

SAP Automation RFC and BAPI
Interfaces (BC-FES-AIT)

 H
E

L
P

.B
C

F
E

S
D

E
5

Re lease 4 .6C

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Copyright

© Copyright 2001 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose
without the express permission of SAP AG. The information contained herein may be changed
without prior notice.

Some software products marketed by SAP AG and its distributors contain proprietary software
components of other software vendors.

Microsoft®, WINDOWS®, NT®, EXCEL®, Word®, PowerPoint® and SQL Server® are registered
trademarks of
Microsoft Corporation.

IBM®, DB2®, OS/2®, DB2/6000®, Parallel Sysplex®, MVS/ESA®, RS/6000®, AIX®, S/390®,
AS/400®, OS/390®, and OS/400® are registered trademarks of IBM Corporation.

ORACLE® is a registered trademark of ORACLE Corporation.

INFORMIX®-OnLine for SAP and Informix® Dynamic Server

TM
 are registered trademarks of

Informix Software Incorporated.

UNIX®, X/Open®, OSF/1®, and Motif® are registered trademarks of the Open Group.

HTML, DHTML, XML, XHTML are trademarks or registered trademarks of W3C®, World Wide
Web Consortium,
Massachusetts Institute of Technology.

JAVA® is a registered trademark of Sun Microsystems, Inc.

JAVASCRIPT® is a registered trademark of Sun Microsystems, Inc., used under license for
technology invented and implemented by Netscape.

SAP, SAP Logo, R/2, RIVA, R/3, ABAP, SAP ArchiveLink, SAP Business Workflow, WebFlow,
SAP EarlyWatch, BAPI, SAPPHIRE, Management Cockpit, mySAP.com Logo and mySAP.com
are trademarks or registered trademarks of SAP AG in Germany and in several other countries
all over the world. All other products mentioned are trademarks or registered trademarks of their
respective companies.

2 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

Icons

Icon Meaning

Caution

Example

Note

Recommendation

Syntax

Tip

April 2001 3

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Contents

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)............................. 15
The SAP Assistant Product... 16
System Requirements.. 17
What's New in Release 4.6A?.. 18
What's New in Release 4.6B?.. 19
What's New in Release 4.6C?.. 20
SAP Assistant Architecture... 21

SAP Assistant Internal Components... 22
Relationship Between SAP Assistant Components.. 24

The SAP Assistant Screen .. 25
Working with RFC Functions .. 27
Working with Business Objects and BAPIs .. 28
Using the SAP Assistant ... 29

Defining Destination Systems ...30
Logging Onto an R/3 System.. 33
Switching to a Different System ..34
Using Multiple SAP Assistant Windows .. 35
Browser Views .. 36

Changing Views ... 37
Specifying a Filter for RFCs and Function Groups ... 38

Changing Filter... 39
Searching for Objects or Functions... 40
Browsing Business Objects and RFCs ... 41

Displaying Function Parameters and their Details... 42
Displaying Key Information for Business Objects.. 43
Displaying BAPI (Method) Parameters .. 44

Viewing R/3 Table and Structures .. 45
Working Offline: Using a Local Repository ... 46

Saving Data to a Local Repository .. 47
Reading from a Local Repository (Offline)... 49
Deleting a System From a Local Repository ... 50

Exporting Functions and Business Objects to Excel .. 51
Calling an RFC Function... 52
Code Generation for Business Objects and RFC Functions .. 53

System Requirements for Code Generation.. 54
Generating Code.. 55

Navigating the BAPI Selector Screen... 58
The C++ BAPI Proxy Classes.. 59

Introduction ... 60
The Business Object Proxy Classes .. 62
The Parameter Container Classes ... 64
The Reference Structure Type Classes ... 65
ABAP to Native Data Type Mapping .. 67
The CBoBase Class ... 68

4 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

GetName ... 69
GetType... 70
GetKey... 71

The CBoKey Class ... 72
GetKeyField... 73
SetKeyField ... 74

The CBoTable Template Class .. 75
AppendToTable ... 77
ClearTable ... 78
CopyLineFrom... 79
CopyLineTo ... 80
GetConstRow .. 81
GetLength.. 82
GetRow.. 83
GetRowCount .. 84
InsertIntoTable... 85
RemoveRow .. 86

The Java BAPI Proxy Classes... 87
Introduction ... 88
Using Java RFC packages ... 90
The Business Object Proxy Classes .. 92
The Parameter Container Classes ... 94
The ABAP Reference Structure Types... 95
The Structure Parameter Classes .. 96
The Table Parameter Classes.. 97

appendRow ... 98
createEmptyRow ... 99
deleteAllRows..100
deleteRow..101
getRow ..102
getRowCount...103
insertRow...104
updateRow ..105

The Table Row Classes..106
ABAP to Native Data Type Mapping ..107
The jboBase Class..108

getKey ...109
setConnection..110
setKey..111

The jboKey Class..112
getKeyfield...113
getKeyfieldParameter ..114
SetKeyfield (with keyfield name and value) ..115
SetKeyfield (with ISimple interface)...116

BAPI Beans ..117

April 2001 5

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Introduction..118
The BAPI Beans Information Classes ...120

The jboBAPIDescriptor Class...121
The jboParameterContainerDescriptor Class ..122
The jboConstructorDescriptor Class ..123
The jboParameterDescriptor Class ..124
The jboSimpleParameterDescriptor Class...125
The jboStructureParameterDescriptor Class ...126
The jboTableParameterDescriptor Class...127
The jboKeyfieldDescriptor Class ..128

Tracing Errors When Running the SAP Assistant...129
SAP Automation ActiveX (OCX) Controls..130
Summary of ActiveX Controls...131
Possible Uses for OCX Controls ..134
Using the SAP Automation ActiveX Controls ...135

Summary of Programming Tasks ...136
Example Application with the Function Control ...137
Variation using the Dynamic Calling Convention...139

Creating the Base-level Control ..140
Connecting to an R/3 System ...141
Performance and Debugging Tips ..142
SAP Control Base Classes ...144

SAP Standard Collection ...145
SAP Named Collection ..147
Using Collection Objects..148
SAP Data Object..149
Safe Arrays and Values ...151
Font Objects...152
Data Types...153

SAP Automation ActiveX Controls...154
The Function Control...155

Introduction ..156
Function Control Object Hierarchy ...157
Function Control ...158

Using the Function Control ..159
Requesting Functions ...160
Adding a Function...161
Setting Parameter Values...162
Viewing Table Objects ..163
Using Parameter and Structure Objects...164
Using Named Argument Calling Conventions ..165

Functions Collection Object ...167
Functions Collection Properties..168
Functions Collection Methods ..169

Connection Object ...170
Connecting through a Logon Control..171

6 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

Setting the Connection Implicitly ..172
Function Object..173

Dynamic Function Call..174
Function Properties...175
Function Property: Tables...176
Function Methods ...177

Exports Collection Object...178
Exports Collection Properties ...179
Exports Collection Methods..180

Imports Collection Object...181
Imports Collection Properties ...182
Imports Collection Methods ..183

Structure Object ...184
Structure Properties..185

Structure Property: ColumnSAPType..186
Structure Methods ..187

Parameter Object...188
Parameter Properties..189
Parameter Methods ..190

The Transaction Control..191
Transaction Control Object Hierarchy..192
Using the Transaction Control ...193
What's New in Release 4.6A? ...196
Transactions Collection Object ..197

Transactions Collection Properties...198
Transactions Collection Methods ...199

Transaction Object...200
Transaction Object Properties ..201
Transaction Object Methods...203

Screens Collection Object..204
Screens Collection Properties ..205
Screens Collection Methods...206

Screen Object ..208
Screen Object Properties..209
Screen Object Methods ..210

Fields Collection Object ...211
Fields Collection Properties..212
Fields Collection Methods...213

Field Object..214
Field Object Properties ...215

The Table Tree Control ...216
Introduction ..217

Table Tree Object Hierarchy ..218
Basic Concept...219

Table Tree Object ..220

April 2001 7

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Table Tree Properties ...221
Table Tree Property: Events ..224
Table Tree Property: DragDrop..226

Table Tree Methods..227
Table Tree Events ..228

Table Tree Event: DuplicatedKey...231
Table Tree Event: NodeInsert ..232
Table Tree Event: NodeRemove..233
Table Tree Event: DragSourceFill ..234
Table Tree Event: DropEnter ...235
Table Tree Event: Drop ..236

Nodes Collection Object ..237
Nodes Collection Properties ...238

Nodes Collection Property: Item...239
Nodes Collection Methods..240

Nodes Collection Method: Remove..241
Nodes Collection Method: Add...242
Nodes Collection Method: AddEx...244

Node Object ...245
Node Object Properties ..246

Node Object Property: Key...248
Node Object Property: Type...249
Node Object Property: ForceExpander ..250
Node Object Property: AllChildren ...251

Node Object Methods...253
Node Object Method: SaveData, LoadData...254

Structures Collection Object ..255
Structures Collection Properties ...256

Structures Collection Properties: Item..257
Structures Collection Methods..258

Structures Collection Method: Add...259
Structures Collection Method: Remove..260
Structures Collection Method: Insert ..261

Structure Object ...262
Structure Object Properties ..263

Structure Object Property: Type...264
Structure Object Property: Alignment...266
Structure Object Property: Hidden ...267

Configuring the Tree ...268
Connecting Tree Views and Table Objects ..272
Drag and Drop with Tree Views..274

Design Environment Property Pages...275
Table Tree Property Page: General ...276
Table Tree Property Page: Structure..278
Table Tree Property Page: Events ...280

8 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

Table Tree Property Page: Fonts ...281
Table Tree Property Page: Colors..282
Appearance for Different Configurations ..283

Code Examples..285
Glossary...286

Item...287
Node ...288
Root Control/Root ...289
Root Node...290
Nothing..291
CreateObject...292
Dynamic Node Properties...293
Hierarchy Expander/Expander Symbol ..294
Folder..295
Leaf ...296
Level ...297
Collection ..298

Pre-Defined Images ...299
The Table Factory Control ..300

Introduction ..302
Table Factory Object Hierarchy..303

Using the Table Factory Control ..304
Table Factory Object..305

Table Factory Properties ..306
Table Factory Methods...307
Table Factory Events..308

Tables Collection Object ..309
Tables Collection Properties...310
Tables Collection Methods ...311

Tables Collection Method: Remove ...312
Tables Collection Method: Unload ...313
Tables Collection Method: Item..314
Tables Collection Method: Add ..315

Table Object...316
Table Object Properties..317

Table Property: Data ..318
Table Object Methods...319

Table Method: CreateFromR3Repository ..322
Table Method: CreateFromHandle...323
Table Method: CreateFromTable ...324
Table Method: Create...325
Table Method: AttachHandle..326
Table Method: DetachHandle...327
Table Method: Refresh...328
Table Method: SelectToMatrix ...329

April 2001 9

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Table Method: SelectMatrixToNumber...330
Table Method: SelectToVector...331
Table Method: SelectVectorToNumber ..332
Table Method: BuildTiledRanges ...333

Creating a Table Object..334
Using SelectTo* Methods ...335
Displaying and Navigating Table Data ...337

RFCTableParameter Object ..338
RfcTableParameter Object Properties..339

Rows Collection Object..340
Rows Collection Properties...341

Rows Collection Property: Item ..342
Rows Collection Methods ...343

Rows Collection Method: Remove ...344
Rows Collection Method: Add ..345
Rows Collection Method: Insert..346

Row Object ..347
Row Object Properties..348
Row Object Methods ..349

Columns Collection Object...350
Columns Collection Properties ...351

Defining a Key Column for a Table ...352
Columns Collection Methods..353

Columns Collection Method: Remove..354
Columns Collection Method: Item ..355
Columns Collection Method: Add ...356
Columns Collection Method: Insert ..357

Column Object ...358
Column Object Properties ..359

Column Object Property: Type ...360
Column Object Methods ...361

Ranges Collection Object ..362
Ranges Collection Properties ...363
Ranges Collection Methods..364

Ranges Collection Method: Add...365
Range Object ...366

Range Object Properties ..367
Boundaries of a Range Object ..368

Range Object Methods...369
Views Collection Object ...370

Views Collection Properties..371
Views Collection Methods...372
How to Connect Views to a Table ..373

Matrix Object..374
Code Examples..375

10 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

First Steps...376
Accessing Table Data...377
Automatic Display ...380
Using Dynamic Structures for a Table..381

Glossary...383
Table...384
Row...385
Column..386
Matrix ..387
Range ...388

The Table View Control...389
Introduction ..390

Table View Control Object Hierarchy ...391
Basic Concept...392

Using the Table View Control ..393
Table View Object..396

Table View Properties...397
Table View Property: Selection ..401
Table View Property: EnableProtection..402
Table View Property: Value..403
Table View Property: Cell ...404

Table View Methods ...405
Table View Events ..406

Table View Event: DragSourceFill..410
Table View Event: DropEnter ...411
Table View Event: Drop..412

Connecting Table Views and Table Objects...413
Drag and Drop with Table Views ..416

Columns Collection Object...417
Columns Collection Properties ...418
Columns Collection Methods..419

Columns Collection Methods: Add ...420
Columns Collection Methods: Remove ..421
Columns Collection Methods: Insert...422

Column Object ...423
Column Object Properties ..424

Column Object Properties: Type ..426
Column Object Properties: Alignment ...427

Column Object Methods ...428
Rows Collection Object..429

Rows Collection Properties...430
Rows Collection Methods ...431

Rows Collection Methods: Add ..432
Rows Collection Methods: Remove ...433
Rows Collection Methods: Insert..434

April 2001 11

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Row Object ..435
Row Object Properties..436
Row Object Methods ..437

Cell Object ...438
Cell Object Properties...439
Cell Object Methods ...440

Design Environment Property Pages...441
Table View Property Page: General ..442
Table View Property Page: Flags ..443
Table View Property Page: Events..444
Table View Property Page: Columns...445
Table View Property Page: Rows..446
Table View Property Page: Fonts..447
Table View Property Page: Colors ..448

Glossary...449
Collection ..450
Root Control, Root ..451
Root Node...452
Nothing..453
CreateObject...454
Active Cell ...455
Range ...456
Named Object...457

The Logon Control ..458
Introduction ..459

Logon Control Object Hierarchy ...460
Using the SAP Logon Control...461

Connecting to the R/3 System...462
Using the Logon Control to Connect to R/3 ...463

Logon Object..465
Logon Object Properties...466

Logon Property: Events ...467
Logon Property: Caption ..468
Logon Property: BackColor ..469
Logon Property: hWnd..470
Logon Property: Enabled..471
Logon Property: Font..472
Logon Property: Parent ..473
Logon Property: Default ...474
Logon Property: ApplicationName..475
Logon Property: System...476
Logon Property: ApplicationServer...477
Logon Property: SystemNumber ..478
Logon Property: MessageServer..479
Logon Property: GroupName ...480

12 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

Logon Property: TraceLevel ...481
Logon Property: RFCWithDialog ..482
Logon Property: Client..483
Logon Property: User ...484
Logon Property: Language...485

Logon Object Methods..486
Logon Method: Enable3D...487
Logon Method: NewConnection ...488

Logon Object Events ..489
Connection Object ...490

Connection Object Properties...491
Connection Property: IsConnected ..492

Connection Object Methods ...493
Connection Method: Logon ...494
Connection Method: Logoff ..495

Using Logon Controls in Design Mode ..496
Code Examples..498

Connecting Directly with the Logon Control ...499
Logging on Silently ...500

Glossary...501
Connection..502
Password ..503
Nothing..504
CreateObject...505

DCOM Connector-compatible Components ..506
The SAPBrowser Control ..507

Properties..508
Methods...509

AddBAPIAppObject..510
AddBAPIObject ..511
AddBAPISearchObject...512
AddRFCFunctionGroups..513
AddRFCFunctions..514
AddSearchRFCFunctionGroups ..515
AddSearchRFCFunctions ..516
CallFunction ...517
ClearAll...518
ClearBAPITab ..519
ClearRFCTab...520
ClearSearchTab...521
DeleteObject ..522
EnableBAPITab ...523
EnableRFCTab ..524
EnableSearchTab ..525
GetSelectedObject...526

April 2001 13

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

HidePropertyWindow ...527
IsApplicationArea ...528
IsBAPI ..529
IsBusinessObject ...530
IsFunction ..531
IsMethod ..532
IsRFC...533
IsSearch...534
Refresh...535
ShowPropertyWindow..536
StartPrint ..537
Undo...538

Example ..539

14 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)
One of the methods for integrating an external PC application to R/3 is by using the RFC
interfaces of R/3, also called the RFC channel.

Using the RFC interfaces external applications access R/3 by making remote calls to R/3
functions.

The SAP Automation suite [Ext.] offers several products that are based on the RFC interfaces.
These products use the following technologies:

Making Remote Function Calls (RFCs) directly to invoke SAP function modules •

•

•

•

Using Business APIs (BAPIs) to access and work with SAP business objects

Using transactions for batch input

Exchanging asynchronous messages with R/3 using IDoc interface technology

See the discussion in of these technologies in the SAP Automation Help [Ext.].

