INFO’

STARTING NEW TASK ‘INFO’

PERFORMING RETURN_INFO ON END OF TASK

EXCEPTIONS

COMMUNICATION_FAILURE = 1 MESSAGE MSG

COMMUNICATION_FAILURE = 2.MESSAGE MSG.

IF SY-SUBRC = 0.

WRITE: ‘Wait for reply’.

ELSE.

WRITE MSG

ENDIF.

 SAP AG RFC Programming in ABAP

Receiving Results from an Asynchronous RFC

April 2001 43

...

AT USER-COMMAND.

* Return from FORM routine RETURN_INFO via SET USER-COMMAND

IF SY-UCOMM = ‘OKCD’.

IF MSG = SPACE.

WRITE: ‘Destination =‘, INFO-RFCDEST.

ELSE.

WRITE MSG.

ENDIF.

ENDIF.

...

FORM RETURN_INFO USING TASKNAME.

RECEIVE RESULTS FROM FUNCTION ‘RFC_SYSTEM_INFO’

IMPORTING RFCSI_EXPORT = INFO

EXCEPTIONS

COMMUNICATION_FAILURE= 1 MESSAGE MSG

SYSTEM_FAILURE = 2 MESSAGE MSG.

SET USER-COMMAND ‘OKCD’. “Set OK-code

ENDFORM.

RFC Programming in ABAP SAP AG

Keeping the Remote Context

44 April 2001

Keeping the Remote Context
In the FORM routine that checks for results of an asynchronously called function with RECEIVE
RESULTS FROM FUNCTION, the addition KEEPING TASK prevents the connection from being
closed after receiving the results of the processing.
FORM RETURN_INFO USING TASKNAME.

RECEIVE RESULTS FROM FUNCTION ‘RFC_SYSTEM_INFO’

KEEPING TASK

...

ENDFORM.

The relevant remote context (roll area) is kept until the caller terminates the connection. If you
specify the same taskname, you can re-use the remote context and roll area.

If the remote function module performs interactive tasks such as processing lists or dynpros,
screens are displayed until the calling program terminates. If the remote call is made in
debugging mode, this mode is visible until the caller dialog is terminated.

You should use the addition KEEPING TASK only if you want to re-use the current
remote context for a subsequent asynchronous call.

Keeping a remote context increases storage load and decreases performance due to
additional roll area management in the system.

 SAP AG RFC Programming in ABAP

Parallel Processing with Asynchronous RFC

April 2001 45

Parallel Processing with Asynchronous RFC
To achieve a balanced distribution of the system load, you can use destination additions to
execute function modules in parallel tasks in any application server or in a predefined application
server group of an R/3 System.

Parallel-processing is implemented with a special variant of asynchonous RFC. It’s
important that you use only the correct variant for your own parallel processing
applications: the CALL FUNCTION STARTING NEW TASK DESTINATION IN
GROUP keyword. Using other variants of asynchronous RFC circumvents the built-
in safeguards in the correct keyword, and can bring your system to its knees

Details are discussed in the following subsections:

� Prerequisites for Parallel Processing

� Function Modules and ABAP Keywords for Parallel Processing

� Managing Resources in Parallel Processing

Prerequisites for Parallel Processing
Before you implement parallel processing, make sure that your application and your R/3 System
meet these requirements:

� Logically-independent units of work:

The data processing task that is to be carried out in parallel must be logically
independent of other instances of the task. That is, the task can be carried out without
reference to other records from the same data set that are also being processed in
parallel, and the task is not dependent upon the results of others of the parallel
operations. For example, parallel processing is not suitable for data that must be
sequentially processed or in which the processing of one data item is dependent upon
the processing of another item of the data.

By definition, there is no guarantee that data will be processed in a particular order in
parallel processing or that a particular result will be available at a given point in
processing.

� ABAP requirements:

� The function module that you call must be marked as externally callable. This
attribute is specified in the Remote function call supported field in the function
module definition (transaction SE37).

� The called function module may not include a function call to the destination “BACK.”

� The calling program should not change to a new internal session after making an
asynchronous RFC call. That is, you should not use SUBMIT or CALL
TRANSACTION in such a report after using CALL FUNCTION STARTING NEW
TASK.

� You cannot use the CALL FUNCTION STARTING NEW TASK DESTINATION IN
GROUP keyword to start external programs.

