
 

 

The RFC API 

 H
E

L
P

.B
C

F
E

S
D

E
4

 

Re lease  4 .6C 

 



The RFC API  SAP AG 

 

Copyright 
 
© Copyright 2001 SAP AG. All rights reserved. 
 
No part of this publication may be reproduced or transmitted in any form or for any purpose 
without the express permission of SAP AG. The information contained herein may be changed 
without prior notice. 
 
Some software products marketed by SAP AG and its distributors contain proprietary software 
components of other software vendors. 
 
Microsoft®, WINDOWS®, NT®, EXCEL®, Word®, PowerPoint® and SQL Server® are registered 
trademarks of  
Microsoft Corporation. 
 
IBM®, DB2®, OS/2®, DB2/6000®, Parallel Sysplex®, MVS/ESA®, RS/6000®, AIX®, S/390®, 
AS/400®, OS/390®, and OS/400® are registered trademarks of IBM Corporation. 
 
ORACLE® is a registered trademark of ORACLE Corporation. 
 
INFORMIX®-OnLine for SAP and Informix® Dynamic Server

TM
 are registered trademarks of 

Informix Software Incorporated. 
 
UNIX®, X/Open®, OSF/1®, and Motif® are registered trademarks of the Open Group. 
 
HTML, DHTML, XML, XHTML are trademarks or registered trademarks of W3C®, World Wide 
Web Consortium,  
Massachusetts Institute of Technology.  
 
JAVA® is a registered trademark of Sun Microsystems, Inc.  
 
JAVASCRIPT® is a registered trademark of Sun Microsystems, Inc., used under license for 
technology invented and implemented by Netscape.  
 
SAP, SAP Logo, R/2, RIVA, R/3, ABAP, SAP ArchiveLink, SAP Business Workflow, WebFlow, 
SAP EarlyWatch, BAPI, SAPPHIRE, Management Cockpit, mySAP.com Logo and mySAP.com 
are trademarks or registered trademarks of SAP AG in Germany and in several other countries 
all over the world. All other products mentioned are trademarks or registered trademarks of their 
respective companies. 

2  April 2001 



 SAP AG The RFC API 

   

Icons 
 

Icon Meaning 

 
Caution 

 
Example 

 
Note 

 
Recommendation 

 
Syntax 

 

April 2001  3 



The RFC API  SAP AG 

 

Contents 
 

The RFC API........................................................................................................8 
Introduction to the RFC API ......................................................................................................... 9 
RFC with External Systems........................................................................................................ 10 
Technical Requirements............................................................................................................. 12 
Contents of the RFC SDK........................................................................................................... 14 
Compiling and Linking RFC Programs ..................................................................................... 17 
Programming with the RFC API................................................................................................. 18 
Technical Description ................................................................................................................. 20 
Supported Data and Transfer..................................................................................................... 21 
Basic Functionality ..................................................................................................................... 23 
Components of the RFC API ...................................................................................................... 24 
RFC Client Programs .................................................................................................................. 25 

Introduction to RFC Client Programs ....................................................................................... 26 
Establishing an RFC Connection to R/2 Systems ................................................................... 28 

Programming Example of Working With Local sideinfo File............................................... 29 
Programming Example of Working Without Local sideinfo File.......................................... 31 
Programming Example of Working With saprfc.ini File ...................................................... 32 
Establishing an RFC Connection to R/3 Systems .............................................................. 33 

Programming Example of Working With Local sideinfo file........................................... 34 
Programming Example of Working Without Local sideinfo File..................................... 35 
Programming Example of Working With saprfc.ini File ................................................. 37 

Load Balancing ........................................................................................................................ 39 
Programming Examples........................................................................................................... 40 
Remote Function Calls Using SAPGUI.................................................................................... 44 
RFC Using the ABAP Debugger .............................................................................................. 45 

RFC Server Programs................................................................................................................. 46 
Introduction to RFC Server Programs...................................................................................... 47 
Registering Server Programs with the SAP Gateway.............................................................. 49 
Programming Examples........................................................................................................... 50 

RFC Server Program Working With RfcDispatch ............................................................... 51 
RFC Server Program Working With RfcDispatch and RfcListen........................................ 53 
RFC Server Programs Sending/Receiving Internal Tables ................................................ 54 

Establishing an RFC Connection from an R/2 System ............................................................ 55 
Establishing an RFC Connection from an R/3 System ............................................................ 58 

Passing Parameters .................................................................................................................... 61 
Writing an RFC Function in C .................................................................................................... 63 
Using Multiple-Client Server Programs .................................................................................... 64 
The SAPRFC.INI File ................................................................................................................... 66 
Introduction.................................................................................................................................. 67 
Possible Parameters ................................................................................................................... 69 
Examples...................................................................................................................................... 72 
Call-Back Feature with R/3 and External Systems .................................................................. 73 
Introduction.................................................................................................................................. 74 

4  April 2001 



 SAP AG The RFC API 

   

Call-Back from an ABAP Function Module............................................................................... 75 
Call-Back from an RFC Server Program ................................................................................... 76 
Transactional RFCs and External Systems.............................................................................. 77 
Introduction.................................................................................................................................. 78 
tRFC between R/3 and External Systems ................................................................................. 79 
Transactional RFC Client Programs.......................................................................................... 80 
Transactional RFC Server Programs ........................................................................................ 83 
Function Interface: Summary..................................................................................................... 87 
Administration ............................................................................................................................. 88 
Calling and Accepting RFC Functions...................................................................................... 89 
RFC Calls for Manipulating Internal Tables.............................................................................. 91 
Transactional Remote Function Calls....................................................................................... 93 
Extended Remote Function Calls .............................................................................................. 94 
Special Functions........................................................................................................................ 95 
ABAP Data Types ........................................................................................................................ 96 

RFC_CHAR.............................................................................................................................. 97 
RFC_HANDLE ......................................................................................................................... 98 
RFC_FUNCTIONNAME........................................................................................................... 99 
RFC_TID ................................................................................................................................ 100 
RFC_NUM.............................................................................................................................. 101 
RFC_INT ................................................................................................................................ 102 
RFC_INT1 .............................................................................................................................. 103 
RFC_INT2 .............................................................................................................................. 104 
RFC_BYTE............................................................................................................................. 105 
RFC_BCD .............................................................................................................................. 106 
RFC_DATE ............................................................................................................................ 107 
RFC_TIME ............................................................................................................................. 108 
RFC_FLOAT .......................................................................................................................... 109 

Function Reference................................................................................................................... 110 
Administration Function Reference ........................................................................................ 114 

RfcAbort ................................................................................................................................. 115 
RfcAccept ............................................................................................................................... 116 
RfcClose................................................................................................................................. 118 
RfcConnArgv.......................................................................................................................... 119 
RfcConnArgv3........................................................................................................................ 120 
RfcEnvironment...................................................................................................................... 122 
RfcConnect ............................................................................................................................ 123 
RfcLastError ........................................................................................................................... 125 
RfcOpen ................................................................................................................................. 126 

RFC Client Function Reference ............................................................................................... 127 
RfcCall.................................................................................................................................... 128 
RfcCallReceive....................................................................................................................... 130 
RfcReceive............................................................................................................................. 132 

RFC Server Function Reference .............................................................................................. 134 
RfcDispatch............................................................................................................................ 135 
RfcGetAttributes..................................................................................................................... 137 
RfcGetData ............................................................................................................................ 138 
RfcGetName .......................................................................................................................... 139 
RfcInstallFunction................................................................................................................... 140 

April 2001  5 



The RFC API  SAP AG 

 

RfcInstallStructure.................................................................................................................. 142 
RfcRaise................................................................................................................................. 143 
RfcRaiseTables...................................................................................................................... 144 
RfcSendData.......................................................................................................................... 145 
RfcWinInstallFunction ............................................................................................................ 146 

Table-Handling Function Reference........................................................................................ 147 
ItAppLine ................................................................................................................................ 148 
ItCpyLine ................................................................................................................................ 149 
ItCreate................................................................................................................................... 150 
ITAB_H................................................................................................................................... 151 
ItDelete ................................................................................................................................... 152 
ItDelLine ................................................................................................................................. 153 
ItFill......................................................................................................................................... 154 
ItFree ...................................................................................................................................... 155 
ItGetLine................................................................................................................................. 156 
ItGupLine................................................................................................................................ 157 
ItInsLine.................................................................................................................................. 158 
ItLeng ..................................................................................................................................... 159 
ItPutLine ................................................................................................................................. 160 

Transactional Function Reference .......................................................................................... 161 
RfcCreateTransID .................................................................................................................. 162 
RfcIndirectCall ........................................................................................................................ 163 
RfcInstallTransactionControl .................................................................................................. 164 
RFC_ON_CHECK_TID.......................................................................................................... 166 
RFC_ON_COMMIT................................................................................................................ 167 
RFC_ON_CONFIRM_TID...................................................................................................... 168 
RFC_ON_ROLLBACK ........................................................................................................... 169 
RFC_ONCALL ....................................................................................................................... 170 

Extended Function Reference.................................................................................................. 171 
RfcAddExportParam .............................................................................................................. 173 
RfcAddImportParam............................................................................................................... 174 
RfcAddTable .......................................................................................................................... 175 
RfcAllocParamSpace ............................................................................................................. 176 
RfcCallExt............................................................................................................................... 177 
RfcCallReceiveExt ................................................................................................................. 178 
RfcOpenExt............................................................................................................................ 179 
RfcOpenExtV3 ....................................................................................................................... 181 
RfcFreeParamSpace.............................................................................................................. 184 
RfcGetDataExt ....................................................................................................................... 185 
RfcReceiveExt........................................................................................................................ 186 
RfcSendDataExt..................................................................................................................... 187 
RfcInstallFunctionExt ............................................................................................................. 188 

Special Function Reference ..................................................................................................... 189 
RfcListen ................................................................................................................................ 190 
RfcWaitForRequest................................................................................................................ 192 

Structures and Enumerations.................................................................................................. 193 
RFC_CONNOPT_CPIC ......................................................................................................... 194 
RFC_CONNOPT_R3ONLY ................................................................................................... 195 
RFC_CONNOPT_VERSION_3.............................................................................................. 196 
RFC_ERROR_INFO .............................................................................................................. 198 
RFC_ITMODE........................................................................................................................ 199 
RFC_MODE ........................................................................................................................... 200 

6  April 2001 



 SAP AG The RFC API 

   

RFC_OPTIONS...................................................................................................................... 201 
RFC_PARAMETER ............................................................................................................... 204 
RFC_RC................................................................................................................................. 205 
RFC_TABLE .......................................................................................................................... 207 
RFC_ATTRIBUTES ............................................................................................................... 208 

Platform-Specific Features of the RFC API ............................................................................ 209 
OS/2 ............................................................................................................................................ 210 
Windows 3.x............................................................................................................................... 211 
Windows NT/95.......................................................................................................................... 212 
R/3-Based UNIX Platforms........................................................................................................ 213 
Sample Programs...................................................................................................................... 214 
Error Handling ........................................................................................................................... 215 
Debugging.................................................................................................................................. 216 
Error Handling in ABAP............................................................................................................ 217 
Error Handling in RFC Server Programs ................................................................................ 218 
More Information in Error Cases ............................................................................................. 221 
RFC and SAProuter................................................................................................................... 222 
Introduction to SAProuter ........................................................................................................ 223 
RFC Client Program and SAProuter........................................................................................ 225 
Starting an RFC Server Program Via SAProuter.................................................................... 228 

Using the Registering Feature ............................................................................................... 229 
Program Start by Application Server...................................................................................... 230 
Program Start by SAP Gateway ............................................................................................ 231 
Program Start by SAPGUI ..................................................................................................... 233 

RFC Between External Programs ............................................................................................ 235 
Using A Local sideinfo File ...................................................................................................... 236 
Using the saprfc.ini File............................................................................................................ 237 

 

April 2001  7 



The RFC API  SAP AG 

The RFC API 

The RFC API 

 

 

8  April 2001 



 SAP AG The RFC API 

  Introduction to the RFC API 

Introduction to the RFC API 
This documentation describes how to use RFC (Remote Function Call) from outside an SAP 
System, that is, how to write your own RFC functions or to call a function module in an R/2 or R/3 
System. 

The following topics contain basic information: 

RFC with External Systems [Page 10]  

Technical Requirements [Page 12]  

Contents of the RFC SDK [Page 14] 

Compiling and Linking RFC Programs [Page 17] 
 

April 2001  9 



The RFC API  SAP AG 

RFC with External Systems 

RFC with External Systems 
In the SAP System, the ability to call remote functions is provided by the Remote Function Call 
(RFC) interface. This interface allows for remote calls between two SAP Systems (R/3 as of 
Release 2.1 and R/2 as of Release 5.0D), or between an SAP System and a non-SAP system. 

The present section describes how to write RFC partner programs that run in non-SAP Systems.  

 
If you are writing RFC programs in an SAP System, see RFC-Programming in ABAP 
[Ext.]. 

Client and Server Programs 
RFC programs for non-SAP Systems can function as either the caller or the called program in an 
RFC communication.  

There are two kinds of RFC programs: RFC client and RFC server programs: 
The RFC client is the instance that calls up the RFC to execute the function which is provided by 
an RFC server. In the following, the functions that can be executed remotely will be called RFC 
functions, and the functions provided by the RFC API will be called RFC calls. 

How to implement external RFC programs 
You have two options for implementing external RFC programs: 

• Use programs generated by the RFC Interface Generator (see The RFC Generator [Ext.]. 

These are stub programs you can install on your workstation or PC to call up SAP 
function modules. The RFC Interface Generator in the SAP System lets you generate the 
stubs and download them to your machine. 

RFC stubs are written in C, and are stored either in libraries (in R/3-based UNIX 
systems) or in DLL's ("dynamic-link libraries" in Windows systems). With dynamic-link 
libraries, you can call the stubs from any programming language whose compiler offers 
DLL options. 

With the RFC Interface Generator you can also create example programs that show how 
to call an RFC stub. These programs can serve as a basis for programming your own 
application. 

• Write your own RFC partner program 

You can write an RFC partner that makes (or receives) the remote call directly. This 
program can call up any SAP function module or be called by any ABAP program. You 
must write the program in C.  

Both methods above use the RFC API. 

What is the RFC API? 
The SAP System provides the RFC API (Remote Function Call Application Programming 
Interface) that you install on non-SAP systems to help you implement RFC partner programs. 
The RFC API is a set of C-language routines that perform certain communications tasks for you.  

The RFC API supports several external systems, such as OS/2, Windows, WindowsNT and 
Windows95, and all R/3-based UNIX platforms and makes it possible to use the RFC 

10  April 2001 



 SAP AG The RFC API 

  RFC with External Systems 

functionality between an SAP System and a C program on the above platforms. It is of no 
significance whether the remote function is provided in an SAP System or in a C program.  

For each supported platform, there is an RFC SDK including the RFC library specific for each of 
these platforms, SAP RFC header files and some sample RFC programs. 

The RFC API is always required 
Both methods for implementing RFC programs use the RFC API: 

• RFC programs generated by the RFC Interface Generator use API routines to call an 
SAP function module. In addition, the application you write (that calls the RFC stub 
program) must also use API routines to establish a connection with the SAP System, 
prepare table parameter structures, and so on.  

• User-created programs (if you write your own) must likewise use API routines. Your 
program must perform all the same communication tasks as an automatically-generated 
stub and its caller.  

For information about the RFC API components you need for your RFC projects, see Contents of 
the RFC SDK [Page 14]. 

 

April 2001  11 



The RFC API  SAP AG 

Technical Requirements 

Technical Requirements 
External Systems 
External systems must support TCP/IP. 

• OS/2: TCP/IP for OS/2 from IBM. 

• Windows 3.1/3.11: All TCP/IP products that support the 
socket interface. 

• Windows NT/95: Microsoft standard. 

• UNIX platforms: Manufacturer’s standard. 

 

The RFCSDK for the respective platforms contains the following libraries and includes: 

• saprfc.h This include file contains all data types and structures required 
and the prototypes (declarations) of the RFC calls. 

• sapitab.h This include file contains all the RFC calls required to manipulate 
internal 

tables 

• librfc Depending on the platform, the following libraries are required: 

 OS/2: librfc.dll and librfc.lib for Compile/Link 

 Windows 3.1/3.11: librfc16.dll, librfc2.dll, librfc3.dll, 
librfc4.dll 

  and librfc5.dll and librfc16.lib for 
Compile/Link 

 Windows NT/95: librfc32.dll and librfc32.lib for 
Compile/Link 

 UNIX-Platforms: librfc.a 

SAP R/3 Systems 
For RFC between external systems and R/3, there are no specific requirements in the R/3 
System, except that the R/3 System has to be at least Release 2.1. 

Contrary to this, RFC between SAP R/2 in an IBM environment and SAP R/3 or external 
systems requires an SAP gateway to run on a machine that supports the SNA LU6.2 protocol for 
the IBM host.  The SNA product must also be installed on this machine, and the SAP gateway 
must be operable with this product. This is necessary, because some SNA products are not 
compatible on the same machines. 

The following SNA products are currently supported: 

• SNA services or SNA server on IBM-AIX machines 

• SNAplusLink on HP-UX machines 

12  April 2001 



 SAP AG The RFC API 

  Technical Requirements 

• Communication Manager on OS/2 

• SNA server on Windows NT 

• SNALink SNA peer-to-peer 8.0 on SUN machines 

• TRANSIT-SERVER and TRANSIT-CPIC on SIEMENS-SINIX-machines. 

SAP R/2 Systems 
• IBM host (CICS): Release 5.0D with the following components: 

− 082 

Communication via Remote Function Call (RFC) 

− 153 

SAP Intersystem Communication 

− 080 

Host communication with DOS, OS/2 

− or 081 

Host communication with other LU6.2 systems 

• IBM host (IMS): Probably not before IMS >= 4.1 with MVS/APPC 

• SNI host: Release 5.0D with the following components: 

− 082 

Communication via Remote Function Call (RFC) 

− 153 

SAP Intersystem Communication 

− 083 

Host communication via TCP/IP (BS2000) 

 

April 2001  13 



The RFC API  SAP AG 

Contents of the RFC SDK 

Contents of the RFC SDK 
After the Remote Function Call Software Development Kit is installed, the following directory 
structures and items will be available: 

• .../rfcsdk/bin contains the executables of all sample programs 

− sapinfo.exe 

RFC client program which receives system information from the SAP System 

− startrfc.exe 

RFC client program which can call any function module in the SAP System 

− rfcexec.exe 

RFC server program which can be started from the SAP System for file and pipe 
access 

− rfc2abap.exe 

RFC client program which loads and/or just starts an ABAP program in the R/3 
System 

− srfctest.exe 

RFC client program which provides both a connection and a performance test 

− srfcserv.exe 

RFC server program which provides both a connection and a performance test 

− trfctest.exe 

Sample RFC client program for transactional RFC which transfers data in an internal 
table to the R/3 System.  

 
This program is not available with a 16-bit RFC library on Windows. 

− trfcserv.exe 

Sample RFC server program for transactional RFC which receives data in an internal 
table from the R/3 System.  

 
This program is not available with a 16-bit RFC library on Windows. 

• .../rfcsdk/include contains all includes-files 

− saprfc.h 

Header file for general RFC API 

− sapitab.h 

Header file for working with SAP internal tables 

− rfcsi.h 

14  April 2001 



 SAP AG The RFC API 

  Contents of the RFC SDK 

Header file for program sapinfo.c 

− srfctest.h 

Header file for program srfctest.c 

− srfcserv.h 

Header file for program srfcserv.c 

− trfctest.h 

Header file for program trfctest.c 

 
This file is not available with a 16-bit RFC library on Windows. 

− trfcserv.h 

Header file for program trfcserv.c 

 
This program is not available with a 16-bit RFC library on Windows. 

• .../rfcsdk/lib contains the specific RFC library 

− librfc.a 

RFC library for supported UNIX platforms 

− or librfc.dll 

RFC library for OS/2 (>= Release 2.1), 

librfc.lib 

import library to link RFC programs 

− or librfc32.dll 

32-bit RFC library for Windows NT and Windows 95 

librfc32.lib 

import library to link RFC programs 

− or librfc16.dll, librfc2.dll, librfc3.dll, librfc4.dll, librfc5.dll 

16-bit RFC library for Windows 

librfc16.lib 

import library to link RFC programs 

• .../rfcsdk/text contains the source code of all sample programs 

− sapinfo.c 

RFC client program which receives system information from an SAP System 

− startrfc.c 

RFC client program which can call any function module in the SAP System 

April 2001  15 



The RFC API  SAP AG 

Contents of the RFC SDK 

− rfcexec.c 

RFC server program which can be started from the SAP System for file and pipe 
access 

− rfc2abap.c 

RFC client program which loads and/or just starts an ABAP program in the R/3 
System 

− srfctest.c 

RFC client program which provides both a connection and a performance test 

− srfcserv.c 

RFC server program which provides both a connection and a performance test 

− trfctest.c 

Sample RFC client program for transactional RFC which transfers data in an internal 
table to the R/3 System.  

 
This program is not available with a 16-bit RFC library on Windows. 

− trfcserv.c 

Sample RFC server program for transactional RFC which receives data in an internal 
table from the R/3 System.  

 
This program is not available with a 16-bit RFC library on Windows. 

 

16  April 2001 



 SAP AG The RFC API 

  Compiling and Linking RFC Programs 

Compiling and Linking RFC Programs 
In general, you have to use an ANSI C compatible C-compiler and set the include and library 
search path to the installed RFC SDK include and lib directory. 

On some platforms you also have to link the TCP/IP socket libraries explicitly. 

Assume.../rfcsdk is the root directory of the unpacked RFC SDK. You must use the following 
compile/link syntax for the program sapinfo.c on different platforms. 

• HP-UX: 
cc -Ae -I.../rfcsdk/include -L.../rfcsdk/lib sapinfo.c librfc.a 

• AIX (RS/6000): 
ccc -I.../rfcsdk/include -L.../rfcsdk/lib sapinfo.c librfc.a 

• SINIX (RM600): 
/opt/C/bin/cc -I.../rfcsdk/include -L.../rfcsdk/lib sapinfo.c 
librfc.a -lsocket -lnsl -lusc 

 
You ought to use the above compiler because the librfc.a is also compiled with it. 

• DEC Alpha AXP: 
cc -std1 -unsigne -DA_OSF -I.../rfcsdk/include -L.../rfcsdk/lib 
sapinfo.c librfc.a 

• SUN (SunPro): 
/opt/SUNWspro/bin/cc -Xc -xcg92 -I.../rfcsdk/include -
L.../rfcsdk/lib sapinfo.c librfc.a -lsocket -lnsl 

 
You ought to use the above compiler because the librfc.a is also compiled with it. 

• WINDOWS with a 16-bit C-compiler: 
cl  /nologo /Gs /G2 /W4 /AL /D "_DOS" /Od /D "_DEBUG" /Mq 
/Fesapinfo.exe sapinfo.c librfc16.lib /link 

• WINDOWS with a 32-bit C-compiler: 
cl  -nologo -Od -G5 -Z7 -Gs -W3 -J -D_X86_ -DWIN32 /MT /FR -
Fesapinfo.exe sapinfo.c librfc32.lib 

• OS/2 2.1 and higher: 
icc -Gm+ -Ss+ -Ti -J- -DOS2  B”/E /NOI /ST:0x8000” sapinfo.c  
librfc.lib (sample for IBM VisualAge C++ V3) 

 

 

April 2001  17 



The RFC API  SAP AG 

Programming with the RFC API 

Programming with the RFC API 
You must keep the following guidelines in mind when writing RFC programs.  

The programs you write can call or be called by ABAP programs of an SAP System. 

Technical Description [Page 20] 

Supported Data and Transfer [Page 21]  

Basic Functionality [Page 23] 

Components of the RFC API [Page 24] 

RFC Client Programs [Page 25] 
Introduction to RFC Client Programs [Page 26] 

Establishing an RFC Connection to R/2 Systems [Page 28] 
Programming Example of Working With Local sideinfo File [Page 29] 
Programming Example of Working Without Local sideinfo File [Page 31] 
Programming Example of Working With saprfc.ini File [Page 32] 

Establishing an RFC Connection to R/3 Systems [Page 33] 
Programming Example of Working With Local sideinfo file [Page 34] 
Programming Example of Working Without Local sideinfo File [Page 35] 
Programming Example of Working With saprfc.ini File [Page 37] 

Load Balancing [Page 39] 

Programming Examples [Page 40] 

Remote Function Calls Using SAPGUI [Page 44] 

RFC Using the ABAP Debugger [Page 45] 

RFC Server Programs [Page 46] 
Introduction to RFC Server Programs [Page 47] 

Registering Server Programs with the SAP Gateway [Page 49] 

Programming Examples [Page 50] 
RFC Server Program Working With RfcDispatch [Page 51] 
RFC Server Program Working With RfcDispatch and RfcListen [Page 53] 
RFC Server Programs Sending/Receiving Internal Tables [Page 54] 

18  April 2001 



 SAP AG The RFC API 

  Programming with the RFC API 

Establishing an RFC Connection from an R/2 System [Page 55] 

Establishing an RFC Connection from an R/3 System [Page 58] 

Passing Parameters [Page 61] 

Writing an RFC Function in C [Page 63] 

Using Multiple-Client Server Programs [Page 64] 

 
 

April 2001  19 



The RFC API  SAP AG 

Programming with the RFC API 

Technical Description 
 

SAP gateway

SAP R/2
SAP R/3
External System

ABAP/4 program
external program

SAP R/2
SAP R/3
External System

ABAP/4 program
external program

ABAP/4 call
or RFC API

ABAP/4 call
or RFC API

RFC components in
or

RFC library on ext.
RFC components in

or
RFC library on ext.

 

Getting Connected 
RFC and programming information for RFC client/server programs can be summarized as 
follows: 

• An RFC connection is always initiated by an RFC client program. 

• An RFC connection is always built up in two steps: 

− Connection from an RFC client to the SAP gateway 

− Connection from the SAP gateway to an RFC server 

• There are different ways of starting or connecting to an RFC server program: 

− An RFC server program can be started by the SAP gateway, by the currently running 
SAPGUI or by the currently running application server. 

− From R/3 Release 3.0C onwards, you can register an RFC server program at an 
SAP gateway. The program waits for RFC requests from SAP Systems. 

For program start-up options while establishing an RFC connection, see RFC Client 
Programs [Page 25] and RFC Server Programs [Page 46]. 

 

20  April 2001 



 SAP AG The RFC API 

  Supported Data and Transfer 

Supported Data and Transfer 
Data format 
Only homogenous structures or tables are supported. They must consist of character fields only 
(ABAP-types C, D, T, N) or fields which will not be converted (ABAP-types X or P). Integer 
(ABAP-type I) or float (ABAP-type F) fields can only be transfered as single fields 
(IMPORT/EXPORT parameters). 

Data Compression 
From R/3 Release 3.0 onwards, RFC data will be compressed before sending, if both client and 
server system are capable of this. Otherwise, only the blank spaces at the end of a table line will 
be truncated. 

Data Conversion 
The SAP System or the RFC library will convert received data in its own code page if the two 
code pages are not the same. 

Some standard code pages (such as 1100, 0100, etc.) are already implemented in the RFC 
library. It can also use a conversion file defined by the environment variable 
PATH_TO_CODEPAGE. The files can be created and downloaded into a directory accessible 
from the currently running R/3 application server with transaction SM59. 

Limitations of Data in one RFC Function 
RFC library delivered with R/3 Release <  2.1K/2.2E 4 MB 

>= 2.1K/2.2E 64 MB 

>= 3.0 none 

Special Destinations in ABAP (R/3 or R/2) 
• Destination BACK:  

During execution of an RFC function, you can use the destination BACK to call another 
RFC function in the client system (SAP R/2 or R/3) or in the RFC client program (external 
program via RFC API) using the same RFC connection. 

 
This destination is not available in R/2 Systems. 

• Destination NONE for calls from SAP R/2 or R/3:  

In this case, the server system is the same SAP System (R/2 or R/3) as the client 
system. 

− In R/3, it will be treated as a remote function call even if the RFC serveris the same 
application server (RFC data will be transferred via the SAP gateway). 

− In R/2, however, it will be treated as a “local" CALL FUNCTION. 

• Destination SPACE 

April 2001  21 



The RFC API  SAP AG 

Supported Data and Transfer 

 
This destination is only possible as of R/3 Release 3.0. 

This destination is treated like a "local" CALL FUNCTION. 

 

22  April 2001 



 SAP AG The RFC API 

  Basic Functionality 

Basic Functionality 
The RFC API allows you to call ABAP function modules from C programs as well as receiving 
call requests issued from an ABAP program by the CALL FUNCTION interface. 

The RFC API consists of three main parts: 

• the include file saprfc.h 

This file contains data type and structure definitions as well as the prototypes 
(declarations) of the functions forming the API. 

• the include file sapitab.h 

This file defines an interface for manipulating ABAP internal tables. 

• the library librfc.a (librfc32.dll, etc) 

This library contains the functions of the API. 

 

April 2001  23 



The RFC API  SAP AG 

Components of the RFC API 

Components of the RFC API 
 

The SAP System's RFC API (application programming interface) can be installed on external 
systems and used to implement RFC programs. The API consists of library routines you call to 
communicate with an RFC partner. These routines (implemented in C) perform the 
communications calls and other tasks needed to handle either the caller or receiver side of the 
communication. (The RFC interface in the SAP System handles the other side.) 

SAP's Remote Function Call API consists of: 

• Include file saprfc.h (data and function definitions) 

• An API function library 

This library is named librfc.a, librfc.dll, librfc.lib, librfc32.dll, librfc32.lib, librfc16.dll, 
librfc2.dll, librfc3.dll, librfc4.dll, librfc5.dll, librfc16.lib, depending on your system. Routines 
in the RFC API are described in the following: 

RFC Client Function Reference [Page 127]  

RFC Server Function Reference [Page 134]  

Table-Handling Function Reference [Page 147]  

Transactional Function Reference [Page 161]  

Extended Function Reference [Page 171]  

 
For many of these routines, there are extended versions that should be used by 
Basic programmers. See Extended Function Reference [Page 171] for more 
information. 

In many of these routines, the token SAP_API is included. SAP_API contains 
platform-dependent keywords which are neccesary to allow dynamic linking of these 
function from various environments. On Windows, for example, SAP_API is __extern 
__pascal __far. 
Defined in: SAPITAB.H 

 

24  April 2001 



 SAP AG The RFC API 

  RFC Client Programs 

RFC Client Programs 
The following topics are available: 

Introduction to RFC Client Programs [Page 26] 

Load Balancing [Page 39]  

Programming Examples [Page 40] 

Establishing an RFC Connection to R/2 Systems [Page 28]  

Programming Example of Working With Local sideinfo File [Page 29]  

Programming Example of Working Without Local sideinfo File [Page 31]  

Programming Example of Working With saprfc.ini File [Page 32]  

Establishing an RFC Connection to R/3 Systems [Page 33]  

Programming Example of Working With Local sideinfo file [Page 34]  

Programming Example of Working Without Local sideinfo File [Page 35]  

Programming Example of Working With saprfc.ini File [Page 37]  

Remote Function Calls Using SAPGUI [Page 44]  

RFC Using the ABAP Debugger [Page 45]  

 

April 2001  25 



The RFC API  SAP AG 

Introduction to RFC Client Programs 

Introduction to RFC Client Programs 
All RFC client programs have to establish an RFC connection to an SAP System: 

External System SAP System

RFC client program Function Module

RfcOpen

RfcCallReceive('ABC')

RfcClose

FUNCTION ABC.
...
ENDFUNCTION.

 
 

Possible Logon Users 
• Logon to an R/3 System is possible with a DIALOG user or a CPIC user. 

• Logon to an R/2 System is only possible with a CPIC user. 

Getting Connected with the RFC Library before Release 3.0C 
There are different ways of and conditions for establishing an RFC connection to an SAP System 
(R/2 or R/3): 

1. using a local sideinfo file 

2. using no local sideinfo file, but a sideinfo file for the SAP gateway 

3. without using any sideinfo file 

A sideinfo file is needed for communication via CPIC. 

For RFC connections to an R/2 System in IBM environments, a sideinfo file for the SAP gateway 
for communication via SNA LU6.2 protocol is always required. 

RFC connections in SNI environments require the SAP gateway to run on the BS 2000 host. 
Apart from that, there are no differences for establishing an RFC connection to an R/2 System 
(SNI) or to an R/3 System. 