The SAP Automation suite includes several ActiveX controls (previously called OCX controls) for
making remote calls to R/3 functions.

SAP Automation also includes a stand alone product, SAP Assistant [Page 16], which you can
use for viewing RFCs and BAPIs, and for calling RFC function modules.

The SAP Assistant product uses several of the ActiveX controls/components. These components
are also available separately for use directly in PC applications.

If you are looking to use any of those products by itself, read its documentation here, under the
SAP Automation ActiveX (OCX) Controls [Page 130] topic.

April 2001 15

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

The SAP Assistant Product

The SAP Assistant Product
The SAP Assistant is a stand-alone executable program providing an online tool for users
wishing to access R/3 business objects and Remote Function Calls (RFC) metadata information
from outside of R/3.

Using the SAP Assistant you can perform a number of tasks related to SAP business objects and
RFCs:

Browse (view and search) metadata information of SAP RFC function modules and of
business object and their BAPIs (Business APIs, which are the methods of the business
objects)

•

•

•

Call RFCs and use their functionality directly online

Use a BAPI Wizard for generating either Java or C++ classes, which you can then use for
creating and manipulating SAP business objects using their BAPIs.

Note that the browsing functionality of the SAP assistant shows RFC and BAPI metadata only,
meaning that it give information about the various parameters of an RFC or a BAPI, but it does
not show table data from R/3. For example, browsing allows you to view the
GeneralLedgerAccount business object, its fields and methods. It does not show actual General
Ledger Account record information.

Only by calling RFC function modules or BAPIs can you access R/3 table and field data.

16 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 System Requirements

System Requirements
To use the SAP Assistant you need the following:

• Windows NT 4.0, Windows 95, or Windows 98 operating system

• The SAP DCOM Connector installed

• SAP R/3 Release 3.0D or higher

Restrictions
• You cannot use the SAP Assistant to call an RFC that invokes a SAPGUI screen, be it a

dialog or a window. You can determine if SAP Assistant fails as a result of calling such an
RFC, by using Transaction SE37 in R/3 and checking if the RFC invokes a SAPGUI screen.

• The BAPI wizard can generate C++ code for Windows NT or HP UNIX. To generate code for
other platforms you need to create your own templates.

April 2001 17

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

What's New in Release 4.6A?

What's New in Release 4.6A?
• Using a local repository database [Page 46] is simpler.

• Local repository file type is now .sdb.

• The R/3 Logon dialog (invoked when you log online) allows you to define new destination
systems [Page 30], which you can then use to log on. It also allows you to change or delete
existing destination definitions.

• Table Browser feature [Page 45] allows you to view the metadata of an R/3 table or structure.

• Context menu (menu you invoke with the right-mouse-button) is available at all three tabs of
the BAPI/RFC detail pane. The context menu provides a shortcut to the most commonly used
actions on the object you are viewing.

• The filter that is used [Page 38] when you are in RFC functions or function groups view is
displayed at the top of the hierarchy at the RFC tab.

• You can mark items for code generation [Page 53] from the search tab [Page 40] too.

• You can save data into a local repository [Page 47] from any tab in the BAPI/RFC detail
pane, including the search tab [Page 40].

• You can run an RFC [Page 52] from any of the tabs in the BAPI/RFC detail pane, including
the search tab.

(It is possible to run the underlying RFC for a BAPI directly from the BAPI tab at the
BAPI/RFC detail pane.)

• String specification for searching business objects [Page 40] is not case sensitive and it
allows using wild cards.

• When running an RFC function [Page 52], specifying import parameters and looking at the
resulting export parameters is done at the same dialog.

• You can run an RFC [Page 52] from a local database (repository) [Page 46]. SAP Assistant
will log on to the R/3 system to actually run the function.

• A Trace option [Page 129] allows you to save log of errors occurring when running SAP
Assistant.

• The BAPI Wizard can now generate code [Page 53] for HP UNIX.

18 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 What's New in Release 4.6B?

What's New in Release 4.6B?
• The SAP Assistant's menus have been reorganized to make the product more intuitive.

• The BAPI Wizard has been redesigned to make it easier to use.

April 2001 19

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

What's New in Release 4.6C?

What's New in Release 4.6C?
A new menu item allows you to create a blank XML document template for use with IDocs. The
menu item is: File Blank XML doc. for IDoc Type. However, this feature is useful mainly in the
context of using XML documents instead of IDocs, which is the purpose of the IDoc Connector
for XML product [Ext.] . See the documentation of this feature in the IDoc Connector for XML
product [Ext.].

New Code Generator Features:
The Code Generator can now generate code for RFC functions (in addition to business
objects)

•

•

•

The Code generator now allows you to generate code for COM-compatible languages, such
as Visual Basic, using the code generator that comes with the SAP DCOM Connector. You
use the SAP Assistant code generator feature to invoke this code generator.

The user interface for generating code changed again to simplify its use and to
accommodate the above features.

For details, see the topics under Code Generation for Business Objects and RFC Functions
[Page 53].

20 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 SAP Assistant Architecture

SAP Assistant Architecture

April 2001 21

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

SAP Assistant Internal Components

SAP Assistant Internal Components
Internally, the SAP Assistant is based on several other tools that are part of the SAP Automation
suite [Ext.].

The following table describes the products that are included as part of the SAP Assistant
package. Note that these products are also available as tools you can install and use separately.

Tool Type Function Language(s)

DCOM
Connector
Logon
Component
[Ext.]

COM
Server

Helps programs using the SAP DCOM
Connector in handling the connection
parameters of COM objects created for
the DCOM Connector.

The DCOM Connector Logon Component
provides a Logon dialog with which you
can get the necessary connection
parameters from an end user. It also
allows the end user to define destination
systems.

The DCOM Connector Logon Component
also allows you to easily copy connection
parameters into a DCOM Connector COM
object.

Any COM/DCOM-
compliant
application

Repository
Services
[Ext.]

COM
Server

Provides read access to the metadata of
business objects and RFC function
modules in an R/3 system to COM-
compliant programs and applications.

Also allows you to save a copy of the
metadata in a local database. Using a
local database provides local caching
mechanism to speed up access to the
metadata. It also enables offline access
to the metadata.

Any DCOM/COM-
compliant
application

Repository
Browser

(Also called
the SAP
Browser
Control
[Page 507])

ActiveX
Control
(OCX)

A control that can be hosted by any
ActiveX container. It consists of a
window with two panes for browsing
SAP BAPI and RFC metadata
information.

Allows online calling of RFC functions
from within the control.

Also exposes several methods to enable
the container application to control and
automate metadata browsing.

Allows you to export properly formatted
metadata information to MS Excel.

Any DCOM/COM-
compliant
application

22 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 SAP Assistant Internal Components

BAPI
Gateway
[Ext.]

COM
Server

Allows you to dynamically call BAPIs
and RFCs through the DCOM
Connector, that is, it allows you to
determine at run time which BAPIs or
RFCs you call.

You use the BAPI gateway in
conjunction with the SAP Automation
Repository Services component [Ext.] to
obtains the metadata for the BAPIs or
RFCs you wish to call at run time.

Any COM/DCOM-
compliant
application

April 2001 23

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Relationship Between SAP Assistant Components

Relationship Between SAP Assistant Components
The following diagram shows the SAP Assistant, the tools that it is based on, and the class
libraries it is capable of producing. The diagram illustrates the relationship between these
products.

RFC C++

Java RFC

Java BAPIC++ BAPI

BAPI
Gateway

DCOM
Logon

SAP Assistant

Repository Services
Component

R/3

RFC API

BAPI
Wizard

Legend

Creates

Uses

Stand-alone
EXE

ActiveX
Control

COM Server

C API

Classes

Repository
Browser

OfflineOffline Repository Services
DCOM Connector

Component
Local

Repository

DCOM Connector
Destinations Wizard

Windows
Registry

24 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 The SAP Assistant Screen

The SAP Assistant Screen
The SAP Assistant screen area consists of the Browser window, which uses the SAP Browser
control [Page 507] to display the RFC and BAPI information.

The following is the screen of the SAP Assistant:

SAP Assistant Panes
As seen in the above screen, the SAP Assistant window is composed of three frames or panes.
(which are the panes of the Browser within it):

• The left-hand side pane of the Browser window allows you to choose between BAPI, RFC, or
Search views, by choosing one of three tabs. This pane displays a list of BAPIs or RFCs that
exist on the system to which you are connected. The SAP Assistant sets this pane to
"Function Group" for 3.0X systems since there are no Application Hierarchy or Business
Objects defined for SAP R/3 3.0X releases. The Search tab allows you to search for a
specific program, function, or function group. We refer to this pane as the BAPI/RFC tree
pane.

April 2001 25

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

The SAP Assistant Screen

• The right-hand side pane changes based on your selection in the BAPI/RFC tree pane: it
shows the details of the BAPI or RFC you have selected in the tree pane. We refer to this
pane as the BAPI/RFC detail pane.

• Once you display a BAPI or an RFC and see its parameters in the BAPI/RFC detail pane you
can double-click on any of the parameters or other details items to view the properties of this
parameter. This opens a third frame at the bottom of the BAPI/RFC detail pane. This third
frame is called the Properties pane. Because the information is unavailable, the SAP
Assistant shows nothing in the field description and field dictionary type parameter properties
for users running 3.0X Releases of the SAP R/3 System.

There are four tabs in the Properties pane:

Tab Description

General Info Shows basic information, such as the name, internal name, decimal
position, and description of the field of the parameter displayed in the
heading row.

Data Types Shows the ABAP Type and the Dictionary Type of the parameter
displayed in the heading row.

Value Info Shows the check table of the parameter displayed in the heading row.

If you are connected in online mode (you are logged onto an R/3
system), you can display the values in the check table by clicking on
the check table name in the Value Info pane. The Check Table field in
the Value Info tab then becomes a drop-down list containing the
check table values.

Also shows whether the parameter has fixed value.

Documentation Provides a long text description of the selected item. A search
function is also available in this tab.

SAP Assistant Status Line
The status line in the SAP Assistant screen indicates the following:

• The type of connection you have: whether it is online (logged on to an R/3 system) or offline
[Page 46] (you are reading data from a local repository, which is a local database file)

•

•

•

The system you are connected to (regardless of whether you are connected in online or
offline mode)

The application server of the system you are connected to

The local repository database filename, if you are using a local repository

26 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Working with RFC Functions

Working with RFC Functions
The SAP Assistant lets you work with R/3 function modules (RFC functions) or R/3 business
objects (BAPIs). When working with RFC functions, the SAP Assistant lets you:

• display a list of remote functions or function groups in the R/3 System.

• display information on a function [Page 42] (function or parameter description)

• call the function [Page 52], and see the results

• export function information to Microsoft Excel [Page 51]

To work with RFC functions or function groups, switch to one of the RFC views [Page 37].

You can also search for RFC functions and function group at the search tab [Page 40] and then
work with them from this tab.

April 2001 27

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Working with Business Objects and BAPIs

Working with Business Objects and BAPIs
The SAP Assistant lets you work with R/3 function modules (RFC functions) or R/3 business
objects (BAPIs). When working with business objects and BAPIs the SAP Assistant allows you
to:

• display a list of business objects in the R/3 System

• display the key fields of a business object [Page 43]

• display the details of the methods (BAPIs) for a business object [Page 44]

• call the underlying RFC function [Page 52] of a BAPI, and see the results

• export business object and BAPIs metadata information to Microsoft Excel [Page 51]

• generate code for programming BAPIs in Java or C++ [Page 53]

To work with business objects and their BAPIs, you must be in one of the BAPI views [Page 37].

You can also search for business objects at the search tab [Page 40] and then work with them
from this tab.

28 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Using the SAP Assistant

Using the SAP Assistant
Procedure
1. Start the SAP Assistant program.

2. Connect to the R/3 System by either choosing the Logon button or choosing File →Logon
R/3 System. The R/3 Logon dialog appears.

3. If no destination system name is listed at the Destination field of the R/3 Logon dialog, set up
a destination definition [Page 30] for all the R/3 Systems you wish to log onto. You must
define at least one destination to log onto.

4. Log onto the R/3 System [Page 33] you wish to use.

5. The SAP Assistant displays metadata of business objects in an application hierarchy view.

You can change the view [Page 37] to show any of the other three views (RFC functions,
for example).

If you change to one of the RFC views, we recommend that you set up a filter [Page 38].
Using no filter when browsing RFCs results in thousands of RFCs, which can take a long
time to appear in the browser window.

6. Browse business objects or RFC functions [Page 41] in the BAPI or RFC tab.

7. If you wish to save all or some of the data into a local repository [Page 46], that is, if you wish
to be able to access this same data next time from a database file on your hard disk, mark
and save the data.

8. Exit the SAP Assistant program by choosing File →Exit.

From either online mode or when using a local repository file, you can perform the following
tasks:

• Browse business objects or RFC functions [Page 41].

• Use a filter to narrow down the list of viewed RFC functions or function groups [Page 38].

• Search for a particular business object or RFC [Page 40].

• Call an RFC function module [Page 52]. Since BAPIs are implemented internally as RFC
function modules, you can perform a task similar to calling a BAPI by calling its underlying
function module.

• Generate Java or C++ code for using BAPIs [Page 53].

April 2001 29

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Defining Destination Systems

Defining Destination Systems
Use
When working with the SAP Assistant you log onto an R/3 System to get its BAPI or RFC
metadata.

Before you can log onto any R/3 System through the SAP Assistant, you must set up a
destination definition for that system.

Destination definitions are stored in the Windows Registry.

You may set up destination definitions for some or for all of the systems you are going to access
by using the SAP DCOM Connector. You can do so before invoking the SAP Assistant, or you
can do so while using the SAP Assistant. However, you should define a destination system you
wish to use before logging on.

For the details of how to use the SAP DCOM Connector to define destination system, see the
DCOM Connector documentation.

You can also define destinations in SAP Assistant.

Procedure
1. Logon online by choosing File Logon R/3 System.

2. Choose the Administration tab.

3. Perform one of the following tasks:

Task Action

Add a new
destination

Choose Add Destination. Enter a name for the destination definition at
the Dest. Name This is a string of up to 25 characters describing the
destination system.

Edit an
existing
destination

Select the destination name from the Destinations list, and choose Edit
Destination.

The Edit Destination dialog appears, allowing you to define a new destination or to
change an existing destination definition.

The following screen shows an example of the Edit Destination dialog for editing an
existing destination:

30 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Defining Destination Systems

4. Choose between Load Balancing and Dedicated Server.

When using a dedicated server you specify the actual R/3 application server to use when
logging on. When using load balancing you specify a message server which then selects
the least busy application server for you to log onto.

5. Once you choose between Load Balancing and Dedicated Server, enter data as required for
logging onto the appropriate system:

Mode Field Enter

Message
Server

The name of the computer acting as the message
server.

This can be in a format similar to:
"hs0020.mynetwork.mycompany.net" or it can be an
IP address.

You may prefix the computer name with a router name
in the following format:

/H/router-name/H/computer-name

R/3 Sys Name The three-character system name

Load
Balancing

Group Group name, such as PUBLIC

R/3 Host Name The computer name of the application server to use.

Use the same format as when specifying the computer
name for the Message Server, including the option to
use a router prefix.

Dedicated
Server

System
Number

R/3 system number

6. You can enter your user (user name), password, client, and language to use when logging
onto the system you have defined above.

Result
If you enter the user (user name), password, client, and language information at the
Administration tab of the R/3 Logon dialog, they are kept as part of the permanent definition of

April 2001 31

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Defining Destination Systems

the destination system. You will be able to use them whenever you log into this R/3 system using
this destination definition.

As an alternative, you can specify the user ID. password, client, and language at the Logon tab of
the R/3 Logon dialog, which will be valid for the current logon only.

32 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Logging Onto an R/3 System

Logging Onto an R/3 System
Use
Before you can work with most of the functions of the SAP Assistant, you must log onto the R/3
system you wish to use at least once.

If you have previously downloaded data from an R/3 system and saved it into a local repository,
you can work offline [Page 46] with this data, meaning that you can work with the data in the local
repository, instead of from the live R/3 system.

Prerequisite
Before you can log onto an R/3 system, you must define it as a destination system [Page 30].

Procedure
1. Choose the Logon Online button (or choose File → Logon R/3 System). The R/3 Logon

dialog appears.

2. Choose the Logon tab.

3. Select a destination at the Destination field. You can do so by either selecting from the drop-
down-list at the Destination field or from the Show Recent Connections list (The right-pointing
arrow icon). If the Destination field is empty, no destination had been defined for you to use.
You must first define at least one destination system [Page 30].

4. If the destination definition includes all the necessary information for the Client, UserID, and
Language fields, you can use them to log on, by simply choosing OK.

Enter data into any of the fields that are missing information or for any of the fields you
wish to override.

Result
If no errors occur, you are connected to the specified R/3 system. SAP Assistant downloads the
BAPI or RFC metadata from the specified system and client. This may take some time,
depending on the amount of BAPIs and RFC that exist on that system and client.

If downloading RFC data takes a very long time, consider the filter you are using [Page 38].
Using no filter when viewing RFCs results in thousands of RFCs.