� R/3 System resources:

RFC Programming in ABAP SAP AG

Parallel Processing with Asynchronous RFC

46 April 2001

In order to process tasks from parallel jobs, a server in your R/3 System must have at
least 3 dialog work processes. It must also meet the workload criteria of the parallel
processing system: Dispatcher queue less than 10% full, at least one dialog work
process free for processing tasks from the parallel job.

Function Modules and ABAP Keywords for Parallel Processing
You can implement parallel processing in your applications by using the following function
modules and ABAP keywords:

� SPBT_INITIALIZE: Optional function module.

Use to determine the availability of resources for parallel processing.

You can do the following:

� check that the parallel processing group that you have specified is correct.

� find out how many work processes are available so that you can more efficiently size
the packets of data that are to be processed in your data.

� CALL FUNCTION <function> STARTING NEW TASK <taskname> DESTINATION IN
GROUP:

Use this ABAP keyword to have the R/3 System execute the function module call in
parallel. Typically, you’ll place this keyword in a loop in which you divide up the data that
is to be processed into work packets. You can pass the data that is to be processed in
the form of an internal table (EXPORT, TABLE arguments). The keyword implements
parallel processing by dispatching asynchronous RFC calls to the servers that are
available in the RFC server group specified for the processing.

Note that your RFC calls with CALL FUNCTION are processed in work processes of type
DIALOG. The DIALOG limit on processing of one dialog step (by default 300 seconds,
system profile parameter rdisp/max_wprun_time) applies to these RFC calls. Keep this
limit in mind when you divide up data for parallel processing calls.

� SPBT_GET_PP_DESTINATION: Optional function module.

Call immediately after the CALL FUNCTION keyword to get the name of the server on
which the parallel processing task will be run.

� SPBT_DO_NOT_USE_SERVER: Optional function module.

Excludes a particular server from further use for processing parallel processing tasks.
Use in conjunction with SPBT_GET_PP_DESTINATION if you determine that a
particular server is not available for parallel processing (for example, COMMUNICATION
FAILURE exception if a server becomes unavailable).

� WAIT: ABAP keyword

WAIT UNTIL <logical expression>

Required if you wish to wait for all of the asynchronous parallel tasks created with CALL
FUNCTION to return. This is normally a requirement for orderly background processing.
May be used only if the CALL FUNCTION includes the PERFORMING ON RETURN
addition.

� RECEIVE: ABAP keyword

RECEIVE RESULTS FROM FUNCTION function

 SAP AG RFC Programming in ABAP

Parallel Processing with Asynchronous RFC

April 2001 47

Required if you wish to receive the results of the processing of an asynchronous RFC.
RECEIVE retrieves IMPORT and TABLE parameters as well as messages and return
codes.

Managing Resources in Parallel Processing
You use the following destination additions to perform parallel execution of function modules
(asynchronous calls) in the R/3 System:

In a predefined group of application servers:
CALL FUNCTION RemoteFunction STARTING NEW TASK taskname

Destination IN GROUP groupname

In all currently available and active application servers:
CALL FUNCTION RemoteFunction STARTING NEW TASK Task

Destination IN GROUP DEFAULT

The addition first determines the amount of resources (work processes) currently available (i.e. in
all servers or in a group of application servers, comparable with login servers). The resources
available for executing asynchronous calls on each application server depends on the current
system load.

The applications developer is responsible for the availability of RFC groups in the production
system (i.e. the customer's system). For details on how to maintain the RFC groups, see
Maintaining Group Destinations For Load Distribution [Page 62].

After determining the available resources, the asynchronous call is executed in an available
application server. If no resources are available at that particular time, the system executes the
exception routine RESOURCE_FAILURE (see the addition Exceptions). In the case of an
asynchronous function module call, this exception must be handled by the application program.

The process for determining available resources in an RFC group is as follows:

First, the system determines the length of the dispatcher queue for the relevant application
server. If it is greater than 10% of the overall length, the server makes no resources available. If it
is smaller, the system makes available the current number of free dialog processes minus 2 (as a
reserve instance for other purposes, e.g. for logon to the system or administration programs).
Thus, one application server must have at least 3 dialog processes if RFC parallel processing is
taken into account.

� At present, only one RFC group per program environment is supported for
parallel execution of asynchronous calls. Using both additions (DESTINATION
IN GROUP <groupname> and DESTINATION IN GROUP DEFAULT) in one
program is not allowed.