Getting Connected with the RFC Library as of Release 3.0C 
An RFC connection can be established via an entry in the saprfc.ini file. Using this feature, you 
need not have any sideinfo file except for connecting to an R/2 System (IBM). 

• The saprfc.ini file has the same meaning as the sideinfo file, but all RFC features, such 
as RFC with SAPGUI, ABAP-debug,... can be defined in that file. 

26  April 2001 



 SAP AG The RFC API 

  Introduction to RFC Client Programs 

• Moreover, most new RFC features to be developed in the future can be used without 
changing the RFC client program sources. 

The sideinfo file is needed for communication via CPI-C and includes some parameters 
necessary for establishing a CPI-C connection. 

If the local sideinfo is not used, all the parameters required must be passed on to the RFC library 
using the call RfcConnArgv before the RfcOpen is submitted or defined in the parameter 
RFC_OPTIONS of RfcOpen. 

An RFC function is called by RfcCall [Page 128]. The function RfcCall returns after the call 
request is sent. 

The function RfcReceive [Page 132] allows to receive the answer to an RFC call and must be 
called after RfcCall was issued. The function RfcReceive waits until the answer is received. 

Moreover, there is a function which can issue an RFC call synchronously: RfcCallReceive [Page 
130] waits until the returned answer will be received.  

Typical examples of RFC client programs are sapinfo.c, startrfc.c and srfctest.c which are 
included in the RFC SDK. 

 

April 2001  27 



The RFC API  SAP AG 

Establishing an RFC Connection to R/2 Systems 

Establishing an RFC Connection to R/2 Systems 
Establishing an RFC connection to an R/2 System in an SNI environment is similar to an R/3 
System, except that the SAP gateway must run on a BS 2000 host. 

Therefore, the following sections contain descriptions on establishing RFC connections to R/2 
Systems in IBM environments. 

 
A sideinfo file for the SAP gateway is always required. 

The RFC client program can work 

• with a local sideinfo file (see Programming Example of Working With Local sideinfo File 
[Page 29]) 

• without any local sideinfo file (see Programming Example of Working Without Local 
sideinfo File [Page 31]) 

• with the saprfc.ini file (see Programming Example of Working With saprfc.ini File [Page 
32]) 

 
The following sections describe only how to establish an RFC connection to R/2 
Systems with ConnArgv. For information about how to establish an RFC connection 
to R/2 Systems in the subroutine RfcConnect, see ‘srfctest.c’ in the RFC SDK. 

 

28  April 2001 



 SAP AG The RFC API 

  Programming Example of Working With Local sideinfo File 

Programming Example of Working With Local sideinfo 
File 
RFC_OPTIONS rfc_opt; /* Parameter for RFC connection*/ 
RfcEnvironment(...); /* Install error handling function
 */ 
rfc_opt.mode = RFC_MODE_CPIC; */ RFC to SAP R/2 */ 
 
rfc_opt.destination = “K50”; /* Entry with this destination */ 
  /* must be in local sideinfo */ 
  /* file and for SAP gateway */ 
rfc_opt.connopt = NULL /* Connect parameters in */ 
  /* sideinfo file */ 
rfc_opt.client = “000” /* Client in SAP R/2 */ 
rfc_opt.user = “RFCTEST” /* CPIC user */ 
rfc_opt.password = “SECRET” /* Password */ 
rfc_opt.language = “E” /* Logon language */ 
rfc_opt.trace = 0 /* No RFC trace */ 
rfc_handle = RfcOpen(&rfc_opt); /* Open RFC connection */ 
... 

Local sideinfo file 
The local sideinfo file must either be in the same directory as the RFC client program or be 
defined with its full path and file name using the environment variable SIDE_INFO. 

 
Windows: set SIDE_INFO=d:\rfctest\sideinfo 

The entry for the above test can be defined as follows: 
DEST=K50 
GWHOST=is0001 
GWSERV=sapgw00 
PROTOCOL=C 

sideinfo file for the SAP gateway running on IBM-AIX machines 
DEST=K50_1 
LU=K50T1 
TP=X1SA 
DEST=K50_2 
LU=K50T2 
TP=X1SA 

April 2001  29 



The RFC API  SAP AG 

Programming Example of Working With Local sideinfo File 

DEST=K50_3 
LU=K50T3 
TP=X1SA 
The extension _n(n=1,2,,...) makes it possible for the SAP gateway to establish a LU6.2 
connection to the R/2 System via different SNA connections. 

sideinfo file for the SAP gateway running on HP-UX machines 
DEST=K50 
LU=K50T 
TP=X1SA 
LOCAL_LU=LU0001 
MODE_NAME=LU62SAP1 

• Specifications about LOCAL_LU are not required if at least one local LU is defined in the 
LU pool in the SNA-configuration on HP-UX. 

• The LU6.2-mode ’LU62SAP1’ defined as MODE_NAME above must be defined in the 
SNA-configuration on HP-UX and in IBM-Host. 

 

30  April 2001 



 SAP AG The RFC API 

  Programming Example of Working Without Local sideinfo File 

Programming Example of Working Without Local 
sideinfo File 
RFC_OPTIONS rfc_opt; /* Parameter for RFC connection*/ 
RFC_CONNOPT_CPIC rfc_connopt_cpic; 
  /* Specific param. for RFC to R/2
 */ 
RfcEnvironment(...); /* Install error handling function*/ 
 
rfc_connopt_cpic.gateway_host = “iw1009” 
  /* host name of the SAP gateway*/ 
rfc_connopt_cpic.gateway_service = “sapgw00” 
  /* service no. of the SAP gateway
 */ 
rfc_opt.mode = RFC_MODE_CPIC; /* RFC to SAP R/2 */ 
rfc_opt.destination = “K50” /* Entry with this destination */ 
  /* be in  the sideinfofile for */ 
  /* the SAP gateway */ 
rfc_opt.connopt = rfc_connopt_cpic; 
  /* includes connect parameters */ 
rfc_opt.client = “000”; /* Client in SAP R/2 */ 
rfc_opt.user = “RFCTEST”; /* CPIC user */ 
rfc_opt.password = “SECRET”; /* Password */ 
rfc_opt.language = “E”; /* Language */ 
rfc_opt.trace = 0; /* No RFC trace */ 
rfc_handle = RfcOpen(&rfc_opt); /* Open RFC connection */ 
... 
You can also issue RfcConnArgv or RfcConnArgv3 before RfcOpen to pass on the information 
about the SAP gateway to the RFC library. The RfcOpenExt and RfcOpenExtV3 are for non-C 
programs, such as Visual Basic programs. For more details, see the delivered ‘sapinfo.c’ and 
‘srfctest.c’. 

 

April 2001  31 



The RFC API  SAP AG 

Programming Example of Working With saprfc.ini File 

Programming Example of Working With saprfc.ini File 
RFC_OPTIONS rfc_opt; /* Parameter for RFC connection*/ 
RfcEnvironment(...); /* Install error handling function*/ 
rfc_opt.destination = “K50”; /* Destination in saprfc.ini */ 
  /* and in sideinfo for the SAP */ 
  /* gateway */ 
rfc_opt.connopt = NULL; /* Connect parameters in */ 
  /* saprfc.ini file */ 
rfc_opt.client = “000”; /* Client in SAP R/2 */ 
rfc_opt.user = “RFCTEST”; /* CPIC user */ 
rfc_opt.password = “SECRET”; /* Password */ 
rfc_opt.language = “E”; /* Logon language */ 
rfc_opt.trace = 0; /* No RFC trace */ 
rfc_handle = RfcOpen(&rfc_opt); /* Open RFC connection */ 
... 

Entry in saprfc.ini file 
The saprfc.ini file must be in the same directory as the RFC client program or be defined with its 
path and file name by the environment variable RFC_INI. 

 
Windows: set RFC_INI=d:\rfctest\saprfc.ini 

The sideinfo entry for the above test could be as follows: 
DEST=K50 
TYPE=2 
GWHOST=is0001 
GWSERV=sapgw00 
For more information on the saprfc.ini file, see The SAPRFC.INI File [Page 66]. 

 

32  April 2001 



 SAP AG The RFC API 

  Establishing an RFC Connection to R/3 Systems 

Establishing an RFC Connection to R/3 Systems 
Contrary to SAP R/2 (IBM), the SAP gateway does not need a specific entry in its sideinfo file if 
all needed parameters are specified in the local sideinfo file or if they are defined in the RFC 
client programs. 

An RFC client program can work 

• with a local sideinfo file (see Programming Example of Working With Local sideinfo file 
[Page 34]) 

• without any local sideinfo file (see Programming Example of Working Without Local 
sideinfo File [Page 35]) 

• with the saprfc.ini file (see Programming Example of Working With saprfc.ini File [Page 
37]) 

 

April 2001  33 



The RFC API  SAP AG 

Programming Example of Working With Local sideinfo file 

Programming Example of Working With Local sideinfo 
file 
RFC_OPTIONS rfc_opt; /* Parameter for RFC connection*/ 
RfcEnvironment(...); /* Install error handling function
 */ 
rfc_opt.mode = RFC_MODE_R3ONLY; */ RFC to R/3 System */ 
rfc_opt.destination = “BIN”; /* Destination in local sideinfo*/ 
rfc_opt.connopt = NULL; /* Connect parameters in */ 
  /* sideinfo file */ 
rfc_opt.client = “000”; /* Client in SAP R/3 */ 
rfc_opt.user = “RFCTEST”; /* CPIC or dialog user */ 
rfc_opt.password = “SECRET”; /* Password */ 
rfc_opt.language = “E”; /* Logon language */ 
rfc_opt.trace = 0; /* No RFC trace */ 
rfc_handle = RfcOpen(&rfc_opt); /* Open RFC connection */ 
... 

Local sideinfo file: 
The local sideinfo file must be in the same directory as the RFC client program or must be 
defined with its path and file name by the environment variable SIDE_INFO. 

 
Windows: set SIDE_INFO=d:\rfctest\sideinfo 

The sideinfo entry for the above test could be as follows: 

DEST=BIN 
GWHOST=hs0311 
GWSERV=sapgw53 
PROTOCOL=I 
LU=hs0311 
TP=sapdp53 
 

34  April 2001 



 SAP AG The RFC API 

  Programming Example of Working Without Local sideinfo File 

Programming Example of Working Without Local 
sideinfo File 
RFC_OPTIONS rfc_opt; 
  /* Parameter for RFC connection*/ 
RFC_CONNOPT_VERSION_3 rfc_connopt_version_3; 
  /* Spec. parameter for R/3 System
 */ 
RfcEnvironment(...); /* Install error handling function
 */ 
if (use_load_balancing) 
{ 
 rfc_connopt_version_3.use_load_balancing = 1; 
 rfc_connopt_version-3.lb_host = “hs0311”; 
  /* host name of message server */ 
 rfc_connopt_version_3.lb_system_name = “BIN”; 
  /* Name of the R/3 System */ 
 rfc_connopt_version_3.lb_group = “PUBLIC”; 
  /* Application server group */ 
} 
else 
{ 
 rfc_connopt_version_3.use_load_balancing = 0; 
  /* Connect to spec. appl. server*/ 
 rfc_connopt_version_3.hostname = “hs0011”; 
  /* Host name of an appl. server*/ 
 rfc_connopt_version_3.sysnr = “53”; 
  /* System number of the R/3 System
 */ 
} 
if (use_sapgui) 
 rfc_connopt_version_3.use_sapgui = 1; 
  /* Work with SAPGUI */ 
else 
 rfc_connopt_version_3.use_sapgui = 0; /* or not */ 
rfc_opt.mode = RFC_MODE_VERSION_3; /* RFC to R/3 */ 
rfc_opt.destination = “BIN”; /* Destination in local sideinfo*/ 
rfc_opt.connopt = rfc_connopt_version_3; 
  /* Includes connect parameters */ 
rfc_opt.client = “000”; /* Client in SAP R/3 */ 
rfc_opt.user = “RFCTEST”; /* CPIC or dialog user */ 
rfc_opt.password = “SECRET”; /* Password */ 
rfc_opt.language = “E”; /* Language */ 
if (ABAP_debug) 
 rfc_opt.trace = ‘D’; /* Working with ABAP-debugger */ 

April 2001  35 



The RFC API  SAP AG 

Programming Example of Working Without Local sideinfo File 

else 
 rfc_opt.trace = 0; /* or not */ 
if (rfc_trace) 
rfc_opt.trace = rfc_opt.trace + 1; /* 0/1: Rfc-trace ON/OFF */ 
  /* ‘D’: ABAP-debug */ 
  /* ‘E’: ABAP-debug plus RFC trace
 */ 
rfc_handle = RfcOpen(&rfc_opt); 
... 
You can also issue RfcConnArgv or RfcConnArgv3 before RfcOpen to pass on the information 
about the SAP gateway to the RFC library. The RfcOpenExt and RfcOpenExtV3 are for non-C 
programs, such as Visual Basic programs. 

For more details, see the sapinfo.c and srfctest.c in the RFC SDK. 

 

36  April 2001 



 SAP AG The RFC API 

  Programming Example of Working With saprfc.ini File 

Programming Example of Working With saprfc.ini File 
RFC_OPTIONS rfc_opt; /* Parameter for RFC connection*/ 
RfcEnvironment(...); /* Install error handling function
 */ 
rfc_opt.mode = RFC_MODE_PARAMETER; 
  */ saprfc.ini file is used */ 
rfc_opt.destination = “BIN”; /* Destination in saprfc.ini */ 
rfc_opt.connopt = NULL; /* Connect parameters in */ 
  /* saprfc.ini file */ 
rfc_opt.client = “000”; /* Client in SAP R/2 */ 
rfc_opt.user = “RFCTEST”; /* CPIC or dialog user */ 
rfc_opt.password = “SECRET”; /* Password */ 
rfc_opt.language = “E”; /* Logon language */ 
rfc_opt.trace = 0; /* No RFC trace */ 
rfc_handle = RfcOpen(&rfc_opt); /* Open RFC connection */ 
... 

Entry in saprfc.ini file 
The saprfc.ini file must be in the same directory as the RFC client program, or it can be defined 
with its path and file name by the environment variable RFC_INI 

 
Windows: set RFC_INI=d:\rfctest\saprfc.ini 

The following example contains a reference to a specific application server: 

 
DEST=BIN 
TYPE=A 
ASHOST=hs0311 
sysnr=53 
RFC_TRACE=0 
ABAP_DEBUG=1 
USE_SAPGUI=1 

The following example illustrates the load balancing feature available as of R/3 Release 3.0: 

 
DEST=BIN 
TYPE=B 
R3NAME=BIN 
GROUP=PUBLIC 
RFC_TRACE=0 

April 2001  37 



The RFC API  SAP AG 

Programming Example of Working With saprfc.ini File 

ABAP_DEBUG=1 
USE_SAPGUI=1 

The new RFC features in Release 3.0C, such as RFC with SAPGUI or RFC with ABAP-debug, 
can be used via some more definitions in the saprfc.ini file not shown in the examples above. For 
more defails, see The SAPRFC.INI File [Page 66]. 

 

38  April 2001 



 SAP AG The RFC API 

  Load Balancing 

Load Balancing 
From Release 3.0 onwards an RFC client program can call a function module in an R/3 System 
without specifying the application server for establishing the connection.  In an R/3 System it is 
therefore possible to make use of load-balancing for RFC as well, a feature initially introduced for 
SAPGUI connections. This is done by means of the two functions RfcOpen [Page 126] or 
RfcConnect [Page 123], or, as of 4.0, by RfcOpenEx [Ext.]: The system first builds up a 
connection to the Message Server of the R/3 System and tries to find the application server with 
the least load (LOAD BALANCING principle).  On the basis of this information, the RFC library 
internally builds up the connection to the selected application server. 

This load balancing feature has the following advantages: 

• The load in an R/3 System is distributed to different R/3 application servers.  The RFC 
connection is always established to an application server with the least load. 

• Using load balancing, the RFC server will be determined at run time from the application 
servers available. Therefore, RFC connections are independent of a specific application 
server.  (In R/3 Release prior to 3.0, an RFC connection could only be established to a 
specific application server.) 

• Only the host name of the R/3 message server and its port number are required in the 
hosts and services file.  Information about the SAP gateway, application server, system 
number for RfcOpen or sideinfo entry and entries for the application server and SAP 
gateway are no longer required there. 

 

April 2001  39 



The RFC API  SAP AG 

Programming Examples 

Programming Examples 
The following sections contain examples in short form only. For more details, see the RFC client 
programs srfctest.c or sapinfo.c in the RFC SDK. 

RFC Client Program Transferring Internal Tables 
RFC_TABLE   tables[1]; /* Work with one internal table*/ 
RfcEnvironment(...); /* Install error handling function
 */ 
rfc_handle = RfcOpen(...); /* Open RFC connection */ 
if (rfc_handle == RFC_HANDLE_NULL) /* Check return code */ 
{ 
  rfc_error_handling("RfcOpen"); /* Handle error and get error */ 
  return 1; /* specification via RfcLastError
 */ 
} 
tables[0].name = “ITAB1000"; /* Must fit with definition */ 
 /* in SAP-FM */ 
tables[0].nlen     = 8; /* Length of name */ 
tables[0].type     = TYPEC; /* Character only */ 
tables[0].leng     = 1000; /* Lenth of a table line */ 
tables[0].itmode   = RFC_ITMODE_BYREFERENCE;  /* Recommended */ 
tables[0].ithandle = ItCreate(...);   /* Allocate storage */ 
 /* for internal table */ 
if (rfc_rc != RFC_OK) /* Check return code */ 
{ 
  rfc_error_handling("ItCreated"); /* Get specific error via */ 
 /* RfcLastError */ 
  return 1; /* and handle error */ 
} 
fill_table(table[0].ithandle, 10); /* Fill internal table with */ 
 */ 10 lines of text */ 
rfc_rc = RfcCallReceive(...); /* Call up function module */ 
if (rfc_rc != RFC_OK) /* Check return code */ 
{ 
  rfc_error_handling("RfcCallReceive"); /* Get specific error via*/ 
 /* RfcLastError */ 
  return 1; /* and handle error */ 
} 

40  April 2001 



 SAP AG The RFC API 

  Programming Examples 

ItDelete(...); /* Free storage of internal table
 */ 
RfcClose(...); /* Close RFC connection */ 
 
/* Fill internal table with text as requested */ 
void fill_table(ITAB_H itab_h, int table_leng) 
{ 
  int    linenr; /* Actual line number of a table*/ 
  int    lineleng; /* Length of a table line */ 
  char   *ptr; /* Pointer to a table line */ 
  char   table_data[]="This is a test"; /* Text for test */ 
if (table_leng == 0) return 0; /* Table with no entry */ 
lineleng = ItLeng(itab_h); /* Determine length of a table */ 
 /* line  */ 
  for (linenr = 1; linenr <= table_leng; linenr++) 
 /* Fill table as requested */ 
  { 
    ptr = (char *) ItAppLine(itab_h); 
 /* Get address of next line */ 
    if (ptr == NULL)  /* Check return code */ 
    { /* Output error message and */ 
      printf("\nMemory insufficient\n"); /* output error message
 */ 
      exit(1); /* and terminate program */ 
    } 
    memcpy(ptr, table_data, lineleng); /*Transfer data to internal
 */  /*
 table */ 
  } 
  return; /* Back to main program */ 
} 

RFC Client Program Receiving Internal Tables 
RFC_TABLE   tables[1]; /* Work with one internal table*/ 
RfcEnvironment(...); /* Install error_handling function
 */ 
rfc_handle = RfcOpen(...); /* Open RFC connection */ 
if (rfc_handle == RFC_HANDLE_NULL) /* Check return code */ 

April 2001  41 



The RFC API  SAP AG 

Programming Examples 

{ 
  rfc_error_handling("RfcOpen"); /* Handle error and get error */ 
  return 1; /* specification via RfcLastError
 */ 
} 
tables[0].name   = “ITAB1000”; /* Must fit with definition */ 
 /* in SAP-FM */ 
tables[0].nlen     = 8; /* Length of name */ 
tables[0].type     = TYPEC; /* Character only */ 
tables[0].leng     = 1000; /* Lenth of a table line */ 
tables[0].itmode   = RFC_ITMODE_BYREFERENCE;  /* Recommended */ 
tables[0].ithandle = ItCreate(...);   /* Allocate storage */ 
 /* for internal table */ 
if (rfc_rc != RFC_OK) /* Check return code */ 
{ 
  rfc_error_handling("ItCreated"); /* Get specific error via */ 
 /* RfcLastError */ 
  return 1; /* and handle error */ 
} 
rfc_rc = RfcCallReceive(...); /* Call up function module */ 
if (rfc_rc != RFC_OK) /* Check return code */ 
{ 
  rfc_error_handling("RfcCallReceive"); /* Get specific error via*/ 
 /* RfcLastError */ 
  return 1; /* and handle error */ 
} 
display_table(table[0].ithandle); /* output received internal */ 
 /* table on screen */ 
ItDelete(...); /* Free storage of internal table
 */ 
RfcClose(...); /* Close RFC connection */ 
 
/* Output received internal table on screen */ 
void display_table(ITAB_H itab_h) 
{ 
  int linenr; /* Actual line number of a table*/ 
  int lineleng; /* Length of a table line */ 
  char ptr; /* Pointer to a table line */ 
  char table_data[8193]; /* Max. length of an internal */ 
  /* table (8192 B) */ 

42  April 2001 



 SAP AG The RFC API 

  Programming Examples 

lineleng = ItLeng(itab_h); /* Get length of a table line */ 
  for (linenr = 1; ; linenr++) /* Loop at internal table */ 
  { 
    ptr = (char *) ItGetLine(itab_h); 
 /* Get address of next line */ 
    if (ptr == NULL) break; /* NULL: End of table reached */ 
    memcpy(table_data, ptr, lineleng); 
 /* Read a table line into buffer*/ 
    table_data[lineleng] = '\0'; /* Set string end in buffer for*/ 
 /* output */ 
    printf("'%s'\n", table_data); /* Output on screen */ 
  } 
  return; /* Back to main program */ 
} 
 

April 2001  43 



The RFC API  SAP AG 

Remote Function Calls Using SAPGUI 

Remote Function Calls Using SAPGUI 
Starting with R/3 Release 3.0C, it is possible for an RFC client program to call ABAP function 
modules which are using ‘Dynpros’ or SAP graphics. This allows you to include normal SAP 
screens into your programs. Consequently, it is possible to call complete SAP transactions from 
external programs. 

To use this functionality, a SAPGUI front end server (version 3.0C or later) must be installed on 
the external system where the RFC client program is running. 

There are three methods to activate this new functionality: 

1. Use RfcOpen 

You can call the function RfcOpen [Page 126] with the special mode 
RFC_MODE_VERSION_3 and then set the field use_sapgui to a non-zero value in the 
structure RFC_CONNOPT_VERSION_3 [Page 196]. 

2. Use the saprfc.ini file 

You can define an entry in the saprfc.ini file which includes all necessary connection 
parameters and the RFC-specific parameter USE_SAPGUI (=1) in the saprfc.ini file. An 
RFC client program can then issue the RfcOpen [Page 126] call with the mode 
RFC_MODE_PARAMETER and a destination pointed to the defined entry. See The 
SAPRFC.INI File [Page 66] for more details. 

3. Use SYSTEM_ATTACH_GUI in R/3 

You can call the function module RFC_ATTACH_GUI (without any parameter) within the 
ABAP funtion module you want to use before using any SAPGUI functionality. 

 
This method can be used without modifying the C code of the RFC client program. 

 
• This feature is available on all supported UNIX platforms (Motif).  

• On Windows NT or Windows 95, it is only available with the 32-bit RFC 
library together with a 32-bit SAPGUI. In particular, this functionality is not 
supported for the 16-bit RFC library or for 16-bit SAPGUI (Windows 3.x, as 
well as the 16-bit subsystems of Windows NT and Windows 95). 

• Under Windows NT and Windows 95 the SAPGUI program and its DLLs and 
auxiliary programs can be installed anywhere. However, you must have 
started SAPGUI once before it can be started automatically by RFC, 
because the SAPGUI must register itself in the Windows registry. 

• On R/3-based UNIX systems, the SAPGUI program must be installed on the 
default ‘SAP path’ /usr/sap/<system name>/SYS/exe/run. 

 

44  April 2001 



 SAP AG The RFC API 

  RFC Using the ABAP Debugger 

RFC Using the ABAP Debugger 
As of R/3 Release 3.0C you can use the full functionality of the ABAP debugger when developing 
or testing an application using RFC. 

To use this functionality, a 3.0C (or later) SAPGUI must be installed on the external system 
where the RFC client program is running. 

An RFC client program can use this feature with one of the following options: 

• environment variable RFC_DEBUG  
Set this environment variable to any value to enter debugging mode. 

• set -debug on the command line 

If the RFC client program uses RfcConnArgv [Page 119] for scanning the command line, 
set -debug on the command line to enter debugging mode. 

• set the trace field to D or E 

If you can modify the coding of the RFC client program you are using, you can set the 
trace field in the structure RFC_OPTIONS [Page 201] to the value D or E before calling 
RfcOpen [Page 126]: 

− D: debugging without activated RFC trace 

− E: debugging with activated RFC trace 

• use the saprfc.ini file 

Define an entry in the saprfc.ini file which includes all necessary connection parameters 
and the RFC-specific parameter RFC_DEBUG (=1). An RFC client program can then 
issue the RfcOpen [Page 126] call with the mode RFC_MODE_PARAMETER and a 
destination pointed to this defined entry. See The SAPRFC.INI File [Page 66] for more 
details. 

 
• This feature is available on all supported UNIX platforms (Motif).  

• On Windows NT or Windows 95, it is only available with the 32-bit RFC 
library together with a 32-bit SAPGUI. In particular, this functionality is not 
supported for the 16-bit RFC library or for the 16-bit SAPGUI (Windows 3.x, 
as well as the 16-bit subsystems of Windows NT and Windows 95). 

• Under Windows NT and Windows 95 the SAPGUI program and its DLLs and 
auxiliary programs can be installed anywhere. However, you must have 
started SAPGUI once before it can be started automatically by RFC, 
because the SAPGUI must register itself in the Windows registry. 

• On R/3-based UNIX systems, the SAPGUI program must be installed on the 
default ‘SAP path’ /usr/sap/<system name>/SYS/exe/run. 

 

April 2001  45 



The RFC API  SAP AG 

RFC Server Programs 

RFC Server Programs 
The following topics are available: 

Introduction to RFC Server Programs [Page 47]  

Registering Server Programs with the SAP Gateway [Page 49]  

Programming Examples [Page 50]  

RFC Server Program Working With RfcDispatch [Page 51]  

RFC Server Program Working With RfcDispatch and RfcListen [Page 53]  

RFC Server Programs Sending/Receiving Internal Tables [Page 54] 

Establishing an RFC Connection from an R/2 System [Page 55]  

Establishing an RFC Connection from an R/3 System [Page 58]  

 

46  April 2001 



 SAP AG The RFC API 

  Introduction to RFC Server Programs 

Introduction to RFC Server Programs 
An RFC server program is a program which offers RFC functions to be called by ABAP 
programs. 

The RFC API offers routines for implementing RFC server programs. After having started, the 
RFC server programs must inform the RFC library about all RFC functions which can be called 
within this server program. It can then wait for incoming call requests, and the RFC library will 
dispatch the requested calls (using RfcDispatch in a loop). 

As an alternative, the RFC server program can use RfcGetName to identify the name of the 
required RFC function, and then it must dispatch itself to the supported function.  

A typical server looks as follows: 

SAP System External System

ABAP program RFC server program

Call Function 'ABC'
   Destination 'DEST'
   ... main()

{
  RfcAccept
  RfcInstallFunction('ABC',
     abc_function,...)
  loop in
    RfcDispatch
  until rfc_error
  RfcClose
  ...
}
RFC_RC abc_function(rfc_handle)

{
  RfcGetData
  ...
  RfcSendData
}

 
 

 
Since the RFC server program never builds up a connection actively, the sideinfo file 
is never used. 

There are two methods of receiving an RFC call. The most simple way of receiving an RFC call 
in an external program is to register a C function to be called when a call request is received. The 
function RfcInstallFunction [Page 140] registers a C function to be called when receiving the 
request for an RFC call. After RfcAccept [Page 116] or after receiving the return code RFC_CALL 
when calling RfcReceive [Page 132], the program must use RfcDispatch [Page 135] to internally 

April 2001  47 



The RFC API  SAP AG 

Introduction to RFC Server Programs 

call the corresponding registered function. The return code of the registered function is again 
returned by RfcDispatch. 

There are always some standard functions which are installed automatically. Apart from some 
internally-used functions, the function modules are as follows: 

• RFC_PING 

This function does nothing by itself. You can use it to test the connection. 

• RFC_SYSTEM_INFO 

This function returns some information about the library and its environment. 

• RFC_DOCU 

This function returns the function documentation which was installed during the calls of 
RfcInstallFunction [Page 140]. 
It is also possible to receive RFC calls directly. The function RfcGetName [Page 139] is 
used to get the name of the called function. The calling program has to determine the 
interface of the requested function module itself. It must then receive the parameters as 
within a function being installed via RfcInstallFunction. 

 

48  April 2001 



 SAP AG The RFC API 

  Registering Server Programs with the SAP Gateway 

Registering Server Programs with the SAP Gateway 
Up to R/3 Release 3.0C, RFC server programs could only be started by an SAP gateway, either 
by the SAPGUI or by the currently running application server. As of R/3 Release 3.0C, an RFC 
server program can be registered with the SAP gateway and wait for incoming RFC call requests.  

This new registering feature has the following features: 

• An RFC server program registers itself under a program-ID at an SAP gateway and not 
for a specific SAP System (R/2 or R/3). 

• If an RFC call request from any R/2 or R/3 System is transferred to this SAP gateway 
with the option ‘connect to an already registered program’ with the same program-ID, 
it will be connected to this RFC server program. 

• In R/2, this option requires the parameter setting PROTOCOL=R in the sideinfo file for 
the gwhost program. 

• In R/3, the destination must be defined with transaction SM59, using connection type T 
and Register Mode. Moreover, this entry must contain information on the SAP gateway 
at which the RFC server program is registered.  

• After having executed an RFC function, the RFC connection will be closed. If this RFC 
server program works with RfcDispatch in a loop (this procedure is recommended), it 
will be automatically registered again at the same SAP gateway under the same 
program-ID and can then wait for further RFC call requests from the same SAP System 
or from other SAP Systems. 

• An RFC server program can be run on all Windows PCs with this new functionality. There 
are no restrictions for server programs on systems that do not support remote shell. In 
addition, you can now run RFC server programs easily in debugging mode.  

How to Work with this Functionality 
In order to use this new functionality, no changes in ABAP programs are needed. Only the 
destination in an ABAP program must have the new feature defined with transaction SM59, using 
connection type T and Register Mode.  

There are two ways of working with this new registering functionality in external systems: 

• With a few additional parameters: 
All correctly running RFC server programs can work with this new feature without 
changing the source code. They must only be started with a few additional parameters 
needed to connect to the SAP gateway. 

• Using the saprfc.ini file: 
The RFC call RfcAccept must include a destination referring to an entry in the saprfc.ini 
file with type R and containing some parameters needed by the SAP gateway. 

See also Using Multiple-Client Server Programs [Page 64]. 

 

April 2001  49 



The RFC API  SAP AG 

Programming Examples 

Programming Examples 
The following sections contain examples in short form only. For more details, see the RFC server 
programs srfcserv.c or rfcexec.c in the RFC SDK. 