April 2001 33

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Switching to a Different System

Switching to a Different System
Use
You can only read data from one system at a time. This means that before you can log into a
system for the sake of reading data from it, you must log off from the system you were previously
logged onto.

This means that before switching systems in the following situations, you must first log off from
the current system:

To switch from one system to another in online mode •

•

•

•

•

To switch from one system to another in offline mode

To switch from being connected offline to being connected to an R/3 system in online mode

You do not need to log off from the current system in the following situations:

Connecting offline (logging onto a local repository) while being connected online for the
purpose of saving data into the local repository. As the matter of fact, connecting first to an
online system and then opening the target local repository is the correct procedure for saving
data into a local repository. The reason you do not have to log off the local repository in this
case is because you are not reading data from the local repository, you are only writing into
it.

You also do not need to log off from a system you are using when exiting SAP Assistant.
SAP Assistant logs you off automatically when you exit.

Procedure
1. Log off the current system, by choosing the Logoff button, or by choosing File Logoff.

2. Log onto the desired R/3 system [Page 33] or Open the desired local repository [Page 49].

34 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Using Multiple SAP Assistant Windows

Using Multiple SAP Assistant Windows
Use
With each SAP Assistant window you can work with a single R/3 system/client pair. Even when
working with a local repository [Page 46], you can only work with one system at a time.

Opening another SAP Assistant window allows you to work with multiple systems or local
repositories simultaneously.

Procedure
Choose the New Browser Window button or choose File New Window.

Result
A new SAP Assistant window opens, allowing you to log into a different system or local
repository. When the new window opens, you are not logged into the system or local repository
with which you are working in the previous window.

April 2001 35

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Browser Views

Browser Views
At the BAPI/RFC Tree pane of the Browser window you can only see one of the following views
at a time:

Tab View Displays

Applications
hierarchies

All of the application hierarchies in the system and their
BAPIs. This consists of:

•

•

•

a list of all the application areas for which there are
BAPIs

each of the application areas expands to show all of its
business objects

each of the business objects expands to show the list of
its methods (BAPIs).

BAPI

Business objects All the business objects in the system. This includes all the
BAPIs of each of the business objects. Unlike the
Application hierarchy view, the business objects are listed
individually, and not sorted by application area.

Function groups All of the function groups in the system and their RFC
functions. This consists of the groups of RFCs, and under
each group name, the list of the RFCs belonging to that
group.

RFC

Functions All of the RFCs in the system. Unlike the Function group
view, the RFCs in this view are listed individually, not sorted
by function group.

When you view BAPIs you cannot view RFCs and the opposite is also true.

The default view when you log onto an R/3 system is the Application hierarchies view.

Activities
You can change the view after logging on [Page 37].

36 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Changing Views

Changing Views
Use
When you log onto an R/3 system or open a local repository file, the Browser windows shows the
application hierarchies in that system.

After logging on you can switch to any of the other views [Page 36]:

Business objects •

•

•

Function groups

Functions

Procedure
• To switch to another view in the same tab, mark the top of the hierarchy and use the Context

menu (right-mouse menu).

For example, to switch to viewing individual BAPIs from Application Hierarchies view,
select the R/3 line at the top of the hierachy, click the righ mouse button, and choose
View Business Objects.

• To switch to a view in another tab (an RFC view from a BAPI view and back):

Choose the desired view from the View menu. For example, to view Function Groups,
choose View RFC Function Groups.

The following table summarizes your choices for views:

To specify Choose

BAPI view One of these object types:

Application Hierarchies

Business Objects

RFC view One of these object types:

Function Groups

Functions

The tab at the BAPI/RFC Tree pane changes according to your selection (for example, if
you chose Function Groups, the RFC tab becomes active).

April 2001 37

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Specifying a Filter for RFCs and Function Groups

Specifying a Filter for RFCs and Function Groups
Use
You can specify a filter to use next time you display RFC Function Groups or Functions.

Procedure
1. Choose View Options.

2. Choose the Filter tab (the default).

3. Specify the filter selection criteria in either the Function Groups or Functions (RFC) fields.
(Note that filtering BAPIs is not available yet).

Result
The filter is applied next time you change to one of the RFC views. It stays in effect until you
change it.

If you set the filter before logging on, then the data downloaded and displayed initially is filtered
accordingly.

However, if you change the filter after connecting and after the data is already displayed in one of
the RFC views, then you must refresh the view or change the filter [Page 39].

To refresh the view with the new filter, choose either View RFC Functions or
View RFC Function Groups.

The filter that is in effect is shown at the top of the hierarchy in the RFC tab.

38 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Changing Filter

Changing Filter
Use
To change the filter definition while already in one of the RFC views.

Procedure
1. In the RFC tab, with one of the RFC views active invoke the context menu (right-mouse-

button).

2. Specify the new filter string at the RFC Filter dialog.

3. Choose OK.

April 2001 39

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Searching for Objects or Functions

Searching for Objects or Functions
Use
Using the Search tab in the BAPI/RFC Tree pane you can search for a specific business object,
RFC function, or function group.

Procedure
1. Choose the Search tab.

2. Select BO (for business object), RFC (for RFC function), or Fn Groups (for function groups).

3. Enter the search text.

In all searches case is not important.

You can use a wildcard with the search (see below).

4. Choose Search.

Using Wildcards with the Search
The Search tab allows you to use wildcards (‘*’). For example, searching for a business object
using the search string "company*" finds the Company and CompanyCode business objects.

You can use a trailing wild card as in the above example when searching for RFCs and business
objects.

When searching for RFCs you can also use a wildcard prefix. For example, to find all the RFCs
that contain the word "system" anywhere in their name, specify *system*. The prefix wildcard
feature is not available when searching for business objects.

Result
The items that satisfy the search criteria are displayed at the Search tab.

You can now perform the following tasks with the RFCs or business objects found in the search:

• Run an RFC function [Page 52]

• Mark for code generation [Page 53]

• Save to a local repository file [Page 47]

40 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Browsing Business Objects and RFCs

Browsing Business Objects and RFCs

April 2001 41

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Displaying Function Parameters and their Details

Displaying Function Parameters and their Details
Procedure
Viewing the parameters of an RFC function is similar to viewing the parameters of a single BAPI
[Page 44].

1. Find and select the function name in the BAPI/RFC tree pane. To do so, switch to one of the
RFC views [Page 37] and look for the function in the hierarchy, or use the Search tab [Page
40], if you know at least a part of its name.

2. The Type tab of the BAPI/RFC tree pane displays general details of the function. Choose the
Parameters tab to list all parameters for the selected function.

3. Double-click on the name of a parameter to invoke the Properties pane, in which you can
view all the details of a single parameter.

Once the Properties pane opens, you only need to click on a parameter name to view its
details in the Properties pane.

42 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Displaying Key Information for Business Objects

Displaying Key Information for Business Objects
Use
The Key of a BAPI is a field or a set of fields which together identify a unique record in the R/3
table. For example, the key fields for the GeneralLedgerAccount business object are the
COMPANYCODE and the GLACCT, which is the G/L account number.

This procedure describes how to get a list of the key field(s) of a business object.

Procedure
4. Find and select the business object name in the BAPI/RFC tree pane. To do so, switch to

one of the BAPI views [Page 37] and look for the business object in the hierarchy under its
application hierarchy, or use the Search tab [Page 40], if you know at least the first part of the
business object name.

5. The General tab of the BAPI/RFC tree pane displays general details of the business object,
such as its internal name. Choose the Key tab to list all the key fields for the selected
business object.

6. Double-click on the name of a key field to invoke the Properties pane, in which you can view
all the details of the key field.

Once the Properties pane opens, you only need to click on a key name to view its details in
the Properties pane.

April 2001 43

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Displaying BAPI (Method) Parameters

Displaying BAPI (Method) Parameters
Procedure
Viewing the parameters of a business object is similar to viewing the parameters of an RFC
function [Page 42].

7. Find and select the BAPI name in the BAPI/RFC tree pane.

To do so, switch to one of the BAPI views [Page 37] and look for the BAPI in the
hierarchy under its business object. You can also use the Search tab [Page 40], to look
for the parent business object, if you know at least the beginning of its name.

8. The Type tab of the BAPI/RFC tree pane displays general details of the BAPI, such as its
internal name. Choose the Parameters tab to list all parameters for the selected BAPI.

9. Double-click on the name of a parameter to invoke the Properties pane, in which you can
view all the details of a single parameter.

Once the Properties pane opens, you only need to click on a parameter name to view its
details in the Properties pane.

44 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Viewing R/3 Table and Structures

Viewing R/3 Table and Structures
Use
You can use the SAP Assistant table browser to view the metadata of an R/3 table or an R/3
structure.

Prerequisites
You must know the name of the table or structure.

Note that viewing a table or structure is not related to browsing BAPIs or RFCs, and therefore it is
not related to any activity in the BAP/RFC browsing area (in the three panes of the browser)

Procedure
1. Choose View Table/Structure Browser or choose the Table/Structure Metadata Browser

icon.

2. Enter the name of the table or structure at the Table/Structure Name field.

3. Choose Display.

Result
The Table/Structure Browser dialog displays information about the various fields of the R/3 table
or structure.

You can change the size of the columns in the Table/Structure Browser dialog.

Dismiss the dialog by choosing Close.

April 2001 45

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Working Offline: Using a Local Repository

Working Offline: Using a Local Repository
Purpose
Since BAPI and RFC metadata does not change often, you may be able to work with BAPI and
RFC metadata which you have previously downloaded from an actual R/3 system. This allows
you to work offline, meaning that you work with data in a local repository. This speeds your
access to the data.

You can create multiple local repositories, each containing a different set of metadata.

A SAP Assistant local repository file uses the file type SDB.

Process Flow
To work with a local repository you must first save some metadata into a local repository file. You
copy this data from an R/3 system.

1. You must first log onto the R/3 system [Page 33] whose data you wish to save.

2. Save data into a local repository file [Page 47].

3. Open the local repository of your choice to read data from it [Page 49]. Before reading data
from the local repository, close the connection to the R/3 system (log off from the online
connection).

You may delete items from a local repository [Page 50].

You may also delete a local repository file, by deleting the SDB file in Windows.

46 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Saving Data to a Local Repository

Saving Data to a Local Repository
Use
To create a copy of the RFC or BAPI metadata from an R/3 system, you may save it into a local
repository, which resides in a local file on your hard disk.

You may elect to save all the RFCs or business objects of a single system into one local
repository or you can save a subset of this data. The smallest item you can save is a single RFC
or a single business object.

You may save metadata from multiple R/3 systems in a single local repository file. If you combine
data from multiple systems in one local repository file, you will have to choose which system to
"log" onto when using the local repository (you can only read from one system at a time).

Procedure
1. Log onto the live R/3 system [Page 33] from which you wish to copy metadata.

2. Find the data you wish to save. You can save data from the BAPI, the RFC, or the Search
pane.

3. Mark the portion of the data you wish to save.

You may save a subset or all of the data, for example, you can save all or some of the
BAPIs in a system as follows:

To Save: Mark:

All of the business objects and BAPIs in the
system

The line at the top, titled "R/3"

All the business objects and BAPIs that belong
to one application hierarchy (an R/3 application
module, for example, Asset Accounting)

The name of the application hierarchy

A single Business object with all its BAPIs The name of the business object

Note that you cannot save a single BAPI of a business object.

4. Open the local repository file you wish to save into. You can create a new file or you can
save into an existing file:

To Save Into Action

A new local repository file Choose File New File

The New Local Repository dialog appears:

Specify or Browse to the directory you wish to store the
file at.

Specify a file name.

April 2001 47

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Saving Data to a Local Repository

An existing local repository Choose File Open File

The Open Local Repository dialog appears:

Browse to the directory where the file is stored and mark
the file name.

Choose Open.

You can skip this step if you already have a local repository file open, and you wish to
save the data into that file.

5. Choose File Save Selected Item. The data you have selected is saved into the local
repository file.

Saving Additional Data to an Open Local Repository
The local repository file remains open until you:

• Close it, by logging off from it

• Open another file

• Exit SAP Assistant

While it remains open you can save additional data into the same file without having to reopen it.

You can save additional data from the same system by selecting it and choosing Save Selected
Item.

You can also save data from other R/3 systems to the same file. To do so:

1. Log off from the online connection to the first system.

2. Log onto the next system from which you wish to save data.

3. Choose Save Selected Item.

48 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Reading from a Local Repository (Offline)

Reading from a Local Repository (Offline)
Use
To read BAPI or RFC metadata from a local repository file, instead from a live R/3 system, you
can log onto a system in Offline mode.

Prerequisites
• You must have previously saved the desired metadata from an R/3 system [Page 47].

• You must also be logged off from any live R/3 connection or from any other local repository
you are working with. To disconnect from the other system or local repository choose the
Logoff button or choose File Logoff.

Procedure
1. Choose File Open File.

2. Browse for the local repository file you wish to work with at the Open Local Repository dialog.
Select the desired file, and choose Open.

3. If the local repository file contains data from more than one system, then you need to specify
which of them you wish to work with. The Available SAP Systems dialog displays the list of
system whose data is included in the local repository you have selected. Select one of these
systems.

4. Choose Open.

Result
The SAP Assistant displays the metadata that exists in the selected system/client pair in the
selected local repository file. Remember that this does not necessarily include all the metadata
that exists in the original R/3 system. It only includes the metadata that had been saved into the
local repository file.

April 2001 49

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Deleting a System From a Local Repository

Deleting a System From a Local Repository
Use
You may delete all the metadata that belongs to one R/3 system from a local repository file.

If you wish to delete all the data in a local repository file, you can delete the SDB file itself.

Prerequisites
You must be logged off from any live R/3 connection or from any other local repository you are
working with. To disconnect from the other system or local repository choose the Logoff button or
choose File Logoff.

Procedure
5. Choose File Open File.

6. Browse for the local repository file you wish to delete data from at the Open Local Repository
dialog. Select the desired file, and choose Open.

7. At the Available SAP Systems dialog select the system whose data you wish to delete.

8. Choose Delete.

9. Confirm the deletion at the SAP Assistant dialog box.

50 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Exporting Functions and Business Objects to Excel

Exporting Functions and Business Objects to Excel
Use
You can download the data of a business object, a whole application hierarchy, a function, or a
function group to an Excel spreadsheet.

You can download data from an R/3 system you are logged into or from a local repository file.

Prerequisites
Connect to the R/3 system [Page 33] or open the local repository file [Page 49] you wish to
download data from.

Procedure
1. Select the data you wish to download.

2. Choose View View Selected Item in MS Excel.

Result
SAP Assistant opens an Excel spreadsheet and downloads the selected business object,
application hierarchy, function, or function group details. You can now save the spreadsheet and
perform any other Excel operation on the data in it.

Note that you cannot download a single BAPI. If you select a BAPI, the data for the business
objects and its other BAPIs is downloaded.

April 2001 51

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Calling an RFC Function

Calling an RFC Function
Use
To make a remote function call from within SAP Assistant.

Prerequisites
You must be either logged on to an R/3 system [Page 33], or you must be connected to a local
repository file for reading [Page 49].

The function you wish to run must be displayed at one of the tabs at the BAPI/RFC Tree pane
(either the BAPI, RFC, or Search tabs).

Procedure
1. In the BAPI/RFC tree pane find and select the RFC function name or the name of the BAPI

whose underlying RFC function you wish to run.

2. Choose File → Run Selected RFC/BAPI.

To run an RFC you must be logged on. If you are not logged on, the SAP Assistant, asks if
you wish to log on using the last logon parameters. If you choose Yes, SAP Assistant logs
onto the system you last logged onto.

3. Enter the parameters necessary for running the RFC.

4. Choose Run to execute the call.

5. When the call returns, you can check the RETURN parameter. This parameter contains error
messages, if any occurred. The value of the various exporting parameters contain the data
returned from the call. If an exporting parameter is a single field its data appears at the value
column. If the returned value is a structure or a table, click the table icon to see its fields and
their values.

52 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Code Generation for Business Objects and RFC Functions

Code Generation for Business Objects and RFC
Functions
Use
To make it easier for you to program external applications that use R/3 business objects and
remote function calls, the SAP Assistant can generate code for:

Business objects •

•

The code generated for business objects comprises proxy classes for individual business
objects along with their methods. The code generator allows you to choose which R/3
business objects and which of their methods to generate code for. It even allows you to
specify which of the parameters of each of the methods to include in the generated code.

RFC functions

The code generated for RFC functions comprises RFC proxy classes for individual RFC
functions. The code generator allows you to choose the functions to generate code for. It
then generates code for the selected function(s) with all of their parameters.

The SAP Assistant can generate code for object-oriented languages such as C++ and Java. You
can also create templates and macros to enable code generation for another programming
language.

After generating the code with the Sap Assistant, you can use the generated code to create your
application, creating instances of the objects defined in the generated code's classes.

For example, for the business object SaleOrder, the code generated for Java is the Java class
jboSalesOrder and for C++ the class CBoSalesOrder. These proxy classes, in turn, can be
instantiated to represent a SalesOrder instance that exists in R/3.