� The exception routine RESOURCE_FAILURE is only triggered in connection with
asynchronous RFCs with the additions DESTINATION IN GROUP groupname
and DESTINATION IN GROUP DEFAULT.

� You are recommended (for performance and other reasons) to use an RFC
group with sufficient resources for parallel processing of asynchronous calls

RFC Programming in ABAP SAP AG

Checking Authorizations for RFC

48 April 2001

Checking Authorizations for RFC
If the system profile parameter auth/rfc_authority_check is set (value 1), then the System
automatically checks at the CALL FUNCTION keyword whether the authorizations user has the
required RFC authorization.

The RFC authorization object is S_RFC Authorization check at RFC access. The authorization
checks access to function modules by function module group. That is, whether a user has the
right to run function modules that belong to a particular group.

You can test a user’s RFC authorization with the function module AUTHORITY_CHECK_RFC.
This function module returns RC = 0 if the user is authorized for the group that you name. The
function module does not check whether an authority check will actually take place.

 SAP AG RFC Programming in ABAP

Using Pre-Defined Exceptions for RFC

April 2001 49

Using Pre-Defined Exceptions for RFC
While any exceptions arising in the called function module are handled by the addition...
PERFORMING form ON END OF TASK, the RFC interface defines two additional exception
types. These are:

� SYSTEM_FAILURE

This exception reports all failures and system problems on the remote machine.

� COMMUNICATION_FAILURE

This exception is raised when a connection or communications failure occurs. It does not
report system problems (for example, abnormal termination) that occur on the remote
machine.

Requesting Error Messages
In the function modules that you call, you should use exceptions for any error reporting, and not
the MESSAGE keyword.
CALL FUNCTION RemoteFunction

 DESTINATION ‘hw1071_53’

 EXPORTING...

 IMPORTING...

 TABLES...

 EXCEPTIONS

 SYSTEM_FAILURE = 1 MESSAGE msg

 COMMUNICATION_FAILURE = 2 MESSAGE msg

The system sets the message variable (msg) to the system message. You can then display the
message or log it in a file. You should not try to interpret message text in your program.

You can use MESSAGE only with the two system exceptions described here.

RFC Programming in ABAP SAP AG

Writing Remote Function Modules in ABAP

50 April 2001

Writing Remote Function Modules in ABAP
This section provides specifics on writing function modules that can be called remotely. For
information about writing function modules generally, see the system documentation on "Writing
Function Modules".

This section contains the following topics:

Steps for Implementing Remote Function Modules [Page 51]

Programming Guidelines [Page 52]

Debugging Remote Function Modules [Page 53]

 SAP AG RFC Programming in ABAP

Steps for Implementing Remote Function Modules

April 2001 51

Steps for Implementing Remote Function Modules
To implement a remote function module in ABAP, perform the following steps:

1. Register the module as remotely callable in the RFC server system.

In the function module Administration screen (transaction code SE37), set the field Can
be called via REMOTE CALL. Registering a module as remote causes an RFC stub to
be generated for it.

2. Write the code for the function module.

Guidelines for creating function modules in the R/3 Repository are given in the system
documentation "Writing Function Modules".

3. Define the destination of the RFC server in the RFC client system that calls the remote
function.

Either you or your system administrator can maintain the RFCDES table using
transaction SM59 (Tools ��Administration, Administration ��Network ��RFC
destinations). Maintaining this table is described in the topic Maintaining Remote
Destinations [Page 54].

RFC Programming in ABAP SAP AG

Programming Guidelines

52 April 2001

Programming Guidelines
The following sections describe some points to remember when you write a remote function
module.

Declaring Parameters
For normal (non-remote) function modules, if a parameter is not defined like an ABAP Dictionary
field, it takes the data type of the actual parameter used at run-time.

A remote function module, however, does not have this information available. As a result, all
parameter fields for a remote function module must be defined as reference fields, that is, like
ABAP Dictionary fields. (This includes IMPORTING, EXPORTING, and TABLES parameters.)

For character structures or fields, the caller's parameters need not be as long as expected by the
called program. When incoming parameters are shorter, RFC simply pads them with blanks. This
means that the ABAP Dictionary definition of character parameters need not be exactly the same
on the calling and called sides. (However, the caller's parameters may not be longer than
expected on the called side).

Writing for Transactional Execution

There are two restrictions on writing remote functions that are to be called
transactionally:

� Transactional calls cannot return parameter values. As a result, the interface for
these functions should not specify any EXPORT parameters.