RFC Server Program Working With RfcDispatch [Page 51]  

RFC Server Program Working With RfcDispatch and RfcListen [Page 53]  

RFC Server Programs Sending/Receiving Internal Tables [Page 54]  

 

50  April 2001 



 SAP AG The RFC API 

  RFC Server Program Working With RfcDispatch 

RFC Server Program Working With RfcDispatch 
/* main program */ 
rfc_handle = RfcAccept(...); /* Accept RFC connection */ 
if (rfc_handle == RFC_HANDLE_NULL) /* Check return code */ 
{ 
  rfc_error_handling("RfcAccept"); /* Handle error and get error */ 
  return 1; /* specification via RfcLastError
 */ 
} 
rfc_rc = RfcInstallFunction(‘ABC’, abc_function,...); 
 /* Install RFC function ‘ABC’ */ 
 /* under the C-routine  */ 
 /* ‘abc_function’ */ 
if (rfc_rc != RFC_OK) /* Check return code */ 
{ 
  rfc_error_handling("Install function ‘ABC’); 
 /* Handle error and get error */ 
  return 1; /* specification via RfcLastError
 */ 
} 
do /* Wait for call or execution of*/ 
{ 
  rfc_rc = RfcDispatch(...); /* installed RFC functions until*/ 
} while ( rfc_rc == RFC_OK); /* connection is closed or */
 /* terminated */ 
RfcClose(...);   
 /* Close RFC connection */ 
 
/* RFC function: ‘ABC’ */ 
static RFC_RC abc_function(RFC_HANDLE rfc_handle) 
{ 
  rfc_rc = RfcGetData(...); /* Get associated RFC data */ 
  if (rfc_rc != RFC_OK) /* Check return code */ 
  { 
    rfc_error_handling("RfcGetData"); 
 /* Handle error and get error */ 
    return 1; /* specification via RfcLastError
 */ 
  } 
... /* Process RFC data */ 
rfc_rc = RfcSendData(...); /*Report result to ABAP program*/ 
  if (rfc_rc != RFC_OK) /* Check return code */ 

April 2001  51 



The RFC API  SAP AG 

RFC Server Program Working With RfcDispatch 

  { 
    rfc_error_handling("RfcSendData");  
 /* Handle error and get error */ 
    return 1; /* specification via RfcLastError
 */ 
  } 
return 0; /* Back to RFC Library */ 
} 
 

52  April 2001 



 SAP AG The RFC API 

  RFC Server Program Working With RfcDispatch and RfcListen 

RFC Server Program Working With RfcDispatch and 
RfcListen 
Instead of waiting for further RFC call requests, RFC server programs can also ask for further 
RFC call requests with RfcListen and then issue RfcDispatch for an incoming RFC request. 
You must only change the main program as follows: 
/* main program */ 
rfc_handle = RfcAccept(...); /* Accept RFC connection */ 
if (rfc_handle == RFC_HANDLE_NULL) /* Check acceptance of RFC conn.*/ 
{ 
  rfc_error_handling("RfcAccept"); /* Handle error and get error */ 
  return 1; /* specification via RfcLastError
 */ 
} 
rfc_rc = RfcInstallFunction(‘ABC’, abc_function,...); 
 /* Install RFC function ‘ABC’ */ 
 /* under the C-routine  */ 
 /* ‘abc_function’ */ 
if (rfc_rc != RFC_OK) /* Check return code */ 
{ 
  rfc_error_handling("Install function ‘ABC’); 
 /* Handle error and get error */ 
  return 1; /* specification via RfcLastError
 */ 
} 
 
/* Wait for the next RFC request */ 
do 
{ 
  for (rfc_rc = RFC_RETRY; rfc_rc == RFC_RETRY;) 
  { 
    rfc_rc = RfcListen(rfc_handle); 
    if (rfc_rc == RFC_RETRY) 
    { 
      /* while waiting for the next RFC request, do something else */ 
   ... 
    } 
  } 
  if (rfc_rc != RFC_OK) 
    break; 
  rfc_rc = RfcDispatch(rfc_handle); 
}while(rfc_rc == RFC_OK); 
RfcClose(...); /* Close RFC connection */ 
 

April 2001  53 



The RFC API  SAP AG 

RFC Server Programs Sending/Receiving Internal Tables 

RFC Server Programs Sending/Receiving Internal 
Tables 
In RFC functions offered by RFC server programs, all importing and exporting parameters must 
be defined and also all internal tables as described in RFC Client Program Transferring Internal 
Tables and RFC Client Program Receiving Internal Tables” in Programming Examples [Page 40], 
but it is not necessary to call ItCreate. 

This will be done automatically by the RFC library. After an RFC function is ended, the RFC 
library will free the storage for all internal tables used in this function. 

 

54  April 2001 



 SAP AG The RFC API 

  Establishing an RFC Connection from an R/2 System 

Establishing an RFC Connection from an R/2 System 
Direct communication from an R/2 System (IBM or SNI environments) to an SAP gateway is not 
possible. An RFC connection from R/2 Systems can only be established via a gwhost program 
which is delivered with the SAP gateway software. This program will connect to the RFC server 
program via the SAP gateway specified. 

How you can configure the gwhost programs depends on the environment (IBM-host or SNI-
host). 

The RFC syntax in ABAP in R/2 Systems is always the same. 

Call from an ABAP program: 
CALL FUNCTION “ABC” DESTINATION “RFCEXTERNAL” 
 IMPORT... 
 EXPORT... 
 TABLES... 
 EXCEPTIONS... 
The destination “RFCEXTERNAL” identifies an entry in the RFCD table. 

Tables: 
Table RFCD 

Destination Client User Password S Argument in Table XCOM 

RFCEXTERNAL 000 TEST xxxxxxxx E RFCEXT 

The argument “RFCEXT” identifies an entry in the table XCOM. 

Table XCOM 

R/2 in an IBM environment (with CICS) 

Symbolic destination Logical Unit (LU) Transaction Program (TP)

RFCEXT LU02 GWRFCSRV 

LU02 is a four-byte identifier defined in a CICS environment which represents an SNA LU6.2 in 
CICS. This LU6.2 must be defined in the IBM host and on the external computer with a LU6.2-
supported SNA product.  

R/2 in an SNI environment 

Symbolic destination Logical Unit (LU) Transaction Program (TP) Type 

RFCEXT  GWRFCSRV H 

Type H must be set for communication in BS2000 via TCP-IP (component 083). Information 
about the LU is not needed.  

April 2001  55 



The RFC API  SAP AG 

Establishing an RFC Connection from an R/2 System 

GWHOST Configuration 
R/2 in an IBM Environment (with CICS) 
On the external computer, a “local program” (also called“remotely attachable” or “remotely 
invokable” program on some SNA products) named GWRFCSRV must be defined in the SNA 
configuration.  

GWRFCSRV is a softlink (on a UNIX platform) or copy (PC platform) of the ‘gwhost’ program 
which is included in the delivery of an R/3 System.  

After GWRFCSRV was started by the installed SNA LU6.2, GWRFCSRV tries to establish a 
connection to the RFC server program via the SAP gateway. For this purpose, an entry in the 
sideinfo file must exist for this program:  

sideinfo for GWRFCSRV 

DEST = GWRFCSRV  
GWHOST = <host name of the SAP gateway, e.g. hs0311> 

GWSERV = <service name of the SAP gateway, e.g. sapgw53> 

PROTOCOL 
= 

<E (or R): server will be started 
by (or is already registered at) 
the SAP gateway> 

 

LU = <host name of the RFC server 
program, 

e.g. hs0311> 

TP = <name of the RFC server program, e.g. 
/rfctest/srfcserv> 

Because of this complete entry, a corresponding entry in the sideinfo file for the SAP gateway is 
not required.  

This sideinfo file must be in the work directory of the GWRFCSRV program: 

• For SNA server of SNA services on IBM-AIX, this is the home directory of the user which 
is specified in the SNA configuration for the local program GWRFCSRV. 

• For SNAplusLink on HP-UX, this is the home directory of the owner of the GWRFCSRV 
program. 

R/2 in an SNI Environment 
From within an R/2 System, an RFC connection will not be established via the SAP gateway 
running on BS2000. It must first connect to a ‘gwhost’ program and then work with an RFC server 
program via another SAP gateway running on any other supported platforms. 

This ‘gwhost’ program is always running as a SAPGWHO-task on BS2000 and waits for an RFC 
request from the R/2 System. The destination defined in the XCOM table as described above will 
be sent to this program, and it will connect to the RFC server system/program as defined in the 
sideinfo file. 

This ‘gwhost’ program can only provide one RFC connection at a time. Therefore, you have to 
configure the number of parallel running ‘gwhost’ programs while installing and configuring the 
SAPGWHO-jobs for working with more than one RFC connection at one time. 

sideinfo for ‘gwhost’ programs 

56  April 2001 



 SAP AG The RFC API 

  Establishing an RFC Connection from an R/2 System 

DEST = GWRFCSRV  
GWHOST = <host name of the SAP gateway, e.g. hs0311> 

GWSERV = <service name of the SAP gateway, e.g. sapgw53> 

PROTOCOL 
= 

<E (or R): server will be started 
by (or is already registered at) 
the SAP gateway> 

 

LU = <host name of the RFC server 
program, 

e.g. hs0311> 

TP = <name of the RFC server program, e.g. 
/rfctest/srfcserv> 

Because of this complete entry, a corresponding entry in the sideinfo file for the SAP gateway is 
not required.  

For more details, see the SAP gateway installation guide. 

Starting an RFC Server Program 
From within an R/2 System (IBM), an RFC server program can only be started by an SAP 
gateway. See the configurations section of Establishing an RFC Connection from an R/3 System 
[Page 58] for details on how to start an RFC server program via the SAP gateway.  

By using the registering feature of the SAP gateway (from Release 3.0C onwards), RFC server 
programs can be started before, register at this SAP gateway and then wait for RFC call requests 
from R/2 Systems (IBM or SNI host) via the gwhost program. 

In this case, the entry for this gwhost program in the sideinfo file must have protocol type R 
instead of E (PROTOCOL=R). See The SAPRFC.INI File [Page 66] for more details. 

 

April 2001  57 



The RFC API  SAP AG 

Establishing an RFC Connection from an R/3 System 

Establishing an RFC Connection from an R/3 System 
Call from an ABAP program: 
CALL FUNCTION “ABC” DESTINATION “RFCEXTERNAL” 
 IMPORT... 
 EXPORT... 
 TABLES... 
 EXCEPTIONS... 
The destination “RFCEXTERNAL” identifies an entry in the RFCDES table. 

The RFCDES table in R/3 up to Release 3.0C: 
From within an R/3 System, up to Release 3.0C, you can define an entry in the RFCDES table 
using transaction code sm59: 

• RFC destination RFCEXTERNAL 

• Connection type T 

• Program location explicit or server or user 

• Target host hs0311 

• Program /rfctest/srfcserv 

• Trace not selected 

• Gateway no info (default gateway will be used) 

Connection type “T” 
The RFC server program is an external program based on the RFC API and communicates via 
TCP/IP. 

Program location “explicit” 
The computer on which the RFC server program runs can be specified via Target host. In this 
case, the RFC server program will be started by the SAP either locally or via remote shell. This 
RFC server program will run on supported UNIX platforms under the gateway user-ID. 

The program location “explicit” is not possible for RFC server programs with a 16-bit RFC library 
on Windows. See “The RFCDES table in R/3 Release 3.0C onwards” for new functionality in 
Releases as of 3.0C. 

Program location “Server” 
The RFC server program is started by the current R/3 application server. This improves 
performance, because the RFC server program always runs on the same computer as the ABAP 
program (work process of the current ABAP program).  

This RFC server program will run on supported UNIX platforms under the user-ID of the 
respective R/3 application server.  

58  April 2001 



 SAP AG The RFC API 

  Establishing an RFC Connection from an R/3 System 

The program location “Server” is not possible for RFC server programs with a 16-bit RFC library 
on Windows. See “The RFCDES table in R/3 Release 3.0C onwards” for new functionality in 
Release >= 3.0C. 

Program location “User” 
The RFC server program is started by the current SAPGUI (SAP frontend). The program location 
“User” is the only option available to start an RFC server program with a 16-bit RFC library on 
Windows. See The RFCDES Table in R/3 Releases as of 3.0C below for new functionality. 

Trace 
When this field is selected, trace data can be displayed in the SAP System using the ABAP 
program RFRFCTRC table. On extended systems, the trace data are stored in the ‘dev_rfc’ file. 
With the 16-bit RFC library, a trace file ‘RFCxxxx.TRC’ will be created for each connection.  

Gateway 
The gateway specification is optional. If nothing is specified, the default gateway will be used. 
The default gateway depends on the R/3 Release: 

• Release < 2.1l/2.2C 

Call up transaction se38 and execute the program RSPARAM: The parameters 
rdisp/gateway and rdisp/gw_service contain data about the default SAP gateway. 

• Release >= 2.1l/2.2C/3.0 

The local gateway on each R/3 application server since these Releases is the default 
gateway.  

Testing a Connection 
After having entered and saved a new destination using transaction sm59, you can test the RFC 
connection by double-clicking on Test connection. However, this is only possible if the RFC 
server program was implemented by using RfcDispatch in a loop and not with RfcGetName. 

The RFCDES table in R/3 Release 3.0C onwards 
From R/3 Release 3.0C onwards, you can define an RFC server program which is already 
started, registered at an SAP gateway and waiting for RFC call requests by using transaction 
sm59. 

You must define an RFC server program with registering as activating action, and a program-ID. 

Program-ID 
The program-ID is an identifier of the RFC server program for the SAP gateway to distinguish 
between different RFC server programs. It is recommended to use both the name of the RFC 
server program and the host name of the RFC server program. 

Information about the SAP Gateway 

 
The SAP gateway of the relevant application server will be used if nothing else is 
specified. It is recommended to define the SAP gateway explicitly, because an RFC 
server program usually registers at a specific SAP gateway. 

April 2001  59 



The RFC API  SAP AG 

Establishing an RFC Connection from an R/3 System 

Configurations 
SAP recommends you to specify the complete name of the RFC server program (including the 
full path name) when defining an entry in the RFCDES table using transaction sm59. 

The RFC server program can be started by the currently running SAPGUI, by the currently 
running application server or by an SAP gateway, but it has to communicate via a specified SAP 
gateway.  

Consequently, the following prerequisites must be met: 

• The user under which the SAPGUI or the application server or the SAP gateway runs 
must have execution rights for the RFC server program. 

• Both SAP gateway and RFC server program are running on the same computer: 

− The IP address of this computer must be specified in the hosts file. 

− The service name of the SAP gateway must be specified in the services file. 

• The SAP gateway and the RFC server program are running on different computers: 

− The IP-addresses of both computers must be specified in both hosts files. 

− The service name of the SAP gateway must be specified in the services file. 

− The SAP gateway must have the authority to start the RFC server program on the 
target computer via remote shell: 

i) The user of the SAP gateway must be defined on the target computer. 

ii) The.rhosts file which contains the host name of the gateway computer must 
exist in this user’s home directory on the target computer 

iii) Since the remote shell command is different on different UNIX platforms 
(remsh, rsh, etc.), the command can be defined in the gateway profile parameter 
gw/remsh, if necessary (e.g. gw/remsh=/usr/ucb/remsh). 
The default is ‘remsh’. 

 
For very large hosts files on OS/2, it is recommended to define the entries for all 
computers involved at the beginning of this file, because it may take a long time to 
get all IP-addresses used. 

Starting an RFC server program 
An RFC server program can be started by the currently running SAPGUI, by the currently running 
R/3 application server or by an SAP gateway, as described in the above section.  

Using the registering feature of the SAP gateway (from Release 3.0C onwards), RFC server 
programs can be started before, register at this SAP gateway and then wait for RFC call requests 
from R/3 System Release 3.0C onwards. 

Here, the RFC server program of the RFCDES table (transaction sm59) must be defined as 
registering for activating action. See The SAPRFC.INI File [Page 66] for more details. 

 

60  April 2001 



 SAP AG The RFC API 

  Passing Parameters 

Passing Parameters  
Five API routines pass parameters back and forth to the remote function. These routines are: 

RfcCall and RfcReceive 

RfcCallReceive 

RfcGetData and RfcSendData 

The parameters are passed in one of two structures: RFC_PARAMETER and RFC_TABLE. 
When your program calls one of these routines, it must provide information about all parameters 
being passed by filling in these structures.  

Passing Import/Export Parameters 
Exporting and importing fields are passed to the remote function in an array of 
RFC_PARAMETER [Page 204] structures: 

typedef struct 
{ 
   void *   name;  
   unsigned nlen;  
   unsigned type;  
   void *   addr;  
   unsigned leng;  
} 
RFC_PARAMETER; 
Arrays must be terminated by an entry with name equal to NULL. The supported ABAP datatypes 
(see Table 4-1) are defined in saprfc.h (see ABAP Data Types [Page 96]).  

ABAP Data Types Supported by the RFC API 

Data type 
 

Typedef 
 

Length in Bytes Description 
 

TYPC RFC_CHAR[] 1-65535 Characters, blank padded at the end 

TYPX RFC_BYTE[] 1-65535 Binary data 

TYPP RFC_BCD[] 1-16 BCD numbers (Binary Coded Decimals) 

TYPINT RFC_INT 4 Integer 

TYPFLOAT RFC_FLOAT 8 Floating point 

TYPDATE RFC_DATE 8 Date ("YYYYMMDD") 

TYPTIME RFC_TIME 6 Time ("HHMMSS") 

Currently, only scalar data types are supported. Record structures will be supported in the future. 

Passing Internal Tables 
Almost all the RFC sending and receiving functions have two parameters where the exported or 
imported fields and the referenced ‘internal tables’ are specified. The parameters are pointers to 

April 2001  61 



The RFC API  SAP AG 

Passing Parameters 

arrays of the structure RFC_PARAMETER [Page 204]. The arrays have to be terminated by an 
entry with name equal NULL. 

Internal tables parameters are passed to the remote function in an array of RFC_TABLE [Page 
207] structures: 

typedef struct { 

   void *     name;  
   unsigned   nlen; 
   unsigned   type;  
   unsigned   leng;  
   ITAB_H     ithandle;  
   RFC_ITMODE itmode;  
   int        newitab;  
} RFC_TABLE; 

 

Currently, only scalar data types are possible. That is, only single-column tables and tables with 
similar columns (only TYPC or only TYPX fields) are supported.  

In order to send or receive inhomogenous structures or tables use the function 
RfcInstallStructure [Page 142]. See also the example SRFCTEST.C.  

The type definition for ITAB_H is void *. Note that the itab_h table handle must be supplied by the 
calling program in RfcCall. Use the routine ItCreate to create an itab_h table handle (see ItLeng 
[Page 159] for more information). 

When receiving a call with RfcGetData, itab_h is filled automatically by RfcGetData.  

For the field itmode, you should specify that the table is to be passed by reference (value 
ITMODE_BYREFERENCE). This notion has a special meaning in the context of remote calls that 
differs slightly from the conventional meaning (see Parameter Handling in Remote Calls [Ext.]for 
more information). 

Creating and Manipulating Table Parameters 
Tables passed as parameters to an RFC function must match SAP internal tables in their 
structure and handling.  

As a result: 

• To create a table parameter for sending, use the routine ItCreate.  
This routine creates a control structure (defined as ITAB_H) for a table just like the one 
the SAP System creates automatically for internal tables. This address of the control 
structure is stored in the handle field of the RFC_TABLE structure. 

• To manipulate a table passed to or from the SAP System (for example: to access, 
append or delete rows, and so on), use the table-handling routines provided by the API. 
Do not attempt to manipulate the table using normal C mechanisms. 

 

 

62  April 2001 



 SAP AG The RFC API 

  Writing an RFC Function in C 

Writing an RFC Function in C 
 

To receive the parameters of a remote function call, use the function RfcGetData [Page 138] 
within a registered function or after receiving the name of the called function by RfcGetName.  

To send the answer back to a caller, use the function RfcSendData [Page 145].  

To raise an exception while processing a received RFC call, use the function RfcRaise [Page 
143] or RfcRaiseTables [Page 144]. 

 

April 2001  63 



The RFC API  SAP AG 

Using Multiple-Client Server Programs 

Using Multiple-Client Server Programs 
As of R/3 Release 3.0C, an RFC server program can register itself at an SAP gateway under a 
program identifier and then wait for further RFC requests from any other R/3 System. 

There are three ways of doing this: 

1. Registration will be carried out by RfcAccept [Page 116], and the parameter argv must 
include the following data: 

– a<program-ID> 

e.g. <host name>.<program name> 

– g<SAP gateway host name> 

e.g. hs0311 

– x<SAP gateway service> 

e.g. sapgw00 

– t (optional) 

RFC trace on 

2. You can define an entry in the saprfc.ini file which includes all necessary connection 
parameters and optionally the RFC-specific parameter RFC_TRACE. An RFC client 
program can then issue the RfcOpen [Page 126] call with the mode 
RFC_MODE_PARAMETER and a destination pointed to the defined entry. See The 
SAPRFC.INI File [Page 66] for more details. 

In this case, the parameter argv in RfcAccept must include the following data: 

– D<destination> 

This destination must point to a valid entry in the saprfc.ini file. 

– t (optional) 

RFC trace on 

Until now the contents of argv were defined by the SAP instance which started the server 
program. 

3. With RfcDispatch [Page 135] or RfcListen [Page 190] or RfcGetName [Page 139] it can 
wait or look for the following RFC request. In this case, you must define the destination in 
the R/3 System using transaction SM59: 

– connection type 

T 

– activate kind 

register mode 

– program-ID 

same program-ID as in RfcAccept [Page 116]  

– gateway host  

same gateway host name as in RfcAccept 

64  April 2001 



 SAP AG The RFC API 

  Using Multiple-Client Server Programs 

– gateway service  

same gateway service as in RfcAccept 

To work with this functionality no changes in both client or server porgram are necessary. 
Only the configuration with SM59 must be changed as mentioned above, and the server 
program must be started with other parameters. 

 
You must use the program name as program-ID, because there may be more 
programs registered with the same name at an SAP gateway. Therefore, use at least 
the host name of the computer where your RFC server program is running as part of 
the program-ID. For example, you can start the rfcexec program in register mode 
with RFC trace from the command line as follows: 
rfcexec -ap13387.rfcexec -ghs0311 -xsapgw53 -t 
or 
rfcexec -Drfctest  
The saprfc.ini file contains the entry rfctest. 

Transactional RFC (tRFC) server programs can also work in register mode. 

Additionally, this functionality both enables and eases the use of tRFC server 
programs in debugging mode. 

For further information on the transactional RFC, see Transactional Remote Function 
Calls [Ext.]. 

See also Registering Server Programs with the SAP Gateway [Page 49]. 

 

April 2001  65 



The RFC API  SAP AG 

The SAPRFC.INI File 

The SAPRFC.INI File 
This section contains the following topics: 

Introduction [Page 67]  

Possible Parameters [Page 69]  

Examples [Page 72]  
 

66  April 2001 



 SAP AG The RFC API 

  Introduction 

Introduction  
If you want to change or add parameters, you need not change the program code. These 
parameters can be specified in a file called saprfc.ini.  

The RFC library will read the saprfc.ini file to find out the connection type and all RFC-specific 
parameters needed to connect to an SAP System (R/2 or R/3), or to register an RFC server 
program at an SAP gateway and wait for RFC calls from any SAP System. 

All RFC-specific parameters, both currently known (load balancing, ABAP-debug, RFC with 
SAPGUI) or becoming available in the future, can be used without changing the RFC programs. 

The saprfc.ini file must be in the same directory as the RFC client/server program, or you can 
define it with full path and file name by the environment variable RFC_INI. 

 
Windows: set RFC_INI = d:\rfctest\saprfc.ini 

 
You can work with the saprfc.ini file only if your RFC SDK was delivered with an R/3 
Release as of 3.0C. However, the saprfc.ini file is merely a new interface in the RFC 
library. Therefore, it can work with any R/2 or R/3 System. 

RFC client programs 
To use this new feature, an RFC client program must issue the RfcOpen with 
RFC_MODE_PARAMETER as mode parameter. The destination must point to an entry of type 
B, A, 2, E or R in this saprfc.ini file. 

 
No sideinfo file is necessary when using the new feature. 

RFC server programs 
To use this new feature, an RFC server program must issue the RfcAccept with -D<destination> 
as parameter. The destination must point to an entry of type R in the saprfc.ini file. 

Restrictions 
• The parameters ABAP_DEBUG and USE_SAPGUI are only possible if the RFC server 

system is an R/3 System as of Release 3.0C, and the RFC client program does not work 
with the 16-bit RFC library on Windows (SAPGUI must also be of an R/3 Release as of 
3.0C). For more details, see Load Balancing [Page 39]. 

• The Load Balancing feature is only available for R/3 Releases as of 3.0. 

Possible connection (entry) types 
Five connection types are available: 

• Type R is for RFC server programs or for a client program working with another external 
program as RFC server program which is already registered at an SAP gateway. 

April 2001  67 



The RFC API  SAP AG 

Introduction 

• Type B is recommended for connecting to an R/3 System (using Load Balancing). 

• Type A is only to be used if you want to connect to a specific application server. 

• Type 2 is for connecting to an R/2 System only. 

• Type E is for RFC client programs working with another external program as RFC server 
program. 

See RFC Between External Programs [Page 235] for more details about RFC between external 
programs. 

 

68  April 2001 



 SAP AG The RFC API 

  Possible Parameters 

Possible Parameters 
Type R 
Registers an RFC server program at an SAP gateway and lets it wait for RFC calls by an R/2 or 
R/3 System.  

The following parameters can be used: 

• DEST = <destination in RfcAccept> 

• TYPE = <R: Register at SAP gateway> 

• PROGID = <program-ID, optional; default: destination > 

• GWHOST = <host name of the SAP gateway> 

• GWSERV = <service name of the SAP gateway> 

• RFC_TRACE = <0/1: OFF/ON, optional; default:0(OFF)> 

In an R/3 System the program-ID and this SAP gateway must be specified in the Destination 
entry defined with transaction sm59: use connection type T and register mode. 

To work with R/2 Systems, the entry in the sideinfo file for the gwhost program must have R 
instead of E as PROTOCOL parameter.  

The host service names of the SAP gateway must be specified in the hosts and services files 
(<service name> = sapgw<R/3 system number>). 

Type B 
Connects to an R/3 System using load balancing (as of R/3 3.0).  
The application server will be determined at runtime. 

The following parameters can be used: 

• DEST = <destination in RfcOpen> 

• TYPE = <B: use Load Balancing feature> 

• R3NAME = <name of R/3 System, optional; default: destination> 

• MSHOST = <host name of the message server> 

• GROUP = <group name of the application servers, optional; 
default: PUBLIC> 

• RFC_TRACE = <0/1: OFF/ON, optional; default:0(OFF)> 
• ABAP_DEBUG = <0/1: OFF/ON, optional; default:0(OFF)> 
• USE_SAPGUI = <0/1: OFF/ON, optional; default:0(OFF)> 

The host name and the service name of the message server must be defined in the ‘hosts’ and 
‘service’ files (<service name> = sapms<R/3 system name>). 

April 2001  69 



The RFC API  SAP AG 

Possible Parameters 

Type A 
Connects to a specific R/3 application server.  

The following parameters can be used: 

• DEST = <destination in RfcOpen> 

• TYPE = <A: RFC server is a specific R/3 application server> 

• ASHOST = <host name of a specific R/3 application server> 

• SYSNR = <R/3 system number> 

• GWHOST = <optional; default: gateway on application server> 
• GWSERV = <optional; default: gateway on application server> 
• RFC_TRACE = <0/1: OFF/ON, optional; default:0(OFF)> 
• ABAP_DEBUG = <0/1: OFF/ON, optional; default:0(OFF)> 
• USE_SAPGUI = <0/1: OFF/ON, optional; default:0(OFF)> 

The host name and the service name of the specific application server must be defined in the 
hosts and services files (<service name> = sapdp<R/3 system number>). 

The host name and the service name of the SAP gateway must be defined in the hosts and 
services files. If GWHOST and GWSERV are not specified, the service name of the SAP 
gateway must be defined in the services file (<service name> = sapgw<R/3 system number>). 

Type 2 
Connects to an R/2 System.  

The following parameters can be used: 

• DEST = <destination in RfcOpen and in the ‘sideinfo’ file for 
the SAP gateway> 

• TYPE = <2: RFC server is an R/2 System> 

• GWHOST = <host name of the SAP gateway> 
• GWSERV = <service name of the SAP gateway> 
• RFC_TRACE = <0/1: OFF/ON, optional; default:0(OFF)> 

The host name and the service name of the SAP gateway must be defined in the hosts and 
services files. (<service name> = sapgw<R/3 system number>). 

Type E 
Connect to another external program as RFC server program.  

• DEST = <destination in RfcOpen> 

• TYPE = <E: RFC server is an external server> 

• GWHOST = <host name of the SAP gateway> 
• GWSERV = <service name of the SAP gateway> 

70  April 2001 



 SAP AG The RFC API 

  Possible Parameters 

• TPHOST = <host name of the RFC server program> 
• TPNAME = <name of the RFC server program> 
• RFC_TRACE = <0/1: OFF/ON, optional; default:0(OFF)> 

The host name and the service name of the SAP gateway must be defined in the hosts and 
services files (<service name> = sapgw<R/3 system number>). 

See “Configurations” in Establishing an RFC Connection from an R/3 System [Page 58] for 
details about how to start an RFC server program by an SAP gateway. 

 

April 2001  71 



The RFC API  SAP AG 

Examples 

Examples  
Type R: Register an RFC server program at an SAP gateway 
DEST=rfctest 
TYPE=R 
PROGID=hw1145.rfcexec 
GWHOST=hs0311 
GWSERV=sapgw53 
RFC_TRACE=1 

Type B: R/3 System - Load Balancing feature 
DEST=BIN 
TYPE=B 
R3NAME=BIN 
MSHOST=hs0311 
GROUP=PUBLIC 
RFC_TRACE=0 
ABAP_DEBUG=0 
USE_SAPGUI=0 

Type A: R/3 System - specific application server 
DEST=BIN_HS0011 
TYPE=A 
ASHOST=hs0011 
SYSNR=53 
RFC_TRACE=0 
ABAP_DEBUG=0 
USE_SAPGUI=0 

Type 2: R/2 System (IBM) 
DEST=K50 
TYPE=2 
GWHOST=is0001 
GWSERV=sapgw00 
RFC_TRACE=0 

Type E: External Program (will be started by SAP gateway) 
DEST=RFCEXT 
TYPE=E 
GWHOST=hs0311 
GWSERV=sapgw53 
TPHOST=hs0311 
TPNAME=/rfctest/srfcserv 
RFC_TRACE=0 

 

72  April 2001 



 SAP AG The RFC API 

  Call-Back Feature with R/3 and External Systems 

Call-Back Feature with R/3 and External Systems  
This section contains the following topics: 

Introduction [Page 74]  

Call-Back from an ABAP Function Module [Page 75] 

Call-Back from an RFC Server Program [Page 76]  
 

April 2001  73 



The RFC API  SAP AG 

Introduction 

Introduction  
During the execution of an RFC function, it is sometimes necessary and useful to call another 
RFC function in the original/source RFC client system to get some more data before continuing 
with the current RFC function. This functionality is called call-back and will use the same RFC 
connection established by the first RFC call request.  

The following sections describe how to use and carry out this feature both in ABAP function 
modules and in external programs. 

Call-Back from an ABAP Function Module [Page 75]  

Call-Back from an RFC Server Program [Page 76]  

 

74  April 2001 



 SAP AG The RFC API 

  Call-Back from an ABAP Function Module 

Call-Back from an ABAP Function Module 
The following programming example shows you how to use this feature: 

 

RFC client program  Function module in an R/3 System 

rfc_rc = RfcOpen(...);  FUNCTION ABC. 

rfc_rc = RfcInstallFunction(‘XYZ’, 
xyz_function,...); 

  

rfc_rc = RfcCallReceive(‘ABC’,...); -----
> 

... 

  CALL FUNCTION ‘XYZ’ DESTINATION 
‘BACK’ 

If(rfc_rc==RFC_CALL) <----
- 

... 

{   

rfc_rc = RfcDispatch(...);   

if(rfc_rc!=RFC_OK)   

     exit(1); -----
> 

... 

}   

rfc_rc=RfcReceive(...); <----
- 

ENDFUNCTION 

...   

 
/* RFC function: ‘ABC’ */ 
static RFC_RC xyz_function(RFC_HANDLE rfc_handle) 
{ 
 rfc_rc = RfcGetData(...); /*
 Get RFC data */ 
 ... /*
 Process RFC data */ 
 rfc_rc = RfcSendData(...); /*
 Report result to ABAP */ 
 return 0; 
} 
 

April 2001  75 



The RFC API  SAP AG 

Call-Back from an RFC Server Program 

Call-Back from an RFC Server Program  
The following programming example shows you how to use this feature: 

RFC server programABAP program

rfc_rc=RfcAccept(...);

rfc_rc=RfcInstallFunction('ABC',
              abc_function,...);
do
{
rfc_rc=RfcDispatch(...);
}while(rfc_rc==RFC_OK);

/*RFC function:'ABC'*/

...
CALL FUNCTION 'ABC'
   DESTINATION
         'RFCEXTERN'
   ...