In addition, these classes have member function that you can implement to make remote calls to
the BAPI methods of the business object. For example, from the business object SalesOrder, you
can make remote calls to such BAPI methods as SalesOrder.Createfromdata,
SalesOrder.Getlist, and SalesOrder.Getdetail.

See Also
See the topic Generating Code [Page 55] for the detailed steps of generating code. Also see The
C++ BAPI Proxy Classes [Page 59] and The Java BAPI Proxy Classes [Page 87] topics for the
details of the generated proxy classes.

April 2001 53

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

System Requirements for Code Generation

System Requirements for Code Generation
Requirements for Generating the Code
To generate the code for the BAPI proxy classes you need the following software:

• Windows NT 4.0 (Service Pack 3 or higher), Windows 95, Windows 98, or Windows 2000

• SAP Assistant installed and running

Requirements for Using the Generated Proxy Classes
For the Windows Version:
To program using the generated code for C++ on Windows you need:

• Windows NT 4.0 (Service Pack 3 or higher) or Windows 2000

• Visual Studio 98 (Visual C++ 6.0) with Visual Studio Service Pack 3

For the HP UNIX Version:
You can program with the C++ code generated for business objects and BAPIs on HP Unix. For
this you need:

• The UNIX operation system (The code was tested on HP-UX 10.20).

• The HP aC++ compiler (the compiler is included in the C/C++ SoftBench Solutions). The
code was tested on SoftBench Solutions D.06.20.

Programming with the code for RFC functions with the UNIX platform is not supported.

54 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Generating Code

Generating Code
Use
To specify the parameters for generating code, and to generate code with the SAP Assistant.

You can specify items such as which business objects or RFC functions to generate code for,
which target language to generate the code for, where to place the generated files, and which
code generator to use.

Prerequisites
The code generator of the Sap Assistant gets the metadata for the specified business objects or
functions from a specific R/3 system. You must therefore be logged onto that R/3 system.

Alternatively, you can use a local repository [Page 46], in which you have previously saved the
metadata of the business objects or functions you wish to generate code for.

It may be more efficient to use the local repository for code generation, for example, if you are
generating code for many objects or functions, or if the network connection between the
application's computer and the R/3 server is slow.

Procedure
1. Display the appropriate view to see either business objects or RFC functions.

2. For each business object or RFC function you wish to generate code for:

a. Select a single business object or RFC function.

b. Choose Code Generator Mark For Code Generation.

The icon next to the marked item changes to an arrow.

You can mark in this way multiple business objects along with multiple RFC functions.

You can switch between RFC and business objects views until you complete your
selection of items for code generation.

3. When you are done selecting business objects and functions, choose Code Generator
Generate Code.

4. The BAPI Wizard - Introduction screen appears. Check the box skip this screen in future, if
you wish. Choose Next.

5. The BAPI Wizard - Language screen appears.

Enter data in the BAPI Wizard - Language screen as follows:

Field Description

Output
Folder

Enter the path of the file where you wish the generated files to be placed.

The code generator uses the output directory you specify to create
subdirectories in which to place the files belonging to the individual business
objects or RFC functions. For example, for the business object
CompanyCode, the BAPI Wizard would create a subdirectory
companycode (if it did not already exist) to store all the files generated for
that business object.

April 2001 55

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Generating Code

Language Select the programming language in which the proxy classes are generated.

Choose between C++ and Java. To use a Custom language, you or
someone else must have created custom templates. Creating custom
templates is not described in this document.

Generate
DCOM
Connecto
r Proxies

Checking this box uses a different code generator than the one used for the
C++ or Java options above: it uses the code generator that comes with the
SAP DCOM Connector product.

Check this box only if you wish to generate code for VB or other COM-
compatible languages.

For C++ we recommend that you do not use this code generator (do not
check this box).

Template
and
Macro

SAP Assistant points to the template and macro files of the appropriate
language. It includes the full path to these files, using the default
subdirectory for the template and macro files (where these files were
originally installed). Normally you should take the path suggested by the
code generator.

However, if the SAP Assistant executable or the template or macro files
have been moved to another directory, the path to the template and macro
files may be invalid.

It is highly recommended that you leave all of these files in their installed
location. However if you do move any of these files, make sure that the path
and file name specified in the Template and Macro fields are correct. You
can choose the button next to the Template or Macro field to browse for the
applicable file.

6. Choose Next.

7. The BAPI Wizard - BAPI Selector screen appears. This screen allows you to pick and choose
a subset of the methods and even a subset of method parameters for business objects. It
also allows you to enter values for individual fields.

See Navigating the BAPI Selector screen [Page 58] for details of how to select items or
enter values.

8. Choose Next. The BAPI Wizard - Final Step screen appears.

9. When you are satisfied with your selections and with the preset values for parameters and
fields, choose Finish to start the code generation.

To examine the code, double-click the entry in the List of Generated Files.

10. To exit the BAPI Wizard, choose Cancel.

Result
The BAPI Wizard generates the code and displays the path and name of all the generated files.

See Also
The C++ BAPI Proxy Classes [Page 59], The Java BAPI Proxy Classes [Page 87]

56 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Generating Code

April 2001 57

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Navigating the BAPI Selector Screen

Navigating the BAPI Selector Screen
The BAPI Wizard - BAPI Selector screen displays all the items you have selected in a hierarchy
tree.

By default, the BAPI Wizard screen displays all the RFC functions, all the business objects and
all of the methods of the business objects you have marked for code generation before invoking
the BAPI Wizard.

Selecting Items
Use the mouse commands in the following table to navigate through the tree to select functions,
methods, parameters and fields for generation:

Task Command

Expand a branch of the
hierarchy tree

Click the plus sign (+) next to the branch, or click the right mouse
button.

Collapse a branch of the
hierarchy tree

Click the minus sign (-) next to the branch, or click the right mouse
button.

Select an item Select the checkbox next to an item, not the text, and click the left
mouse button.

Deselect an item Select the checkbox next to the item and click the left mouse button.
Note that when you deselect a branch, the BAPI Wizard
automatically deselects all subsidiary objects.

Entering Values
Select a field in the tree for which you want to enter a default value. The information for the field's
data type and length automatically appears.

Enter the default value in the Value field. The text must conform to your compiler's syntax.

You can enter values for multiple fields in this manner.

58 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 The C++ BAPI Proxy Classes

The C++ BAPI Proxy Classes
Introduction [Page 60]

The Business Object Proxy Classes [Page 62]

The Parameter Container Classes [Page 64]

The Reference Structure Type Classes [Page 65]

ABAP to Native Data Type Mapping [Page 67]

The CBoBase Class [Page 68]

The CBoKey Class [Page 72]

The CBoTable Template Class [Page 75]

April 2001 59

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Introduction

Introduction
The C++ BAPI Proxy Classes are C++ classes generated using the BAPI Wizard component of
the SAP Assistant, utilizing R/3 Business Object Repository metadata. The BAPI Proxy Classes
enable C++ desktop application programmers to create proxy objects that correspond to and
communicate with already and newly created business objects that exist in R/3 database. For
example, when a desktop application gathers data for a job applicant and intends to store the
collected data in R/3, the desktop application can simply use the C++ BAPI proxy class for the
business object Applicant to create a proxy object, fill the parameters and call the appropriate
method exposed by the business object for creating a new instance of Applicant in R/3 database.
Once the new Applicant instance is created in R/3, the proxy object that runs on the desktop
application can be used to correspond with the business object in R/3 for data retrieval and
modification. Each business object that exists in R/3 is identified by its key, consisting of one or
more fields(keyfields). A proxy object that runs in a desktop application can establish itself as the
proxy object of a particular instance of business object in R/3 by identifying itself using the same
key as the intended instance in R/3.

The classes produced by the BAPI Wizard for each business object fall in several categories, and
the following topics discuss the class categories in more detail.

To use the proxy classes, the application program must compile with the header files from the
RFC C++ Class Library (crfc*.h) and the RFC Library and link with these 2 libraries
(rfcclass.lib and librfc32.lib respectively), which are also part of the SAP Automation
package.

Classes Generated for each Business Object
The following list shows the files/classes generated for R/3 Business Object ProfitCenter by the
BAPI Wizard:

Class File Category
CBoProfitCenter cboprofitcenter.h/.cpp (1)

CBoProfitCenter::CGetlistParams " (2)

CBoProfitCenter::CGetdetailParams " (2)

CBoBapi0002_3 cbobapi0002_3.h/.cpp (3)

CBoBapi0015_1 cbobapi0015_1.h/.cpp (3)

CBoBapi0015_2 cbobapi0015_2.h/.cpp (3)

CBoBapireturn cbobapireturn.h/.cpp (3)

The 'Category' column in the above table lists the class category each class belongs to. The
numbers denote the following:

Category Denotes

(1) The Business Object Proxy Classes [Page 62]

(2) The Parameter Container Classes [Page 64]

(3) The Reference Structure Type Classes [Page 65]

60 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Introduction

April 2001 61

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

The Business Object Proxy Classes

The Business Object Proxy Classes
The Business Object Proxy Classes category contains classes that are used as proxy classes for
the business objects themselves. For example, for the business object ProfitCenter, there is a
C++ class CBoProfitCenter that can be used as proxy class. In the class
CBoProfitCenter, there are member functions defined and implemented to execute the call to
the business object methods of the same name. For example, the method in the Business
Object Repository ProfitCenter.Getdetail can be called using
CBoProfitCenter::Getdetail(). Likewise, PurchaseReqItem.Getlist can be called using
CBoPurchaseReqItem::Getlist().

The Business Object Proxy Classes are defined in cbo<business_object_name>.h and are
implemented in cbo<business_object_name>.cpp.

BAPI Method Categories

There are 3 categories of BAPI methods: factory, instance and class.

• Factory methods create new instances of the business object in R/3 database. The
application program using the C++ BAPI Proxy Classes cannot directly call the factory
method simply because they are not exposed by the classes in the category of Business
Object Proxy Classes. To create new instances of R/3 business objects and to construct
proxy objects to represent the newly created instances, please read the section
„Construction of Proxy Objects“ on this page.

• Instance methods access a particular instance of an R/3 business object. The
application program must have a constructed proxy object in order to call instances
methods. Refere to „Construction of Proxy Objects“ section on this page. Examples of
this category of BAPI methods include „Getdetail“ and „Getstatus“, which returns the
detail information and status of a particular instance of business object, respectively.

• Class methods are used to obtain information regarding the objects of the same class. In
the case of R/3 business objects, the class methods obtain information regarding the
instances of a given business object, such as a list of profit centers obtained using
ProfitCenter.Getlist. The class method ProfitCenter.Getlist can be called using
CBoProfitCenter::Getlist() and the application program does not need to
construct a proxy object in order to call this function, since the proxy member functions
are declared static in the classes of the category Business Object Proxy Classes.

Business Object Identification Key

Most of the business objects in R/3 database are identified using a unique identification
key, and therefore the corresponding proxy object running in the desktop application
should also hold the identification key. The application program using a proxy object must
use the key when calling BAPI methods that operate on specific instances of business
objects. For example, when a desktop application program needs to call
ProfitCenter.Getdetail to obtain detail information on a specific profit center, then the
identification key of the proxy object must be correctly set to indicate the particular profit
center whose detail information is desired. The key is implemented using the CBoKey
class, defined in cboglobal.h and implemented in cboglobal.cpp.

Each identification key consists of one or more fields, called keyfields. The content of
individual keyfield can be read or written using getter and setter functions in the CBoKey

62 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 The Business Object Proxy Classes

class. The entire key is used for identifying a particular instance of a business object in
R/3, and therefore all keyfields need to be set correctly.

All of the business object proxy classes are derived from class CBoBase, which holds attributes
common to all business object proxy classes such as business object name, type, and the
identification key. The application program uses the CBoBase::GetKey() function to access
the CBoKey attribute in any business object proxy object, and the CBoKey class offers functions
to set and retrieve the values of individual fields in the identification key itself.

Construction of Proxy Objects

The construction of a C++ proxy object for a business object is done using the constructors in the
classes of the Business Object Proxy Classes category. There are 2 general ways of
constructing a proxy object:

1. Using a constructor that takes a parameter container class object as argument: this type
of constructor internally makes a BAPI factory method call to R/3 to create a new
instance of the business object. By doing so, the newly constructed proxy object
becomes the proxy object for the newly created business object in R/3. Care must be
taken that the parameter container object to be passed as argument be filled with
appropriate input data.

2. Using a constructor that does not take a parameter container class object as argument:
this type of constructor is used to construct an empty proxy object first, then the
application program can use the CBoBase::GetKey() function to set the identification
key for the purpose of designating the newly constructed proxy object to represent the
R/3 business object instance holding the same identification key.

See also:
The CBoBase Class [Page 68]

The CBoKey Class [Page 72]

The Parameter Container Classes [Page 64]

April 2001 63

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

The Parameter Container Classes

The Parameter Container Classes
In the C++ business object proxy class, for each member function that interfaces with a business
object method, there is a corresponding parameter container class that contains the parameters
used for calling the method. For example, CBoProfitCenter::Getdetail() has a class
CBoProfitCenter::CBoGetdetailParams that contains all the defined parameters for the
method ProfitCenter.Getdetail. Using the member functions in this class, the application program
sets the parameter values in preparation for a method call, and retreives the returned parameter
values after the method call.

The parameter container class contains 3 types of parameters: simple, structure and table
parameters.

• Simple parameters: each simple parameter has a setter and getter function for setting
and getting the value of the simple parameter. The setter function name has the format
Set<parameter_name>(...), and the getter function name has the format
Get<parameter_name>(). parameter_name itself has the format of beginning with
an upper-case character and with the rest of the characters in lower-case.

• Structure and table parameters: unlike simple parameters, structure and table
parameters have only the getter function, without the accompanying setter function. The
getter function name has identical format as the the getter function name for simple
parameters. The getter functions for structure and table parameters return a reference to
an object which is the proxy object of the structure or table parameters. Then, the
application program can use the setter and getter functions of the individual fields in the
structure or table parameters to access the individual fields. For description of the proxy
classes for structure and table parameters, please refer to The Reference Structure Type
Classes [Page 65].

• Table parameters: the proxy classes for table parameters use the template class
CBoTable in conjunction with the reference structure type proxy classes for accessing
individual rows using index. Please refer to The CBoTable Template Class [Page 75].

The classes of this category are defined in cbo<business_object_name>.h and are implemented
in cbo<business_object_name>.cpp, in the same file where the parent business object proxy
classes are defined.

See also:
The Business Object Proxy Classes [Page 62]

64 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 The Reference Structure Type Classes

The Reference Structure Type Classes
This category of classes are proxy classes for the reference structure types defined in the ABAP
Dictionary and can be viewed using R/3 Transaction SE11. Examples of reference structure
types abound, and some well-used ones are BAPIORDERS, BAPIITEMIN, BAPIEBAN,
BAPI0015_1 and BAPI0002_3. These reference structure types contain fields of various ABAP
data types (see ABAP to Native Data Type Mapping [Page 67]), and are used for structure
parameters and records of table parameters of BAPI methods.

Naming convention for C++ proxy classes of reference structure types

The C++ proxy classes for these reference structure types offer setter and getter functions for
writing to and reading from the fields in the reference structure, respectively, and are named
using the following the convention. The naming convention dictates that the names are prefixed
with the characters „CBo“ and followed by the name of the reference structure type itself, with the
first character in upper case and the rest in lower case. The names of the proxy classes
corrseponding to the above-mentioned reference structure types would be CBoBapiorders,
CBoBapiitemin, CBoBapieban, CBoBapi0015_1, and CBoBapi0002_3, respectively.

Naming convention for getter and setter functions of fields

The naming convention for the setter and getter functions for the fields dictates that the setter
function name be prefixed with the characters „Set“ and the getter function name be prefixed

April 2001 65

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

The Reference Structure Type Classes

with the characters „Get“. The naming convention for the field names deletes all the underscore
characters („_“) and converts all characters to lower-case, except for the characters that
immediately follow the deleted underscore characters. For example, the setter function name for
field ORDER_DATE would be SetOrderDate(); the getter function name for field FAX_NUM_1
would be GetFaxNum1().

Native data types returned by field getter functions

The native data types returned by field getter functions are listed in section ABAP to Native Data
Type Mapping [Page 67].

Native data types required by field setter functions

The native data types used by field setter functions in as argument are also listed in the table in
section ABAP to Native Data Type Mapping [Page 67]. However, for string objects, the
argument for field setter function is const string&, to save time by passing by reference.

66 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 ABAP to Native Data Type Mapping

ABAP to Native Data Type Mapping

ABAP Data Type C++ Native Data Type

CHAR string (of Standard C++ Library)

INT4 int

INT2 int

INT1 int

NUMC string

PACK double

LANG string

CURR double

CUKY string

DATS string

UNIT string

TIMS string

DEC double

QUAN double

ACCP string

CLNT string

FLTP double

RAW string (see note), void*

Note: the RAW data type is mapped to the string class of the Standard C++ Library, but care
must be taken when using this object. When the application program calls a field getter function
(Get<fieldname>()) on a field of RAW type and retrieves a string object, the string object
encapsulates a character array of length equal to the ABAP-defined length of the field. The
character array encapsulated inside the string object may contain null character in the
beginning or the middle of the array, therefore this array cannot be treated as a normal character
string. Using cout of the iostream class would output a truncated character string, terminated
by the first null character. Also, when the application program calls a field setter function
(Set<fieldname>()), the argument passed is void*, a pointer that points to the raw byte array to
be copied to the intended field.