� Functions that run transactionally may not perform call-backs: the caller's context
does not necessarily still exist when the call-back is relayed back to the original
system.

Reporting on Exceptions
You can raise exceptions in a remote function just as you would in a locally called function.

Since the system raises COMMUNICATION_FAILURE and SYSTEM_FAILURE internally, there
is no reason for you to raise them in your program. The MESSAGE keyword is only meaningful in
relation to these system exceptions, so you need not program them into your function.

Calling Other Remote Functions
A remote function can call other remote functions, just like an ordinary function module.

In particular, it can use the call-back feature to call function modules running in the system of the
original caller.

For details on call-backs between R/3 Systems, see Calling Remote Functions BACK [Page 18]

For details on call-backs between R/3 and external systems, see ‘Call-Back’ Feature with R/3
and External Systems [Ext.].

 SAP AG RFC Programming in ABAP

Debugging Remote Function Modules

April 2001 53

Debugging Remote Function Modules
When testing ABAP-to-ABAP RFC calls, you can use the ABAP debugger to monitor the
execution of the RFC function in the remote system. Static breakpoints, single-stepping, variable-
watching and source display are possible.

With remote calls, the ABAP debugger (including the debugging interface) runs on the local
system. Data values and other run information for the remote function are passed in from the
remote system.

RFC Programming in ABAP SAP AG

Maintaining Remote Destinations

54 April 2001

Maintaining Remote Destinations
Choose Tools � Administration � Administration � Network � RFC destinations.

Details are explained in the following topics:

Types of Destinations [Page 59]

Displaying, Maintaining and Testing Destinations [Page 55]

Entering Destination Parameters [Page 57]

Maintaining Group Destinations [Page 62]

 SAP AG RFC Programming in ABAP

Displaying, Maintaining and Testing Destinations

April 2001 55

Displaying, Maintaining and Testing Destinations
To display, create or modify destinations, choose Tools ��Administration ��Administration
��Network ��RFC destinations or enter transaction code SM59.

Remote Destinations are stored in table RFCDES. The RFCDES table describes logical
destinations for remote function calls.

It is not possible to maintain the RFCDES table directly.

You can also access logical destinations via the Implementation Guide (IMG) by
choosing Tools � AcceleratedSAP � Customizing � Execute Project � SAP
Reference IMG.

In the Implementation Guide, expand the following hierarchy structure:

Basis
 Application Link Enabling (ALE)
 Sending and Receiving Systems

Systems in Network
Define Target Systems for RFC Calls

Displaying Destinations
The initial screen for this transaction displays a tree:

R/2 connections

R/3 connections

Internal connections

Logical destinations

TCP- IP connections

Connections via ABAP/4 driver

+

+

+

+

+

+

RFC-destinations

Different connection types (i.e. partner systems or programs) are possible. For further
information, see Types of Destinations [Page 59].

To display all information for a given destination, double-click it, or place the cursor on it and
press F2.

To search for a destination, press the Find button and specify your selection. You get a list of all
entries matching your selection. Place the cursor on the one you want, and press F2 or simply
double-click the destination. All information for the given entry appears.

RFC Programming in ABAP SAP AG

Displaying, Maintaining and Testing Destinations

56 April 2001

Creating Destinations
On the destinations overview screen (transaction code SM59), the connection types and all
existing destinations are displayed in a tree structure.

All available connection types are explained in Types of Destinations [Page 59].

To create a new RFC destination, press the Create button. A new screen is displayed with empty
fields for you to fill in.

If you want to create a new destination

As you create a remote destination, you can specify a particular application server or a group of
servers for a balanced distribution of system load.

For details of the destination parameters, see Entering Destination Parameters [Page 57].

Changing Existing Destinations
On the destinations overview screen (transaction code SM59), the connection types and all
existing destinations are displayed in a tree structure.

You can display all information for a given destination by double-clicking it or pressing F2 on it.

To change an existing destination, double-click it, or place the cursor on it and press the Change
button.

For details of the destination parameters, see Entering Destination Parameters [Page 57].

Testing Destinations
To test a destination, choose the appropriate function from the Test menu.