IF SY-SUBREC NE 0.
  "Error Handling"
ENDIF.

static RFC_RC
abc_function(RFC_HANDLE rfc_handle)
{
 rfc_rc=RfcGetData(...);
 ...
 /*Call-back in Source R/3 system*/

 rfc_rc=RfcCallReceive('XYZ',...);
 rfc_rc=RfcSendData(...);
 return 0;
}

 
Function module ‘XYZ’ is any RFC-supported function module in this source R/3 System. 

FUNCTION XYZ. 
... 
ENDFUNCTION. 
 

 

76  April 2001 



 SAP AG The RFC API 

  Transactional RFCs and External Systems 

Transactional RFCs and External Systems 
The following topics are available: 

Introduction [Page 78]  

tRFC between R/3 and External Systems [Page 79]  

Transactional RFC Client Programs [Page 80]  

Transactional RFC Server Programs [Page 83]  
 

 

April 2001  77 



The RFC API  SAP AG 

Introduction 

Introduction 
From Release 3.0 onwards, data can be transferred between two R/3 Systems reliably and 
safely via transactional RFC (tRFC). 

 
This RFC was renamed from asynchronous to transactional RFC, because 
asynchronous RFC has another meaning in R/3 Systems. 

The remote system need not be available at the time when the RFC client program is executing a 
tRFC. In R/3 Systems, the tRFC component stores the called RFC function together with the 
corresponding data in the database, including a unique transaction identifier (TID). This ensures 
that the called function module executed exactly once in the RFC server system. 

For more information on tRFC in ABAP, see Transactional Remote Function Calls [Ext.]. 

For external systems, the RFC library provides some special RFC calls. However, the 
transactional RFC cannot be fully implemented in the RFC library.  

 

 

 

78  April 2001 



 SAP AG The RFC API 

  tRFC between R/3 and External Systems 

tRFC between R/3 and External Systems  
On external systems, the transactional RFC cannot be fully implemented in the RFC library, 
because of the following reasons: 

• A database is not always available in external systems. 

• The RFC library cannot always repeat the RFC call in case of errors, such as network 
errors. 

Therefore, the transactional RFC interface from external systems to an R/3 System is currently 
implemented as follows: 

• RFC library 

The RFC library provides some special RFC calls, such as RfcCreateTransID, 
RfcIndirectCall and RfcInstallTransactionControl for working with tRFC. It will pack 
and unpack RFC data between RFC format and tRFC format. 

For an R/3 System, there is no difference whether these calls are requested from 
another R/3 System or from an external system. For an RFC server program, the RFC 
function itself (only the RFC function, not the whole RFC server program) can be 
executed normally, as it is called via ‘normal’ RFC with RfcGetData and RfcSendData.  

• RFC client programs and RFC server programs 

Both programs have to manage the TIDs themselves for checking and executing the 
requested RFC functions exactly once as the tRFC component in an R/3 System does. 

• R/3 Systems 

In R/3 Systems, no additional changes are necessary in ABAP programs working with 
external RFC programs which use the tRFC interface. For ABAP programs, such as RFC 
client programs, the destination defined in CALL FUNCTION must have ‘T’ as 
connection type. 

 
The tRFC interface is not available with a 16-bit RFC library on Windows platforms. 

 

April 2001  79 



The RFC API  SAP AG 

Transactional RFC Client Programs 

Transactional RFC Client Programs  
After having been connected to an R/3 System (via RfcOpen), an RFC client program must use 
the following two RFC calls for working with the tRFC interface: 

• RfcCreateTransID 

With this call, the RFC library tries to get a TID created by the R/3 System. If errors 
occur, the RFC client program has to reconnect later and must try to repeat this call. 
Otherwise, the RFC client program can assign this TID with the RFC data, and if the next 
call is not successful, it can be repeated later.  

• RfcIndirectCall 
With this call, the RFC library will pack all RFC data belonging to an RFC function 
together with the TID and send them to the R/3 System using the tRFC protocol. 
If an error occurs, the RFC client program has to reconnect later and must try to repeat 
this RFC call (RfcIndirectCall). In this case, it has to use the old TID and must not get a 
new TID with RfcCreateTransID. Otherwise, there is no guarantee that this RFC 
function will be executed exactly once in the R/3 System. 
After this call is executed successfully, the transaction will be completed once and for all. 
The RFC client program can then update its own TID management (e.g. delete the TID 
entry). 

Contrary to tRFC between R/3 Systems, a transaction from an RFC client program contains only 
one RFC function. 

80  April 2001 



 SAP AG The RFC API 

  Transactional RFC Client Programs 

Technical Description 

External System SAP System

tRFC client program

tRFC-component

Function Module

RfcOpen

RfcCreateTransID

RfcIndirectCall
        ('ABC',TID,...)

RfcClose

Create a TID

Check the TID
and execute the
required functions
if necessary

FUNCTION ABC.
...
ENDFUNCTION.

 
 

Sample test program trfctest.c 
The C program trfctest.c which is delivered in the RFC SDK (executable and source code) is an 
example of a tRFC client program.  

To connect to an R/3 System, a saprfc.ini file is needed. 

Data which is to be transferred to an R/3 System via tRFC must be in a file. The file name will be 
required when the program is started. Each line in this file is one line in an internal table. Only 
one internal table with a 72-bit line length is used. 

All data which is received in the R/3 System will be written in the TCPIC table in an R/3 System 
(only the first 40 bytes), and the function module STRFC_WRITE_TO_TCPIC will be activated. 

The trfctest.c program uses the file I/O on the running platform to manage the TIDs. 

For each TID there is an entry in the TID management. This entry contains the date and time, the 
TID itself, the state of the transaction (CREATED, CONFIRMED,...) and the name of the data file. 

It is possible to break up the program trfctest.c in order to simulate error cases. 

April 2001  81 



The RFC API  SAP AG 

Transactional RFC Client Programs 

Whenever this program is started, it will look at the TID management for aborted transactions. If 
any transactions exist it will first try to repeat these transactions. 

Since the program trfctest.c can be run on different platforms, a corresponding flag (SAPonUNIX, 
SAPonNT,...) must be set if you want to compile and link this program in your environment. 

For more details, see the source code delivered with the RFC SDK. 

 

82  April 2001 



 SAP AG The RFC API 

  Transactional RFC Server Programs 

Transactional RFC Server Programs  
After having connected to an R/3 System (via RfcAccept) and after having installed the 
supported RFC functions, the RFC server program has to use the RFC call 
RfcInstallTransactionControl for working with the TIDs to check and execute the real RFC 
function it supports before entering in the loop with RfcDispatch. 

This function installs the following four functions (e.g. C routines) to control transactional 
behavior: 

• onCheckTid 

This function will be activated if a tRFC is called from an R/3 System. The current TID is 
passed. The function has to store this TID in permanent storage and return 0. 
If the same function will be called again later with the same TID, it has to make sure that 
it will return a value <>0. If the same TID is already running by another process but is not 
completed, the function has to wait until the transaction finishes or to stop the RFC 
connection with RfcAbort. 

• onCommit 
This function will be called if all RFC functions belonging to this transaction are done and 
the local transaction can be completed. It should be used to locally commit the 
transaction if necessary (working with database). 

• onRollback 

This function is called instead of the function onCommit if there is an error occurring in 
the RFC library while processing the local transaction. This function can be used to roll 
back the local transaction (working with database). 

• onConfirmTid 

This function will be called if the local transaction is completed. All information about this 
TID can be deleted. 

 
• These four functions must be realized in any tRFC server program and are 

independent of the real RFC function offered in an RFC server program. A 
server program can offer more than one RFC function but only the four 
functions above and not four functions for each RFC function. 

• If you do not install and work with these four functions it can only be 
guaranteed that an RFC call issued by ‘Call Function... In Background 
Task’ is executed by this RFC server program at least once. In this case, all 
RFC functions offered by such a server program can be called more than 
once by using the tRFC interface. 

April 2001  83 



The RFC API  SAP AG 

Transactional RFC Server Programs 

Technical Description 
tRFC within an R/3 System 

SAP System

ABAP program tRFC-component

Call Function 'ABC'
   Destination 'DEST'
   in Background Task
   ...

Commit Work.

Put RFC data in database

   . . .

Try to send RFC data
to RFC server system
(data in tRFC-format)

 
 

The following parameters can be configured with transaction SM59: 

• try or do not try to connect to an RFC server program in cases of error 

• number of times for trying 

• time between two tries 

 
The program location ‘User’ defined with this transaction (start RFC server program 
via currently using SAPGUI) is not available, because the tRFC component is not 
assigned to any SAPGUI while running. 

Transaction SM58 displays the running state of a transaction if the transaction was not executed 
successfully already. 

84  April 2001 



 SAP AG The RFC API 

  Transactional RFC Server Programs 

tRFC between tRFC component, RFC library and tRFC server program  

tR
FC

 c
om

po
ne

nt

R
FC

 li
br

ar
y

tRFC server program
F1

F2

main ( )
{
 RfcAccept
 RfcInstallFunction ('ABC',
               abc_function,...)
 RfcInstallTransactionControl(...)

 do
{
  RfcDispatch
}while (rfc_rc==RFC_OK)

 RfcClose
}

function onCheckTid
{
  Check and update TID
}

function abc_function
{
  RfcGetData
 ...
 RfcSendData
}

function onCommit
{
 Update TID and commit database
 if necessary
}

function onRollback
{
 Update TID and rollback database
 if necessary
}

function onConfirm TID
{
 Update (delete) TID
}

 

T4

Tn

startstart

T1

T2

T3

T3'

 

The tRFC component, the RFC library and the tRFC server communicate with each other in two 
phases: 

• Phase 1/F1: Function transfer 

• Phase 2/F2: Confirmation 

April 2001  85 



The RFC API  SAP AG 

Transactional RFC Server Programs 

F1: Function transfer 
After tRFC data is received, the RFC library will activate the tRFC server program (action: start). 
Using RfcDispatch in a loop, the library will call up the following functions within this function 
transfer phase: 

• T1: onCheckTid 

• T2: the required RFC function ‘abc_function’ 

• T3: onCommit 

As described above, the function transfer phase will be repeated by the tRFC component in the 
R/3 System if any CPI-C error (network errors, for example) occurs during this phase. The 
maximum number of tries and the time between two tries can be defined by using transaction 
SM59 and TRFC options. 

F2: Confirmation 
After the RFC library informs the tRFC components in the R/3 System about a successful T3, it 
will immediately receive confirmation of the current transaction. The RFC library will then call up 
the function 

• T4: onConfirmTID 

After this phase, the current transaction is successfully completed on both sides. 

The Sample Test Program trfcserv.c 
The C-program trfcserv.c, delivered in the form of executable and source code in the RFC SDK, 
is an example of a tRFC server program. 

For testing, the ABAP program SRFCTEST, option Transactional RFC, can be used with this 
server program. 

The data received from the R/3 System will be written in ‘trnn... n.dat’ on the running platform. 
Each line in this file is one line in an internal table. Only one internal table with a line length of 72 
bit is used. 

To manage the TIDs, the trfcserv.c program uses the file I/O on the running platform. 

For each TID there is an entry in the TID-management which contains the date and time, the TID 
itself, the state of this transaction (CREATED, CONFIRMED,...) and the name of the data file. 

Since this program can run on different platforms, a corresponding flag (SAPonUNIX, 
SAPonNT,...) must be set if you want to compile and link this program in your environment. 

For more details, see the source code delivered in the RFC SDK. 

 

86  April 2001 



 SAP AG The RFC API 

  Function Interface: Summary 

Function Interface: Summary 
The following functions form the programming interface to call ABAP function modules from a C 
environment: 

Administration [Page 88]  

Calling and Accepting RFC Functions [Page 89] 

RFC Calls for Manipulating Internal Tables [Page 91]  

Transactional Remote Function Calls [Page 93]  

Extended Remote Function Calls [Page 94]  

Special Functions [Page 95]  

ABAP Data Types [Page 96]  
RFC_CHAR [Page 97]  

RFC_HANDLE [Page 98]  

RFC_FUNCTIONNAME [Page 99]  

RFC_TID [Page 100]  

RFC_NUM [Page 101]  

RFC_INT [Page 102]  

RFC_INT1 [Page 103]  

RFC_INT2 [Page 104]  

RFC_BYTE [Page 105]  

RFC_BCD [Page 106]  

RFC_DATE [Page 107]  

RFC_TIME [Page 108]  

RFC_FLOAT [Page 109]  
 

 

April 2001  87 



The RFC API  SAP AG 

Administration 

Administration  
• RfcOpen 

Open RFC connection (RFC client program) 

• RfcConnect 
Open RFC connection to R/3 via LOAD BALANCING (Release 3.0 onwards) 

• RfcAccept 
Accept RFC connection (RFC server program) 

• RfcClose 

Close RFC connection 

• RfcAbort 
Terminate RFC connection and send error text to ABAP program 

• RfcConnArgv 

Set the parameters required for RfcOpen 

• RfcConnArgv3 

Set the parameters required for RfcOpen 

• RfcEnvironment 
Set RFC parameters for RFC library 

• RfcLastError 
Get extended error specification after an RFC error 

 

88  April 2001 



 SAP AG The RFC API 

  Calling and Accepting RFC Functions 

Calling and Accepting RFC Functions 
Description 
The Remote Function Call Application Programming Interface (RFC API) allows - both 
remotely or locally - you to call ABAP function modules from C programs as well as receiving call 
requests issued from an ABAP program by the CALL FUNCTION interface. 

In ABAP function modules are special routines with well-defined and documented interfaces 
which are developed within a library development workbench. 

ABAP function modules use named parameter passing. There are also exceptions which can be 
raised by a function module to indicate errors. These exceptions can be caught by the caller of a 
function module. 

The following functions form the programming interface to call ABAP function modules from a C 
environment. 

Functions for an RFC Client Program 
• RFCOpen 

Open an RFC connection 

• RFCOpenExt 
Another way to open an RFC connection, more appropriate for non-C environments than 
Visual Basic 

• RFCOpenExtV3 

Another way to open an RFC connection, more appropriate for non-C environments than 
Visual Basic (using RFC Version 3) 

• RfcCall 
Call an ABAP function module without waiting for the result 

• RfcReceive 

Wait for execution of an RFC function called and receive the return values from the 
ABAP function module 

• RfcCallReceive 

Call a function module and receive the return values in one step 

Functions for an RFC Server Program 
• RfcAccept 

Accept an RFC request or register at an SAP gateway 

• RfcInstallFunction 

Register functions as callable function modules 

• RfcInstallFunctionExt 
Communicate function as an RFC function (Windows 3.x.) 

April 2001  89 



The RFC API  SAP AG 

Calling and Accepting RFC Functions 

• RfcDispatch 

Wait for the next function call 

• RfcGetAttributes 

Return information about an RFC connection 

• RfcGetName 

Read the symbolic function name 

• RfcGetData 

Receive the parameters of a function 

• RfcSendData 

Send back the return values 

• RfcRaise 

Report error that occured during the execution of an RFC function 

• RfcRaiseTables 

Raise an exception while processing an RFC call if the function module being called has 
tables parameters 

• RfcGetTransID 

Get associated TID for execute an RFC-function via aRFC (3.0 onwards) 

• RfcCallReceive 

Call a function module and receive the return values in one step. It can be used for 
calling back a function module in R/3 using the same RFC connection while executing an 
RFC function in this server program. It is also possible to use RfcCall and RfcReceive. 

• RFCInstallTransactionControl 
Register functions as callable function modules for transactional RFC 

 

90  April 2001 



 SAP AG The RFC API 

  RFC Calls for Manipulating Internal Tables 

RFC Calls for Manipulating Internal Tables  
Description 
These functions allow processing of ABAP internal tables in C. 

ABAP internal tables follow the model of a relational database table. 

ABAP internal tables consist of identical rows. When it is created, a table is empty. In ABAP you 
can fill rows into a table by the statements ‘Insert’ or ‘Append’. You can access a row by ‘Read 
Table’, and you can delete a row by ‘Delete’. You can free a table by ‘Free Table’, and you can 
receive information about tables by ‘Describe’. 

These language constructs correspond to the following C routines: 

• ItCreate 

creates a new internal table 

• ITAB_H 

handle of an internal table 

• ItDelete 

deletes the content of a complete internal table and frees storage 

• ItGetLine 

reads a line from an internal table 

• ItInsLine 

inserts a line into the given position of an internal table 

• ItAppLine 

appends a line at the end of an internal table 

• ItDelLine 

deletes a line from an internal table 

• ItGupLine 

reads a line for update 

• ItFree 

resets an internal table to initial state 

• ItFill 
returns the number of lines in a table 

• ItLeng 

returns the width of a table, i.e. the size of a row of the table 

 
The syntax and semantics of the above RFC calls are identical for all platforms 
supported.  

April 2001  91 



The RFC API  SAP AG 

RFC Calls for Manipulating Internal Tables 

The syntax of the RFC calls is described in saprfc.h.  The syntax of the RFC calls 
for manipulating internal tables is described in sapitab.h. 

 
Creating and filling a new internal table 
const int myTableSize = 200; 
ITAB_H handle; 
void * ptr; 
handle = IitCreate(“MyTable”, myTableSize, 0,0); 
if(handle == ITAB_NULL) 
{ 
... error 
} 
do 
{ 
  ptr = ItAppLine(handle);; 
  if(ptr != NULL) 
  { 
     memcpy(ptr,..., myTableSize); 
  } 
  while(ptr != NULL); 

 

92  April 2001 



 SAP AG The RFC API 

  Transactional Remote Function Calls 

Transactional Remote Function Calls  
• RfcInstallTransactionControl 

installs four functions to control transactional behaviour. 

• RFC_ON_CHECK_TID 
is called when a local transaction is starting. 

• RfcCreateTransID 
Get a unique transaction-ID for calling an ABAP function module using the transactional 
RFC Interface 

• RfcIndirectCall 
Call an ABAP function module using the transactional RFC Interface 

• RFC_ON_COMMIT 
is called when a local transaction ends. 

• RFC_ON_CONFIRM_TID 
is called when a local transaction is completed. 

• RFC_ON_ROLLBACK 
is called when a local transaction ends with failure. 

• RFC_ONCALL 

 

April 2001  93 



The RFC API  SAP AG 

Extended Remote Function Calls 

Extended Remote Function Calls  
• RfcAddExportParam 

adds export parameters to the stack. 

• RfcAddImportParam 

adds import parameters to the stack. 

• RfcAddTable 

adds table parameters to the stack. 

• RfcAllocParamSpace 

allocates stack space. 

• RfcCallExt 
sends a call request and returns after sending the call request.. 

• RfcCallReceiveExt 
makes an RFC call and receives return vaues (it waits until it receives an answer before 
returning). 

• RfcOpenExt 
opens an RFC connection. 

• RfcOpenExtV3 

opens an RFC connection. 

• RfcFreeParamSpace 

frees stack space. 

• RfcGetDataExt 
gets incoming parameter values when the function is being called. 

• RfcReceiveExt 
receives return values from an RFC call. 

• RfcSendDataExt 
sends the result parameters back to the caller. 

• RfcInstallFunctionExt 
installs a function to be callable as RFC function module for Windows 3.x (16-Bit). 

 

94  April 2001 



 SAP AG The RFC API 

  Special Functions 

Special Functions  
• RfcListen 

Check whether the result of a previously submitted RfcCall is available 

• RfcWaitForRequest 
Wait for incoming RFC requests.  

 
This function is only available after RfcAccept in register mode. 

 

 

April 2001  95 



The RFC API  SAP AG 

ABAP Data Types 

ABAP Data Types  
Description: 
The RFC API uses only ABAP data representation for data transported between function module 
interfaces. 

The following data types are supported: 

• RFC_CHAR [Page 97]  

• RFC_HANDLE [Page 98]  

• RFC_FUNCTIONNAME [Page 99]  

• RFC_TID [Page 100]  

• RFC_NUM [Page 101]  

• RFC_INT [Page 102]  

• RFC_INT1 [Page 103]  

• RFC_INT2 [Page 104]  

• RFC_BYTE [Page 105]  

• RFC_BCD [Page 106]  

• RFC_DATE [Page 107]  

• RFC_TIME [Page 108]  

• RFC_FLOAT [Page 109]  

 

 

96  April 2001 



 SAP AG The RFC API 

  RFC_CHAR 

RFC_CHAR  
ABAP data type C, blank padded character string of fixed length. 

This data type is defined in SAPRFC.H. 

 

April 2001  97 



The RFC API  SAP AG 

RFC_HANDLE 

RFC_HANDLE  
ABAP handle for RFC connection. 

This data type is defined in SAPRFC.H. 

• RFC_HANDLE_NULL 

RFC handle is not set 

 

98  April 2001 



 SAP AG The RFC API 

  RFC_FUNCTIONNAME 

RFC_FUNCTIONNAME  
RFC function name. This type is a character field big enough to contain the name of any ABAP 
function module. 

This data type is defined in SAPRFC.H. 

 

April 2001  99 



The RFC API  SAP AG 

RFC_TID 

RFC_TID  
ABAP null-terminated string giving an RFC transaction a globally unique identifier 

This data type is defined in SAPRFC.H. 

 

100  April 2001 



 SAP AG The RFC API 

  RFC_NUM 

RFC_NUM  
ABAP data type N, character string of fixed length containing only digits. 

This data type is defined in SAPRFC.H. 

 

April 2001  101 



The RFC API  SAP AG 

RFC_INT 

RFC_INT  
ABAP data type I, four-byte signed integer. 

This data type is defined in SAPRFC.H. 

 

102  April 2001 



 SAP AG The RFC API 

  RFC_INT1 

RFC_INT1  
Data Dictionary data type INT1, one-byte unsigned integer. 

This data type is defined in SAPRFC.H. 

 

April 2001  103 



The RFC API  SAP AG 

RFC_INT2 

RFC_INT2  
Data Dictionary data type INT2, two-byte signed integer. 

This data type is defined in SAPRFC.H. 

 

104  April 2001 



 SAP AG The RFC API 

  RFC_BYTE 

RFC_BYTE  
ABAP data type X, raw data. 

This data type is defined in SAPRFC.H. 

 

April 2001  105 



The RFC API  SAP AG 

RFC_BCD 

RFC_BCD  
ABAP data type P, packed number in BCD (Binary Coded Decimal) format. 

This data type is defined in SAPRFC.H. 

 

106  April 2001 



 SAP AG The RFC API 

  RFC_DATE 

RFC_DATE  
ABAP data type D, eight-byte date (YYYYMMDD). 

This data type is defined in SAPRFC.H. 

 

April 2001  107 



The RFC API  SAP AG 

RFC_TIME 

RFC_TIME  
ABAP data type T, six-byte time (HHMMSS). 

This data type is defined in SAPRFC.H. 

 

108  April 2001 



 SAP AG The RFC API 

  RFC_FLOAT 

RFC_FLOAT  
ABAP data type F, eight-byte IEEE floating point number. 

This data type is defined in SAPRFC.H. 

 

 

April 2001  109 



The RFC API  SAP AG 

Function Reference 

Function Reference  
The following function references are available: 

110  April 2001 



 SAP AG The RFC API 

  Function Reference 

Administration Function Reference [Page 114] 
RfcAbort [Page 115] 

RfcAccept [Page 116] 

RfcClose [Page 118] 

RfcConnArgv [Page 119] 

RfcConnArgv3 [Page 120]  

RfcEnvironment [Page 122] 

RfcConnect [Page 123] 

RfcLastError [Page 125] 

RfcLastErrorEx [Ext.]  

RfcOpen [Page 126] 

RfcOpenEx [Ext.]  

RfcCheckRegisterServer [Ext.]  

RfcCancelRegisterServer [Ext.]  

RFC Client Function Reference [Page 127] 
RfcCall [Page 128] 

RfcCallReceive [Page 130] 

RfcReceive [Page 132] 

RfcInstallStructure [Page 142]  

RFC Server Function Reference [Page 134]  
RfcDispatch [Page 135] 

RfcGetAttributes [Page 137]  

RfcGetData [Page 138] 

RfcGetName [Page 139] 

RfcInstallFunction [Page 140] 

RfcInstallStructure [Page 142]  

RfcRaise [Page 143] 

RfcRaiseTables [Page 144]  

RfcSendData [Page 145] 

April 2001  111 



The RFC API  SAP AG 

Function Reference 

RfcWinInstallFunction [Page 146] 

Table-Handling Function Reference [Page 147] 
ItAppLine [Page 148] 

ItCpyLine [Page 149]  

ItCreate [Page 150] 

ITAB_H [Page 151]  

ItDelete [Page 152] 

ItDelLine [Page 153] 

ItFill [Page 154] 

ItFree [Page 155] 

ItGetLine [Page 156] 

ItGupLine [Page 157] 

ItInsLine [Page 158] 

ItLeng [Page 159] 

ItPutLine [Page 160]  

Transactional Function Reference [Page 161] 
RfcInstallTransactionControl [Page 164] 

RfcCreateTransID [Page 162] 

RfcIndirectCall [Page 163] 

RFC_ON_CHECK_TID [Page 166] 

RFC_ON_COMMIT [Page 167] 

RFC_ON_CONFIRM_TID [Page 168] 

RFC_ON_ROLLBACK [Page 169] 

RFC_ONCALL [Page 170] 

Extended Function Reference [Page 171] 
RfcAddExportParam [Page 173] 

RfcAddImportParam [Page 174] 

RfcAddTable [Page 175] 

RfcAllocParamSpace [Page 176] 

112  April 2001 



 SAP AG The RFC API 

  Function Reference 

RfcCallExt [Page 177] 

RfcCallReceiveExt [Page 178] 

RfcOpenExt [Page 179] 

RfcOpenExtV3 [Page 181] 

RfcFreeParamSpace [Page 184] 

RfcGetDataExt [Page 185] 

RfcReceiveExt [Page 186] 

RfcSendDataExt [Page 187] 

RfcInstallFunctionExt [Page 188] 

Special Function Reference [Page 189]  
RfcListen [Page 190] 

RfcWaitForRequest [Page 192]  

Structures and Enumerations [Page 193] 
RFC_CONNOPT_CPIC [Page 194]  

RFC_CONNOPT_R3ONLY [Page 195] 

RFC_CONNOPT_VERSION_3 [Page 196] 

RFC_ERROR_INFO [Page 198] 

RFC_ITMODE [Page 199] 

RFC_MODE [Page 200] 

RFC_OPTIONS [Page 201] 

RFC_PARAMETER [Page 204] 

RFC_RC [Page 205] 

RFC_TABLE [Page 207] 

RFC_ATTRIBUTES [Page 208]  
 

 

April 2001  113 



The RFC API  SAP AG 

Administration Function Reference 

Administration Function Reference 
This section contains the following topics: 

RfcAbort [Page 115] 

RfcAccept [Page 116] 

RfcClose [Page 118] 

RfcConnArgv [Page 119] 

RfcConnArgv3 [Page 120]  

RfcEnvironment [Page 122] 

RfcConnect [Page 123] 

RfcLastError [Page 125] 

RfcOpen [Page 126] 

 
In many of these routines, the token SAP_API is included. SAP_API contains 
platform-dependent keywords which are neccesary to allow dynamic linking of these 
function from various environments. On Windows, for example, SAP_API is __extern 
__loadds __pascal __far. 

 

114  April 2001 



 SAP AG The RFC API 

  RfcAbort 

RfcAbort 
You can abort a connection (close it with an error) with: 
void  SAP_API  RfcAbort(RFC_HANDLE handle, char * text) 
Thus this function sends an error message, if possible, and closes the connection. 

A given error message cannot be sent if the receiver is not in state where it expects to receive 
some RFC data. 

This function is defined in SAPRFC.H. 

Function Parameters: 
• handle 

Handle to RFC connection. If handle is RFC_HANDLE_NULL, all connections are 
aborted. 

• text 

Error message. 

If you supply a text, the text is used as error message on the receiving side. If the text 
field is NULL, the connection is only closed. 

 

April 2001  115 



The RFC API  SAP AG 

RfcAccept 

RfcAccept 
The function 
RFC_HANDLE  SAP_API  RfcAccept(char ** argv) 
accepts an incoming connection. You must use this routine if your program will be started by an 
RFC call from an SAP System (or by any other program using this API). The command line 
(argv) has to be passed to this function. 

With R/3 Release 3.0C onwards this function can be used to register at an SAP gateway, and the 
server program can wait for the next RFC request by issueing RfcDispatch [Page 135] or 
RfcListen [Page 190] or RfcGetName [Page 139]. 

Using this functionality, an RFC server program can now already run and work as an RFC 
daemon. Starting any server program by an R/3 application server, by SAPGUI or via remote 
shell by an SAP gateway is no longer necessary. 

There are two ways to define the input parameter ‘argv’ 

1. Working with the ‘saprfc.ini’-file: 

– D 

<destination pointed to an entry in ‘saprfc.ini’> 

– t 

Use RFC-trace  

2. Working without the ‘saprfc.ini’-file: 

– a 

<program ID> e.g. own_host_name.program_name 

– g 

<host name of the SAP gateway> 

– s 

<service of the SAP gateway> e.g. sapgw00 

– t 

Use RFC-trace 

The first of these two ways is recommended, because this way allows you to use some 
RFC features today and in the future without changing your RFC programs. See 
saprfc.ini for more details. 

The three parameters above must fit with the configuration in the R/3 System (via SM59, 
connection type T and register mode). 

For working with register mode no further changes in RFC programs are necessary. 

 
You must be careful to use only the program name as program-ID, because more 
programs (e.g. rfcexec) might be registered at the same SAP gateway. You ought to 

116  April 2001 



 SAP AG The RFC API 

  RfcAccept 

use at least the host name of the computer where your RFC server program is 
running as part of the program-ID. 

 
The well-known rfcexec program can be started from the command line with RFC-
trace as follows: 
rfcexec -ap10234.rfcexec -ghs0311 -xsapgw53 -t 
or 
rfcexec -Drfctest 
and an entry in saprfc.ini can be defined as follows: 
DEST=rfctest 
TYPE=R 
PRGOGID=p10234.rfcexec 
GWHOST=hs0311 
GWSERV=sapgw53 
RFC_TRACE=1 

RFC server programs working with this functionality will be called RFC server programs running 
in register mode. 

This function is defined in SAPRFC.H. 

Return value: 
• Returns a valid RFC_HANDLE [Page 98] or RFC_HANDLE_NULL. 

Function Parameter: 
• argv 

command line, the line the program is started with 

 

April 2001  117 



The RFC API  SAP AG 

RfcClose 

RfcClose 
You can close an RFC connection using:  
void  SAP_API  RfcClose(RFC_HANDLE handle)  
This function is defined in SAPRFC.H. 

Function Parameter: 
• handle 

Handle to RFC connection. 

 

118  April 2001 



 SAP AG The RFC API 

  RfcConnArgv 

RfcConnArgv 
This function offers the same functionality as RfcConnArgv3 [Page 120], allocating a static 
instance of RFC_CONNOPT_VERSION_3 [Page 196] internally, however.The syntax is: 

int  SAP_API  RfcConnArgv(char ** argv, 
 RFC_OPTIONS * rfc_opt, 
 RFC_CONNOPT_R3ONLY * connopt_r3only); 

This function was used to build up the structures RFC_OPTIONS [Page 201], 
RFC_CONNOPT_R3ONLY [Page 195] or RFC_CONNOPT_CPIC [Page 194] from the command 
line in former releases and is included for backward compatibility. 

 
Use the function RfcConnArgv3 [Page 120] instead, if you are not working on 16-bit 
Windows. On 16-bit Windows only RfcConnArgv is supported. 

This function is defined in SAPRFC.H. 

Return Value: 
• returns 0. 

Function Parameters: 
• argv 

Command line to be parsed. 

• rfc_opt 

Option structure to be filled. 

• connopt_r3only 

Option extension for R/3 connection (a valid pointer must be supplied all the time). 

See also RfcConnArgv3 [Page 120]. 

 

April 2001  119 



The RFC API  SAP AG 

RfcConnArgv3 

RfcConnArgv3  
The function 

int  SAP_API  RfcConnArgv3(char ** argv, 
 RFC_OPTIONS * rfc_opt, 
 RFC_CONNOPT_R3ONLY * connopt_r3only 
 RFC_CONNOPT_VERSION_3 connopt_version_3); 

can be used to build up the structures RFC_OPTIONS [Page 201], RFC_CONNOPT_R3ONLY 
[Page 195], RFC_CONNOPT_VERSION_3 [Page 196] or RFC_CONNOPT_CPIC [Page 194] 
from the command line. 

This function is defined in SAPRFC.H. 