April 2001 67

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

The CBoBase Class

The CBoBase Class
This class is defined in cbobase.h.

This class is the base class from which all Business Object Proxy Classes are derived. This
class encapsulates the common attributes and functionality needed in the Business Object Proxy
Classes, such as business object name and type, and the identification key. This class offers
functions that return these common attributes.

Construction
CBoBase

It is discouraged to use this constructor directly by the application program.

Operations
GetName [Page 69]

Returns the name of the business object.

GetType [Page 70]

Returns the type of the business object.

GetKey [Page 71]

Returns reference to the identification key (CBoKey) attribute. This reference
can then be used to set or get keyfield values.

68 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 GetName

GetName
Purpose
Returns the name of the business object.

Syntax
const string& GetName();

Parameters
None.

Return Value
Returns a reference to a string object containing the name of the business object.

Description
This function returns the name of the business object.

April 2001 69

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

GetType

GetType
Purpose
Returns the type of the business object.

Syntax
const string& GetType();

Parameters
None.

Return Value
Returns a reference to a string object containing the type of the business object.

Description
This function returns the type of the business object.

70 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 GetKey

GetKey
Purpose
Returns reference to the identification key (CBoKey) attribute. This reference can then be used
to set or get keyfield values.

Syntax
CBoKey& GetKey();

Parameters
None.

Return Value
Returns a reference to the CBoKey attribute.

April 2001 71

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

The CBoKey Class

The CBoKey Class
This class is defined in cboglobal.h.

This class encapsulates the identification key for an instance of a business object. It offers
functions for retrieving and setting the values of individual keyfields.

Construction
CBoKey

The constructor does not construct a usable object.

Operations
GetKeyField [Page 73]

Returns the value of the specified keyfield.

SetKeyField [Page 74]

Sets the value of the specified keyfield.

72 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 GetKeyField

GetKeyField
Purpose
Returns the value of the specified keyfield.

Syntax
string GetKeyField(const string& strKeyFieldName);

Parameters
strKeyFieldName: Name of the parameter.

Return Value
Returns a string object containing the value of the specified keyfield.

Description
This function returns the value of the specified keyfield. If the specified keyfield does not exist,
then the string returned is a null string.

Related Information
SetKeyField [Page 74]

April 2001 73

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

SetKeyField

SetKeyField
Purpose
Sets the value of the specified keyfield.

Syntax
bool SetKeyField(const string& strKeyFieldName,

 const string& strValue);

Parameters
strKeyFieldName: Name of the keyfield.

strValue: Value to be set to the specified keyfields.

Return Value
Returns a true indicating that the keyfield was set to given value; returns false if given keyfield
was not found.

Description
This function returns the value of the specified keyfield. If the specified keyfield does not exist,
then the string returned is a null string.

Related Information
GetKeyField [Page 73]

74 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 The CBoTable Template Class

The CBoTable Template Class
This class is defined in cboglobal.h.

This class is used in conjuntion with the reference structure type proxy classes (see The
Reference Structure Type Classes [Page 65]) for accessing the rows and their fields in table
parameters. The reference structure type proxy classes are used as template arguments for
CBoTable template class. The resulting class, for example, CBoTable<CBoBapi0015_1>,
then offers the functions necessary to access the rows in the table parameter of type
BAPI0015_1, and setter and getter functions to access the fields.

Example:
The following example shows how the application program uses a table parameter proxy class to
access the rows and fields of a table parameter. Note that this example uses the reference
structure type CBoBapi0015_1, which describes a profit center. The table parameter itself is
called Profitcenters, and the function
CBoProfitCenter::CGetlistParams::GetProfitcenters() returns a reference to an
object of the table parameter proxy class CBoTable<CBoBapi0015_1>. And, the
CBoTable<CBoBapi0015_1> object offers the GetRow() and GetConstRow() functions for
the application program to obtain access to a specified row object, which is in turn, a
CBoBapi0015_1 object.

CBoProfitCenter::CGetlistParams GetlistParams;
CBoTable<CBoBapi0015_1>& Profitcenters;
Profitcenters = GetlistParams.GetProfitcenters();
for(int i=0; i < Profitcenters.GetRowCount(); i++)
{
 string strOut;

CBoBapi0015_1& ThisRecord = Profitcenters.GetRow(i);

 // or use ‘const’ when only reading from fields

// const CBoBapi0015_1& ThisRecord = Profitcenters.GetConstRow(i);

strOut = ThisRecord.GetCoArea();
cout << strOut << endl;

 strOut = ThisRecord.GetProfitCtr();
 cout << strOut << endl;

 strOut = ThisRecord.GetValidTo();
 cout << strOut << endl;

 strOut = ThisRecord.GetPctrName();
 cout << strOut << endl;

 strOut = ThisRecord.GetInCharge();
 cout << strOut << endl;

}

Construction
CBoTable

April 2001 75

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

The CBoTable Template Class

The application program does not need to construct an object of this class.

Operations
AppendToTable [Page 77]

Appends a new, initialized row to the table parameter, and returns a reference to
a reference structure type proxy object that represents the newly appended row.

ClearTable [Page 78]

Deletes all rows in the embedded table parameter.

CopyLineFrom [Page 79]

Copies the content of a specified memory area to the specified row in a table
parameter.

CopyLineTo [Page 80]

Copies the content of the specified row in a table parameter to a specified
memory area.

GetConstRow [Page 81]

Returns a ‚const‘ reference to an object of the reference structure type proxy
class that represents the desired table parameter row specified by the index.

GetLength [Page 82]

Returns the number of bytes in each row of the embedded table parameter.

GetRow [Page 83]

Returns a reference to an object of the reference structure type proxy class that
represents the desired table parameter row specified by the index.

GetRowCount [Page 84]

Returns the number of rows currently in the embedded table parameter.

InsertIntoTable [Page 85]

Returns a reference to an object of the reference structure type proxy class.

RemoveRow [Page 86]

Removes the specified row.

76 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 AppendToTable

AppendToTable
Purpose
Appends a new, initialized row to the table parameter, and returns a reference to a reference
structure type proxy object that represents the newly appended row.

Syntax
AType& AppendToTable();

Parameters
None.

Return Value
Returns a reference to an object of the reference structure type proxy class. AType denotes the
reference structure type proxy class.

Exceptions
Throw const char* for failure to append a memory block by RFC Library.

Description
This function appends a row to the embedded table parameter and initializes all the fields within
the row. Then it returns a reference to an object of the reference structure type proxy class. For
example, if the table parameter’s reference structure type is BAPI0015_1, then the returned
reference is a reference to a CBoBapi0015_1.

Related Information
The Reference Structure Type Classes [Page 65]

GetConstRow [Page 81]

GetRow [Page 83]

RemoveRow [Page 86]

April 2001 77

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

ClearTable

ClearTable
Purpose
Deletes all rows in the embedded table parameter.

Syntax
void ClearTable();

Parameters
None.

Return Value
None.

78 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 CopyLineFrom

CopyLineFrom
Purpose
Copies the content of the specified row in a table parameter to a specified memory area.

Syntax
void CopyLineFrom(int nIndex, void *pDestination);

Parameters
nIndex: a zero-based integer specifying the desired row.

pSource: a void pointer pointing to the memory area containing source data.

Exceptions
Throws const char* when RFC Library fails to copy line.

Description
The application progammer must make sure that the source data is valid.

Related Information
CopyLineTo [Page 80]

April 2001 79

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

CopyLineTo

CopyLineTo
Purpose
Copies the content of the specified row in a table parameter to a specified memory area.

Syntax
void CopyLineTo(int nIndex, void *pDestination);

Parameters
nIndex: a zero-based integer specifying the desired row.

pDestination: a void pointer pointing to the destination memory area.

Exceptions
Throws const char* when RFC Library fails to copy line.

Description
The application progammer must make sure that the destination block of memory is large enough
to hold a table row.

Related Information
CopyLineFrom [Page 79]

80 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 GetConstRow

GetConstRow
Purpose
Returns a ‚const‘ reference to an object of the reference structure type proxy class that
represents the desired table parameter row specified by the index.

Syntax
const AType& GetConstRow(int nIndex) const;

Parameters
nIndex: a zero-based integer specifying the desired row.

Return Value
Returns a ‚const‘ reference to an object of the reference structure type proxy class that
represents the desired row. AType denotes the reference structure type proxy class.

Exceptions
Throws const char* when the specified integer index is larger than the total number of rows in the
table.

Description
This functions returns a ‚const‘ reference to an object of the reference structure type proxy class
that represents the table parameter row specified by the integer index. For example, if the table
parameter’s reference structure type is BAPI0015_1, then the returned reference is a reference
to a CBoBapi0015_1.

Once this ‚const‘ reference is obtained, the application program will not be able to use the field
setter functions to modify the contents of the fields.

Related Information
AppendToTable [Page 77]

GetRow [Page 83]

RemoveRow [Page 86]

April 2001 81

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

GetLength

GetLength
Purpose
Returns the number of bytes in each row of the embedded table parameter.

Syntax
int GetLength();

Parameters
None.

Returns an integer indicating the length.

Return Value

82 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 GetRow

GetRow

Returns a reference to an object of the reference structure type proxy class that represents the
desired table parameter row specified by the index.

Syntax
AType& GetConstRow(int nIndex);

Parameters

Return Value
Returns a reference to an object of the reference structure type proxy class that represents the
desired row. AType denotes the reference structure type proxy class.

Exceptions
Throws const char* when the specified integer index is larger than the total number of rows in the
table.

This functions returns a reference to an object of the reference structure type proxy class that
represents the table parameter row specified by the integer index. For example, if the table
parameter’s reference structure type is BAPI0015_1, then the returned reference is a reference
to a CBoBapi0015_1.

Once this reference is obtained, the application program will be able to use both the field setter
and getter functions to modify the contents of the fields.

Related Information
AppendToTable [Page 77]

Purpose

nIndex: a zero-based integer specifying the desired row.

Description

GetConstRow [Page 81]

RemoveRow [Page 86]

April 2001 83

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

GetRowCount

GetRowCount
Purpose

Syntax
int GetRowCount();

Parameters
None.

Returns the number of rows currently in the embedded table parameter.

Return Value
Returns an integer indicating the number of rows.

84 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 InsertIntoTable

InsertIntoTable
Purpose
Inserts a new, initialized row to the table parameter, and returns a reference to a reference
structure type proxy object that represents the newly inserted row.

Syntax
AType& InsertIntoTable(int nIndex);

Parameters
nIndex: an integer that represents an index into the table parameter where the new row is to be
inserted.

Return Value
Returns a reference to an object of the reference structure type proxy class. AType denotes the
reference structure type proxy class.

Exceptions

Description
This function inserts a row to the embedded table parameter and initializes all the fields within the
row. Then it returns a reference to an object of the reference structure type proxy class. For
example, if the table parameter’s reference structure type is BAPI0015_1, then the returned
reference is a reference to a CBoBapi0015_1.

Related Information
The Reference Structure Type Classes [Page 65]

AppendToTable [Page 77]

Throw const char* for failure to insert a memory block by RFC Library.

April 2001 85

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

RemoveRow

RemoveRow
Purpose
Removes the specified row.

Syntax
void RemoveRow(int nIndex);

Parameters

Return Value
None.

Exceptions
Throws const char* when the specified integer index is larger than the total number of rows in the
table.

Related Information
AppendToTable [Page 77]

GetRow [Page 83]

nIndex: a zero-based integer specifying the desired row.

GetConstRow [Page 81]

86 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 The Java BAPI Proxy Classes

The Java BAPI Proxy Classes
Introduction [Page 88]

Using Java RFC packages [Page 90]

The Business Object Proxy Classes [Page 92]

The Parameter Container Classes [Page 94]

The ABAP Reference Structure Types [Page 95]

The Structure Parameter Classes [Page 96]

The Table Parameter Classes [Page 97]

The Table Row Classes [Page 106]

ABAP to Native Data Type Mapping [Page 107]

The jboBase Class [Page 108]

The jboKey Class [Page 112]

BAPI Beans [Page 117]

April 2001 87

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Introduction

Introduction
The Java BAPI Proxy Classes are Java classes generated using the BAPI Wizard component of
the SAP Assistant, utilizing R/3 Business Object Repository metadata. The BAPI Proxy Classes
enable Java application and applet programmers to create proxy objects that correspond to and
communicate with already and newly created business objects that exist in R/3 database. For
example, when an applet or a web-based application gathers data for a job applicant and intends
to store the collected data in R/3, the applet or application can simply use the Java BAPI proxy
class for the business object Applicant to create a proxy object, fill the parameters and call the
appropriate method exposed by the business object for creating a new instance of Applicant in
R/3 database. Once the new Applicant instance is created in R/3, the proxy object that runs on
the desktop application can be used to correspond with the business object in R/3 for data
retrieval and modification. Each business object that exists in R/3 is identified by its key,
consisting of one or more fields(keyfields). A proxy object that runs in a desktop application can
establish itself as the proxy object of a particular instance of business object in R/3 by identifying
itself using the same key as the intended instance in R/3.

The classes produced by the BAPI Wizard for each business object fall in several categories, and
the following topics discuss the class categories in more detail.

To use the proxy classes, the application program must compile with the class files from the Java
RFC classes (packages com.sap.rfc and com.sap.rfc.exception), which are part of the
SAP Automation package.

Classes Generated for each Business Object
The following list shows the files/classes generated for R/3 Business Object ProfitCenter by the
BAPI Wizard:

Class File Category
jboProfitCenter jboprofitcenter.java (1)

jboProfitCenterGetlistPara
ms

jboprofitcentergetlistparams.ja
va

(2)

jboProfitCenterGetdetailPa
rams

jboprofitcentergetdetailparams.
java

(2)

jboBapi0002_3Structure jboBapi0002_3Structure.java (3)

jboBapi0015_1Table jboBapi0015_1Table.java (4)

jboBapi0015_1TableRow jboBapi0015_1TableRow.java (5)

jboBapi0015_2Structure jboBapi0015_2Structure.java (3)

jboBapireturnStructure jboBapireturnStrucure.java (3)

The 'Category' column in the above table lists the class category each class belongs to. The
numbers denote the following:

Category Denotes

(1) The Business Object Proxy Classes [Page 92]

(2) The Parameter Container Classes [Page 94]

(3) The Structure Parameter Classes [Page 96]

88 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Introduction

(4) The Table Parameter Classes [Page 97]

(5) The Table Row Classes [Page 106]

April 2001 89

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Using Java RFC packages

Using Java RFC packages
In order to use Java BAPI Proxy Classes, the application programmer needs to be familar with
some aspects of the Java RFC package: com.sap.rfc and com.sap.rfc.exception. The
application programmer needs to provide IRfcConnection objects for logging on to R/3 so that
the proxy objects can communicate with their corresponding instances.

The following function shows sample code that attempts to log on to an R/3 system. Note the
use of the classes in the com.sap.rfc and com.sap.rfc.exception, such as
MiddlewareInfo, FactoryManager, JRfcBaseRuntimeException, userInfo, connectInfo,
JRfcRfcConnectionException, etc.

//
// connect
//

public static boolean connect()
{
 //cleanup previous connection
 cleanUp();

 try
 {
 // create a middlewareInfo object with rfcHost name
 MiddlewareInfo mdInfo
 = new MiddlewareInfo();
 mdInfo.setMiddlewareType

(MiddlewareInfo.middlewareTypeOrbix);
 mdInfo.setOrbServerName(rfcHost);

 // let the global factory manager use the middlewareInfo
 // to create all object factories by binding to the server
 facMan = FactoryManager.getSingleInstance();
 if(facMan != null)
 facMan.setMiddlewareInfo(mdInfo);
 }
 catch (JRfcBaseRuntimeException je)
 {
 System.out.println("Bind to object failed.\n"
 + "Unexpected JRFC runtime exception:\n" + je.toString ());
 return false;
 }

 connection = logon();
 if(connection == null) return false;

// This function attempts to log on to an R/3 system. It assumes

// user = null,

 return true;
}

//
// logon
//

// that the following static attributes are initialized:
//
// String rfcHost = null,
// client = null,

90 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Using Java RFC packages

// password = null,
// r3Host = null,

 UserInfo userInfo = new UserInfo();

 userInfo.setPassword(password);
 userInfo.setLanguage(language);

 connectInfo.setSystemNo((short)Integer.parseInt(r3SysNo));
 connectInfo.setLoadBalancing(false);

 connection = facMan.getRfcConnectionFactory()
 .createRfcConnection(connectInfo, userInfo);
 connection.open();
 }

 {
 System.out.println("Unexpected RfcError while opening

 catch (JRfcBaseRuntimeException je)
 {
 System.out.println("Unexpected JRFC runtime exception:\n"

 + je.toString());
 return null;
 }
 return connection;

// r3SysNo = null,
// language = null;
//
private static IRfcConnection logon()
{

 ConnectInfo connectInfo = new ConnectInfo();
 IRfcConnection connection = null;

 userInfo.setClient(client);
 userInfo.setUserName(user);

 connectInfo.setRfcMode(ConnectInfo.RFC_MODE_VERSION_3);
 connectInfo.setDestination("xxx");
 connectInfo.setHostName(r3Host);

 connectInfo.setCheckAuthorization(true);

 try
 {

 catch (JRfcRfcConnectionException re)

 connection.\n" + re.toString());
 return null;
 }

 + " while opening connection.\n"

}

April 2001 91

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

The Business Object Proxy Classes

The Business Object Proxy Classes

The Business Object Proxy Classes are defined in cbo<business_object_name>.h and are
implemented in cbo<business_object_name>.cpp.