� Connection (also available via the Test connection pushbutton)

� Authorization (checks logon data)

� Local network (provides a list of application servers)

 SAP AG RFC Programming in ABAP

Entering Destination Parameters

April 2001 57

Entering Destination Parameters
In addition to the RFC destination, you must enter the following information:

Technical settings

� Connection type

Enter an existing connection type or choose one via the field entry help.
All available connection types are explained in Types of Destinations [Page 59].

� Trace

Mark the Trace option to have the RFC communication logged and stored in a file. You
can then display the file, both in the calling and receiving system, using report
RSRFCTRC.

� Load balance

If you choose load balancing, you must specify the following information:

� Target system (For a list of available servers, log on to the target system and choose
Tools � Administration, Monitor � System Monitor � Servers.)

� Message server (Log on to the target system and choose Control � Control Panel
from the CCMS main menu. It is the server that offers the service M.)

� Group (of servers) (see SAP Logon Group of Servers)

Otherwise, you must specify the following information:

� Target host

The name of a server host of the target system that you want to use as a port to the
system.

� System number

Communications service used with the target system. To obtain it, choose Tools �
Administration � Monitor � System Monitor � Servers.

Security Options
The following options are available only with some connection types:

� Trusted system (for type 3 only)

If the target system is a trusted system, choose Yes. For details on trusted systems, see
Maintaining Trust Relationships Between R/3 Systems [Page 63].

� SNC (Secure Network Communications, available for types 3 and T only)

If you have an active SNC-supported security system, you can activate additional
security options which you must set via Destinations � SNC options.

Description
Text description of the entry.

Logon

� Language

RFC Programming in ABAP SAP AG

Entering Destination Parameters

58 April 2001

System language to be used

� Client

Client code

� User

User name to be used for remote logon, if different from current user name

� Password

User password

� Current user

The current user name is to be used for remote logon.

� Unencrypted password (2.0)

If the target system is an R/3 System of Release 2.0, the password must not be
encrypted.

The Attributes section contains creation and change information.

 SAP AG RFC Programming in ABAP

Types of Destinations

April 2001 59

Types of Destinations
Each destination has a connection-type field (Connection type), which tells the kind of system
connection:

� R/2 connections (Type 2)
Type 2 entries specify R/2 systems. No further specification is required, i.e. when you
create a type 2 entry, you only need to give the host name; all communications
information is already stored in the sideinfo table in the SAP Gateway host. You can,
however, specify logon information if desired.

Example entry name: K50

� R/3 connections (Type 3)
Type 3 entries specify R/3 systems. When you create a type 3 entry, you must give the
host name and communications service. You can also specify logon information if
desired. From R/3 Release 3.0 onwards, you can also specify the load-balancing option
if desired.

From R/3 Release 3.0 onwards, it is possible to specify an application server from
the R/3 message server. The application server is then determined according to the
load-balancing process. This applies both for RFCs between R/3 Systems and
external calls to R/3 Systems.

Example entry name: K11

� Internal connections (Type I)
Type I entries specify R/3 systems connected to the same data base as the current
system. These entries are pre-defined and cannot be modified. The entry names are the
same as those used in the SAP Message Server (transaction SM51)

Example entry name: hs0010_K11_24

� hs0010=host name

� K11=system name (data base name)

� 24=TCP-service name

� Logical destinations (Type L)
Instead of specifying a system connection, type L (logical) entries refer to a physical
destination. Type L destinations can also refer to other type L entries. A type L entry
uses the information in the "referred-to" entry, and adds further information of its own.
Typically, the "referred-to" entry gives the host information, and the type-L entry gives
logon data. You can also set a user name, an explicit password, a logon language or an
explicit client.

A type L entry can refer to other type L entries.

Example entry name: K11_SD or K11_01

� K11=name of RFCDES entry for R/3 system K11

� SD or 01: for the fields User='SD_INPUT' or Mandant='001'

RFC Programming in ABAP SAP AG

Types of Destinations

60 April 2001

� Connections via ABAP driver (Type X)
Type X entries specify systems where device drivers in ABAP have been specially
installed. When you create a type X entry, you must give the name of the ABAP device
driver.

� TCP/IP Connections (Type T)
Type T destinations are connections to external programs that use the RFC API to
receive RFCs. The activation type can be either Start or Registration.

If it is Start, you must specify the host name and the pathname of the program to be
started.

Activation Type Start
The communication method depends on how you select the program location:

� Explicit host
In this case, the program is started either by the default gateway for the system or by
the explicitly specified gateway (gwrd) via remote shell.
Ensure that the computer with the gateway process can access the specified
computer by entering /etc/ping <host name>.