Return Value: 
• returns 0. 

Function Parameter: 
• argv 

Command line to be parsed. 

• rfc_opt 

Option structure to be filled. 

• connopt_r3only 

Option extension for R/3 connection (a valid pointer must be supplied all the time) 

• connopt_version_3 

Option extension for a connection to an R/3 System of Release 3.0 or later (a valid  
pointer must be supplied all the time). 

Comments: 
The following tokens are recognized in the argv array, which must be terminated by a NULL 
entry: 

− d <Destination> 

name of the destination 

− c <NNN> 

client (sign on data) 

− u <User ID> 

user ID 

− p <Password> 

password 

− l <Language> 

language 

120  April 2001 



 SAP AG The RFC API 

  RfcConnArgv3 

− 3 

R/3 mode 

− 2 

CPIC mode 

− t 

turn trace on 

− h <Hostname> 

name of the target host 

− s <NN> 

system number of the target SAP System 

− g <Gateway host> 

gateway host (if not specified, the h option is used) 

− x <Gateway service> 

TCP/IP service of the gateway (default: sapgwNN, where NN is the system number 
(-s)) 

− gui 

start ‘sapgui’ to be able to display SAP Dypros or Graphics (R/3 mode only) 

− debug 

start communication in debug mode (R/3 mode only). 

All tokens that were interpreted by RfcConnArgv3 are removed from the argv array. 

See also RfcConnArgv [Page 119]. 

 

April 2001  121 



The RFC API  SAP AG 

RfcEnvironment 

RfcEnvironment 
The RfcEnvironment function lets you supply your own routines for error handling and memory 
allocation:  
void  SAP_API   RfcEnvironment(RFC_ENV * new_env); 
typedef struct  
{ 
   void * (* allocate)( void * old_ptr, size_t new_size); 
   void   (* errorhandler)( void); 
} 
RFC_ENV; 

Supplying an Allocate Routine 
If you specify an allocate routine (that is, the address is not NULL), RFC calls your routine 
(instead of the default one) whenever it allocates, resizes, or frees memory. Your allocate routine 
should be able to perform three operations: 

   allocate( NULL, size) /* to allocate memory */ 
   allocate( address, 0) /* to free memory */ 
   allocate( old_addr, new_size) /* to reallocate memory */ 

If you don't specify an allocation function, RFC uses the standard C library routines malloc, free, 
and realloc. 

Supplying an Error Handler 
If you supply an errorhandler function, it is always called when an error occurs within RFC. 

Clearing the Environment Structure 
You must clear the environment structure RFC_ENV when using the function RfcEnvironment. 
You can do this either implicitly: 
static RFC_ENV rfcenv;  
rfcenv.allocate =....; 
RfcEnvironment( &rfcenv); 
or explicitly: 
RFC_ENV rfcenv; 
memset( &rfcenv, 0, sizeof( rfcenv)); 
rfcenv.allocate =....; 
RfcEnvironment( &rfcenv); 
Either method maintains program flexibility, in case of future extensions to the RFC_ENV 
structure. 

 

122  April 2001 



 SAP AG The RFC API 

  RfcConnect 

RfcConnect 
The function 
RFC_HANDLE   SAP_API  RfcConnect(char * system_name, 
 char * ms_hostname, 
 char * group_name, 
 char * client, 
 char * user, 
 char * password, 
 char * language, 
 int trace, 
 RFC_HOSTNAME as_hostname, 
 int * sysnr); 
opens an RFC connection via LOAD BALANCING.  

With this function the RFC library will try to connect to an application server with the least load 
(LOAD BALANCING principle) within a group of predefined application servers. 

 
This function is only available for R/3 Release 3.0 onwards. 

Better use the call RfcOpenEx [Ext.]. 

This function has the following advantages: 

• The load in the R/3 System is distributed to different application servers. 

• RFC connections are thus independent of a specific application server (with RfcOpen 
[Page 126] or RfcOpenExt [Page 179] an RFC connection could only be established to a 
predefined application server). 

• Only the host name of the message server and its port number of the according R/3 
System are required in the host file and the services file.  

Information about the SAP gateway, application server, system number, etc. as parameters for 
RfcOpen [Page 126] or RfcOpenExt [Page 179] or as parameters in sideinfo are no longer 
necessary. Even the sideinfo is no longer required. 

 
You ought to use RfcOpen [Page 126] or RfcOpenExtV3 [Page 181] with 
RFC_MODE [Page 200], RFC_MODE_VERSION3 or RFC_MODE_PARAMETER 
instead of this function. 

This function is defined in SAPRFC.H. 

Return Value: 
• returns a handle to the RFC connection (RFC_HANDLE [Page 98]) or 

RFC_HANDLE_NULL if the connection cannot be opened. 

Function Parameters: 
• system_name 

April 2001  123 



The RFC API  SAP AG 

RfcConnect 

name of the R/3 System 

• ms_hostname 

host name of the message server 

• group_name 

name of a specific group of application servers 

• client 

signon data: client 

• user 

signon data: user-ID 

• password 

signon data: password 

• language 

signon data: language 

• trace 

trace /0/1) 

• as_hostname 

name of the connected application server (output parameter) 

• sysnr 

system number of the connected R/3 System (output parameter) 

See also RfcOpen [Page 126], RFC_OPTIONS [Page 201], RfcOpenExtV3 [Page 181] and 
RFC_OPTIONS [Page 201]. 

 

124  April 2001 



 SAP AG The RFC API 

  RfcLastError 

RfcLastError 
You can use the following function to get more information on errors that have occurred: 
int  SAP_API   RfcLastError(RFC_ERROR_INFO * error_info); 
This function thus describes the last error reported by some function of the RFC API. 

The errorinfo structure is: 
typedef struct 
{ 
char    key[32]; 
char    status[128]; 
char    message[256]; 
char    intstat[128]; 
} 
RFC_ERROR_INFO; 
The structure RFC_ERROR_INFO is filled with more information describing the error. 

This function is defined in SAPRFC.H. 

Return Value: 
• Returns 1 if no error occurred and 0 elsewhere. 

Function Parameter: 
• error info 

structure RFC_ERROR_INFO [Page 198] describing the error.  

 

 

April 2001  125 



The RFC API  SAP AG 

RfcOpen 

RfcOpen 
The following function opens an RFC connection 
RFC_HANDLE  SAP_API   RfcOpen(RFC_OPTIONS * options) 
according to the given options and returns a handle for the connection established. The structure 
RFC_OPTIONS [Page 201] contains the data needed to open the connection:  
typedef struct  
{ 
 char * destination; 
 RFC_MODE mode; 
 void * connopt; 
 char * client; 
 char * user; 
 char * password; 
 char * language; 
 int trace; 
}  
RFC_OPTIONS; 
This function is defined in SAPRFC.H. 

Return Value: 
• Returns a handle to the RFC connection (RFC_HANDLE [Page 98]) or 

RFC_HANDLE_NULL if the connection cannot be opened. 

Function Parameter: 
• options 

connection parameters as described at structure RFC_OPTIONS [Page 201].  

 
If you call RfcOpen with an invalid password, the function does not immediately fail. 
However, the subsequent call to RfcCall (or RfcCallReceive) will fail.  

See also RfcOpenExt [Page 179] and RfcOpenExtV3 [Page 181].  

 

 

126  April 2001 



 SAP AG The RFC API 

  RFC Client Function Reference 

RFC Client Function Reference 
This section contains the following topics: 

RfcCall [Page 128] 

RfcCallReceive [Page 130] 

RfcReceive [Page 132] 

RfcInstallStructure [Page 142]  

 
In many of these routines, the token SAP_API is included. SAP_API contains 
platform-dependent keywords which are neccesary to allow dynamic linking of these 
function from various environments. On Windows, for example, SAP_API is __extern 
__loadds __pascal __far. 

 

April 2001  127 



The RFC API  SAP AG 

RfcCall 

RfcCall 
This functin calls an ABAP function module via RFC: 
RFC_RC  SAP_API   RfcCall(RFC_HANDLE handle, 
 char * function, 
 RFC_PARAMETER * parameters, 
 RFC_TABLE * tables); 
The structures RFC_PARAMETER [Page 204] and RFC_TABLE [Page 207] contain names and 
descriptions of the ‘exporting’ parameters and tables specified in the function's interface. Tables 
can only be internal ABAP tables. The function returns after the call-request is sent. If the 
function returns RFC_OK there is no guarantee that the call has already been received by the 
target system.  

This function is defined in SAPRFC.H. 

Return Value: 
• Returns after sending the call request and returns either RFC_OK or RFC_FAILURE 

Function Parameters: 
• handle 

connection handle 

• function 

function module to call 

• parameters 

‘exporting’ parameters 

• tables 

‘tables’ parameters 

 
RfcCall can fail because you called RfcOpen with an invalid password. See RfcOpen 
[Page 126] for more information. 

 
Calling the function module RFC_SYSTEM_INFO 
RFC_RC rfc_rc; 
RFC_PARAMETER exporting[32]; 
RFC_TABLE tables[32]; 
exporting[0].name = NULL; 
tables[0].name = NULL; 
rfc_rc = RfcCall(handle, “RFC_SYSTEM_INFO”, exporting, 
tables); 
if(rfc_rc != RFC_OK) 

128  April 2001 



 SAP AG The RFC API 

  RfcCall 

{ 
... 

 

April 2001  129 



The RFC API  SAP AG 

RfcCallReceive 

RfcCallReceive 
You can make an RFC call and receive return values using a single function: 

RFC_RC  SAP_API   RfcCallReceive(RFC_HANDLE handle, 
 char * function, 
 RFC_PARAMETER * exporting, 
 RFC_PARAMETER * importing, 
 RFC_TABLE * tables, 
 char ** exception) 

This function waits till it receives an answer before returning. The return values are just the same 
as those you would receive by calling RfcReceive. Note that RfcCallReceive can fail because you 
called RfcOpen with an invalid password. See RfcOpen [Page 126] for more information. 

This function is defined in SAPRFC.H. 

Return Values: 
• RFC_OK 

The call was successfully completed, and the values of the returned parameters were 
filled into the fields being supplied by the RFC_PARAMETER [Page 204] array. 

• RFC_FAILURE 

An internal error has occurred. RfcLastError [Page 125] may give more information. 

• RFC_EXCEPTION 

The callee has raised an exception. The field ‘*exception’ points to the name of the 
exception. No data were transported. 

• RFC_SYS_EXCEPTION 

The local or remote RFC system has raised an exception. Also, ‘*exception’ points to the 
name of the exception. The connection was automatically closed by the system and 
RfcLastError [Page 125] may give more information on the origin of the error. Two 
exceptions may occur now: SYSTEM_FAILURE and COMMUNICATION_ FAILURE. 

• RFC_CALL 

The callee has issued an RFC call to the caller of RfcReceive. No data are transported. 
The call request must be handled by using the functions RfcDispatch [Page 135] or by 
RfcGetName [Page 139], RfcGetData [Page 138] and RfcSendData [Page 145] before 
an other call to RfcReceive can be done. 

Function Parameters: 
• handle 

connection handle 

• function 

function module to call 

• exporting 

‘exporting’ parameters 

130  April 2001 



 SAP AG The RFC API 

  RfcCallReceive 

• importing 

‘importing’ parameters 

• tables  

‘tables’ parameters 

• exception  

output parameter: pointer to exception string. This parameter is only set if 
RFC_EXCEPTION or RFC_SYS_EXCEPTION is returned 

See also RfcCall [Page 128] and RfcReceive [Page 132]. 

 

April 2001  131 



The RFC API  SAP AG 

RfcReceive 

RfcReceive 
The function 

RFC_RC  SAP_API   RfcReceive(RFC_HANDLE handle, 
 RFC_PARAMETER * parameters, 
 RFC_TABLE * tables, 
 char ** exception); 

receives the return values from a function call issued by RfcCall [Page 128]. 

This function thus allows you to receive the answer to an RFC call and must be called after 
calling RfcCall. The tables’ description (RFC_TABLE [Page 207]) must be identical to the one 
used in RfcCall.  

RfcReceive waits till the answer is received before returning. If you want to check for incoming 
events without waiting, use the routine RfcListen.  

This function is defined in SAPRFC.H. 

Return Values: 
• RFC_OK 

The call was successfully completed, and the values of the returned parameters were 
filled into the fields being supplied by the RFC_PARAMETER [Page 204] array. 

• RFC_FAILURE 

An internal error has occurred. RfcLastError [Page 125] may give more information. 

• RFC_EXCEPTION 

The callee has raised an exception. The field ‘*exception’ points to the name of the 
exception. No data were transported. 

• RFC_SYS_EXCEPTION 

The local or remote RFC system has raised an exception. Also, ‘*exception’ points to the 
name of the exception. The connection was automatically closed by the system and 
RfcLastError [Page 125] may give more information on the origin of the error. Two 
exceptions may occur now: SYSTEM_FAILURE and COMMUNICATION_ FAILURE. 

• RFC_CALL 

The callee has issued an RFC call to the caller of RfcReceive. No data are transported. 
The call request must be handled by using the functions RfcDispatch [Page 135] or by 
RfcGetName [Page 139], RfcGetData [Page 138] and RfcSendData [Page 145] before 
an other call to RfcReceive can be done. 

Function Parameters: 
• handle 

connection handle 

• parameters 

‘importing’ parameters  

• tables  

132  April 2001 



 SAP AG The RFC API 

  RfcReceive 

‘tables’ parameters 

• exception  

output parameter: pointer to exception string. This parameter is only set if 
RFC_EXCEPTION or RFC_SYS_EXCEPTION is returned 

See also RfcCall [Page 128] and RfcCallReceive [Page 130]. 

 

April 2001  133 



The RFC API  SAP AG 

RFC Server Function Reference 

RFC Server Function Reference  
This section contains the following topics: 

RfcDispatch [Page 135] 

RfcGetAttributes [Page 137]  

RfcGetData [Page 138] 

RfcGetName [Page 139] 

RfcInstallFunction [Page 140] 

RfcInstallStructure [Page 142]  

RfcRaise [Page 143] 

RfcRaiseTables [Page 144]  

RfcSendData [Page 145] 

RfcWinInstallFunction [Page 146] 

 
In many of these routines, the token SAP_API is included. SAP_API contains 
platform-dependent keywords which are neccesary to allow dynamic linking of these 
function from various environments. On Windows, for example, SAP_API is __extern 
__loadds __pascal __far. 

 

134  April 2001 



 SAP AG The RFC API 

  RfcDispatch 

RfcDispatch 
The routine RfcDispatch receives a single RFC request and causes it to be executed. The calling 
syntax is: 
RFC_RC  SAP_API   RfcDispatch(RFC_HANDLE handle); 
Use RfcDispatch after calling RfcAccept [Page 116], or after receiving an RFC_CALL return code 
from RfcReceive [Page 132] or RfcCallReceive [Page 130]. In order to dispatch RFC requests, 
you must also have registered the remote function with RfcInstallFunction (or 
RfcWinInstallFunction). 

This function internally calls the registered function corresponding the the RFC call. The return 
code of the registered function is again returned by RfcDispatch. 

The sample programs provide examples of how to use RfcDispatch. (In particular, the program 
rfcexec.c which is included in the RFC SDK) implements an RFC server.) 

This function is defined in SAPRFC.H. 

Return Values: 
• returns RFC_OK or other RFC_RC [Page 205] return code 

Function Parameter: 
• handle 

handle to the RFC connection 

Comments: 
There are some function modules which are always offered automatically when using 
RfcDispatch. These are: 

• RFC_DOCU 

Get a list of the installed function modules. 

• RFC_PING 

Do nothing (used for connection test). 

• RFC_SYSTEM_INFO 

Deliver some information to the RFC library used. 

 
A typical RFC server: 
int main(int argv, char** argv) 
{ 
  RFC_HANDLE handle; 
  RFC_RC     rc; 
  handle = RfcAccept(argv); 
  if(handle == RFC_HANDLE_NULL) 
  { 

April 2001  135 



The RFC API  SAP AG 

RfcDispatch 

   ... error processing 
     return 1; 
  } 
  rc = RfcInstallFunction(...); 
  if(rc != RFC_OK) 
  { 
     error processing 
     return 1; 
  } 
  do 
  { 
     rc = RfcDispatch(handle); 
  } 
  while(rc == RFC_OK); 
  RfcClose(handle); 
  return 0; 
} 

 
When RfcDispatch(handle) calls a C-function, it passes the function a different 
handle than the handle passed RfcDispatch(). Trying to do an RfcGetData() on the 
original handle passed to RfcDispatch() malfunctions. This is due to the internal 
structure of the transactional RFC: Since the function call is done indirectly, and not 
directly, from librfc, it internally passes RFC handles of its own in order to carry out 
the RFC calls. 

 

 

136  April 2001 



 SAP AG The RFC API 

  RfcGetAttributes 

RfcGetAttributes  
int  SAP_API   RfcGetAttributes(RFC_HANDLE handle, 

 RFC_ATTRIBUTES* rfc_attributes); 
This call returns some information about an RFC connection, such as host name, service of the 
connected application server and SAP gateway, the R/3 system number, client, user and 
language. 

RfcGetAttributes can be used in an RFC client or server program. 

The RFC library can only know these attributes after this RFC connection is established and at 
least one RFC function is called. Therefore, it should be called after an RfcReceive [Page 132] in 
an RFC client program or after RfcGetData [Page 138] in an RFC server program. 

Return Values: 
• returns 0 if no error occurred and 1 elsewhere 

Function Parameters: 
• handle 

connection handle 

• rfc_attributes 

structure RFC_ATTRIBUTES [Page 208] describing some information about this RFC 
connection 

See the delivered files saprfc.hlp, saprfc.h, srfctest.c or srfcserv.c for more details. 

 

April 2001  137 



The RFC API  SAP AG 

RfcGetData 

RfcGetData 
To get the parameter values for the called function, use the following: 
RFC_RC  SAP_API   RfcGetData(RFC_HANDLE handle,  

 RFC_PARAMETER * parameters, 
 RFC_TABLE * tables); 

Within a function registered via RfcInstallFunction [Page 140] or after receiving the name of the 
called function by RfcGetName [Page 139], the function RfcGetData can be used to receive the 
parameters of the function call. 

Here the ITAB_H [Page 151] field in the RFC_TABLE [Page 207] record has to be initialized to 
NULL. The function RfcGetData fills in the corresponding table handle. (This is either a newly 
created table or an already existing one sent to the caller via another RFC call). The field itmode 
in an RFC_TABLE [Page 207] record determines if a received table is passed by reference or by  
value. 

This function is defined in SAPRFC.H. 

Return Values: 
• returns RFC_OK or 

• returns RFC_FAILURE 

Function Parameters: 
Function parameters: 

• handle 

RFC connection handle 

• parameters 

‘importing’ parameters (RFC_PARAMETER [Page 204]) 

• tables 

‘tables’ parameters (RFC_TABLE [Page 207]) 

 

138  April 2001 



 SAP AG The RFC API 

  RfcGetName 

RfcGetName 
This call is used by the server program to identify the RFC function to be performed, and the 
name of the function is returned: 
RFC_RC  SAP_API   RfcGetName(RFC_HANDLE handle, 

 RFC_FUNCTIONNAME functionname); 
Besides using RfcDispatch [Page 135], it is also possible to receive RFC calls directly. The 
function RfcGetName must therefore be used to get the name of the called function. The calling 
program then has to determine the interface of the requested function module and to receive the 
parameters as within a function being installed via RfcInstallFunction [Page 140]. 

The server program will wait for the next RFC requests in register mode (see RfcAccept [Page 
116]). 

This function is defined in SAPRFC.H. 

Return Values: 
• returns RFC_OK or 

• returns RFC_FAILURE 

Function Parameters: 
Function parameters: 

• handle 

RFC connection handle 

• functionname 

output parameter, name of the called function module (RFC_FUNCTIONNAME [Page 
99]) 

See also RfcDispatch [Page 135], RfcInstallFunction [Page 140], RfcGetData [Page 138] and 
RfcSendData [Page 145]. 

 
RfcGetName is obsolete and exists only for reasons of compatibility. 

A server program that uses this RFC call can only be tested completely by using 
transaction sm59 from an R/3 System with the R/3 library from R/3 Release 3.0D 
onwards. 

 

April 2001  139 



The RFC API  SAP AG 

RfcInstallFunction 

RfcInstallFunction 
To implement an RFC server, you must register every callable function with RFC. This allows the 
RfcDispatch routine to route RFC requests properly. Use the RfcInstallFunction routine to register 
callable functions.  

To call RfcInstallFunction, use the calling syntax: 
RFC_RC  SAP_API   RfcInstallFunction(RFC_FUNCTIONNAME
 functionname, 
 RFC_ONCALL f_ptr, 
 char * docu); 

There are two possible ways to receive an RFC call. The most simple way to receive an RFC call 
in an external program is to register a C function to be called when a call request is received. 

The function RfcInstallFunction registers a C function to be called when receiving the request for 
an RFC call. 

The function pointer points to a function of type RFC_ONCALL [Page 170], which contains the 
functionality being offered as an RFC function module. ‘functionname’ is the name of the offered 
RFC function module, and the description should contain a description of the functionality as well 
as the interface. Newline characters can be used to start new lines. 

The descriptions of the registered functions can be requested by calling the standard function 
module RFC_DOCU which is available in every RFC server program using the RfcDispatch 
[Page 135] interface. 

After RfcAccept [Page 116] or after receiving the return code RFC_CALL, when calling 
RfcReceive [Page 132], the program has to call RfcDispatch [Page 135] which internally calls the 
corresponding registered function. 

This function is defined in SAPRFC.H. 

Return Values: 
• returns RFC_OK or 

• returns RFC_FAILURE (if there is no memory available to register the function) 

Function Parameters: 
Function parameters: 

• functionname 

name of function as it can be called from ABAP environment (null-terminated string) 

• f_ptr 

function to be called (must be of type RFC_ONCALL [Page 170]) 

• docu 

text describing the functionality and the parameters of the function module 

The sample programs provide examples of how to use RfcInstallFunction. (In particular, the 
program rfcexec.c which is included in the RFC SDK implements an RFC server.) 

140  April 2001 



 SAP AG The RFC API 

  RfcInstallFunction 

 
RfcInstallFunctionExt [Page 188] is for RFC programs on Windows 3.x. 

If your RFC server program is working with RfcGetName but you want to see the 
docu_function belonging to your RFC function (transaction sm59, system function, 
function list), you can use this function with NULL as function pointer. 

See also RfcDispatch [Page 135] and RfcGetName [Page 139]. 

 

 

 

April 2001  141 



The RFC API  SAP AG 

RfcInstallStructure 

RfcInstallStructure 
The call RfcInstallStructure can be used in an RFC client or server program. 

If structures and/or internal tables are to be transferred from an R/3 System to external programs 
(that is, to programs which display or run the SAP RFC Library), only homogeneous 
structures/tables can be transferred. These may only consist of character-like fields (type C, D, T 
or N) or fields to be converted (type X or P). Integer or float fields can only be transferred as 
individual fields. 

For functions with structured parameters or tables it is therefore necessary to install a description 
of the structures used to allow automatic conversion of different data representations by the RFC 
library. 

The call RfcInstallStructure installs a description for a structure being used in an RFC interface. 

The description must contain all (scalar) fields of the structure in correct order. A type handle is 
returned which can be used in RFC_PARAMETER [Page 204] and RFC_TABLE [Page 207] 
descriptions. 

To call RfcInstallStructure, use the calling syntax: 
RFC_RC  SAP_API  RfcInstallStructure(char * name, 
 RFC_TYPE_ELEMENT * elements, 
 unsigned entries, 
 RFC_TYPEHANDLE * pTypeHandle; 

This function is defined in SAPRFC.H.  

Return Values: 
• RFC_OK 

The structure was successfully installed. The returned type handle 
(RFC_TYPEHANDLE) can be used in RFC_PARAMETER or RFC_TABLE arrays. 

• RFC_MEMORY_INSUFFICIENT  

Not enough memory available to register the structure. 

Function Parameters: 
• name 

Name of the structure. It is used only in the trace file. 

• elements  

Description of the elements of the structure 

• entries  

Count of (scalar) elements in the structure. The elements parameter points to an array of 
size entries * sizeof(RFC_TYPE_ELEMENT). 

• pTypeHandle  

Returned type handle. 

 

142  April 2001 



 SAP AG The RFC API 

  RfcRaise 

RfcRaise 
To raise an exception while processing a received RFC call, use the function: 
RFC_RC  SAP_API   RfcRaise(RFC_HANDLE handle, char * exception); 

 
RfcRaise should be used instead of RfcSendData if an exception is to be raised. 
If RfcRaise is used, then do not send off an additional RfcSendData. 

If there are tables parameters in your function module use RfcRaiseTables [Page 
144] instead. 

This function is defined in SAPRFC.H. 

Return Values: 
• RFC_OK 

• RFC_FAILURE 

Function Parameters: 
Function parameters: 

• handle 

Rfc connection handle 

• exception 

exception to be raised (null-terminated string) 

See also RfcRaiseTables [Page 144]. 

 

April 2001  143 



The RFC API  SAP AG 

RfcRaiseTables 

RfcRaiseTables  
RFC_RC  SAP_API   RfcRaiseTables(RFC_HANDLE handle, 
 char * exception, 
 RFC_TABLE * tables); 
This function is used to raise an exception while processing an RFC call if the function module 
which is called has tables parameters. 

This function is defined in SAPRFC.H. 

Return Values: 
• RFC_OK 

• RFC_FAILURE 

Function Parameters: 
Function parameters: 

• handle 

Rfc connection handle 

• exception 

exception to be raised (null-terminated string) 

• tables 

tables parameters as received by RfcGetData [Page 138]  

See also RfcRaise [Page 143]. 

 

144  April 2001 



 SAP AG The RFC API 

  RfcSendData 

RfcSendData 
To send the result parameters back to the caller, use this function: 

RFC_RC  SAP_API   RfcSendData(RFC_HANDLE handle, 
 RFC_PARAMETER * parameters, 
 RFC_TABLE * tables); 

The tables description (RFC_TABLE [Page 207]) must be the same as in the previous 
RfcGetData call. 

This function is defined in SAPRFC.H. 

Return Values: 
• RFC_OK 

• RFC_FAILURE 

Function Parameters: 
Function parameters: 

• handle 

Rfc connection handle 

• parameters 

‘exporting’ parameters 

• tables 

‘tables’ parameters (must be in the same structure as passed to RfcGetData [Page 138]) 

 
RfcRaise should be used instead of RfcSendData if an exception is to be raised. 
If RfcRaise is used, then do not send off an additional RfcSendData. 

 

April 2001  145 



The RFC API  SAP AG 

RfcWinInstallFunction 

RfcWinInstallFunction 
To call RfcWinInstallFunction, use the calling syntax: 

RFC_RC  SAP_API    
        RfcWinInstallFunction(RFC_HANDLE handle, 
 RFC_FUNCTIONNAME functionname, 
 RFC_ONCALL * f_ptr, 
 char * description); 

To implement an RFC server, you must register every callable function with RFC. This allows the 
RfcDispatch [Page 135] routine to route RFC requests properly. To register callable functions 
when you are programming in the Windows operating system, use the RfcWinInstallFunction 
routine. 

 
RFC provides both the RfcInstallFunction [Page 140] and RfcWinInstallFunction 
routines for registering callable functions. Windows programmers may only use 
RfcWinInstallFunction; all other programmers can use either routine. The only 
difference between them is that RfcWinInstallFunction requires a handle parameter. 

This function is defined in SAPRFC.H. 

Return Values: 
• RFC_OK 

• RFC_FAILURE 

Function Parameters: 
Function parameters: 

• handle 

Rfc connection handle 

• functionname 

name of the RFC function 

• f_ptr 

function pointer 

• description 

help text for the function 

Once you have used and registered the function with RfcWinInstallFunction, you can use the 
RfcDispatch routine to execute RFC requests that come in. 

The sample programs provide examples of how to use RfcInstallFunction, and you can use 
RfcWinInstallFunction in the same way. (In particular, the program rfcexec.c which is included in 
the RFC SDK implements an RFC server.) 

 

146  April 2001 



 SAP AG The RFC API 

  Table-Handling Function Reference 

Table-Handling Function Reference 
The following table-handling functions let you create and manipulate internal table variables: 

ItAppLine [Page 148] 

ItCpyLine [Page 149]  

ItCreate [Page 150] 

ITAB_H [Page 151]  

ItDelete [Page 152] 

ItDelLine [Page 153] 

ItFill [Page 154] 

ItFree [Page 155] 

ItGetLine [Page 156] 

ItGupLine [Page 157] 

ItInsLine [Page 158] 

ItLeng [Page 159] 

ItPutLine [Page 160]  

 
Note that for all table-handling functions, the indexing of tables starts at 1,not 0. 

 
In many of these routines, the token SAP_API is included. SAP_API contains 
platform-dependent keywords which are neccesary to allow dynamic linking of these 
function from various environments. On Windows, for example, SAP_API is __extern 
__loadds __pascal __far. 

 

April 2001  147 



The RFC API  SAP AG 

ItAppLine 

ItAppLine 
The ItAppLine routine appends a new row at the end of an internal table, and returns the address 
of the row. The new line is initialized with 0. The calling syntax for ItAppLine is: 
void * ItAppLine(ITAB_H itab); 
Lines appended to a table can be updated immediately. You do not need to use ItGupLine to 
update them. 

The corresponding ABAP operation is Append... 

This function is defined in SAPITAB.H. 

Return Values: 
• pointer to the appended table row, if successful 

• NULL otherwise (no space available) 

Function Parameter: 
• itab 

handle of an internal table 

See also ItInsLine [Page 158]. 

 

148  April 2001 



 SAP AG The RFC API 

  ItCpyLine 

ItCpyLine  
The ItCpyLine routine copies the contents of the row into the destination area. The length of the 
copy operation is implicitly assumed as the size of one row. Memory must be supplied by the 
caller, no check is done. The row must not be updated. The syntax is: 
int SAP_API ItCpyLine(ITAB_H itab, unsigned line, void* dest) 
The corresponding ABAP operation is Read Table...Index... 

This function is defined in SAPITAB.H. 

Return Values: 
• 0 

ok 

• -1 

line does not exist 

Function Parameter: 
• itab 

handle of an internal table 

• line 

number of the desired row (row numbers start with 1, similar to Sy-Tabix in ABAP) 

• dest 

pointer to destination area 

See also ItGetLine [Page 156] and ItPutLine [Page 160]. 

 

April 2001  149 



The RFC API  SAP AG 

ItCreate 

ItCreate 
The ItCreate routine creates an internal table. That is, it creates a control structure for an internal 
table, and allocates table space for the size and shape you request. The syntax is: 
ITAB_H ItCreate(char * name,  
 unsigned leng,  
 unsigned occu,  
 unsigned memo); 
This function is defined in SAPITAB.H. 

Return Values: 
• returns handle to a table control structure (ITAB_H [Page 151]), if successful 

• ITAB_NULL if there is not enough memory available 

Function Parameters: 
• name 

name of the internal table (null-terminated string) which is used to identify the table when 
tracing 

• leng 

line length for the internal table 

• occu 

occurs-value for internal table (amount of lines being allocated when first appending a 
line to the table) 

• memo 

Only use heap memory for allocating table lines. This field is for internal use only. Set the 
parmeter to 0. 

 

150  April 2001 



 SAP AG The RFC API 

  ITAB_H 

ITAB_H  
Handle of an internal tablte returned by ItCreate [Page 150] and used to access a table by all the 
other routines of the internal table API. 

This handle is defined in SAPITAB.H. 

• ITAB_NULL 

invalid table handle 

 

April 2001  151 



The RFC API  SAP AG 

ItDelete 

ItDelete 
The ItDelete routine deletes the internal table with the given handle. That is, it frees all table 
space and deletes the table control structure. Then the table handle is not valid and must not be 
used any more. The syntax is: 
int  SAP_API   ItDelete(ITAB_H itab); 
The corresponding ABAP operation is Free... 

This function is defined in SAPITAB.H. 

Return Value: 
• returns 0, if successful 

Function Parameter: 
• itab 

handle of an internal table 

See also ItFree [Page 155]. 

 

152  April 2001 



 SAP AG The RFC API 

  ItDelLine 

ItDelLine 
To delete a row from an internal table, use: 
int  SAP_API   ItDelLine(ITAB_H itab,   unsigned line); 
The corresponding ABAP operation is Delete... 

This function is defined in SAPITAB.H. 