BAPI Method Categories

There are 3 categories of BAPI methods: factory, instance and class.

• Factory methods create new instances of the business object in R/3 database. The
application program using the Java BAPI Proxy Classes cannot directly call the factory
method simply because they are not exposed by the classes in the category of Business
Object Proxy Classes. To create new instances of R/3 business objects and to construct
proxy objects to represent the newly created instances, please read the section
„Construction of Proxy Objects“ on this page.

• Class methods are used to obtain information regarding the objects of the same class.
In the case of R/3 business objects, the class methods obtain information regarding the
instances of a given business object, such as a list of profit centers obtained using
ProfitCenter.Getlist. The class method ProfitCenter.Getlist can be called using
jboProfitCenter.getlist() and the application program does not need to
construct a proxy object in order to call this function, since the proxy member functions
are declared static in the classes of the category Business Object Proxy Classes.

Business Object Identification Key

Most of the business objects in R/3 database are identified using a unique identification
key, and therefore the corresponding proxy object running in the desktop application
should also hold the identification key. The application program using a proxy object must
use the key when calling BAPI methods that operate on specific instances of business
objects. For example, when a desktop application program needs to call
ProfitCenter.Getdetail to obtain detail information on a specific profit center, then the
identification key of the proxy object must be correctly set to indicate the particular profit
center whose detail information is desired. The key is implemented using the jboKey
class, defined in jboKey.h.

Each identification key consists of one or more fields, called keyfields. The content of
individual keyfield can be read or written using getter and setter functions in the jboKey

The Business Object Proxy Classes category contains classes that are used as proxy classes for
the business objects themselves. For example, for the business object ProfitCenter, there is a
Java class jboProfitCenter that can be used as proxy class. In the class
jboProfitCenter, there are member functions defined and implemented to execute the call to
the business object methods of the same name. For example, the method in the Business
Object Repository ProfitCenter.Getdetail can be called using
jboProfitCenter.getdetail(). Likewise, PurchaseReqItem.Getlist can be called using
jboPurchaseReqItem.getlist().

• Instance methods access a particular instance of an R/3 business object. The
application program must have a constructed proxy object in order to call instances
methods. Refere to „Construction of Proxy Objects“ section on this page. Examples of
this category of BAPI methods include „Getdetail“ and „Getstatus“, which returns the
detail information and status of a particular instance of business object, respectively.

92 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 The Business Object Proxy Classes

class. The entire key is used for identifying a particular instance of a business object in
R/3, and therefore all keyfields need to be set correctly.

Construction of Proxy Objects

The construction of a Java proxy object for a business object is done using the constructors in
the classes of the Business Object Proxy Classes category. There are 2 general ways of
constructing a proxy object:

The jboBase Class [Page 108]

All of the business object proxy classes are derived from class CBoBase, which holds attributes
common to all business object proxy classes such as business object name, type, and the
identification key. The application program uses the jboBase.getKey() function to access the
jboKey attribute in any business object proxy object, and the jboKey class offers functions to
set and retrieve the values of individual fields in the identification key itself.

1. Using a constructor that takes a parameter container class object as argument: this type
of constructor internally makes a BAPI factory method call to R/3 to create a new
instance of the business object. By doing so, the newly constructed proxy object
becomes the proxy object for the newly created business object in R/3. Care must be
taken that the parameter container object to be passed as argument be filled with
appropriate input data.

2. Using a constructor that does not take a parameter container class object as argument:
this type of constructor is used to construct an empty proxy object first, then the
application program can use the jboBase.getKey() function to set the identification
key for the purpose of designating the newly constructed proxy object to represent the
R/3 business object instance holding the same identification key.

See also:

The jboKey Class [Page 112]

April 2001 93

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

The Parameter Container Classes

The Parameter Container Classes

• Simple parameters: each simple parameter has a setter and getter function for setting
and getting the value of the simple parameter. The setter function name has the format
set<parameter_name>(...), and the getter function name has the format
get<parameter_name>(). parameter_name itself has the format that begins with an
upper-case character and carries the rest of the characters in lower-case. Each simple
parameter proxy is of a Java native type that corresponds to the ABAP data type of the
simple parameter itself. For mapping of ABAP data types to Java native data types and
vice versa, please refer to ABAP to Native Data Type Mapping [Page 107].

• Structure parameters: The getter function of the structure parameter returns a structure
parameter proxy object. Likewise, the setter function takes, as argument, a structure
parameter proxy object, and stores that into the parameter container object. The naming
convention for the setter and getter functions of structure parameters are identical to that
for the simple parameters. Please refere to The Structure Parameter Classes [Page 96].

• Table parameters: The getter function of the table parameter returns a table parameter
proxy object. Likewise, the setter function takes, as argument, a table parameter proxy
object, and stores that into the parameter container object. The application program then
uses the member functions offered by the table parameter proxy object to access
individual table row proxy objects, which in turn, offers setter and getter functions for the
table fields. The naming convention for the setter and getter functions of table
parameters are identical to that for the simple parameters. Please refere to The Table
Parameter Classes [Page 97] and The Table Row Classes [Page 106].

See an example of a table parameter proxy class in the Java BAPI HTML Reference (in
Com.sap.bapi.purchasereqitem.jbobapiebantable.html).

See an example of a table row proxy class for accessing individual fields of a table row in the
Java BAPI HTML Reference (in Com.sap.bapi.purchasereqitem.jbobapiebantablerow.html).

The classes of this category are defined and implemented in
jbo<business_object_name><method_name>Params.java, where <business_object_name> is
the name of the business object, and <method_name> is the name of the method with the first
character in upper-case and the rest in lower-case.

In the Java business object proxy class, for each member function that interfaces with a business
object method (BAPI), there is a corresponding parameter container class that contains the
parameters used for calling that BAPI method. For example, jboProfitCenter.getlist()
has a class jboProfitCenterGetlistParams that contains all the defined parameters for the
method ProfitCenter.Getlist. Using the member functions in this class, the application program
sets the parameter values in preparation for a method call, and retreives the returned parameter
values after the method call.

See an example of a parameter container class for the BAPI method ProfitCenter.Getlist in the
Java BAPI HTML Reference (in Com.sap.bapi.profitcenter.jboprofitcentergetlistparams.html).

The parameter container class contains 3 types of parameters: simple, structure and table
parameters.

94 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 The ABAP Reference Structure Types

The ABAP Reference Structure Types
This category of classes are proxy classes for the reference structure types defined in the ABAP
Dictionary and can be viewed using R/3 Transaction SE11. Examples of reference structure
types abound, and some well-used ones are BAPIORDERS, BAPIITEMIN, BAPIEBAN,
BAPI0015_1 and BAPI0002_3. These reference structure types contain definition of fields:
field ABAP data type (ABAP to Native Data Type Mapping [Page 107]), field offset, length,
position and decimal places.

In the BAPI Wizard-generated parameter proxy source files, The Structure Parameter Classes
[Page 96] and The Table Parameter Classes [Page 97] are based on the ABAP reference
structure types. These classes provide type-safe access to individual fields of the structure or
table parameters.

The following diagram shows the R/3 transaction SE11 displaying the definition of reference
structure type BAPI0015_1.

April 2001 95

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

The Structure Parameter Classes

The Structure Parameter Classes
The structure parameter proxy classes are proxy classes for structure parameters of BAPI
methods. They offer setter and getter functions to write to and read from individual fields in the
structure parameter, respectively. A field setter function takes data of a Java native type as
arguments and sets its corresponding field to that data value. A field getter function returns data
value of Java native type, converted from the ABAP data type of the corresponding field of the
structure parameter.

Naming convention

The naming convention of the setter and getter of fields is as follows:

• The setter function name has the format set<field_name>(...), and the getter
function name has the format get<field_name>().

• field_name itself follows the convention deletes all the underscore characters („_“) and
converts all characters to lower-case, except for the characters that immediately follow
the deleted underscore characters.

See an example of a structure parameter proxy class for a structure parameter of the reference
structure type BAPI0015_2 in the Java BAPI HTML Reference (in
Com.sap.bapi.profitcenter.jbobapi0015_2structure.html)

• For example, the setter function name for field ORDER_DATE would be
SetOrderDate(); the getter function name for field FAX_NUM_1 would be
GetFaxNum1().

96 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 The Table Parameter Classes

The Table Parameter Classes
The table parameter classes are wrapper classes of table parameters of BAPI methods. These
classes offer functions to operate at the row-level, without functions to access individual fields of
the rows. To access fields within any row, the classes of this category offer functions to access a
proxy object of any given row, and that row proxy object is then used for accessing the individual
fields.

Construction
jbo<reference_structure_type>Table

The application program has no need to construct objects of this class

Operations
appendRow [Page 98]

Appends a row to the table parameter.

createEmptyRow [Page 99]

deleteAllRows [Page 100]

See an example of a table parameter proxy class in the Java BAPI HTML Reference (in
Com.sap.bapi.purchasereqitem.jbobapiebantable.html).

Returns a table row proxy object for an empty row.

Deletes all rows from the table parameter.

deleteRow [Page 101]

Deletes specified row.

getRow [Page 102]

Returns a table row proxy object for the specified row.

getRowCount [Page 103]

Returns the number of rows in the embedded table parameter.

insertRow [Page 104]

Inserts a row to the table parameter at the given indexed position.

updateRow [Page 105]

Updates an existing row in the table parameter at the given indexed position.

April 2001 97

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

appendRow

appendRow
Purpose

Syntax
void appendRow(jbo<RefStructType>TableRow tableRow);

Parameters

Return Value
None.

Throws JRfcRemoteException.

Appends a row to the table parameter.

tableRow: a table row proxy object. This object is of type jbo<RefStructType>TableRow
where <RefStructType> is the ABAP reference structure type defined in R/3 transaction
SE11.

Exceptions

Related Information
The Table Row Classes [Page 106]

98 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 createEmptyRow

createEmptyRow
Purpose
Returns a table row proxy object for an empty row.

Syntax
jbo<RefStructType>TableRow createEmptyRow();

None.

Return Value

Exceptions
Throw JRfcRemoteException.

The created empty row that is returned to the caller is not appended to or inserted into the table
parameter.

Related Information
The Table Row Classes [Page 106]

Parameters

A table row proxy object of type jbo<RefStructType>TableRow where <RefStructType>
is the reference structure type.

Description

April 2001 99

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

deleteAllRows

deleteAllRows
Purpose
Deletes all rows from the table parameter.

void deleteAllRows();

Parameters

Return Value

Syntax

None.

None.

Exceptions
Throw JRfcRemoteException.

100 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 deleteRow

deleteRow
Purpose
Deletes specified row.

void deleteRow(int index);

Parameters

Return Value
None.

Syntax

index: an integer index that specifies the row to be deleted.

Exceptions
Throws JRfcRemoteException.

Description
The index must point to a valid row.

Related Information
The Table Parameter Classes [Page 97]

The Table Row Classes [Page 106]

April 2001 101

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

getRow

getRow
Purpose
Returns a table row proxy object for the specified row.

Syntax
jbo<RefStructType>TableRow getRow(int index);

Parameters
index: an integer index that specifies the row to be accessed.

Return Value
A table row proxy object of type jbo<RefStructType>TableRow where <RefStructType>
is the reference structure type.

Exceptions

Description
The index must point to a valid row.

The Table Parameter Classes [Page 97]

Throws JRfcRemoteException.

Related Information

The Table Row Classes [Page 106]

102 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 getRowCount

getRowCount
Purpose

Syntax
int getRowCount();

None.

Return Value

Exceptions

Returns the number of rows in the embedded table parameter.

Parameters

An integer value representing the number of rows.

Throws JRfcRemoteException.

April 2001 103

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

insertRow

insertRow
Purpose

tableRow: a table row proxy object. This object is of type jbo<RefStructType>TableRow
where <RefStructType> is the ABAP reference structure type defined in R/3 transaction
SE11.

Return Value

Exceptions
Throw JRfcRemoteException.

The index must be valid. That is, smaller than the total number of rows in the embedded table
parameter.

Related Information

Inserts a row to the table parameter at the given indexed position.

Syntax
void insertRow(int index, jbo<RefStructType>TableRow tableRow);

Parameters
index: an integer indicating the position where the new row is to be inserted.

None.

Description

The Table Parameter Classes [Page 97]

The Table Row Classes [Page 106]

104 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 updateRow

updateRow
Purpose
Updates an existing row in the table parameter at the given indexed position.

Syntax
 void insertRow(int index, jbo<RefStructType>TableRow tableRow);

Parameters
index: an integer indicating the position where the new row is to be inserted.

tableRow: a table row proxy object. This object is of type jbo<RefStructType>TableRow
where <RefStructType> is the ABAP reference structure type defined in R/3 transaction
SE11.

None.

Exceptions
Throw JRfcRemoteException.

The Table Row Classes [Page 106]

Return Value

Description
The index must be valid. That is, smaller than the total number of rows in the embedded table
parameter.

Related Information

April 2001 105

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

The Table Row Classes

The Table Row Classes
The table row classes work very much the same way as the structure parameter classes. Please
refer to The Structure Parameter Classes [Page 96] for description of naming conventions of the
field setter and getter functions for accessing the individual fields.

See an example of a table row proxy class for accessing individual fields of a table row in the
Java BAPI HTML Reference (in Com.sap.bapi.purchasereqitem.jbobapiebantablerow.html).

106 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 ABAP to Native Data Type Mapping

ABAP to Native Data Type Mapping

ABAP Data Type C++ Native Data Type

CHAR java.lang.String

INT4 java.math.BigInteger

INT2 java.math.BigInteger

INT1 java.math.BigInteger

NUMC java.math.BigInteger

PACK java.math.BigDecimal

LANG java.lang.String

CURR java.math.BigDecimal

CUKY java.lang.String

DATS java.lang.String

UNIT java.lang.String

TIMS java.lang.String

DEC java.math.BigDecimal

QUAN java.math.BigDecimal

ACCP java.lang.String

CLNT java.lang.String

FLTP java.math.BigDecimal

RAW byte[]

April 2001 107

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

The jboBase Class

The jboBase Class
This class is defined in jboBase.java.

This class is the base class from which all business object proxy classes are derived. This class
encapsulates attributes and functionality that are common to all business object proxy classes,
such as the object identification key, name, and type of the business object instances they
represented by the proxy.

getKey [Page 109]

Returns jboKey attribute for the business object proxy.

Construction
jboBase

The objects of this class are not intended to be directly instantiated by the
application program.

Operations

setConnection [Page 110]

Sets the com.sap.rfc.IRfcConnection object for this business object
proxy.

setKey [Page 111]

sets the jboKey attribute to the the jboKey value in argument.

108 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 getKey

getKey
Purpose
Returns the jboKey attribute for the business object proxy.

Syntax
jboKey getKey();

Parameters

Return Value
The jboKey attribute that contains the identification key of this business object.

None.

April 2001 109

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

setConnection

setConnection
Purpose
Sets the com.sap.rfc.IRfcConnection object for this business object proxy.

Syntax
void setConnection(IRfcConnection connection);

Parameters
connection: the IRfcConnection object to be used for this business object proxy for
communicating with its corresponding instance in R/3.

110 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 setKey

setKey
Purpose
sets the jboKey attribute to the the jboKey value in argument.

Syntax
void setKey(jboKey newObjectKey);

Parameters
newObjectKey: a jboKey object to replace the existing one in the business object proxy.

Return Value
None.

April 2001 111

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

The jboKey Class

The jboKey Class

jboKey

Objects of this class are not intended to be instantiated by the application
program

Returns the value of the specified keyfield.

getKeyfieldParameter [Page 114]

Sets the keyfield specified by the keyfield name with the value specified.

setKeyfield(with Isimple interface) [Page 116]

Sets the embedded simple parameter object with the one whose ISimple
interface is given.

This class is defined and implemented in jboKey.java.

This class encapsulates the identification key used for identifying instances of R/3 business
objects, and implements the logic for accessing the values of the keyfields.

Constructor

Operations
getKeyfield [Page 113]

Returns the ISimple interface to the embedded simple parameter object in the
keyfield object specified by the keyfield name.

setKeyfield(with keyfield name and value) [Page 115]

112 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 getKeyfield

getKeyfield
Purpose
Returns the value of the specified keyfield.