In order to be able to start a program on another computer using remote shell, the
target system must fulfil certain conditions.

� The user ID of the gateway process must exist and a file called.rhosts must
also be present in the user's home diretory.

� The file.rhosts must contain the name of the calling computer.

To check this, logon to the computer containing the gateway process with the
appropriate user ID and enter the command remsh <host name> <program
name>. The <host name> and <program name> must be the same as in SM59. (If
you call an RFC server program without any parameters, the RfcAccept call always
returns an error code (RFC_HANDLE_NULL) and the program terminates at once.)

� Application server
On choosing Application server and specifying your program, you can start the
program from the SAP application server.

First, ensure that the program can be accessed from the SAP application server and
that the SAP application server has the authorization to start the program.

To check this, logon with the user ID of the SAP application server (e.g. c11adm). If
possible, change to the working directory of the SAP application server
(/usr/sap/.../D.../work) and try to start the RFC server program manually from there.
(As in the above case, if you call an RFC server program without parameters, the
RfcAccept call always returns an error code (RFC_HANDLE_NULL) and the program
terminates at once.)

� Front-end workstation

On choosing Front-end workstation and specifying your program, you can start the
program from the SAPGUI.

Ensure that you can access the program with SAPGUI.

 SAP AG RFC Programming in ABAP

Types of Destinations

April 2001 61

Ensure that SAPGUI has the authorization to start the program.

To check this, simply call the RFC server program in your environment.

The function call can also be transactional (CALL FUNCTION... IN BACKGROUND
TASK DESTINATION...).

Activation Type Registration
If the activation type is Registration, you have to identify a registered RFC program. With
an SAP gateway, an RFC server program can be registered under this ID and then wait
for RFC calls from different SAP Systems.

Example entry name: SERVER_EXEC

� Type M
Type M entries are asynchronous RFC connections to R/3 Systems via CMC (protocol
X.400).

� Type S
Type S corresponds to type 2, except that the destination is SNA or APPC.

RFC Programming in ABAP SAP AG

Maintaining Group Destinations

62 April 2001

Maintaining Group Destinations
To achieve a balanced load distribution in the target system, you must define a group of
application servers as an RFC destination. When processing tasks in parallel, you can use the
group destination only in connection with the asynchronous RFC [Page 38].

The resources available on each application server depends on the current system load.

To display and maintain the RFC groups, proceed as follows:

1. From the RFC destination overview screen, choose RFC � RFC groups.

You’ll see:

– the names of any RFC groups that have already been defined

– a list of the instances (host, system and instance number) in your R/3 System

– the current status (active or not) of each server.

2. To define an RFC group, choose Edit � Create. Enter a server group name and an instance
in the dialog window.

To add instances to an existing group, double click the group name and enter a new
instance in the dialog window.

By creating duplicate entries, you can assign a server to more than one group. In this
case, jobs that use the group will compete for free work processes on the shared
server(s).

Usage examples:
You could use groups to allow different parallel-processed jobs to run at the same
time without competing for the same servers. In this case, the different groups used
by the jobs would specify different servers.

You could also use groups to separate processing from servers on which dialog
users are active. In this case, the group used for processing would name servers
other than those in the logon groups for users.

 SAP AG RFC Programming in ABAP

Maintaining Trust Relationships Between R/3 Systems

April 2001 63

Maintaining Trust Relationships Between R/3 Systems
R/3 Systems may establish trusted relationships between each other.

If a calling R/3 System is known to the called system as a trusted system, no password must be
supplied.

The calling R/3 System must be registered with the called R/3 System as a trusted system. The
called system is called the trusting system.

R/3 Presentation
Servers

R/3 System

Single signon

R/3 System

R/3 Application
Servers

R/3 Database
Servers

Trust relationship

 Trusted System
(contains the RFC Client)

 Trusting System
(contains the RFC Server)

Trust relationships between R/3 Systems have the following advantages:

� Single signon is possible beyond system boundaries.

� No passwords are transmitted in the network.

� Timeout mechanism protects against replay attacks.

� User-specific logon data are checked in the trusting system.

Using this feature, you can create a virtual R/3 System consisting of various R/3 Systems that
are called remotely. Remote logon data are checked in the trusting system.

The trust relationship is not mutual, which means, it applies to one direction only. To establish a
mutual trust relationship between two partner systems, you must define each of the two as
trusted systems in its respective partner system.