Return Values: 
• returns 0, if successful 

• returns >0 

row does not exist 

• returns <0 

other error (no space available for index, etc.) 

Function Parameters: 
• itab 

handle of an internal table 

• line 

rom number of the line to be deleted 

 

April 2001  153 



The RFC API  SAP AG 

ItFill 

ItFill 
You can determine the number of rows in a table by calling ItFill: 
unsigned  SAP_API   ItFill(ITAB_H  itab); 

Return Value: 
• returns number of rows in an internal table 

Function Parameter: 
• itab 

handle of an internal table 

 

154  April 2001 



 SAP AG The RFC API 

  ItFree 

ItFree 
The ItFree routine empties a table; it deletes all rows from a table, and frees the memory 
allocated for these rows. The syntax is: 
int SAP_API   ItFree(ITAB_H  itab); 
ItFree does not destroy the table itself, however, since the itab control structure still exists after 
the call. Still, the table handle remains valid. You can add new lines to the table after using 
ItFree. 

The corresponding ABAP operation is Free... 

This function is defined in SAPITAB.H. 

Return Values: 
• returns 0, if successful 

Function Parameter: 
• itab 

handle of an internal table 

See also ItCreate [Page 150] and ItDelete [Page 152]. 

 

April 2001  155 



The RFC API  SAP AG 

ItGetLine 

ItGetLine 
Use the ItGetLine routine to access a specific row in a table: 
void  SAP_API   ItGetLine(ITAB_H itab,   unsigned line); 
This routine returns the address of the lineth line in the internal table specified by the handle itab.  

The ItGetLine function is only for reading table rows: you cannot update the data in the row. If 
you want to update table data, use the ItGupLine routine. 

The corresponding ABAP operation is Read Table... Index... 

This function is defined in SAPITAB.H. 

Return Values: 
• returns pointer to a table row, if successful 

• returns NULL otherwise (table row does not exist) 

Function Parameters: 
• itab 

handle of an internal table 

• line 

number of the desired row, row numbers start with 1 similar than Sy-Tabix in ABAP 

See also ItGupLine [Page 157], ItCpyLine [Page 149] and ItPutLine [Page 160]. 

 

156  April 2001 



 SAP AG The RFC API 

  ItGupLine 

ItGupLine 
Use the ItGupLine routine to access and update a specific row in a table: 
void  SAP_API   ItGupLine(ITAB_H itab,   unsigned line); 
This routine returns the address of the requested line (specified by line). ItGupLine functions just 
like ItGetLine, except that you may update the data at the returned address. 

The corresponding ABAP operation is Read Table... Index..., Modify... 

This function is defined in SAPITAB.H. 

Return Values: 
• returns pointer to a table row, if successful 

• returns NULL otherwise (table row does not exist) 

Function Parameters: 
• itab 

handle of an internal table 

• line 

number of the desired row, row numbers start with 1 similar than Sy-Tabix in ABAP 

See also ItGetLine [Page 156], ItCpyLine [Page 149] and ItPutLine [Page 160]. 

 

April 2001  157 



The RFC API  SAP AG 

ItInsLine 

ItInsLine 
The ItInsLine routine inserts a new row into a table. The new row is inserted immediately before 
the specified line number, and is not initialized in any way. ItInsLine returns the address of the 
new line. 

The syntax for ItInsLine is: 
void  SAP_API   ItInsLine(ITAB_H itab,   unsigned line); 
Lines inserted with ItInsLine can be updated right away. You do not need to call ItGupLine to 
update them. 

The corresponding ABAP operation is Insert... Index... 

This function is defined in SAPITAB.H. 

Return Values: 
• returns pointer to a table row, if successful 

• returns NULL otherwise (no space available) 

Function Parameters: 
• itab 

handle of an internal table 

• line 

row number before which the line is to be inserted 

See also ItAppLine [Page 148]. 

 

158  April 2001 



 SAP AG The RFC API 

  ItLeng 

ItLeng 
You can determine the length of a table row by calling ItLeng: 
unsigned  SAP_API   ItLeng(ITAB_H   itab); 

• Return value: 

Returns length of a row of the internal table. 

• function parameters: 

itab (handle of an internal table). 

This function is defined in SAPITAB.H. 

Return Value: 
• returns length of a table row 

Function Parameter: 
• itab 

handle of an internal table 

 

April 2001  159 



The RFC API  SAP AG 

ItPutLine 

ItPutLine  
The ItPutLine routine copies the source onto the line ‘line’ of an internal table. The syntax is: 
int  SAP_API   ItPutLine(ITAB_H itab, unsigned line, void* src) 
The corresponding ABAP operation is Modify... Index... 

This function is defined in SAPITAB.H. 

Return Values: 
• returns 0, if successful 

• returns -1 if an error occurred 

Function Parameters: 
• itab 

handle of an internal table 

• line 

row number onto which ‘src’ is copied 

• src 

pointer to source, source is copied in the length of a table row 

See also ItGetLine [Page 156], ItCpyLine [Page 149] and ItGupLine [Page 157]. 

 

160  April 2001 



 SAP AG The RFC API 

  Transactional Function Reference 

Transactional Function Reference 
This section contains the following topics: 

RfcInstallTransactionControl [Page 164] 

RfcCreateTransID [Page 162] 

RfcIndirectCall [Page 163] 

RFC_ON_CHECK_TID [Page 166] 

RFC_ON_COMMIT [Page 167] 

RFC_ON_CONFIRM_TID [Page 168] 

RFC_ON_ROLLBACK [Page 169] 

RFC_ONCALL [Page 170] 

 
In many of these routines, the token SAP_API is included. SAP_API contains 
platform-dependent keywords which are neccesary to allow dynamic linking of these 
function from various environments. On Windows, for example, SAP_API is __extern 
__loadds __pascal __far. 

 

April 2001  161 



The RFC API  SAP AG 

RfcCreateTransID 

RfcCreateTransID 
The function 
RFC_RC  SAP_API   RfcCreateTransID(void) 

gets a transaction-ID for a following call of a function module in R/3 using the transactional RFC 
interface in R/3. 

With this function a new TransID will be produced from the R/3 System. The RFC client program 
has to call a function module in R/3 via RfcIndirectCall [Page 163] with this TransID.  

If an error occurs (e.g. communication error) during the call of a function module in R/3 via 
RfcIndirectCall, the RFC client program has to reconnect the RFC connection and repeat the 
RfcIndirectCall without creating a new TransId. 

This function is defined in SAPRFC.H. 

See also RfcIndirectCall [Page 163] and RFC_TID [Page 100]. 

 

162  April 2001 



 SAP AG The RFC API 

  RfcIndirectCall 

RfcIndirectCall 
The function  
RFC_RC  SAP_API   RfcIndirectCall(RFC_HANDLE handle, 
 char * function, 
 RFC_PARAMETER * exporting, 
 RFC_TABLE * tables, 
 RFC_TID tid); 
calls a function module in R/3 indirectly. 

With this function, the call of a function module in R/3 will use the transactional RFC interface in 
R/3.  

Importing parameters are not supported. 

If an error occurs (almost only communication errors), the RFC client program has to reconnect 
to R/3 later and repeat this RFC call with the specific TransID. It must not create a new TransID 
via RfcCreateTransID [Page 162]. 

This function is defined in SAPRFC.H. 

Function Parameters: 
• handle 

connection handle 

• function 

function module to call  

• exporting 

‘exporting’ parameters 

• tables  

‘tables’ parameters 

• tid  

corresponding transaction-ID 

See also RfcCreateTransID [Page 162] and RFC_TID [Page 100]. 

 

April 2001  163 



The RFC API  SAP AG 

RfcInstallTransactionControl 

RfcInstallTransactionControl 
This function installs four functions to control transactional behaviour. It is only to be used with 
transactional RFC. The syntax is: 
void SAP_API RfcInstallTransactionControl 
 (RFC_ON_CHECK_TID onCheckTid, 
 RFC_ON_COMMIT onCommit, 
 RFC_ON_ROLLBACK onRollback, 
 RFC_ON_CONFIRM_TID onConfirmTid) 
This function was introduced to allow an RFC server program to ensure exactly-once behaviour 
for functions being called via tRFC in ABAP: RfcInstallTransactionControl must thus be called by 
RFC server program before the RfcDispatch loop is entered if this program wants to receive 
transactional RFC calls and must ensure that RFC calls are done excatly once. 

Without installing these functions it can only be guaranteed that an RFC function call issued by 
'Call Function... In Background Task' is done at least once. Then all function modules offered by 
such a server program which are called via 'Call Function... In Background Task' must cope with 
being called more then once. 

If installed, the first function onCheckTid is called, if a transactional RFC is to be called. The 
actual Transaction ID is passed (RFC_ON_CHECK_TID [Page 166]). The function has to store 
this transaction-ID in permanent storage and return 0. If the same function will be called later 
again with the same transaction-ID, it has to make sure that it will return a non-zero value. If the 
same transaction is already running by another process but is not completed, the function has to 
wait until the transaction completes. 

The second function is called if all the RFC function module calls are done and the local 
transaction can be completed. It should be used to locally commit the transaction, if necessary 
(RFC_ON_COMMIT [Page 167]). This function is 'void'. 

The third function is called instead of the second function, if, from the point of view of the RFC 
library, there occurred an error while processing the local transaction. This function can be used 
to roll back the local transaction (RFC_ON_ROLLBACK [Page 169]). This function is 'void'. 

The fourth function will be called if the local transaction is completed also from the point of view 
of the calling system and all information on this transaction-ID can be discarded. This function is 
'void': RFC_ON_CONFIRM_TID [Page 168]. 
This function is defined in SAPRFC.H. 

Function Parameters: 
• onCheckTid 

Function to be called when local transaction starts. Must be used to check if the 
transaction is already running or was already completed. 

• onCommit 

Function to be called when local transaction ends. Should be used to commit the 
transaction locally. 

• onRollback 

Function to be called if local transaction fails due to an error found while the processing 
is done inside the RFC library. Should be used to roll back a local transaction. 

164  April 2001 



 SAP AG The RFC API 

  RfcInstallTransactionControl 

• onConfirmTid 

Function to be called when local transaction is confirmed. All information stored locally 
about this transaction can be deleted. 

See also RFC_TID [Page 100]. 

 

April 2001  165 



The RFC API  SAP AG 

RFC_ON_CHECK_TID 

RFC_ON_CHECK_TID 
This function is to be installed by RfcInstallTransactionControl [Page 164]. The syntax is: 
int RFC_ON_CHECK_TID(RFC_TID transactionId) 
The function is called when a local transaction is starting. Since a transactional RFC call can be 
issued many times by the client system, the function is responsible for storing the transaction-ID 
in permanent storage. If the client system tries starting the same transaction a second time, the 
function has to return 1. 

Return Values: 
• Returns 0  

transaction-ID stored, transaction can be started 

• Returns 1 

transaction already done, skip the request 

• Returns < 0 

cannot lock transaction, internal error 

Function Parameter: 
• transactionId 

actual transaction-ID 

 
If this functions has access to a SQL database, it should perform an operation like 
Insert Into SomeTable values ( :transactionId); 
where the table 'SomeTable' must have a unique index over the transaction-ID. If 
another process has also inserted the same transaction-ID, the second process has 
to wait until the transaction is completed by the first process. If the transaction is 
completed by another process (the Insert command returns with some 'Duplicate 
Record' error code), the function must return 1 to indicate to skip the transaction. 

 

166  April 2001 



 SAP AG The RFC API 

  RFC_ON_COMMIT 

RFC_ON_COMMIT 
This function is to be installed by RfcInstallTransactionControl [Page 164]. The syntax is: 
int RFC_ON_COMMIT(RFC_TID transactionId)  
The function is called when a local transaction ends. 

The function is to be used to commit the local transaction, if necessary. 

This function is defined in SAPRFC.H. 

Function Parameter: 
• transactionId 

Transaction-ID 

 
If this functions has access to a SQL database, it should perform an operation like 
Commit work; 

 

April 2001  167 



The RFC API  SAP AG 

RFC_ON_CONFIRM_TID 

RFC_ON_CONFIRM_TID 
This function is to be installed by RfcInstallTransactionControl [Page 164]. The syntax is: 
void RFC_ON_CONFIRM_TID(RFC_TID transactionId)  
The function is called when a local transaction is completed. All informations stored about that 
transaction can be discarded by the server. 

In general, this function can be used to delete the transaction-ID from permanent storage. 

This function is defined in SAPRFC.H. 

Function Parameter: 
• transactionId 

Transaction-ID 

 
If this functions has access to a SQL database, it should perform an operation like 
Delete From SomeTable where key = :transactionId; Commit Work; 
where the table 'SomeTable' should have a unique index over the transaction-ID. 

 

168  April 2001 



 SAP AG The RFC API 

  RFC_ON_ROLLBACK 

RFC_ON_ROLLBACK 
This function is to be installed by RfcInstallTransactionControl [Page 164]. The syntax is: 
int RFC_ON_ROLLBACK(RFC_TID transactionId)  
The function is called when a local transaction ends with failure. 

The function is to be used to roll back the local transaction, if necessary. 

This function is defined in SAPRFC.H. 

Function Parameter: 
• transactionId 

Transaction-ID 

 
If this functions has access to a SQL database, it should perform an operation like 
Rollback work; 

 

April 2001  169 



The RFC API  SAP AG 

RFC_ONCALL 

RFC_ONCALL 
RFC_ONCALL is a type of C-function to be installed by RfcInstallFunction [Page 140] or 
RfcInstallFunctionExt [Page 188]. The syntax is: 
RFC_RC RFC_ONCALL(void)  
This function is defined in SAPRFC.H. 

 

170  April 2001 



 SAP AG The RFC API 

  Extended Function Reference 

Extended Function Reference 
Visual Basic programs that make RFC calls without using SAP-generated stub programs need 
the extended functions described in this section. (SAP-generated stub programs are described in 
The RFC Generator [Ext.]). 

 
If possible, the extended functions described in this section should only be used in 
Visual Basic stubs, except for RfcOpenExt. 

SAP offers the extended functions because Basic does not pass table structures in a manner 
compatible with RFC API functions. (In particular, structures containing character strings are 
problematic). Structure-passing is required when you use the non-extended API functions. Both 
Basic and C programs may call the extended functions. 

The extended functions perform the same RFC tasks, but include specialized parameter-passing. 
Routines are provided for: 

• allocating and freeing stack space 

− RfcAllocParamSpace [Page 176]  

− RfcFreeParamSpace [Page 184]  

• storing and retrieving parameters in stack storage 

− RfcAddImportParam [Page 174]  

− RfcAddExportParam [Page 173]  

− RfcAddTable [Page 175]  

• performing RFC tasks, 

passing the stack storage instead of RFC_PARAMETER [Page 204] / RFC_TABLE 
[Page 207] structures: 

− RfcOpenExt [Page 179]  

− RfcOpenExtV3 [Page 181]  

− RfcCallExt [Page 177]  

− RfcReceiveExt [Page 186]  

− RfcCallReceiveExt [Page 178]  

− RfcGetDataExt [Page 185]  

− RfcSendDataExt [Page 187]  

− RfcInstallFunctionExt [Page 188]  

Entry points for the extended functions are all declared in saprfc.h. The program testrfc.c which is 
included in the RFC SDK shows how to use the RFC Extended Functions to make an RFC call. 

 
In many of these routines, the token SAP_API is included. SAP_API contains 
platform-dependent keywords which are neccesary to allow dynamic linking of these 

April 2001  171 



The RFC API  SAP AG 

Extended Function Reference 

function from various environments. On Windows, for example, SAP_API is __extern 
__loadds __pascal __far. 

 

172  April 2001 



 SAP AG The RFC API 

  RfcAddExportParam 

RfcAddExportParam 
Before transferring data with the extended functions, you must add all parameters and tables to 
the parameter stack.  

A calling program that exports parameters (RfcCallExt [Page 177] /RfcCallReceiveExt [Page 
178]), or a called program that returns them (RfcSendData [Page 145]), must add export 
parameters to the stack with RfcAddExportParam: 

RFC_RC  SAP_API 
   RfcAddExportParam(RFC_PARAM_SPACE PSpace, 
 unsigned ParamNo, 
 void * name, 
 unsigned nlen, 
 unsigned type, 
 unsigned leng, 
 void * addr); 

Function Parameters: 
• Pspace 

Address of the stack space area. 

• ParamNo 

Index for the parameter in the export-parameter stack space. 

• name, nlen 

type, leng 

addr 

These fields have the same meanings as the corresponding RFC_PARAMETER [Page 204] 
fields. (See ItInsLine [Page 158]) 

 
Remember to allocate the stack space with RfcAllocParamSpace [Page 176] before 
calling RfcAddExportParam.  

 

April 2001  173 



The RFC API  SAP AG 

RfcAddImportParam 

RfcAddImportParam 
Before transferring data with the extended functions, you must add all parameters and tables to 
the parameter stack.  

A calling program that receives return values (RfcReceiveExt [Page 186] /RfcCallReceiveExt 
[Page 178]), or a called program that receives import parameters (RfcGetData [Page 138]), must 
add import parameters to the stack with RfcAddImportParam: 

RFC_RC  SAP_API 
   RfcAddImportParam(RFC_PARAM_SPACE PSpace, 
 unsigned ParamNo, 
 void * name, 
 unsigned nlen, 
 unsigned type, 
 unsigned leng, 
 void * addr); 

Function Parameters: 
Parameters for RfcAddImportParam have the same meanings as for RfcAddExportParam. 

• Pspace 

Address of the stack space area. 

• ParamNo 

Index for the parameter in the import-parameter stack space. 

• name, nlen 

type, leng 

addr 

These fields have the same meanings as the corresponding RFC_PARAMETER [Page 204] 
fields. (See ItInsLine [Page 158]) 

 
Remember to allocate the stack space with RfcAllocParamSpace [Page 176] before 
calling RfcAddImportParam.  

 

174  April 2001 



 SAP AG The RFC API 

  RfcAddTable 

RfcAddTable 
Before transferring data with the extended functions, you must add all parameters and tables to 
the parameter stack.  

Both calling and called programs must add table parameters to the stack, since tables are both 
exported and imported. To do this, use the function: 

RFC_RC  SAP_API  RfcAddTable(RFC_PARAM_SPACE PSpace, 
 unsigned TableNo, 
 void * name, 
 unsigned nlen, 
 unsigned type, 
 unsigned leng, 
 ITAB_H ithandle); 

Function Parameters: 
• Pspace 

Address of the stack space area. 

• TableNo 

Index for the parameter in the table stack space. 

• name, nlen 

type, leng 

These fields have the same meanings as the corresponding RFC_PARAMETER [Page 204] 
fields. (See ItInsLine [Page 158]) 

• ithandle 

Table handle. (Corresponds to the itab_h field in the RFC_TABLE [Page 207] structure.) 
Each table parameter must have a table handle: if you are initiating an RFC call, call 
ItCreate to create a handle. (See ItCreate [Page 150]) 

 
Remember to allocate the stack space with RfcAllocParamSpace [Page 176] before 
calling RfcAddTable.  

 

April 2001  175 



The RFC API  SAP AG 

RfcAllocParamSpace 

RfcAllocParamSpace 
Before storing parameters in the parameter stack, you must allocate the stack space. To do this, 
call: 

RFC_PARAM_SPACE  SAP_API   RfcAllocParamSpace(unsigned MaxEx, 
 unsigned MaxIm, 
 unsigned MaxTab); 

The parameters MaxEx, MaxIm, and MaxTab tell how many export, import and table parameters 
the calling program will use when invoking the function module. RfcAllocParamSpace then 
allocates enough space (in each category) for the requested number of parameters. 

As in ABAP, the meaning of the terms "export" and "import" depend on point of view. The 
exporting parameters for a calling program are the importing parameters for the function being 
called. Thus an RFC caller that sends two export parameters, no import parameters, and a table 
should call: 
 RfcAllocParamSpace(2, 0, 1); 
to create its stack structure. The function called, for the same set of parameters, would allocate 
stack space with: 
 RfcAllocParamSpace(0, 2, 1); 
The return value (RFC_PARAM_SPACE) is a pointer to the stack space allocated. 

 

176  April 2001 



 SAP AG The RFC API 

  RfcCallExt 

RfcCallExt 
Call the remote function using: 

RFC_RC  SAP_API   RfcCallExt(RFC_HANDLE handle, 
 RFC_PARAM_SPACE PSpace, 
 char * function); 

The parameter PSpace is a pointer to the stack area where parameters have been stored. 

The function RfcCallExt returns after sending the call request, and returns either RFC_OK or 
RFC_FAILURE. 

 
RfcCallExt can fail because you called RfcOpenExt with an invalid password. See 
RfcOpenExt [Page 179] for more information. 

 

April 2001  177 



The RFC API  SAP AG 

RfcCallReceiveExt 

RfcCallReceiveExt 
You can make an RFC call and receive return values using a single function: 

RFC_RC  SAP_API  RfcCallReceiveExt(RFC_HANDLE handle, 
 RFC_PARAM_SPACE PSpace, 
 char * function, 
 char ** exception); 

This function waits till it receives an answer before returning. The return values are just the same 
as those you would receive by calling RfcReceiveExt. (See the RfcReceiveExt [Page 186] 
function for a list of return values.)  

 
RfcCallReceiveExt can fail because you called RfcOpenExt with an invalid password. 
See RfcOpenExt [Page 179] for more information. 

 

178  April 2001 



 SAP AG The RFC API 

  RfcOpenExt 

RfcOpenExt 
 

Better use the call RfcOpenEx [Ext.]. 

The following function opens an RFC connection. All parameters are passed as single fields: 
RFC_HANDLE  SAP_API   RfcOpenExt(char* destination, 
 RFC_MODE mode, 
 char* hostname, 
 int sysnr, 
 char* gateway_host, 
 char* gateway_service, 
 char* client, 
 char* user, 
 char* password, 
 char* language, 
 int trace); 

RFC opens the connection using the given options, and returns a handle for the connection 
established.  

The input parameters to this function carry the same information as that sent to RfcOpen, but not 
packed in structures. Instead, individual fields are sent. At any given time, some of these fields 
are empty, depending on the value of mode: 

• RFC_MODE_R3ONLY 

The fields hostname, sysnr, gateway_host, and gateway_service have valid information 
in them. 

• RFC_MODE_CPIC 

Only the fields gateway_host, and gateway_service have valid information in them. 

This function is defined in SAPRFC.H. 

Return Values: 
• Returns a handle to the RFC connection (RFC_HANDLE [Page 98]) or  

• Returns RFC_HANDLE_NULL 

Function Parameters: 
• destination 

name of destination 

• mode 

connection mode (RFC_MODE [Page 200]) 

• hostname 

hostname of target system 

• sysnr 

April 2001  179 



The RFC API  SAP AG 

RfcOpenExt 

system number (0-99) 

• gateway_host 

gateway hostname or NULL 

• gateway_service 

gateway service or NULL 

• client 

signon data: client 

• user 

signon data: user 

• password 

signon data: password 

• language 

signon data: language 

• trace 

If the field trace contains a non-zero value, the outgoing and incoming RFC data are 
written to a trace file dev_rfc in the current directory. A trace file is also written on the 
target system. On R/3 Systems, you can view this file using the utility program 
RSRFCTRC. 

See also RfcOpen [Page 126], RfcOpenExtV3 [Page 181] and RFC_OPTIONS [Page 201] for 
further description of these fields. In general, the input parameters allow the system to avoid 
accessing the sideinfo table. If you send the relevant parameters as null fields (hostname for 
R/3, the gateway fields for R/2), the sideinfo table will be accessed to get the needed 
information.  

 
If you call RfcOpenExt with an invalid password, the function does not immediately 
fail. However, the subsequent call to RfcCallExt [Page 177] (or RfcCallReceiveExt 
[Page 178]) will fail.  

 

180  April 2001 



 SAP AG The RFC API 

  RfcOpenExtV3 

RfcOpenExtV3 

 
Better use the call RfcOpenEx [Ext.]. 

The following function opens an RFC connection. 
RFC_HANDLE  SAP_API  RfcOpenExtV3(char* destination, 
 RFC_MODE mode, 
 char* hostname, 
 int sysnr, 
 char* gateway_host, 
 char* gateway_service, 
 char* client, 
 char* user, 
 char* password, 
 char* language, 
 int trace 
 RFC_INT use_load_balancing, 
 char * lb_host, 
 char * lb_system_name 
 char * lb_group 
 RFC_INT use_sapgui); 

All parameters are passed as single fields (using RFC_MODE [Page 200]). 

The following parameters are always needed in this call: RFC_MODE [Page 200] mode and SAP 
logon information: client, user, password, language, trace, and use_sapgui. 

The following parameters are necessary, depending on RFC_MODE [Page 200]: 

• RFC_MODE_CPIC: 

− destination must be defined 

− gateway-host and gateway_service can be defined 

− sideinfo is necessary. 

• RFC_MODE_R3ONLY/RFC_MODE_VERSION_3 

− use_load_balancing is 0 (OFF) 

• destination is not NULL: 

gateway_host, gateway_service, hostname and sysnr can be defined. sideinfo is 
necessary. 

• destination is NULL: 

gateway_host and gateway_service can be defined. hostname and sysnr must 
be defined. 

− use_load_balancing is 1 (ON) 

destination, gateway_host, gateway_service, hostname and sysnr will not be 
evaluated. 

April 2001  181 



The RFC API  SAP AG 

RfcOpenExtV3 

lb_host and lb_system_name must be defined. If lb_group is NULL, the group 
‘PUBLIC’ will be used. 

 
use_sapgui and ABAP-Debug are only available with R/3 3.0C or later and not on 
Windows with a 16-bit-RFC-library. 

use_sapgui and ABAP-Debug are not available with R/2. 

This function is defined in SAPRFC.H. 

Return Values: 
• Returns a handle to the RFC connection (RFC_HANDLE [Page 98]) or 

• Returns RFC_HANDLE_NULL 

Function Parameters: 
• destination 

name of destination or NULL 

• mode 

connection mode (RFC_MODE [Page 200]) 

• hostname 

hostname of target system or NULL 

• sysnr 

system number (0-99) 

• gateway_host 

gateway hostname or NULL 

• gateway_service 

gateway service or NULL 

• client 

signon data: client 

• user 

signon data: user 

• password 

signon data: password 

• language 

signon data: language 

• trace 

trace (OFF/ON/ABAP-DEBUG or also trace ON and ABAP-DEBUG: 0/1/2/3) 

• use_load_balancing 

182  April 2001 



 SAP AG The RFC API 

  RfcOpenExtV3 

using load balancing feature (OFF/ON/0/1) 

• lb_host  

host name of the ‘message server’ 

• lb_system_name 

name of the target system (e.g. C11) 

• lb_group  

application server group or NULL for PUBLIC 

• use_sapgui  

using sapgui to display SAP dynpros and graphics (OFF/ON: 0/1) 

See also RfcOpen [Page 126] and RFC_OPTIONS [Page 201]. 

 

April 2001  183 



The RFC API  SAP AG 

RfcFreeParamSpace 

RfcFreeParamSpace 
The RfcFreeParamSpace function de-allocates the storage allocated with RfcFreeParamSpace. 
The syntax is: 
RFC_RC  SAP_API   RfcFreeParamSpace(RFC_PARAM_SPACE PSpace); 
 

184  April 2001 



 SAP AG The RFC API 

  RfcGetDataExt 

RfcGetDataExt 
To get incoming parameter values when a function is being called, use the following: 

RFC_RC  SAP_API   RfcGetDataExt(RFC_HANDLE handle, 
 RFC_PARAM_SPACE PSpace); 

Before calling RfcGetDataExt, you must have set up parameter and table structures in PSpace 
that are defined like RFC_PARAMETER [Page 204] and RFC_TABLE [Page 207]. The program 
testrfc.c which is included in the RFC SDK gives an example of how to define and fill these 
structures before adding them to PSpace. 

RfcGetDataExt stores all parameter values at the addresses specified by the structures in 
PSpace. If table parameters are being passed in, RfcGetDataExt fills in the corresponding table 
handle. (The table can be either newly created or an already existing one sent to the caller via 
another RFC call).  

 

April 2001  185 



The RFC API  SAP AG 

RfcReceiveExt 

RfcReceiveExt 
The function 

RFC_RC  SAP_API   RfcReceiveExt(RFC_HANDLE handle, 
 RFC_PARAM_SPACE PSpace, 
 char ** exception); 

allows you to receive return values from an RFC call. RfcReceiveExt must be called after calling 
RfcCallExt [Page 177].  

RfcReceiveExt waits till the answer is received before returning. If you want to check for incoming 
events without waiting, use the routine RfcListen [Page 190].  

Return Values: 
RfcReceiveExt returns the same values as RfcReceive [Page 132]. 

• RFC_OK 

The call was successfully completed. Return parameter values have been placed in 
PSpace, in the appropriate RFC_PARAMETER_STACK areas. (See 
RfcAllocParamSpace [Page 176] for more information.) 

• RFC_FAILURE 

An internal error has occurred. You can use the function RfcLastError [Page 125] to get 
more information. 

• RFC_EXCEPTION 

The remote function you called has raised an exception. The field *exception points to 
the name of the exception. No data was returned. 

• RFC_SYS_EXCEPTION 

The local or remote RFC system has raised an exception. The field *exception points to 
the name of the exception. The connection was automatically closed by the system; you 
can call RfcLastError [Page 125] to get information on the origin of the error. Two 
exceptions are possible: SYSTEM_FAILURE and COMMUNICATION_FAILURE.  

• RFC_CALL 

The callee has issued an RFC call ( a "call back") to the caller of RfcReceiveExt. No data 
has been returned. The call request must be handled by using the functions 
RfcGetNameExt, RfcGetDataExt [Page 185] and RfcSendDataExt [Page 187] before 
another call to RfcReceiveExt can be done. 

 

186  April 2001 



 SAP AG The RFC API 

  RfcSendDataExt 

RfcSendDataExt 
To send the result parameters back to the caller, use the function RfcSendDataExt: 
RFC_RC  SAP_API   RfcSendDataExt(RFC_HANDLE handle, 
 RFC_PARAM_SPACE PSpace); 
 

April 2001  187 



The RFC API  SAP AG 

RfcInstallFunctionExt 

RfcInstallFunctionExt 
The RfcInstallFunctionExt function is an alternative function, replacing RfcInstallFunction [Page 
140] for Windows 3.x (16-bit). The function needs a valid RFC handle as an additional parameter. 
The syntax is: 
RFC_RC SAP_API RfcInstallFunctionExt(RFC_HANDLE handle, 
 RFC_FUNCTIONNAME functionname, 
 RFC_ONCALL f_ptr, 
 char* docu) 
The function module is installed only for the given RFC connection. 

This function is defined in SAPRFC.H. 

Return Values: 
• Returns RFC_OK or 

• Returns RFC_FAILURE if there is no memory available to register the function 

Function Parameters: 
• handle 

Valid RFC connection handle, as returned by RfcAccept [Page 116]. 

• functionname 

Name of function as it can be called from ABAP environment. Null terminated string. 

• f_ptr 

Function to be called. Must be of type RFC_ONCALL [Page 170]. 

• docu 

Text describing the functionality and the parameters of the function module. 

 
The function is available on all supported platforms to ease porting. 

See also RfcInstallFunction [Page 140], RfcDispatch [Page 135] and RfcGetName [Page 139]. 

 

 

188  April 2001 



 SAP AG The RFC API 

  Special Function Reference 

Special Function Reference 
The following special functions are available: 

RfcListen [Page 190] 

RfcWaitForRequest [Page 192]  

 

 

April 2001  189 



The RFC API  SAP AG 

RfcListen 

RfcListen 
RFC_RC  SAP_API   RfcListen(RFC_HANDLE  handle); 
can be used to check if there is an RFC request available. 

You may not always want to wait for the answer to an RFC call. You can use the following 
function (instead of RfcReceive [Page 132]) to poll for incoming RFC events.  

The function always returns immediately. If RfcListen returns RFC_OK, RfcReceive has to be 
called to handle the event. It is only possible to listen for one incoming RFC message at a time. 

It is also possible to use RfcListen while waiting for a new RFC request by RfcDispatch [Page 
135] with or without register mode (see RfcAccept [Page 116]). Because RfcListen will return 
immediately, it is recommended to use RfcWaitForRequest [Page 192] to wait for new RFC 
requests.  

This function is defined in SAPRFC.H. 