Syntax
String getKeyfield(String keyfieldName);

Parameters
keyfieldName: name of the keyfield whose value is of interest.

Return Value
A String object containing the value of the desired keyfield object.

April 2001 113

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

getKeyfieldParameter

getKeyfieldParameter
Purpose
Returns the ISimple interface to the embedded simple parameter object in the keyfield object
specified by the keyfield name.

Syntax
ISimple getKeyfieldParameter(String keyfieldName);

Parameters
keyfieldName: name of the keyfield whose value is of interest.

Return Value
A com.sap.rfc.ISimple interface to the desired keyfield object.

Description
This function returns the com.sap.rfc.ISimple interface to the keyfield object.

114 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 SetKeyfield (with keyfield name and value)

SetKeyfield (with keyfield name and value)
Purpose
Sets the keyfield specified by the keyfield name with the value specified.

Syntax
void setKeyfield(String keyfieldName, String keyfieldValue);

Parameters
keyfieldName: name of the keyfield whose value is of interest.

keyfieldValue: value to set to the specified keyfield.

Return Value
None.

April 2001 115

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

SetKeyfield (with ISimple interface)

SetKeyfield (with ISimple interface)
Purpose
Sets the embedded simple parameter object with the one whose ISimple interface is given.

Syntax
void setKeyfield(ISimple keyfield);

Parameters
keyfield: a com.sap.rfc.ISimple interface to a simple parameter object that would be set as
the embedded simple parameter object for this keyfield.

Return Value
None.

116 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 BAPI Beans

BAPI Beans
Introduction [Page 118]

The BAPI Beans Information Classes [Page 120]

April 2001 117

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Introduction

Introduction
This document is intended for Java programmers familiar with the concepts of JavaBeans and
component software, and the use of the Core Reflection API.

The Java BAPI Class Library consists of both proxy classes for the business object instances
that exist in the R/3 database, and wrapper classes that help make the use of parameters easier
when making BAPI calls. You can use the proxy classes of the Java BAPI Class Library (along
with their associated parameter wrapper classes), as JavaBeans, ready-to-use components that
form the building blocks of applications.

For example, you could place both the jboSalesOrder proxy class and the
jboSalesOrderBeanInfo JavaBean information class, and all of the required subclasses into
the JAR file, jboSalesOrder.jar, and use them in any JavaBean container application.

To fully understand how to use BAPI Beans and the associated descriptor classes, please see
the sample programs in the Java BAPI Class Library in the SAP Automation kit.

118 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 The BAPI Beans Class Hierachy

The BAPI Beans Class Hierachy

jboTableParameterDescriptor

jbokeyfieldDescriptor

jboSimpleParameterDescriptor

jboParameterDescriptor

jboStructureParameterDescriptor jboParameterContainerDescriptor jboBAPIDescriptor

ParameterDescriptior
jboSimpleInfo

Jbo<BusinessObject>BeanInfo

MethodDescriptior

FeatureDescriptiorSimpleInfo

ComplexInfo jboConstructorDescriptor

1..1

1..*

1..1

Legend

Java RFC Java BAPIJava Beans A B
A Contains B

A B
A Inherits from B

1..*

0..*

0..*

0..*

April 2001 119

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

The BAPI Beans Information Classes

The BAPI Beans Information Classes
Each BAPI Bean information class is based on a class in the Java Class Library. The Java Class
Library implements Java so that each business object's proxy class has a corresponding
JavaBeans information class. For example, the proxy class for the business object SalesOrder is
jboSales Order, and the corresponding JavaBeans information class is
jboSalesOrderBeanInfo (the jboSalesOrderBeanInfo class is derived from the
com.sap.bapi.jboBeanInfo class). The SAP R/3 System uses the information class as the
gateway to obtain detailed information about a BAPI Bean, including its properties, methods, and
features.

Unlike classes in the Java Class Library, BAPI Beans have no explicit properties. SAP has
implemented BAPI Beans so that a key consisting of several keyfields identifies each business
object instance, and the methods required are the BAPI methods themselves. SAP also has
implemented factory methods, such as those responsible for creating new instances of business
objects, as BAPI Beans. In addition, all of the simple, structure, import, export, and table
parameters associated with BAPI methods are implemented as BAPI Bean features, and all of
the constructors, keyfields, methods and parameters are described by JavaBean feature
descriptor classes. These classes are described below:

The jboBAPIDescriptor Class [Page 121]

The jboParameterContainerDescriptor Class [Page 122]

The jboConstructorDescriptor Class [Page 123]

The jboParameterDescriptor Class [Page 124]

The jboSimpleParameterDescriptor Class [Page 125]

The jboStructureParameterDescriptor Class [Page 126]

The jboTableParameterDescriptor Class [Page 127]

The jboKeyfieldDescriptor Class [Page 128]

Each member of these classes offers the following methods:

• getBAPIDescriptors

• getBeanDescriptor

• GetConstructorDescriptors

• GetKeyfieldDescriptors

• GetMethodDescriptors

For more information on these methods, please see the Java BAPI HTML Reference.

120 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 The jboBAPIDescriptor Class

The jboBAPIDescriptor Class
The jboBAPIDescriptor class is derived from the
java.lang.reflect.MethodDescriptor class and offers application programs access to all
the information available for the selected method. Each object belonging to the
jboBAPIDescriptor class describes a BAPI Bean method, and each of these methods
encapsulates a separate BAPI call. An application program can invoke a method either
separately or by using the java.lang.reflect.MethodDescriptor superclass.

The jboBAPIDescriptor class offers the following methods:

• getMethodType

• getParameterContainerDescriptor

• isClassMethod

• isInstanceMethod

For more information on these methods, please see the Java BAPI HTML Reference.

April 2001 121

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

The jboParameterContainerDescriptor Class

The jboParameterContainerDescriptor Class
The jboParameterContainerDescriptor class is derived from
java.beans.ParameterDescriptor. Each object in the
jboParameterContainerDescriptor class describes a container class for parameters.
Each of these container classes is, in turn, associated with a BAPI method and a BAPI Bean
constructor. An application program can use the jboParameterContainerDescriptor class
to obtain a list of objects that describes each parameter needed for making BAPI calls. This class
also offers application programs the ability to set parameter values indirectly via the Core
Reflection API.

The jboParameterContainerDescriptor class offers the following methods:
getBAPIParameters and getParameterContainerClass. For more information on these
methods, please see the Java BAPI HTML Reference.

122 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 The jboConstructorDescriptor Class

The jboConstructorDescriptor Class
BAPI Beans constructors are considered to be features; therefore, the
jboConstructorDescriptor class is derived from java.beans.FeatureDescriptor. An
application program can use objects belonging to this class to retrieve information about BAPI
Bean constructors. In addition, an application program can use the Core Reflection API to invoke
the constructors to fill automatically the BAPI parameters needed to construct BAPI Beans.

This class offers the following methods:

• getConstructor

• getParameterContainerDescriptor

• getParameterDescriptors

For more information on these methods, please see the Java BAPI HTML Reference.

April 2001 123

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

The jboParameterDescriptor Class

The jboParameterDescriptor Class
jboParameterDescriptor is the superclass of all other BAPI Beans parameter descriptor
classes. Since SAP considers BAPI parameters to be BAPI Bean features, this class is derived
from java.beans.FeatureDescriptor. Applications cannot directly use objects belonging to
this class: they can only use the derived parameter descriptor classes identified elsewhere in this
document. However, an application program can use the methods in this class to find the type of
the parameter object being described. In addition, a program can use the Core Reflection API
with this superclass to set values automatically to these parameters.

The jboParameterDescriptor class offers the following methods:

• getParameterClass

• getParameterType

• isSimple

• isStructure

• isTable

For more information on these methods, please see the Java BAPI HTML Reference.

124 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 The jboSimpleParameterDescriptor Class

The jboSimpleParameterDescriptor Class
The jboSimpleParameterDescriptor class describes simple parameter objects, which are
derived from com.sap.bapi.jboParameterDescriptor. Application programs can use this
class to retrieve information about the described simple parameter (contained in
com.sap.bapi.jboSimpleInfo class), and can set values to this parameter using the Core
Reflection API.

This class offers one method: getSimpleInfo. For more information on this method, please
see the Java BAPI HTML Reference.

April 2001 125

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

The jboStructureParameterDescriptor Class

The jboStructureParameterDescriptor Class
The jboStructureParameterDescriptor class describes structure parameter objects. This
class is derived from com.sap.bapi.jboParameterDescriptor. Application programs can
use this class to retrieve information about a structure parameter and the fields defined in the
com.sap.rfc.ComplexInfo class. In addition, programs can use this class to set values to
the specified structure parameter using the Core Reflection API.

This class offers these two methods: getComplexInfo and getReferenceStructureType.
For more information on these methods, please see the Java BAPI HTML Reference.

126 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 The jboTableParameterDescriptor Class

The jboTableParameterDescriptor Class
The jboTableParameterDescriptor class describes table parameter objects. This class is
derived from com.sap.bapi.jboStructureParameterDescriptor. Application programs
can use this class to retrieve information about a table parameter and all of the fields contained in
com.sap.rfc.ComplexInfo class. In addition, applications can use the
jboTableParameterDescriptor class to set values to a described table parameter by using
the Core Reflection API.

This class offers no methods.

April 2001 127

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

The jboKeyfieldDescriptor Class

The jboKeyfieldDescriptor Class
All items belonging to the jboKeyfieldDescriptor class describe keyfield objects. This class
is derived from the com.sap.bapi.jboSimpleParameterDescriptor. Application
programs can use the jboKeyfieldDescriptor class to retrieve information about any
keyfield described in the com.sap.bapi.jboSimpleInfo class. Applications can then use this
information to set values to the keyfield by using the Core Reflection API.

128 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Tracing Errors When Running the SAP Assistant

Tracing Errors When Running the SAP Assistant
Activating a Log File
Use
If you encounter errors when running the SAP Assistant, you can activate the Trace option, which
then produces a log file if errors occur.

Since the SAP Assistant is using several SAP Automation components, it is helpful to the SAP
Assistant development team to see the resulting log file for tracing the error to the component
producing the error.

Procedure
1. Choose View Options.

2. Choose the Trace tab.

3. Choose between the Log Errors Only and the Log Errors and Messages. Also specify the
name of the log file and its path.

Result
If errors occur, report them through SAPNet, and attach the log file produced by the trace tool.

Checking Version and Location of Underlying Components and
DLLs
Use
In addition to activating the log file, you can verify that the major underlying components and
DLLs for the SAP Assistant exist, and that they are of the correct version.

Procedure
1. Choose Help About.

2. View the list of components and DLLs in the edit box in the About SAP Assistant dialog.

The list includes the DLL or component name, followed by a colon, followed the full path
to the component or DLL file, then followed by a version number.

If the line for the component (or the DLL) does not include those details, you may be
missing the component. Try re-installing the SAP Assistant.

3. Also copy the text within the text box and include it in your error report in SAPNet.

April 2001 129

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

SAP Automation ActiveX (OCX) Controls

SAP Automation ActiveX (OCX) Controls
The SAP Automation ActiveX controls discussed here use Remote Function Call (RFC) to
execute calls to the R/3 System. These controls provide objects that allow the programmer to
manage function calls from desktop applications for working with RFC functions, R/3
transactions, and R/3 table data.

130 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Summary of ActiveX Controls

Summary of ActiveX Controls
The SAP Automation OCX controls run on Windows 95 and Windows NT.

The following table describes some of the SAP Automation OCX controls that are documented
here. Follow the link to see the detailed documentation of each control.

Tool Function

Logon
Control
[Page 462]

Creates a connection object that enables COM-compliant programs to log
onto R/3.

The Logon method of the connection object establishes a connection to R/3. It
provides the option to suppress the display of the standard SAP Logon dialog
box to the user, so that you could provide your own logon dialog (for example,
if you wish to specify the logon system or account programmatically.)

Function
Control
[Page 155].

Provides objects (functions collection, function, logon, tables, table, exports,
export, imports, import, parameter types, and so on) to call function modules
(RFCs) on an R/3 System.

Table
Factory
Control
[Page 300]

(Also called
Table
Control)

Works with the Function control to manage tables attached to Function objects.
In addition, the Table Factory encapsulates Table objects for easier access by
the client application.

Table View
Control
[Page 389].

Allows on screen viewing of an internal table (see Table Control) from R/3’s
RFC library in a spreadsheet format.

Table Tree
Control
[Page 216]

Allows displaying and management of tables (see Table Control) that contain
hierarchically structured data (trees of parent nodes and their children) visible.
Table Trees allow the programmer and user to manage tables containing
directory trees.

Transaction
Component

(Also called
Transaction
Control
[Page 191])

Provides screen and field object management, so a user can remotely call R/3
transactions or use them in programs.

Exposes R/3 batch input capability (BDC) to COM-compliant programs and
applications. This means that the external program can send input field values
to an R/3 screen, but output field values are not returned.

Makes using batch input easier to COM-compliant programs by eliminating
the need to populate the fields of the BDC table, which is a prerequisite to
using the standard R/3 batch input method.

April 2001 131

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Summary of ActiveX Controls

BAPI
ActiveX
Control
[Ext.]

Allows you to develop external client/server applications (with R/3 as a server)
that access business functions in the SAP System by calling BAPIs (Business
APIs) through OLE Automation.

Achieves this by allowing you to create (on the client) local instances of
business objects, which act as proxy objects for the business object in the SAP
system.

The meta information required from the R/3 System is retrieved dynamically at
runtime.

SAP DCOM Connector-based Components
The following SAP Automation components use the SAP DCOM Connector:

Tool Function

DCOM
Connector
Logon
Component
[Ext.]

Helps programs using the SAP DCOM Connector in handling the connection
parameters of COM objects created by the DCOM Connector.

The DCOM Connector Logon Component provides a Logon dialog with which
you can get the necessary connection parameters from an end user.

The DCOM Connector Logon Component also allows you to easily copy
connection parameters into a DCOM Connector COM object.

Repository
Services
[Ext.]

Provides read access to the metadata of business objects and RFC function
modules in an R/3 system to COM-compliant programs and applications.

Also allows you to save a copy of the metadata in a local database and then
access the data offline.

Repository
Browser

(Also called
the SAP
Browser
Control
[Page 507])

A control that can be hosted by any ActiveX container. It consists of a window
with two panes for browsing SAP BAPI and RFC metadata information. (See
the SAP Assistant screen [Page 25]: it uses the SAP Browser control)

Allows online calling of RFC functions from within the control.

Also exposes several methods to enable the container application to control
and automate metadata browsing.

Allows you to export properly formatted metadata information to MS Excel.

BAPI
Gateway
[Ext.]

Allows you to dynamically call BAPIs and RFCs through the DCOM
Connector, that is, it allows you to determine at run time which BAPIs or RFCs
you call.

Eliminates the need to use the SAP DCOM Connector wizard for creating the
BAPI component.

Use the SAP Automation Repository Services component [Ext.] to obtains the
metadata for the BAPIs or RFCs you wish to call at run time.

Relationship Between the Controls and SAP Assistant
Older versions of SAP Assistant have used several of the ActiveX controls described in the first
table above.

132 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Summary of ActiveX Controls

SAP Assistant Uses the SAP DCOM Connector
The SAP Assistant product currently uses the SAP DCOM Connector, and it therefore now uses
the above DCOM Connector-based components.

The SAP Assistant product uses the Repository Services component to read metadata of RFCs
and BAPIs from the SAP System. It uses the SAP Browser control to display the BAPIs and
RFCs and their details. Both the Repository Services component and the SAP Browser Control
are now using the SAP DCOM Connector.

The SAP Assistant uses the BAPI Gateway and the DCOM Connector Logon Component in
place of the following controls:

DCOM-Compatible Component
(Currently Used by SAP Assistant)

Replaces ActiveX Control(s)
In SAP Assistant

BAPI Gateway [Ext.] Function Control, BAPI ActiveX Control

DCOM Connector Logon Component [Ext.] Logon Control

If you are developing new applications that use DCOM and the SAP DCOM Connector, we
recommend that you, too, use these components.

April 2001 133

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Possible Uses for OCX Controls

Possible Uses for OCX Controls
The following table lists some possible applications of OCX controls.

Program Possible Use Server Client

MS Excel 5 Upload planning data, download report data. √ √

MS Project 4 Control purchasing schedules. √ √

Visio View business process flows. √ √

MS Word 6 Use spellcheck. √

Powerbuilder MS
Access 2 Borland
Delphi

Build database front-ends, use programming
language of choice.

 √

√

√

134 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Using the SAP Automation ActiveX Controls

Using the SAP Automation ActiveX Controls

April 2001 135

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Summary of Programming Tasks

Summary of Programming Tasks
Your program’s overall goal is to call a function in the R/3 System, sending data as input to the
function and receiving data as return values. In the Function Control, sending and return
parameters are presented as further objects contained in the Function object.