For additional security, you can make use of SAP’s SNC interface (Secure Network
Communications) for third-party security systems such as Kerberos and SECUDE.

Displaying, Maintaining and Testing Trusted Systems
To display or maintain a trusted system in the trusting system, proceed as follows:

RFC Programming in ABAP SAP AG

Maintaining Trust Relationships Between R/3 Systems

64 April 2001

1. If you want to define an R/3 System as a trusted system, you must first create a logical
destination that allows a trusted system relationship. For details, see Maintaining Remote
Destinations [Page 54].

2. From the RFC destination overview screen (transaction SM59), choose RFC � Trusted
systems or enter transaction code SMT1.

If trusted systems have already been defined, they are displayed in a hierarchy tree. To
display existing trusted systems, expand the nodes in the hierarchy tree.

For details, double click a trusted system.

3. To create a trusted system, click the Create icon.

In the dialog window, enter the destination for the remote system. To change a
destination, see Changing Trusted Destinations below.

All the necessary information such as application server name and security key is
supplied automatically.

4. If you want to restrict the validity period of the logon data, enter an end date in the
Validity period field.

5. If you want take over the transaction code of the calling program into the called system,
mark the appropriate checkbox.

Only then will an authorization check be performed in the called system for the
transaction code (field RFC_TCODE of the S_RFCACL authorization object, see Logon
Authorization Checks in the Trusting System below).

6. To delete a trusted system relationship, display the trusted system details and click the
Delete pushbutton.

As you delete a trusted system relationship, the logon screen of the relevant system
is displayed, if no valid logon data are provided. You must log on to that system to
complete the deletion.

Changing Trusted Destinations
You can change existing destinations for each system from the trusted system maintenance
screen (RFC � Trusted systems, transaction code SMT1) by clicking on the Maintain destination
pushbutton.

In trusted systems, destinations for trusting systems are automatically created. These
destinations are used when you display trusting systems via RFC � Trusting systems
(transaction code SMT2).

To prevent others from making changes to your trusted destination, mark the checkbox
Destination not changeable in the Attributes section. To make the destination changeable again,
doubleclick the checkbox.

For more details on fields, invoke field help.

,Please note that destinations must remain consistent, which means you must neither change the
target system ID, the system number nor the destination name.

 SAP AG RFC Programming in ABAP

Maintaining Trust Relationships Between R/3 Systems

April 2001 65

Displaying Trusting Systems
In a trusted system, you can obtain a list of all trusting systems.

Choose RFC � Trusting systems to display the list of trusting systems.

Click on the name of a trusting system to display the application servers of that system. The
application server names contain the suffix _TRUSTED.

Double-clicking an application server name provides a dialog window with an entry field for a
transaction code to be performed in the trusting system, and whether the transaction is to be
carried out in the same mode or in a new mode.

Logon Authorization Checks in the Trusting System
The logon data used for logging on to a trusting system undergo an authorization check.

The data provided by the trusted system is checked for system name, client, user name, and
other optional data. These data must match the field values of authorization object S_RFCACL.

The system administrator can check a user’s logon data using the function module
AUTHORITY_CHECK_TRUSTED_SYSTEM.

Error return codes are explained in the Troubleshooting section below.

Testing Trusting Systems
To test a trusted system, you can perform authorization checks for the current server and the
trusting system via the Entry menu. If no valid logon data are supplied, the logon screen of the
trusted systems appears. You should log on to the system. If your test is not successful, read the
section Troubleshooting in Trusted/Trusting Systems below.

Troubleshooting in Trusted/Trusting Systems
After you have created a trusted system, you must test the destination by logging in to the trusted
system via the Remote logon pushbutton.

Alternatively, you can perform an authorization check for the trusted server using the appropriate
function from the Test menu.

If your login attempt fails, you will receive the following message: No authorization to log in as
trusted system (error code = <0|1|2|3>). Note that the special users DDIC and SAP* must not be
used.

The error code explanation is as follows:

0 Invalid login data (user ID and client) for the trusting system

Solution: Create the user ID for the client in the trusting system.

1 No trusted system entry exists for the calling system, or the security key for the system is
invalid.

Solution: Create the trusted system entry again.

2 The user does not have a trusted system authorization (object S_RFCACL).

Solution: Provide the user with the necessary authorization.