Return Values: 
• returns RFC_OK 

an RFC event is pending (call or return) 

• returns RFC_RETRY 

nothing has arrived yet 

• returns RFC_FAILURE 

an error has occurred 

Function Parameter: 
• handle 

RFC connection handle 

 
Using RfcListen while waiting for the answer of a remote function call: 
RFC_RC  rc; 
rc = RfcCall(handle,...); 
do 
{ 
  rc = RfcListen(handle); 
  if(rc == RFC_RETRY) 
  { 
    // while waiting for the RFC answer, do something... 
  ... 
  } 
} while (rc == RFC_RETRY); 
if(rc == RFC_OK) 
  rc = RfcReceive(handle,...); 

190  April 2001 



 SAP AG The RFC API 

  RfcListen 

... 

 
Using RfcListen and RfcDispatch: 
RFC_RC  rc; 
RFC_HANDLE handle = RfcAccept(argv); 
... 
do 
{ 
  // Waiting for the next RFC request 
  for(rc = RFC_RETRY; rc == RFC_RETRY;) 
  { 
    rc = RfcListen(handle); 
    if(rc == RFC_RETRY) 
    { 
      // while waiting for the next RFC request, do 
something... 
    ... 
    } 
  } 
  if (rc != RFC_OK) 
     break; 
  rc = RfcDispatch(handle); 
} while(rc == RFC_OK); 
RfcClose(handle); 
exit(0); 

 
A lot of calls to the RFC library “block”, that is, they do not return until 
communications are complete. You can overcome this obstacle by using the 
RfcListen function: RfcListen checks whether any requests are present. If there are 
none, then programs can be started and run. If, however, a call is being processed, 
then RfcListen puts the results in a buffer and dispatches them, so that no blocking 
occurs. Thus, the results will not be lost. 

 

 

April 2001  191 



The RFC API  SAP AG 

RfcWaitForRequest 

RfcWaitForRequest 
RFC_RC  SAP_API   RfcWaitForRequest(RFC_HANDLE handle, 

 RFC_INT wtime); 
Using the registering feature [Page 49] of an R/3 System Release 3.0C onwards, an RFC server 
program can issue RfcAccept [Page 116] to register itself at an SAP gateway. After that, it can 
wait for any RFC request by issueing RfcGetName [Page 139], RfcDispatch [Page 135] or 
RfcListen [Page 190]. 

RfcGetName and RfcDispatch are blocking calls. The server has to wait until any RFC request is 
incoming. 

In R/3 Release 3.0C and 3.0D, RfcListen is also a blocking call when using registering mode. 

From R/3 Release 3.0E onwards, RfcListen is a non-blocking call. However, if you do not issue 
the RfcListen call quick enough, the SAP gateway will return an error to the RFC client, because 
no server program was available at that time.  

Instead of RfcListen, you can use this new call RfcWaitForRequest with a time interval in 
seconds as a parameter to define how long you want to wait for RFC requests. 

This function is defined in SAPRFC.H. 

Function Parameters: 
• handle 

RFC connection handle 

• wtime 

Wait time 

 
This call is available with the RFC library from R/3 Release 3.0E onwards. 

For more details, see saprfc.h, srfcserv.c or saprfc.hlp in the delivered RFC SDK. 

 

192  April 2001 



 SAP AG The RFC API 

  Structures and Enumerations 

Structures and Enumerations 
This section contains the following topics: 

RFC_CONNOPT_CPIC [Page 194]  

RFC_CONNOPT_R3ONLY [Page 195]  

RFC_CONNOPT_VERSION_3 [Page 196]  

RFC_ERROR_INFO [Page 198]  

RFC_ITMODE [Page 199]  

RFC_MODE [Page 200]  

RFC_OPTIONS [Page 201]  

RFC_PARAMETER [Page 204]  

RFC_RC [Page 205]  

RFC_TABLE [Page 207]  

RFC_ATTRIBUTES [Page 208]  

 

April 2001  193 



The RFC API  SAP AG 

RFC_CONNOPT_CPIC 

RFC_CONNOPT_CPIC  
This structure provides options for an SNA connection via the SAP gateway. The connection data 
must be specified at the SAP gateway. At the SAP gateway, ‘destination’ is used as key for the 
‘sideinfo’ file. 
typedef struct { 
 char * gateway_host; 
 char * gateway_service; 
} RFC_CONNECT_CPIC; 
This structure is defined in SAPRFC.H. 

Members:0 
• gateway_host 

gateway hostname 

• gateway_service 

gateway service (in general sapgw00) 

 

194  April 2001 



 SAP AG The RFC API 

  RFC_CONNOPT_R3ONLY 

RFC_CONNOPT_R3ONLY 
This structure provides options for a connection to an R/3 System. 
typedef struct { 
 char * hostname; 
 int sysnr; 
 char * gateway_host; 
 char * gateway_service; 
} RFC_CONNOPT_R3ONLY; 
This structure is defined in SAPRFC.H. 

Members: 
• hostname 

host name of target system 

Host names can be regular host names defined in a ‘hosts’ file, an IP address like 
123.123.123.123 or a saprouter address as /H/hostname/S/port/H/host/S/port/...  

• sysnr 

system number (0-99) 

This is the number by which the target system is identified. In general, this is 0. 

• gateway_host 

gateway hostname 

If the pointer is NULL, the gateway is assumed to run at ‘hostname’. 

• gateway_service 

gateway service 

If the pointer is NULL, the service “sapgw##” with ## = ‘sysnr’ is assumed. 

 

April 2001  195 



The RFC API  SAP AG 

RFC_CONNOPT_VERSION_3 

RFC_CONNOPT_VERSION_3 
This structure provides a connection to an R/3 System. The target system must be Release 3.0C 
or later. 
typedef struct { 
 char * hostname; 
 RFC_INT sysnr; 
 RFC_INT use_load_balancing; 
 char * lb_host 
 char * lb_system_name; 
 char *lb_group; 
 RFC_INT use_sapgui; 
} RFC_CONNOPT_VERSION_3; 
Since an R/3 System of version 3.0 always has its own ‘gateway’ process, no gateway options 
are necessary any more.  

This structure is defined in SAPRFC.H. 

Members: 
• hostname 

host name of target system 

Host names can be regular host names defined in a ‘hosts’ file, an IP address like 
123.123.123.123 or a saprouter address as /H/hostname/S/port/H/host/S/port/... 

If ‘use_load_balancing’ is set to a non-zero value, this field can be NULL. 

• sysnr 

system number (0-99) 

This is the number by which the target system is identified. In general, this is 0. 

If ‘use_load_balancing’ is set to a non-zero value, this field is ignored. 

• use_load_balancing 

Use the load balancing features of an SAP System. 

If you set this to a non-zero value, ‘hostname’ and ‘sysnr’ are ignored. 

You must set the fields ‘lb_host’ and ‘lb_system_name’ instead.  

The target system is then determined dynamically. 

lb_host 

Host name where the ‘message server’ of the target system is running. 

This field must only be filled if ‘use_load’balancing’ is set to a non-zero value 

• lb_system_name 

name of the target system (e.g. C11) 

This field must only be filled if ‘use_load_balancing’ is set to a non-zero value. 

• lb_group 

196  April 2001 



 SAP AG The RFC API 

  RFC_CONNOPT_VERSION_3 

application server group 

The group of application servers to be used. 

This field must only be filled if ‘use_load_balancing’ is set to a non-zero value. 

• use_sapgui 

use ‘sapgui’ processes to display SAP dynpros and graphics. 

Set this to a non-zero value to activate this functionality. 

 
Starting sapgui takes some time, so you should not set that value if you do not need 
it. 

This field is set automatically as soon as you activate the ABAP debugger by entering ‘d’ 
in the trace field or by setting RFC_DEBUG in the system environment. 

 

April 2001  197 



The RFC API  SAP AG 

RFC_ERROR_INFO 

RFC_ERROR_INFO 
The structure 
typedef struct { 
 char key[33] ; 
 char status[128]; 
 char message[256]; 
 char intstat[128]; 
} RFC_ERROR_INFO; 
is returned by RfcLastError [Page 125] describing the last RFC error that occurred. 

This structure is defined in SAPRFC.H. 

Members: 
• key[33] 

error code to identify the error 

• status128] 
state of the RFC connection 

• message[256] 
text describing the error 

• intstat[128] 
internal description of the RFC connection 

 

198  April 2001 



 SAP AG The RFC API 

  RFC_ITMODE 

RFC_ITMODE 
The structure 
enum RFC_ITMODE { 
 RFC_ITMODE_BYREFERENCE, 
 RFC_ITMODE_BYVALUE, 
 RFC_ITMODE_KEEPALIVE, 
}; 
provides a mode how to pass an internal table. 

This structure is defined in SAPRFC.H. 

Members: 
• RFC_ITMODE_BYREFERENCE 

table is passed by reference 

 
You must always use RFC_ITMODE_BYREFERENCE. 

• RFC_ITMODE_BYVALUE 

table is passed by value, changes are not transported back 

 
RFC_ITMODE_BYVALUE is for internal use only. 

• RFC_ITMODE_KEEPALIVE 

table is passed by reference, but is kept alive after returning (i.e. after RfcSendData) 

 
RFC_ITMODE_KEEPALIVE is for internal use only. 

 

April 2001  199 



The RFC API  SAP AG 

RFC_MODE 

RFC_MODE 
The structure 
enum RFC_MODE { 
 RFC_MODE_R3ONLY, 
 RFC_MODE_CPIC, 
 RFC_MODE_VERSION_3 
 RFC_MODE_PARAMETER 
}; 
provides a type of connection to be openend by RfcOpen [Page 126]. 

This structure is defined in SAPRFC.H. 

Members: 
• RFC_MODE_R3ONLY 

Use R/3 protocol and addressing scheme. Only for R/3 Systems. Any kind of user-ID 
(dialog user-ID, cpic user-ID) is possible. 

connopt must point to a structure of type RFC_CONNOPT_R3ONLY [Page 195]. 

• RFC_MODE_CPIC 

Use R72 protocol and addressing scheme. Must be used for R/2, only cpic user-IDs are 
allowed. Since an R73 System is also capable of understanding the R/2 RFC protocol, 
you can also reach an R/3 System with that mode. However, you must use a ‘sideinfo’ 
file for addressing.  

connopt must point to a structure of type RFC_CONNOPT_CPIC [Page 194]. 

• RFC_MODE_VERSION3 

Use R/3 protocol version 3. The receiving SAP System must have at least Release 3.0C 
to be able to serve every kind of options. 

connopt must point to a structure of type RFC_CONNOPT_VERSION_3 [Page 196]. 

• RFC_MODE_PARAMETER 

Use R/3 protocol version 3 or R/2 protocol and addressing scheme. This mode includes 
all three modes above and all necessary parameters will be read from an INI-file 
(saprfc.ini). See The SAPRFC.INI File [Page 66] for more details.  

In some cases the receiving SAP system must have at least Release 3.0C to be able to 
serve every kind of options.  

destination must point to a valid entry in the saprfc.ini. This file can be in the current 
directory where RFC programs are running or it must be defined by the environment 
variable RFC_INI (e.g. in /usr/rfctest/saprfc.ini). 

connopt must be set to NULL. 

 

200  April 2001 



 SAP AG The RFC API 

  RFC_OPTIONS 

RFC_OPTIONS 
The structure 
typedef struct { 
 char * destination; 
 RFC_MODE mode; 
 void * connopt; 
 char * client; 
 char * user; 
 char * password; 
 char * language; 
 int trace; 
} RFC_OPTIONS; 
provides parameters for RfcOpen [Page 126]. 

Depending on the type of connection, various data have to be supplied to open an RFC 
connection. 

There are three ways to supply this information: 

1. You can enter a destination name pointed to an entry in a ‘saprfc.ini’ file which contains 
the necessary network parameters and RFC-specific parameters for opening the 
connection at RfcOpen [Page 126]. 

2. You can enter a destination name pointed to an entry in a ‘sideinfo’ file which only 
contains the necessary network parameters for opening the connection at RfcOpen 
[Page 126] 

3. In your program you supply all the data needed for opening the connection at RfcOpen 
[Page 126]. 

The first of these methods is recommended (i.e. working with saprfc.ini), because it allows you to 
use some RFC features today as well as in the future without changing your RFC programs. See 
sprfc.ini for more details. 

Fields that are not supplied must be set to NULL. 

The RFC_OPTIONS structure consists of three groups. 

• The data needed to establish the physical connection depend on the type of connection 
(R/2 or R/3 connection, version,...). Depending on the contents of the field ‘mode’, the 
field ‘connopt’ must point to different structures.  

• The signon data (client, user, password, language) are needed for authentication. Since 
RfcOpen [Page 126] only opens the physical connection directly, these data are only 
checked if the first RFC call is sent.  

• The third field contains a trace flag. If not zero, a trace file is written for all the operations 
corresponding to this connection to ease error analysis. 

 
This structure must be completely initialized with 0. This will ensure that in the future 
SAP can add more connection parameters. 

This structure is defined in SAPRFC.H. 

April 2001  201 



The RFC API  SAP AG 

RFC_OPTIONS 

Members: 
• destination 

name of destination 

If the connection is not described completely, this name is used as a key for a ‘sideinfo’ 
where the connection should then be described. You always have to fill in this field.  

• mode 

connection mode 

There are two different protocol types for RFC, depending on whether your target system 
is an R/2 or R/3 System.  

If your target system is an SAP system of Release 3.0C or later, you can use various 
special options if you enter the value RFC_MODE_VERSION_3 here.  

Depending on the contents of this field, connopt must point to different structures (see 
RFC_MODE [Page 200]). 

• connopt 

If connopt is NULL, the ‘sideinfo’ or the ‘saprfc.ini’ file is used to determine the 
connection parameters. 

Without ‘sideinfo.ini’ file connopt must point to a structure of type 
RFC_CONNOPT_R3ONLY [Page 195], RFC_CONNOPT_VERSION_3 [Page 196] or 
RFC_CONNOPT_CPIC [Page 194] depending in the value of ‘mode’. 

• client 

signon data: client 

• user 

signon data: user 

• password 

signon data: password 

• language 

signon data: language 

• trace 

trace 

If 0, no trace is written. If not 0, the RFC library traces all activities into a file ‘dev_rfc’ in 
the actual working directory. 

If your target system is of Release 3.0C or later, you can enter the value ‘D’ here to start 
the ABAP debugger on the target system.  

The ABAP debugger can also be activated by setting the environment varialbe 
RFC_DEBUG before the call to RfcOpen [Page 126] is done.  

 
Options for an R/3 connection. 

202  April 2001 



 SAP AG The RFC API 

  RFC_OPTIONS 

// static = initialized structures 
static RFC_OPTIONS options; 
static RFC_CONNOPT_R3ONLY rfc_connopt_r3only; 
RFC_HANDLE handle 
options.destination = “TEST”; 
options.mode = RFC_MODE_R3ONLY; 
options.client = “000”; 
options.user = “SAP*”; 
options.language = “E”; 
options.password = “PASS”; 
options.trace = 0; // turn trace off 
options.connopt = &rfc_connopt_r3only; 
rfc_connopt_r3only.hostname = “some_host”; // 
some host name 
rfc_connopt_r3only.sysnr = 0; // system 00 
handle = RfcOpen(&options); 
if(handle == RFC_HANDLE_NULL) 
{ 
... 

 

April 2001  203 



The RFC API  SAP AG 

RFC_PARAMETER 

RFC_PARAMETER 
The structure 
typedef struct { 
 void * name; 
 unsigned nlen; 
 unsigned type; 
 unsigned leng; 
 void * addr; 
} RFC_PARAMETER; 
provides RFC parameters. It describes ‘Exporting’ and ‘Importing’ parameters of a function 
module. 

This structure is defined in SAPRFC.H. 

Members: 
• name 

name of the field (in the interface definition of the function) 

• nlen 

length of the name (should be strlen(name)) 

• type 

data type of the field 

• leng 

length of the field in bytes 

• addr 

address of the field to be exported or imported 

See also RFC_CHAR [Page 97], RFC_NUM [Page 101], RFC_BYTE [Page 105], RFC_BCD 
[Page 106], RFC_INT [Page 102], RFC_INT1 [Page 103], RFC_INT2 [Page 104], RFC_FLOAT 
[Page 109], RFC_DATE [Page 107], and RFC_TIME [Page 108]. 

 

204  April 2001 



 SAP AG The RFC API 

  RFC_RC 

RFC_RC 
The structure 
enum RFC_RC { 
 RFC_OK, 
 RFC_FAILURE, 
 RFC_EXCEPTION, 
 RFC_SYS_EXCEPTION, 
 RFC_CALL, 
 RFC_INTERNAL_COM, 
 RFC_CLOSED, 
 RFC_RETRY, 
 RFC_NO_TID, 
 RFC_EXECUTED, 
 RFC_SYNCHRONIZE, 
 RFC_MEMORY_INSUFFICIENT, 
 RFC_VERSION_MISMATCH, 
 RFC_NOT_FOUND, 
 RFC_CALL_NOT_SUPPORTED 
}; 
provides RFC return codes. 

This structure is defined in SAPRFC.H. 

Members: 
• RFC_OK 

ok 

• RFC_FAILURE 

error occurred 

• RFC_EXCEPTION 

exception raised 

• RFC_SYS_EXCEPTION 

system exception raised, connection closed 

• RFC_CALL 

call received 

• RFC_INTERNAL_COM 

internal communication, repeat (internal use only) 

• RFC_CLOSED 

connection closed by the other side 

• RFC_RETRY 

no data yet (RfcListen only) 

• RFC_NO_TID 

April 2001  205 



The RFC API  SAP AG 

RFC_RC 

no transaction-ID available 

• RFC_EXECUTED 

function already executed 

• RFC_SYNCHRONIZE 

synchronous call in progress (only for Windows) 

• RFC_MEMORY_INSUFFICIENT 

memory insufficient 

• RFC_VERSION_MISMATCH 

version mismatch 

• RFC_NOT_FOUND 

function not found (internal use only) 

• RFC_CALL_NOT_SUPPORTED 

call is not supported on Windows 

 

206  April 2001 



 SAP AG The RFC API 

  RFC_TABLE 

RFC_TABLE 
The structure 

typedef struct { 

   void * name; 
   unsigned nlen; 
   unsigned type; 
   unsigned leng; 
   ITAB_H ithandle; 
   RFC_ITMODE itmode; 
   int newitab; 
} RFC_TABLE; 

provides RFC tables. It describes tables parameters of the interface of a function module. 

This structure is defined in SAPRFC.H. 

Members: 
• name 

name of the table (in the interface of the function) 

• nlen 

length of the name (should be strlen(name)) 

• type 

data type of the lines of the table 

• leng 

length of a row in bytes 

• ithandle 

table handle ITAB_H [Page 151], i.e. the address of the control structure of the internal 
table 
This is an input field at RfcCall [Page 128] and an output field at RfcGetData [Page 138]. 

• itmode 

mode (RFC_ITMODE [Page 199]) 

This table has to be received either by ‘call by reference’ or by ‘call by value’ (only for 
RfcGetData, has no effect in RfcCall). 

• newitab 

If the value after RfcGetData is not 0, the table was created by RfcGetData. This is for 
internal use only. This field must not be modified between RfcGetData [Page 138] and 
RfcSendData [Page 145]. 

 

April 2001  207 



The RFC API  SAP AG 

RFC_ATTRIBUTES 

RFC_ATTRIBUTES 
The structure 
typedef struct { 
 char dest[64+1]; 
 char own_host[100+1]; 
 char partner_host[100+1]; 
 char systnr[2+1]; 
 char sysid[8+1]; 
 char client[3+1]; 
 char user[12+1]; 
 char language[1+1]; 
 char reserved[256]; 
 } RFC_ATTRIBUTES; 
is returned by RfcGetAttributes [Page 137] describing some information about this RFC 
connection. 

This structure is defined in SAPRFC.H. 

Members: 
• dest[64+1] 

RFC destination 

• own_host[100+1] 

Own host name 

• partner_host[100+1] 

Partner host name 

• systnr[2+1] 

R/3 system number 

• sysid[8+1] 

R/3 system name 

• client[3+1] 

Client 

• user[12+1] 

User 

• language[1+1] 

Language 

• reserved[256] 

Reserved 

 

 

208  April 2001 



 SAP AG The RFC API 

  Platform-Specific Features of the RFC API 

Platform-Specific Features of the RFC API 
This section deals with specific features of the RFC API on different platforms. 

OS/2 [Page 210]  

Windows 3.x [Page 211]  

Windows NT/95 [Page 212]  

R/3-Based UNIX Platforms [Page 213]  
 

April 2001  209 



The RFC API  SAP AG 

OS/2 

OS/2  
Under OS/2 a "shared" RFC library (DLL) is available that provides the complete RFC 
functionality and is currently operable only with the TCP/IP product for OS/2 from IBM. 

 

210  April 2001 



 SAP AG The RFC API 

  Windows 3.x 

Windows 3.x  
On Windows 3.x, a "shared" RFC Library (DLL) is also provided with the following functionality: 

• Any RFC module in SAP R/2 or R/3 can be called from within Windows. 

• From ABAP programs in R/3 Systems, RFC server programs can only be called up via 
SAPGUI.  However, this is possible only with SAPGUI version >= 2.1J / 2.2 D. 

• All RFC calls in an RFC client or server program must be performed in one task. RFC 
calls in different Windows tasks are not allowed. 

The RFC library can be run with all TCP/IP products for Windows that support sockets. 

For more information, refer to SAP Network Supported Products. 

 

April 2001  211 



The RFC API  SAP AG 

Windows NT/95 

Windows NT/95  
On Windows NT, a "shared" RFC library (DLL) is also provided. This DLL offers the complete 
RFC functionality except for one restriction and currently runs only with the TCP/IP product for 
Windows NT from Microsoft. 

 
The following restrictions apply: 

Since no remote shell demon currently exists under Windows NT, there are only 
the following two options to start an RFC server program from within SAP R/2 or R/3: 

• Via SAPGUI under Windows NT 

• Via an SAP gateway that runs under Windows NT.  The SAP gateway then starts 
the RFC server program locally. 

 
As an alternative, if you want to run an RFC server program on an explicit NT 
machine, you can use the Registering Server Programs with the SAP Gateway 
[Page 49]. 

 

212  April 2001 



 SAP AG The RFC API 

  R/3-Based UNIX Platforms 

R/3-Based UNIX Platforms  
On R/3-based UNIX platforms a “non-shared” RFC library is available that provides the complete 
RFC functionality and runs on the standard TCP/IP product installed on these computers. 

 

 

April 2001  213 



The RFC API  SAP AG 

Sample Programs 

Sample Programs 
Sample programs are provided in the RFC SDK: 

• RFC client programs: 

− sapinfo.c 

− srfctest.c 

− rfc2abap.c 

− startrfc.c 

− and trfctest.c for transactional RFC client programs. 

• RFC server programs: 

− rfcexec.c 

− srfcserv.c 

− and trfcserv.c for transactional RFC server programs. 

You can find these programs in.../rfcsdk/text. 

 
The syntax for establishing connections is the same with R/3 and R/2 Systems. 
Therefore, the example programs delivered in the RFC SDK can be used for RFC 
with R/3 and R/2.  

 

214  April 2001 



 SAP AG The RFC API 

  Error Handling 

Error Handling 
This sections contains the following topics: 

Debugging [Page 216] 

Error Handling in ABAP [Page 217] 

Error Handling in RFC Server Programs [Page 218] 

More Information in Error Cases [Page 221]  
 

April 2001  215 



The RFC API  SAP AG 

Debugging 

Debugging 
As of R/3 Release 3.0C, you can use the full functionality of the ABAP debugger when 
developing an application using RFC. 

Depending on the structure of the program to debug, you can use different techniques: 

• setting RFC_DEBUG in the environment 

You can set the environment variable to any value to enter the debug mode. 

• setting -debug on the command line 

If the program uses RfcConnArgv [Page 119] for scanning the command line, set -
debug on the command line to enter debugging mode. 

• setting the trace field to D or E 

If you can modify the C code you are using you can set the trace field in the structure 
RFC_OPTIONS [Page 201] to the value D or E before calling RfcOpen [Page 126] or any 
other function opening an RFC connection (D: debugging without activated RFC trace; E: 
debugging with activated RFC trace). 

Another way of doing this is to define an entry in the saprfc.in’ file which includes all 
necessary parameters and the RFC-specific parameter RFC_TRACE in the saprfc.in’ file. 
An RFC client program can then issue the RfcOpen [Page 126] call with the mode 
RFC_MODE_PARAMETER and a destination pointed to the defined entry. See The 
SAPRFC.INI File [Page 66] for more details. 

 
In R/3 Release 3.0C, this functionality is only supported for Windows NT, Windows 
95 and all supported UNIX platforms (Motif). In particular, this functionality is not 
available for 16-bit Windows environments (Windows 3.x, as well as the 16-bit 
subsystems of Windows NT and Windows 95). 

Moreover, you have to install a SAPGUI program on your system which must be of 
Release 3.0C or later. 

Under Windows NT and Windows 95, the SAPGUI program and its DLLs and 
auxiliary programs can be installed anywhere. However, you must have started 
‘SAPGUI’ once before you can use it via RFC, because the program must register 
itself in the Windows registry.  

Under R/3-based UNIX, the SAPGUI program must be installed on the normal SAP 
path /usr/sap/<system name>/SYS/exe/run. 

 

216  April 2001 



 SAP AG The RFC API 

  Error Handling in ABAP 

Error Handling in ABAP 
Causes 
There are different causes for ABAP errors, depending on the program. Causes include: 

• Incorrect or incomplete entries in the RFC destination (transaction SM59) 

• Network problems 

• Authorization problems 

• Error in the RFC program 

Solution 
Check the following: 

1. Check all the entries made in transaction SM59. Do all the entries match the settings of 
the target system? 

2. Is the hostname correct? 

3. Is the service/system number correct? 

4. Is the user/password set correctly? 

5. Is the target system active? 

6. Did you save the destination? 

7. Make sure that the target machine can be addressed by the host on which the gateway 
process is running. 

8. Check that the gateway processes are running on both systems. 

9. Check the network connection. 

 

April 2001  217 



The RFC API  SAP AG 

Error Handling in RFC Server Programs 

Error Handling in RFC Server Programs 
Causes 
There are different causes for ABAP errors, depending on the program. Causes include: 

• Incorrect or incomplete entries in the RFC destination (transaction SM59) 

• Network problems 

• Authorization problems 

• Error in the RFC program 

Solution 
Check the following: 

1. Check all the entries made in transaction SM59. The destination used must be entered 
with category T. Enter a complete path name, if possible, for the program to be started. 
Make sure to save the destination. 

2. Configuration on operating system level 

a) The host name specification in the destination 

i) A name is entered into ‘host name’ (radio button in Release 3.0 is selected 
‘explicitely’) or a non-standard gateway is stored (in gateway options). In the 
latter case, the program is started by the standard gateway program of the 
system or by the gateway (gwrd) specified explicitely via ‘remote shell’. 

Make sure that the entered computer can be addressed by the computer of 
gateway process. Enter the following command on this computer: 

/etc/ping <host name> or ping <host name> 

To start a program with ‘remote shell’ on another computer, it is necessary that 
the user-ID of the gateway process exists on the target system and that the 
HOME directory of this user contains a file.rhosts in the target system. The 
name of the calling computer must be stored in this file. To test this, log in on the 
computer of the gateway process under the user-ID of this process and call the 
command: 
remsh <host name> <program name> 

In this case, you have to enter the same as in transaction SM59 for <host 
name> and <program name>. 

(If an RFC server program is called without parameters, the call RfcAccept 
returns an error code (RFC_HANDLE_NULL) in any case and the program should 
terminate immediately.) 

ii) No entry is made in ‘host name’ (or in 3.0: Server is selected) 

In this case, the program is started from the SAP application server.  

Make sure that the program can be addressed from the SAP application server. 

218  April 2001 



 SAP AG The RFC API 

  Error Handling in RFC Server Programs 

Make sure that the SAP application server has the authorization for starting the 
program. 

To do this, log on under the user-ID of the SAP application server (generally 
c11adm). Go into the ‘work’ directory of the application server 
(/usr/sap/.../D.../work), if possible, and start the RFC server program 
manually from there. 

(If an RFC server program is called without parameters, the call RfcAccept 
returns an error code (RFC_HANDLE_NULL) in any case and the program should 
terminate immediately.) 

In Release 3.0, you can also select ‘User’. In this case, the program is started by 
‘Sapgui’, that is, under the user-ID and the environment of the user.  

Make sure that the program can be addressed by sapgui/saptemu. 

Make sure that sapgui has the authorization to start the program.  

To do this, call the RFC server program. 

b) Problems in the RFC server program itself 

To pick up stderr output of the RFC server program, you can enter a control 
program instead of the actual server program into the destination which in turn starts 
the actual server program with the same command line and which in this case 
redirects the standard output of the program into a file. 

 
RFC server program is /xxx/xxxx. 

However, the C script is called (do not forget the specification of the shell in the first 
line): 
#!/bin/csh 
date >> /tmp/rfclog 
/xxx/xxxx $* >>& /tmp/rfclog 
echo $status >>& /tmp/rfclog 
Display the log file /tmp/rfclog for further error analysis. 

You can activate the trace flag in the destination (remember to save). A file dev_rfc 
is then written by the RFC server program in its current directory containing all data 
received, operations and errors that occurred. 

Debugging an RFC server program 
Using Registering Server Programs with the SAP Gateway [Page 49], you can start your RFC 
server program with a C debugger, such as dbx, xdb or code view, etc.  

If your RFC server program will be started by an SAP component (i.e. SAPGUI, SAP Gateway, 
Application Server), you can do as follows: 

1. Enter a program for your destination in SM59 which simply writes the transferred 
command line to a defined file: 
Example (C-Shell) 

April 2001  219 



The RFC API  SAP AG 

Error Handling in RFC Server Programs 

#!/bin/csh 
echo $* > /tmp/rfc 

2. Call the C-debugger with your RFC server program. For example, xdb <program 
name> 

3. Set a breakpoint after the RfcAccept call. 

4. Start the calling ABAP program. The control program writes its command line to its 
output file (/tmp/rfc in this example). 

5. Read this file and start the RFC server program loaded into the debugger immediately 
using the same command line. 

 

220  April 2001 



 SAP AG The RFC API 

  More Information in Error Cases 

More Information in Error Cases 

 
This information refers to possible errors in R/3 Release 3.0D and 3.0E. 

Trace Files 
For better error analysis, the RFC library and the R/3 System Release 3.0E onwards will write 
some more error information into the TRACE file: 

• dev_rfc0, dev_rfc1,... within an R/3 System or 

• dev_rfc or RFCnnnnn.TRC (16-bit RFC library) in non-SAP systems 

RFC Library 3.0C on Windows (16- and 32-bit) 
When working with the saprfc.ini file on Windows (librfc16.dll and librfc32.dll), you cannot 
connect to an R/3 System Release 3.0D onwards with dialog user, because of a security error 
(system log with error code 152!). 

In this case, use the RFC library version 3.0D onwards or CPIC user. 

Stack Overflow while Working with librfc16.dll in R/3 3.0D 
onwards 
Because of some extensions in the “network interface” (NI) layer, some RFC programs could be 
broken by Windows Operating System with the error STACK OVERFLOW in some RFC error 
cases while working with the 16-bit RFC library 3.0D onwards. 

In this case, recompile your RFC program with at least 9000 bytes stack size. The default value 
in “cl.def” of the Microsoft Visual C++ 1.5x is 8096 bytes. 

Getting Version of the RFC Library 
Until now it has been possible to get the version of the RFC library and all SAP internal libraries, 
such as cpic, ni,..., by using the call RfcGetAllLibVersions, but this call does not return any 
information about the R/3 Release to which this RFC library belongs. 

From R/3 Release 3.0E onwards, the RFC library will also return the release of the R/3 System.  

To get this information, you can start sapinfo -v from the command line. 

 

 

April 2001  221 



The RFC API  SAP AG 

RFC and SAProuter 

RFC and SAProuter 
This section contains the following topics: 

Introduction to SAProuter [Page 223] 

RFC Client Program and SAProuter [Page 225] 

Starting an RFC Server Program Via SAProuter [Page 228] 
Using the Registering Feature [Page 229] 

Program Start by Application Server [Page 230] 

Program Start by SAP Gateway [Page 231] 

Program Start by SAPGUI [Page 233] 
 

 

222  April 2001 



 SAP AG The RFC API 

  Introduction to SAProuter 

Introduction to SAProuter 
SAProuter is an SAP software product which is available on all R/3-based UNIX platforms and 
Windows NT/95. It acts like a firewall system by regulating access from/to your network. 