3 The time stamp of the login data is invalid.

RFC Programming in ABAP SAP AG

Maintaining Trust Relationships Between R/3 Systems

66 April 2001

Solution: Check the clock settings on both the client and server host and the expiration
date of the login data. (Note that the default expiration period 00:00:00 means no limit.)

You can check whether correct login information has been provided for the trusted system in the
trusting system by means of the function module AUTHORITY_CHECK_TRUSTED_SYSTEM.

If all your tests are successful and you still don’t get access to the trusting system, refresh the
relevant database buffers by choosing Utilities � Mass changes � Reset all buffers from the
user maintenance screen.

To find out the cause of an error, activate the trace flag on the destination details
screen, reproduce the error and read the information provided with the error ID
CALL_FUNCTION_SINGLE_LOGIN_REJ in the short dump created in the called
system (the trusting system).

	Copyright
	Icons
	Contents
	RFC Programming in ABAP
	RFC Basics
	
	The RFC Interface [Page 7]
	RFC in SAP Systems [Page 8]
	Technical Requirements [Page 11]

	The RFC Interface
	RFC in SAP Systems
	Technical Requirements
	External Systems
	SAP R/3 Systems
	SAP R/2 Systems

	Calling Remote Function Modules in ABAP
	
	Introduction [Page 14]
	Parameter Handling in Remote Calls [Page 16]
	Calling Remote Functions Locally [Page 17]
	Calling Remote Functions BACK [Page 18]
	Using Transactional Remote Function Calls [Page 19]
	Using Asynchronous Remote Function Calls [Page 38]
	Checking Authorizations for RFC [Page 48]
	Using Pre-Defined Exceptions for RFC [Page 49]

	Introduction
	Parameter Handling in Remote Calls
	TABLES parameters

	Calling Remote Functions Locally
	Calling Remote Functions BACK
	Using Transactional Remote Function Calls
	When the Remote System is Unavailable

	Transactional Integrity of tRFCs
	Checking the Status of Transactional Calls
	RFC API

	qRFC With Send Queue
	Motivation
	What Does tRFC Perform Right Now?
	Disadvantages of tRFC

	Use and Availability
	Other Topics

	qRFC With Send Queue: Overview
	Characteristics
	Which Problems Can Occur?

	Programming Serialization
	Prerequisites
	Procedure
	Result

	Using "Mixed Mode"
	Prerequisites
	Procedure
	Result

	Transaction Sequence and Queue Assignment
	Sample Scenario
	Queue Usage
	Assignment of the Queues

	Tools
	Tools
	Passing Queue Names
	Reading Queue Entries
	Initializing in "Mixed Mode"
	SM58
	Stopping Queues, Continuing Them, and Querying Their Statuses

	Sample Programs

	Using Asynchronous Remote Function Calls
	Calling Requirements for Asynchronous RFCs
	Receiving Results from an Asynchronous RFC
	Keeping the Remote Context
	Parallel Processing with Asynchronous RFC
	Prerequisites for Parallel Processing
	Function Modules and ABAP Keywords for Parallel Processing
	Managing Resources in Parallel Processing

	Checking Authorizations for RFC
	Using Pre-Defined Exceptions for RFC
	Requesting Error Messages

	Writing Remote Function Modules in ABAP
	
	Steps for Implementing Remote Function Modules [Page 51]
	Programming Guidelines [Page 52]
	Debugging Remote Function Modules [Page 53]

	Steps for Implementing Remote Function Modules
	Programming Guidelines
	Declaring Parameters
	Writing for Transactional Execution
	Reporting on Exceptions
	Calling Other Remote Functions

	Debugging Remote Function Modules
	Maintaining Remote Destinations
	
	Types of Destinations [Page 59]
	Displaying, Maintaining and Testing Destinations [Page 55]
	Entering Destination Parameters [Page 57]
	Maintaining Group Destinations [Page 62]

	Displaying, Maintaining and Testing Destinations
	Displaying Destinations
	Creating Destinations
	Changing Existing Destinations
	Testing Destinations

	Entering Destination Parameters
	Types of Destinations
	Maintaining Group Destinations
	Maintaining Trust Relationships Between R/3 Systems
	Displaying, Maintaining and Testing Trusted Systems
	Changing Trusted Destinations
	Displaying Trusting Systems
	Logon Authorization Checks in the Trusting System
	Testing Trusting Systems
	Troubleshooting in Trusted/Trusting Systems