SAProuter can be used 

• to establish an indirect connection between two programs running on different machines. 
The network configuration does not allow a direct communication between these 
machines due to missing IP addresses (or the same IP addresses as well) or firewall 
restrictions. 

• to improve network security by allowing accesses from/to your network with or without 
password-protection only from a specified machine where the SAProuter is running. 

• to control and log all connections between your network and the rest of the world. 

Important SAProuter Commands 

saprouter Online help (display list of all supported options) 

saprouter -r Start SAProuter with default values 

saprouter -s Stop SAPRouter 

Route String 
A route string can have one or more substrings. Each substring contains parameters how to 
reach the next SAProuter or the target host or program on the target host. 

Such parameters are: 

• name or IP-address of the target host 

• service (port number) of the program running on the target host 

• password for this connection, if needed 

 
Example of one substring: /H/host/S/service/P/password 

H: Identifier for host name 

S: Identifier for service (port number) 

P: Identifier for password 

Route Permission Table 
The SAProuter regulates access to your network via the route permission table in form of a file. 
You can start your SAProuter with this file name. 

An entry in a route permission table has the following structure: 
<P/D> <source host> <target host> <target service> <password> 

April 2001  223 



The RFC API  SAP AG 

Introduction to SAProuter 

 

P(ermit): allows connection 

D(eny): prevents connection 

<source host>: host name or IP-address, could be a SAProuter 

<target host>: host name or IP-address, could be a SAProuter 

<target service>: service (port number) of the program of the target host 
The default service of SAProuter is ‘3299’. 

 
If no route permission table was explicitly assigned to the SAProuter while starting 
(option -R <name of a route permission table>), the file ‘saprouttab’ in the current 
directory will be used. If this file is not available, all connections are allowed. 

You can use wildcarts (‘*’) to define hosts, services and passwords in your route 
permission table. 

 
See SAP note 30289 for more details about SAProuter. 

A Typical Use of SAProuter (remote support) 
 

Network_1 (SAP-
Walldorf) 

Network_2 
(Customer) 

host_11 host_r1 host_r2 host_21 

SAPGUI ————> SAProuter ————
> 

(“3299”) 

SAProuter ———
—> 

(“3299”) 

SAP R/3 

Route Permission Tables 
Entry in the route permission table of SAProuter on host_r1 in Network_1: 
P host_11 host_r2 3299 

Entry in the route permission table of SAProuter on host_r2 in Network_2: 
P host_r1 host_21 sapdp<R/3 system number> 

The SAPGUI on host_11 will connect to the R/3 application server on host_21 with the following 
route string, host name and dispatcher service: 
/H/host_r1/H/host_r2/H/host_21/S/sapdp<R/3 system number> 

The information about services of both SAProuters are not necessary, because they are running 
with the default service (“3299”). 

 

224  April 2001 



 SAP AG The RFC API 

  RFC Client Program and SAProuter 

RFC Client Program and SAProuter 
Any RFC client program can connect to an SAP System via SAProuter. The feature SAP using 
SAPGUI [Page 44] which is available from R/3 Release 3.0C onwards is also possible via 
SAProuter. You must also allow the corresponding SAP dispatcher to work with SAProuters.  

One or more SAProuters can be used. The following example shows how the client program can 
work with two SAProuters. 

 
Network_1 Network_2
host_11
RFC client

host_r1
SAProuter
("3299")

host_r2
SAProuter
("3299")

host_21
R/3_MS

host_22
SAP-GW

host_23
R/3-AS

host_sna
SAP-GW

IBM-Host
R/2

host_bs2
SAP-GW

R/3-AS

R/2

1)

2)

4)

5)

3)

 
 

Route Permission Tables 
In the route permission table of SAProuter on host_r1 in Network_1 only one entry is 
necessary: 

P host_11 host_r2 3299 

The entries in the route permission table of SAProuter on host_r2 in Network_2 are dependent 
on the type of RFC connection which is established with the SAP System. The RFC client 
program must inform the RFC library about all used SAProuters for connecting to the R/3 System 
via the parameter ‘host name’ in RfcOpen. 

April 2001  225 



The RFC API  SAP AG 

RFC Client Program and SAProuter 

1. Using Load Balancing 
The following applies only to R/3 Release 3.0 onwards. 

The host name of the message server must contain the route string. For the example described 
in the last section, the RFC client must set the host name of the message server as follows: 
MS-Host: /H/host_r1/H/host_r2/H/host_21. 

Entries in the route permission table of SAProuter on host_r2 in Network_2: 

P host_r1 host_21 sapms<R/3 name> 

P host_r1 <R/3-AS host 1> sapgw<R/3 system number> 

...    

P host_r1 <R/3-AS host n> sapgw<R/3 system number> 

2. Specified R/3 Application Server and Default SAP Gateway 
The host name of the specified application server must contain the route string. For the example 
described in the last section, the RFC client must set the host name of the application server as 
follows: 
AS-Host: /H/host_r1/H/host_r2/H/host_22. 

Entries in the route permission table of SAProuter on host_r2 in Network_2: 

P host_r1 host_22 sapgw<R/3 system number> 

3. Specified R/3 Application Server and Specified SAP Gateway 
(R/3) 
If you are working with a specified SAP gateway (not recommended for R/3 Release >= 2.1l, 
2.2C or 3.0 because of bad performance), the host name of the SAP gateway must contain the 
route string. The host name of the application server may not contain the route string. For the 
example described in the last section, the RFC client must set the host name of the SAP gateway 
as follows: 
GW-Host: /H/host_r1/H/host_r2/H/host_22 
AS-Host: host_23 

Entries in the route permission table of SAProuter on host_r2 in Network_2: 

P host_r1 host_22 sapgw<GW service number> 

4. R/2 in an IBM Environment 
The host name of the SAP gateway must contain the route string. For the example described in 
the last section, the RFC client must set the host name of the SAP gateway as follows: 
GW-Host: /H/host_r1/H/host_r2/H/host_sna 
host-sna is a machine where a SNA LU6.2-product is running. 

Entries in the route permission table of SAProuter on host_r2 in Network_2: 

P host_r1 host_sna sapgw<GW service number> 

226  April 2001 



 SAP AG The RFC API 

  RFC Client Program and SAProuter 

5. R/2 in an SNI Environment (BS2000) 
The host name of the SAP gateway must contain the route string. For the example described in 
the last section, the RFC client must set the host name of the SAP gateway as follows: 
GW-Host: /H/host_r1/H/host_r2/H/host_bs2 
host-bs2 is a BS2000 host where the SAP R/2 is running. 

Entries in the route permission table of SAProuter on host_r2 in Network_2: 

P host_r1 host_bs2 sapgw<GW service number> 

 

 

April 2001  227 



The RFC API  SAP AG 

Starting an RFC Server Program Via SAProuter 

Starting an RFC Server Program Via SAProuter 
An RFC server program can be started by a SAP gateway, by the currently running R/3 
application server or by the currently running SAPGUI. Using the registering feature of an R/3 
System Release 3.0C onwards, the RFC server program can be started before and then it 
registers at an SAP gateway and then waits for RFC requests. 

 
From R/3 (RFC library and SAPGUI) Release 3.0D onwards, it is possible to start an 
RFC server program by a SAPGUI on a workstation (which is connected to an R/3 
System) via one or more SAProuters. 

According to the way of starting an RFC server program and to the Release of the SAP System, 
there are different ways for RFC server programs to work with SAProuters. 

Using the Registering Feature [Page 229] 

Program Start by Application Server [Page 230] 

Program Start by SAP Gateway [Page 231] 

Program Start by SAPGUI [Page 233] 

 

 

228  April 2001 



 SAP AG The RFC API 

  Using the Registering Feature 

Using the Registering Feature 
As described in Registering Feature [Page 49], the registering feature is only available with an 
R/3 System and SAP gateway of Release 3.0C onwards. 

One or more SAProuters can be used. The following example shows how a server program can 
work with two SAProuters using the registering feature: 

 
Network_1 Network_2
host_11
RFC server

host_r1
SAProuter
("3299")

host_r2
SAProuter
("3299")

host_21
SAP-GW

R/3-AS  
 

Route Permission Tables 
Entry in the route permission table of SAProuter on host_r1 in Network_1: 

P host_11 host_r2 3299 

 

Entry in the route permission table of SAProuter on host_r2 in Network_2: 

P host_r1 host_21 sapgw<GW service number> 

The host name of the SAP gateway must contain the route string. For the example above, the 
RFC server must set the host name of the SAP gateway as follows: 
GW-Name: /H/host_r1/H/host_r2/H/host_21 

The delivered RFC server program srfctest.c can be started at the command line as follows: 
srfcserv -ahost_11.srfcserv -g/H/host_r1/H/host_r2/H/host_21 -xsapgw<GW serv.-nr.> 

A destination in transaction sm59 can be defined as follows: 

 

Connection type: T 

Activate type: Registering 

Program-ID: host_11.srfcserv 

Gateway host: host_21 

Gateway service: sapgw<GW service number> 

 

 

April 2001  229 



The RFC API  SAP AG 

Program Start by Application Server 

Program Start by Application Server 
Program start by application server means that the RFC server program will be run on the same 
machine as the application server. In this case, you have different application servers of an R/3 
System running on different networks connected via SAProuter. 

 
From R/3 (RFC library and SAPGUI) Release 3.0D onwards, it is posssible to start 
an RFC server program by a SAPGUI on a workstation which is connected to an R/3 
application server.  
This application server has two networks:  

• one for the network with all R/3 application servers and 

• one for the network with this application server and the frontend workstation with 
SAPGUI. 

 

 

230  April 2001 



 SAP AG The RFC API 

  Program Start by SAP Gateway 

Program Start by SAP Gateway 
Because a SAP gateway cannot start an RFC server program with remote shell on another 
machine via SAProuter, it is necessary to install a SAP gateway on a machine in the network 
where the RFC server program will be run. It should be the same machine for a better 
performance. 

One or more SAProuters can be used. The following example shows 

• two different networks with two SAProuters and  

• how an RFC server program can be started by an SAP gateway and how it 
communicates with an R/3 System running on another network. 

 
Network_1 Network_2
host_11
SAP-GW

host_r1
SAProuter
("3299")

host_r2
SAProuter
("3299")

host_21
SAP-GW

R/3-ASRFC server  
 

Route Permission Tables 

Entry in the route permission table of SAProuter on host_r2 in Network_2: 

P host_21 host_r1 3299 

 

Entry in the route permission table of SAProuter on host_r1 in Network_1: 

P host_r2 host_11 sapgw<GW service number> 

 

A destination in transaction sm59 can be defined as follows: 

 

Connection type: T 

Activate type: Start 

Program location: explicit host 

Program: /rfctest/srfcserv 

Target host: host_11 

Gateway host: /H/host_r2/H/host_r1/H/host_11 

Gateway service: sapgw<GW service number> 

 

April 2001  231 



The RFC API  SAP AG 

Program Start by SAP Gateway 

 
The maximum length of the gateway host (transaction sm59) is: 

• 32 bytes for R/3 Release <= 3.0C 

• 64 bytes for R/3 Release 3.0D 

• 100 bytes for R/3 Release >= 3.0E. 

 

232  April 2001 



 SAP AG The RFC API 

  Program Start by SAPGUI 

Program Start by SAPGUI 
One or more SAProuters can be used. The following example shows 

• two different networks with two SAProuters and 

• how an RFC server program can be started by the currently running SAPGUI and how it 
communicates with an R/3 System running on another network. 

 
Network_1 Network_2
host_11
SAPGUI

host_r1
SAProuter
("3299")

host_r2
SAProuter
("3299")

host_21
SAP-GW

R/3-ASRFC server  
 

Route Permission Tables 
Entry in the route permission table of SAProuter on host_r1 in Network_1: 

P host_11 host_r2 3299 

 

Entry in the route permission table of SAProuter on host_r2 in Network_2: 
– Entry for RFC server program 

P host_r1 host_21 sapdp<R/3 service number> 

– Entry for SAPGUI 

P host_r1 host_21 sapgw<R/3 service number> 

 

A destination in transaction sm59 can be defined as follows: 

 

Connection type: T 

Activate type: Start 

Program location: Front-end workstation 

Program: /rfctest/srfcserv 

 

 
The maximum length of the gateway host (transaction sm59) is: 

• 32 bytes for R/3 Release <= 3.0C 

• 64 bytes for R/3 Release 3.0D 

April 2001  233 



The RFC API  SAP AG 

Program Start by SAPGUI 

• 100 bytes for R/3 Release >= 3.0E. 

The maximum length of the host name of the application server (transaction sm59) 
is: 

• 64 bytes for R/3 Release <= 3.0D 

• 100 bytes for R/3 Release >= 3.0E. 

RFC server program and SAPGUI use the same host name of an 
application server 
An application server runs with two network adapters, one for the network with R/3 application 
servers and one for the network with this application server and the frontend workstation with 
SAPGUI. This application server has two host names in two different networks. 

Problem 
Starting an RFC server program via SAPGUI is not an available option, because after having 
been startet, the RFC server program will connect to the application server with the host name 
only known in the R/3 network. 

Solution 
The RFC server program will use the same host name as the SAPGUI does. This functionality is 
available with R/3 Release 3.0D onwards and SAPGUI 3.0D onwards. 

 
For more information about problems and error handling, see Error Handling [Page 
215]. 

 

 

234  April 2001 



 SAP AG The RFC API 

  RFC Between External Programs 

RFC Between External Programs 
With the RFC API SAP provides an interface for communications with external systems using the 
same internal function calls in SAP Systems. For a local test (outside SAP Systems), you can 
write both RFC client and server programs as external programs and you can let these programs 
communicate with each other via an SAP gateway. 

In this case, an RFC server program can only be started by an SAP gateway, or it can use the 
registering feature described in Registering Feature [Page 49]. 

An RFC client program can work either with a local sideinfo or with the saprfc.ini file.  

The sample programs srfctest.c and srfcserv.c which are delivered in the RFC SDK can be 
used for this local test if you have an SAP gateway running in your test environment. 

The following sections describe how the parameters in these files should be set: 

Using A Local sideinfo File [Page 236] 

Using the saprfc.ini File [Page 237]  
 

April 2001  235 



The RFC API  SAP AG 

Using A Local sideinfo File 

Using A Local sideinfo File 
Sample entry in the sideinfo file: 
DEST = RFCEXT 
GWHOST = <host name of the SAP gateway, e.g. hs0311> 
GWSERV = <service name of the SAP gateway, e.g. sapgw53> 
PROTOCOL = <C/E (or R): server will be started by (or is already 
registered at) SAP-GW> 
LU = <host name of the RFC server program, e.g. hs0311> 
TP = <name of the RFC server program, e.g. /rfctest/srfcserv> 
Moreover, the parameter mode in RfcOpen must be set to RFC_MODE_CPIC. 

With the entry above, no entry is necessary in the sideinfo file for the SAP gateway. 

 

236  April 2001 



 SAP AG The RFC API 

  Using the saprfc.ini File 

Using the saprfc.ini File  
This functionality is only available with the RFC library of R/3 Release 3.0D onwards. The SAP 
gateway can be from Release 2.1l, 2.2C or 3.0 onwards. Working with type E is only possible 
with Release 3.0D onwards. 

Sample entry in the saprfc.ini file: 
DEST = RFCEXT 
TYPE = <E (or R): server will be started by (or is already registered 
at) SAP-GW> 
GWHOST = <host name of the SAP gateway, e.g. hs0311> 
GWSERV = <service name of the SAP gateway, e.g. sapgw53> 
TPHOST = <host name of the RFC server program, e.g. hs0311> 
TPNAME = <name of the RFC server program, e.g. /rfctest/srfcserv> 
The parameter mode in RfcOpen must be set to RFC_MODE_PARAMETER as usual. 

 

 

 

April 2001  237 


	Copyright
	Icons
	Contents
	The RFC API
	Introduction to the RFC API
	
	RFC with External Systems [Page 10]
	Technical Requirements [Page 12]
	Contents of the RFC SDK [Page 14]
	Compiling and Linking RFC Programs [Page 17]


	RFC with External Systems
	
	Client and Server Programs
	How to implement external RFC programs
	What is the RFC API?
	The RFC API is always required


	Technical Requirements
	External Systems
	SAP R/3 Systems
	SAP R/2 Systems

	Contents of the RFC SDK
	Compiling and Linking RFC Programs
	Programming with the RFC API
	
	Technical Description [Page 20]
	Supported Data and Transfer [Page 21]
	Basic Functionality [Page 23]
	Components of the RFC API [Page 24]
	RFC Client Programs [Page 25]
	Introduction to RFC Client Programs [Page 26]
	Establishing an RFC Connection to R/2 Systems [Page 28]
	Establishing an RFC Connection to R/3 Systems [Page 33]
	Load Balancing [Page 39]
	Programming Examples [Page 40]
	Remote Function Calls Using SAPGUI [Page 44]
	RFC Using the ABAP Debugger [Page 45]

	RFC Server Programs [Page 46]
	Introduction to RFC Server Programs [Page 47]
	Registering Server Programs with the SAP Gateway [Page 49]
	Programming Examples [Page 50]
	Establishing an RFC Connection from an R/2 System [Page 55]
	Establishing an RFC Connection from an R/3 System [Page 58]

	Passing Parameters [Page 61]
	Writing an RFC Function in C [Page 63]
	Using Multiple-Client Server Programs [Page 64]
	Technical Description

	Getting Connected

	Supported Data and Transfer
	
	Data format
	Data Compression
	Data Conversion
	Limitations of Data in one RFC Function

	Special Destinations in ABAP (R/3 or R/2)

	Basic Functionality
	Components of the RFC API
	RFC Client Programs
	Introduction to RFC Client Programs
	Possible Logon Users
	Getting Connected with the RFC Library before Release 3.0C
	Getting Connected with the RFC Library as of Release 3.0C

	Establishing an RFC Connection to R/2 Systems
	Programming Example of Working With Local sideinfo File
	Local sideinfo file
	sideinfo file for the SAP gateway running on IBM-AIX machines
	sideinfo file for the SAP gateway running on HP-UX machines

	Programming Example of Working Without Local sideinfo File
	Programming Example of Working With saprfc.ini File
	Entry in saprfc.ini file

	Establishing an RFC Connection to R/3 Systems
	Programming Example of Working With Local sideinfo file
	
	Local sideinfo file:


	Programming Example of Working Without Local sideinfo File
	Programming Example of Working With saprfc.ini File
	Entry in saprfc.ini file

	Load Balancing
	Programming Examples
	RFC Client Program Transferring Internal Tables
	RFC Client Program Receiving Internal Tables

	Remote Function Calls Using SAPGUI
	RFC Using the ABAP Debugger
	RFC Server Programs
	Introduction to RFC Server Programs
	Registering Server Programs with the SAP Gateway
	How to Work with this Functionality

	Programming Examples
	RFC Server Program Working With RfcDispatch
	RFC Server Program Working With RfcDispatch and RfcListen
	RFC Server Programs Sending/Receiving Internal Tables
	Establishing an RFC Connection from an R/2 System
	Call from an ABAP program:
	Tables:
	Table RFCD
	Table XCOM

	GWHOST Configuration
	R/2 in an IBM Environment (with CICS)
	R/2 in an SNI Environment

	Starting an RFC Server Program

	Establishing an RFC Connection from an R/3 System
	Call from an ABAP program:
	The RFCDES table in R/3 up to Release 3.0C:
	Connection type “T”
	Program location “explicit”
	Program location “Server”
	Program location “User”
	Trace
	Gateway
	Testing a Connection

	The RFCDES table in R/3 Release 3.0C onwards
	Program-ID
	Information about the SAP Gateway

	Configurations
	Starting an RFC server program

	Passing Parameters
	Passing Import/Export Parameters
	Passing Internal Tables
	Creating and Manipulating Table Parameters

	Writing an RFC Function in C
	Using Multiple-Client Server Programs
	The SAPRFC.INI File
	
	Introduction [Page 67]
	Possible Parameters [Page 69]
	Examples [Page 72]


	Introduction
	RFC client programs
	RFC server programs
	Restrictions
	Possible connection (entry) types

	Possible Parameters
	Type R
	Type B
	Type A
	Type 2
	Type E

	Examples
	
	Type R: Register an RFC server program at an SAP gateway
	Type B: R/3 System - Load Balancing feature
	Type A: R/3 System - specific application server
	Type 2: R/2 System (IBM)
	Type E: External Program (will be started by SAP gateway)


	Call-Back Feature with R/3 and External Systems
	
	Introduction [Page 74]
	Call-Back from an ABAP Function Module [Page 75]
	Call-Back from an RFC Server Program [Page 76]


	Introduction
	Call-Back from an ABAP Function Module
	Call-Back from an RFC Server Program
	Transactional RFCs and External Systems
	
	Introduction [Page 78]
	tRFC between R/3 and External Systems [Page 79]
	Transactional RFC Client Programs [Page 80]
	Transactional RFC Server Programs [Page 83]


	Introduction
	tRFC between R/3 and External Systems
	Transactional RFC Client Programs
	Technical Description
	Sample test program trfctest.c

	Transactional RFC Server Programs
	Technical Description
	tRFC within an R/3 System
	tRFC between tRFC component, RFC library and tRFC server program
	F1: Function transfer
	F2: Confirmation

	The Sample Test Program trfcserv.c

	Function Interface: Summary
	
	Administration [Page 88]
	Calling and Accepting RFC Functions [Page 89]
	RFC Calls for Manipulating Internal Tables [Page 91]
	Transactional Remote Function Calls [Page 93]
	Extended Remote Function Calls [Page 94]
	Special Functions [Page 95]
	ABAP Data Types [Page 96]
	RFC_CHAR [Page 97]
	RFC_HANDLE [Page 98]
	RFC_FUNCTIONNAME [Page 99]
	RFC_TID [Page 100]
	RFC_NUM [Page 101]
	RFC_INT [Page 102]
	RFC_INT1 [Page 103]
	RFC_INT2 [Page 104]
	RFC_BYTE [Page 105]
	RFC_BCD [Page 106]
	RFC_DATE [Page 107]
	RFC_TIME [Page 108]
	RFC_FLOAT [Page 109]



	Administration
	Calling and Accepting RFC Functions
	Description
	Functions for an RFC Client Program
	Functions for an RFC Server Program

	RFC Calls for Manipulating Internal Tables
	Description

	Transactional Remote Function Calls
	Extended Remote Function Calls
	Special Functions
	ABAP Data Types
	Description:

	RFC_CHAR
	RFC_HANDLE
	RFC_FUNCTIONNAME
	RFC_TID
	RFC_NUM
	RFC_INT
	RFC_INT1
	RFC_INT2
	RFC_BYTE
	RFC_BCD
	RFC_DATE
	RFC_TIME
	RFC_FLOAT
	Function Reference
	
	Administration Function Reference [Page 114]
	RfcAbort [Page 115]
	RfcAccept [Page 116]
	RfcClose [Page 118]
	RfcConnArgv [Page 119]
	RfcConnArgv3 [Page 120]
	RfcEnvironment [Page 122]
	RfcConnect [Page 123]
	RfcLastError [Page 125]
	RfcLastErrorEx [Ext.]
	RfcOpen [Page 126]
	RfcOpenEx [Ext.]
	RfcCheckRegisterServer [Ext.]
	RfcCancelRegisterServer [Ext.]

	RFC Client Function Reference [Page 127]
	RfcCall [Page 128]
	RfcCallReceive [Page 130]
	RfcReceive [Page 132]
	RfcInstallStructure [Page 142]

	RFC Server Function Reference [Page 134]
	RfcDispatch [Page 135]
	RfcGetAttributes [Page 137]
	RfcGetData [Page 138]
	RfcGetName [Page 139]
	RfcInstallFunction [Page 140]
	RfcInstallStructure [Page 142]
	RfcRaise [Page 143]
	RfcRaiseTables [Page 144]
	RfcSendData [Page 145]
	RfcWinInstallFunction [Page 146]

	Table-Handling Function Reference [Page 147]
	ItAppLine [Page 148]
	ItCpyLine [Page 149]
	ItCreate [Page 150]
	ITAB_H [Page 151]
	ItDelete [Page 152]
	ItDelLine [Page 153]
	ItFill [Page 154]
	ItFree [Page 155]
	ItGetLine [Page 156]
	ItGupLine [Page 157]
	ItInsLine [Page 158]
	ItLeng [Page 159]
	ItPutLine [Page 160]

	Transactional Function Reference [Page 161]
	RfcInstallTransactionControl [Page 164]
	RfcCreateTransID [Page 162]
	RfcIndirectCall [Page 163]
	RFC_ON_CHECK_TID [Page 166]
	RFC_ON_COMMIT [Page 167]
	RFC_ON_CONFIRM_TID [Page 168]
	RFC_ON_ROLLBACK [Page 169]
	RFC_ONCALL [Page 170]

	Extended Function Reference [Page 171]
	RfcAddExportParam [Page 173]
	RfcAddImportParam [Page 174]
	RfcAddTable [Page 175]
	RfcAllocParamSpace [Page 176]
	RfcCallExt [Page 177]
	RfcCallReceiveExt [Page 178]
	RfcOpenExt [Page 179]
	RfcOpenExtV3 [Page 181]
	RfcFreeParamSpace [Page 184]
	RfcGetDataExt [Page 185]
	RfcReceiveExt [Page 186]
	RfcSendDataExt [Page 187]
	RfcInstallFunctionExt [Page 188]

	Special Function Reference [Page 189]
	RfcListen [Page 190]
	RfcWaitForRequest [Page 192]

	Structures and Enumerations [Page 193]
	RFC_CONNOPT_CPIC [Page 194]
	RFC_CONNOPT_R3ONLY [Page 195]
	RFC_CONNOPT_VERSION_3 [Page 196]
	RFC_ERROR_INFO [Page 198]
	RFC_ITMODE [Page 199]
	RFC_MODE [Page 200]
	RFC_OPTIONS [Page 201]
	RFC_PARAMETER [Page 204]
	RFC_RC [Page 205]
	RFC_TABLE [Page 207]
	RFC_ATTRIBUTES [Page 208]



	Administration Function Reference
	RfcAbort
	
	Function Parameters:


	RfcAccept
	
	Return value:
	Function Parameter:


	RfcClose
	
	Function Parameter:


	RfcConnArgv
	
	Return Value:
	Function Parameters:


	RfcConnArgv3
	
	Return Value:
	Function Parameter:
	Comments:


	RfcEnvironment
	
	Supplying an Allocate Routine
	Supplying an Error Handler
	Clearing the Environment Structure


	RfcConnect
	
	Return Value:
	Function Parameters:


	RfcLastError
	
	Return Value:
	Function Parameter:


	RfcOpen
	
	Return Value:
	Function Parameter:


	RFC Client Function Reference
	RfcCall
	
	Return Value:
	Function Parameters:


	RfcCallReceive
	
	Return Values:
	Function Parameters:


	RfcReceive
	
	Return Values:
	Function Parameters:


	RFC Server Function Reference
	RfcDispatch
	
	Return Values:
	Function Parameter:
	Comments:


	RfcGetAttributes
	
	Return Values:
	Function Parameters:


	RfcGetData
	
	Return Values:
	Function Parameters:


	RfcGetName
	
	Return Values:
	Function Parameters:


	RfcInstallFunction
	
	Return Values:
	Function Parameters:


	RfcInstallStructure
	
	Return Values:
	Function Parameters:


	RfcRaise
	
	Return Values:
	Function Parameters:


	RfcRaiseTables
	
	Return Values:
	Function Parameters:


	RfcSendData
	
	Return Values:
	Function Parameters:


	RfcWinInstallFunction
	
	Return Values:
	Function Parameters:


	Table-Handling Function Reference
	ItAppLine
	
	Return Values:
	Function Parameter:


	ItCpyLine
	
	Return Values:
	Function Parameter:


	ItCreate
	
	Return Values:
	Function Parameters:


	ITAB_H
	ItDelete
	
	Return Value:
	Function Parameter:


	ItDelLine
	
	Return Values:
	Function Parameters:


	ItFill
	
	Return Value:
	Function Parameter:


	ItFree
	
	Return Values:
	Function Parameter:


	ItGetLine
	
	Return Values:
	Function Parameters:


	ItGupLine
	
	Return Values:
	Function Parameters:


	ItInsLine
	
	Return Values:
	Function Parameters:


	ItLeng
	
	Return Value:
	Function Parameter:


	ItPutLine
	
	Return Values:
	Function Parameters:


	Transactional Function Reference
	RfcCreateTransID
	RfcIndirectCall
	
	Function Parameters:


	RfcInstallTransactionControl
	
	Function Parameters:


	RFC_ON_CHECK_TID
	
	Return Values:
	Function Parameter:


	RFC_ON_COMMIT
	
	Function Parameter:


	RFC_ON_CONFIRM_TID
	
	Function Parameter:


	RFC_ON_ROLLBACK
	
	Function Parameter:


	RFC_ONCALL
	Extended Function Reference
	RfcAddExportParam
	
	Function Parameters:


	RfcAddImportParam
	
	Function Parameters:


	RfcAddTable
	
	Function Parameters:


	RfcAllocParamSpace
	RfcCallExt
	RfcCallReceiveExt
	RfcOpenExt
	
	Return Values:
	Function Parameters:


	RfcOpenExtV3
	
	Return Values:
	Function Parameters:


	RfcFreeParamSpace
	RfcGetDataExt
	RfcReceiveExt
	
	Return Values:


	RfcSendDataExt
	RfcInstallFunctionExt
	
	Return Values:
	Function Parameters:


	Special Function Reference
	RfcListen
	
	Return Values:
	Function Parameter:


	RfcWaitForRequest
	
	Function Parameters:


	Structures and Enumerations
	RFC_CONNOPT_CPIC
	
	Members:0


	RFC_CONNOPT_R3ONLY
	
	Members:


	RFC_CONNOPT_VERSION_3
	
	Members:


	RFC_ERROR_INFO
	
	Members:


	RFC_ITMODE
	
	Members:


	RFC_MODE
	
	Members:


	RFC_OPTIONS
	
	Members:


	RFC_PARAMETER
	
	Members:


	RFC_RC
	
	Members:


	RFC_TABLE
	
	Members:


	RFC_ATTRIBUTES
	
	Members:


	Platform-Specific Features of the RFC API
	
	OS/2 [Page 210]
	Windows 3.x [Page 211]
	Windows NT/95 [Page 212]
	R/3-Based UNIX Platforms [Page 213]


	OS/2
	Windows 3.x
	Windows NT/95
	R/3-Based UNIX Platforms
	Sample Programs
	Error Handling
	
	Debugging [Page 216]
	Error Handling in ABAP [Page 217]
	Error Handling in RFC Server Programs [Page 218]
	More Information in Error Cases [Page 221]


	Debugging
	Error Handling in ABAP
	Causes
	Solution

	Error Handling in RFC Server Programs
	Causes
	Solution
	Debugging an RFC server program

	More Information in Error Cases
	Trace Files
	RFC Library 3.0C on Windows (16- and 32-bit)
	Stack Overflow while Working with librfc16.dll in R/3 3.0D onwards
	Getting Version of the RFC Library

	RFC and SAProuter
	
	Introduction to SAProuter [Page 223]
	RFC Client Program and SAProuter [Page 225]
	Starting an RFC Server Program Via SAProuter [Page 228]
	Using the Registering Feature [Page 229]
	Program Start by Application Server [Page 230]
	Program Start by SAP Gateway [Page 231]
	Program Start by SAPGUI [Page 233]



	Introduction to SAProuter
	Route String
	Route Permission Table
	A Typical Use of SAProuter (remote support)
	Route Permission Tables


	RFC Client Program and SAProuter
	
	Route Permission Tables

	1. Using Load Balancing
	2. Specified R/3 Application Server and Default SAP Gateway
	3. Specified R/3 Application Server and Specified SAP Gateway (R/3)
	4. R/2 in an IBM Environment
	5. R/2 in an SNI Environment (BS2000)

	Starting an RFC Server Program Via SAProuter
	Using the Registering Feature
	Route Permission Tables

	Program Start by Application Server
	Program Start by SAP Gateway
	
	Route Permission Tables


	Program Start by SAPGUI
	Route Permission Tables
	RFC server program and SAPGUI use the same host name of an application server
	Problem
	Solution


	RFC Between External Programs
	
	Using A Local sideinfo File [Page 236]
	Using the saprfc.ini File [Page 237]


	Using A Local sideinfo File
	Using the saprfc.ini File