Any application using OLE Automation must perform the programming tasks listed below. You
should perform the first three steps for both methods of remote call access:

1. Create the base-object - the component itself.

2. Supply connection and logon information.

3. Open a connection to the R/3 System and log the user on.

If you are making non-dynamic remote function calls, continue as follows:

4. Request a Function object for the R/3 function you want.

5. Set the export and table parameter values.

6. Make the remote call.

7. Get the return values from the import and table parameters.

If you are making dynamic remote function calls, do not add the function to the functions
collection, but write the function call like a native (local) VB function:

4. Create table or structure objects to place data into to pass data with the table parameters
or structure parameters.

5. Invoke the function from the functions collection object.

6. Pass parameters to the named argument such as:

Xfunc (X1: = 5, X2: = nVar, X3: = objVar)

where X1, X2, and X3 are the argument names in the function interface.

Parameters can be either simple variables or object variables.

The following sections show how to program these tasks.

Example Application with the Function Control [Page 137]

Variation using the Dynamic Calling Convention [Page 139]

136 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Example Application with the Function Control

Example Application with the Function Control
This example application demonstrates almost all the objects discussed and several of their
properties and methods. The application gets a list of customers from the R/3 System and prints
attributes for each customer (for example, name and ZIP code). The function interface is:

RFC_CUSTOMER_GE
T

IMPORT Name
(NAME1)

 IMPORT Customer-Number
(KUNNR)

 TABLES CUSTOMER_T (RFCKNA1)

This function uses selection criteria (name and customer number) to retrieves a set of customers,
as in the SQL query:

 select * from CUSTOMER_T where NAME1=Name

 and KUNNR=Customer Number

The table has the following structure (all fields are of type RFC_CHAR):

Customer Table Structure:

KUNNR

ANRED

NAME1

PFACH

STRAS

PSTLZ

ORT01

TELF1

TELFX

The following example accesses the remote function by adding Function objects to the Functions
collection object:

Declare object variables:
Dim Functions as Object

Dim GetCustomers as Object

Dim Customers as Object

Create the Function control (that is, the high-level Functions collection):

Set Functions = CreateObject (“SAP.Functions”)

Indicate what R/3 System you want to log on to:

Functions.Connection.Destination = “B20”

Set the rest of Connection object values:

April 2001 137

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Example Application with the Function Control

......

Log on to the R/3 System:
Functions.Connection.Logon

if Functions.Connection.Logon (0, True) <> True then

 MsgBox “Cannot logon!”

End If

Retrieve the Function object (the Connection object must be set up before Function objects can
be created):
Set GetCustomers = Functions.Add(“RFC_CUSTOMER_GET”)

Set the export parameters (here, get all customers whose names start with J):
GetCustomers.Exports("NAME1") = “J*”

GetCustomers.Exports("KUNNR") = "*"

Call the function (if the result is false, then display a message):
If GetCustomers.Call = True then

There are two ways of accessing the table:

 Set Customers = GetCustomers.Tables(1)

 Set Customers = GetCustomers.Tables(“Customers”)

 Print Customers (Customers.rowcount, “KUNNR”)

 Print Customers (Customers.rowcount, “NAME1”)

Else

 MsgBox “Call Failed! error: “ + GetCustomers.Exception

End If

Functions.Connection.Logoff

A variation of this code can be used for dynamic calls. See Variation using the Dynamic Calling
Convention [Page 139].

138 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Variation using the Dynamic Calling Convention

Variation using the Dynamic Calling Convention
Although dynamic calling looks different from non-dynamic calling, it performs the same function.
The code is the same as that shown in Example Application with the Function Control [Page 137]
until the logon process is complete. Then, you call the function with parameter “NAME1”:

Functions.RFC_CUSTOMER_GET (Exception, NAME1:=“J*”, KUNNR:="*",
CUSTOMER_T:=Customers)

The customers table retrieved by the function is copied into the Customers variable. This
technique makes the code a little easier to read, but takes slightly more time to process.

April 2001 139

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Creating the Base-level Control

Creating the Base-level Control
Controls are usually made up of collections of objects. For example, the Function control
contains Function objects, and the Transaction control contains Transaction objects. The highest
level of a control - the base-level control - is either an actual collection object (like the Functions
collection object) or a single control object (like the Table Factory object).

Controls also maintain some properties or objects common to all their sub-objects. Examples are
the R/3 Connection (an object shared by all Functions or Transactions in a collection) or the
Count property (the number of objects in a collection).

To create the base-level control, you use the CreateObject function and a fixed request string.
This string specifies the kind of control (i.e. “SAP.TableFactory.1”) and causes creation of the
relevant base-level object. For example:

transactionsOCX = CreateObject(“SAP.Transactions”)

For the SAP OCX controls, the fixed strings are:

CreateObject String

OCX control Highest (base-level) object Fixed String

Function control Functions collection object “SAP.Functions”

Transaction control Transactions collection object “SAP.Transactions”

Logon control Logon object “SAP.LogonControl”

Table Factory control Table Factory object “SAP.TableFactory”

Table View control Table View object “SAP.TableViewControl”

Table Tree control Table Tree object “SAP.TableTreeControl”

For more information, see SAP Control Base Classes [Page 144].

140 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Connecting to an R/3 System

Connecting to an R/3 System
For applications using the SAP DCOM Connector, use the SAP Automation DCOM
Connector Logon Component to handle the connection to R/3 systems. Using this method
requires only that you fill out the logon properties of the COM object. You do not need to
actively establish a connection to R/3. The connection is established automatically whenever
needed based on the logon properties of the COM object.

•

To learn more on how to obtain the data for the logon properties, see the help for the
SAP Automation DCOM Connector Logon Component [Ext.].

COM-compliant programs who do not use the SAP DCOM Connector can use the Logon
Control, documented here. Note that the Logon Control is an older component in the SAP
Automation suite of products [Ext.].

•

April 2001 141

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Performance and Debugging Tips

Performance and Debugging Tips
The following sections describe techniques you can use to improve the performance and reduce
debugging time for your applications.

Avoiding Unnecessary Object Creation
Application objects and all collection objects are created dynamically when your code makes a
reference to one of them. These objects are temporary and are destroyed when no more
references to them exist. As a result, multiple accesses to one of these objects can affect
performance. To avoid this problem, assign the object to an object variable of your own and then
make the accesses.

You can improve the code

 GetFunct.Exports(“P1”)

 GetFunct.Exports(“P2”)

 GetFunct.Exports(“P3”)

 GetFunct.Exports(“P4”)

 GetFunct.Exports(“P5”)

by changing it to
 set MyExports = GetFunct.Exports

 MyExports(“P1”)

 MyExports(“P2”)

 MyExports(“P3”)

 MyExports(“P4”)

 MyExports(“P5”)

In the first section of code, five temporary collection objects are created, and each is
destroyed after a single statement. In the second section, only one temporary object
is created. (This object is not destroyed after the first statement, because the other
statements still refer to it.)

Tracing RFC Calls
You can request a trace of connection activity as the RFC call executes. The TraceLevel property
in the Connection object lets you specify tracing. Possible values are 0 (tracing not requested)
and 1 (tracing requested).

The activity information is logged in a file “RFC<random number>.TRC” located in the active
default directory.

The Functions collection and Transactions collection objects also provide logging functionality
with the LogFileName and LogLevel properties.

142 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Performance and Debugging Tips

Note on Embedded Property Calls
When coding your application, you should be aware that client languages may execute certain
kinds of statements differently. Of particular importance is whether or not your language performs
cascaded evaluation in the form of statements like:

MyFunct.Exports(“P1”).Value(“F1”)

This statement requires the language to first call the Exports property for MyFunct. When a
Structure object is returned, you call the Value property on the Structure object.

Some languages do not perform full evaluation of statements. They evaluate the first call (the
Exports property), but do not evaluate the returned value (a Parameter or Structure object) to call
the next property (Value method) on it. As a result, you get the wrong object returned, and
eventually a runtime error.

The Excel macro language executes the above statement correctly, but Visual Basic 3.0 does
not. However, almost all interpreters fail to evaluate statements correctly when a default function
is left implicit:

GetFunct.Exports(“P1”)(“F1”)

Note on Default Property Calls
Some languages do not evaluate the default value property. In this case, the default value
property must be explicitly specified:

MyFunct.Exports(“P1”) ‘ Does not work.’

MyFunct.Exports.Item (“P1”) ‘ OK’

April 2001 143

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

SAP Control Base Classes

SAP Control Base Classes

144 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 SAP Standard Collection

SAP Standard Collection
All active OLE controls containing collections within an SAP system are implemented according
to common conventions. As long as a collection is not explicitly declared as a non-standard
collection, the following description applies to the collection. However, not all properties and
methods mentioned below are available with every collection.

The lower bound index for all collections is 1.

For hints on using collection objects, see Using Collection Objects [Page 148].

Standard Collection Properties
Nam
e

Parameter Type Description

Coun
t

void Long Returns the number of objects stored in the
collection.

Item Variant vaIndex Obje
ct

Returns an object according to vaIndex. Item is
always the default property.

Standard Collection Methods
Name Parameter Return Type Description

Add Object
dependent

Object Adds a new object and returns the
new object.

Insert Variant vaIndex

Object
dependent

Object Inserts a new object at position
vaIndex and returns the new object.

Remove Variant vaIndex Boolean Removes the object at position
vaIndex.

RemoveAll void Boolean Removes all objects from the
collection.

UnLoad Variant vaIndex Object Unloads the object at position
vaIndex.

Detailed Description
Object Item(Variant vaIndex)
The item method returns an object from the collection. The parameter vaIndex identifies the
position of the object to be returned. The type of this parameter depends on the object. It may
describe the position where the object can be found, either as a simple integer value, or as a
string value (as described in Named Collections [Page 147]), or in any object-dependent variant
data type. In the following sections, the valid types are described for each collection.

Object Add (…)
The parameters for the Add method depend on the object. These parameters are used to
initialize the new object. Add always returns the new object.

April 2001 145

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

SAP Standard Collection

Object Insert(Variant vaIndex,…)
The parameters for the Insert method depend on the object. These parameters are used to
initialize the new object. Insert always returns the new object. The first parameter of the Insert
methods always describes the position where to insert the new object (the new object is always
inserted in front of the position described by vaIndex). The type of this parameter is object-
dependent. It may describe the position where to insert the new object, either as a simple integer
value, or as a string value (as described in Named Collections [Page 147]), or as an Object which
is already part of the collection. Nevertheless, the indexing parameter always has the same
meaning as the indexing parameter of the default property Item [Page 287].

Boolean Remove(Variant vaIndex)
This method removes an object from its collection. The parameter vaIndex identifies the position
of the object to be returned. The type of this parameter depends on the object. It may describe
the position where to insert the new object, either as a simple integer value, or as a string value
(as described in Named Collections [Page 147]). Nevertheless, the indexing parameter always
has the same meaning as the indexing parameter of the default property Item [Page 287].

When removing an object from the collection, the object becomes invalid. Any
further attempts to work on the object return an Invalid Object Exception. Use
UnLoad if the object should be removed from the collection for further use.

Object UnLoad(Variant vaIndex)
This method unloads an object from its collection. The parameter vaIndex identifies the position
of the object to be returned. The type of this parameter depends on the object. It may describe
the position where to unload the object, either as a simple integer value, or as a string value (as
described in Named Collections [Page 147]). Nevertheless, the indexing parameter always has
the same meaning as the indexing parameter of the default property Item [Page 287].

146 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 SAP Named Collection

SAP Named Collection
Named collections are derived from SAP Standard Collections [Page 145] and may always work
with strings as indexing parameters for methods like Item, Insert, Remove and UnLoad. Objects
within a named collection always have a Name property which stores the indexing name. The
name describing an object in a named collection does not have to be unique. If a name is used
frequently, Item, Insert, Remove and UnLoad always use the first object with the given name.

Further features of named collections are dynamic properties, created as a result of the objects’
names. Instead of invoking the Item property, an object may also be returned if the name of the
object is used as property.

Dim oObj as Object

‘ Add a new empty object

Set oObj = NamedCollectionObject.Add ()

‘ Assign name

oObj.Name = “ItemB”

‘ Add object an pass name as parameter.

Set oObj = NamedCollectionObject.Add (“ItemC”)

‘ Insert object in prior to object “ItemB”

Set oObj = NamedCollectionObject.Insert (“ItemB”,“ItemA”)

‘ Accessing the object

‘ Retrieve second object through index

Set oObj = NamedCollectionObject.Item(2)

‘ Retrieve second object through name

Set oObj = NamedCollectionObject.Item(“ItemB”)

‘ Retrieve second object through dynamic property

Set oObj = NamedCollectionObject.ItemB

For more information about collection objects, see Using Collection Objects [Page 148].

April 2001 147

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Using Collection Objects

Using Collection Objects
The SAP Assistant defines several collection object types. Collection objects gather all objects of
a given type into a list. For example, all Function objects for a given control are gathered together
in the Functions collection object representing that control.

A collection object provides list–oriented functions for accessing list objects, adding and
removing from the list, looping through the list, and so on.

Loop through a Rows collection object:
For Each Customer in Customers.Rows

 print Customer (“NAME”)

Next Customer

148 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 SAP Data Object

SAP Data Object
The SAP Data Object is a special object for purposes of data transport. This object is used in
drag and drop [Page 274] and clipboard operations. The SAP Data Object implements an
automation and an IDataObject interface. The IDataObject interface is a standard OLE interface
for data object manipulation. The automation interface displays the following methods:

Name Parameters Return
Type

Description

GetData Long

Variant

cfFormat

vaData

void Retrieves data from
the data object in
the specified format

SetData Long

Variant

cfFormat

vaData

void Stores data in the
data object in the
specified format

IsFormatAvailabl
e

Long cfFormat Boolean Returns TRUE if the
data object contains
data in the specified
format

SetData may specify a format which is not initially cached in the data object. Since
the data object does not interpret the data in any way, the data may be of any
clipboard format. The variant data type must be any data type which is transportable
to other processes. Therefore, object may not be stored in the data object.

Valid formats are: char, short, long, String, Date, Time, Boolean and safe arrays of these types.

Sub DragSourceFill(DataObject As Object)

Dim cfFormat As Long

Dim Data As String

cfFormat = RegisterClipboardFormat(“MyClipFormat”);

Data = “This is my personal string”

DataObject.SetData(cfFormat,Data)

Sub End

Sub Drop(DataObject As Object)

Dim cfFormat As Long

Dim Data As String

April 2001 149

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

SAP Data Object

cfFormat = RegisterClipboardFormat(“MyClipFormat”);

if DataObject.IsFormatAvailable(cfFormat) then

DataObject.GetData(cfFormat,Data)

MsgBox(Data)

end if

Sub End

150 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Safe Arrays and Values

Safe Arrays and Values
If an SAP object returns data as a safe array, the object always has the property Data. This
property usually returns a two-dimensional safe array with a lower bound index of 1 for each
dimension. An example of a Data property would be the entire content of a table or the entire
content of a row or column in a table. Single date like the content of a cell in a table is always
returned as a Variant. The corresponding property is always called Value. If an object
implements a Value property, this property is the default property.

April 2001 151

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Font Objects

Font Objects
Font Properties:

Table Caption

Name Type

Name String

Size Currency

Bold Boolean

Italic Boolean

Underline Boolean

StrikeThrough Boolean

Weight Short

CharSet Short

For more information, see the VBA help on font objects.

152 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Data Types

Data Types
The following are the available data types:

Table Caption

Types in Help File VBA Data Type C++ Data Type

Char Byte (By Val) unsigned char

Short Integer (By Val) short

Long Long (By Val) long

String String (By Val) BSTR

Boolean Bool (By Val) VT_BOOL

Object Object IDispatch *

Short* Integer short*

Long* Long long*

String* String BSTR*

Boolean* Bool VT_BOOL*

void Method does not return a value void

Array of type (1, n) of Type VT_ARRAY | VT_Type

April 2001 153

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

SAP Automation ActiveX Controls

SAP Automation ActiveX Controls

154 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 The Function Control

The Function Control
The Function control is an OCX control that makes remote function calls to the R/3 System. It
handles parameters comfortably, makes the calling of functions easy and passes results back to
the OLE client (VB, VBA, and others) rapidly.

Introduction

Introduction [Page 156]

Function Control Object Hierarchy [Page 157]

Control and Object Reference

Function Control [Page 158]

Functions Collection Object [Page 167]

Function Object [Page 173]

Exports Collection Object [Page 178]

Imports Collection Object [Page 181]

Structure Object [Page 184]

Parameter Object [Page 188]

April 2001 155

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Introduction

Introduction
In the R/3 System, a function is a unit of ABAP code, including any associated tables, export
parameters, or import parameters. The Function control is an OCX control that makes remote
calls to deliver R/3 System functionality to external programs.

If you want to call a function in the R/3 System, you use the Function control to set up the
necessary environment. The Function control acts as a container for a Function collection object
and its Function objects. Therefore, before you create other types of objects, first create a
Functions collection object.

The Function control retrieves information about the function to be called from the R/3 System.
You then set parameter values for the function using normal OLE automation techniques.

When it is time to call the function, the control assembles all the data needed by the RFC library
and initiates the call. After the call, return parameters are unpacked and returned to the calling
program.

156 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Function Control Object Hierarchy

Function Control Object Hierarchy
The object hierarchy for the Function control is as follows:

ImportsExports Tables

Connection

ParameterStructure

Function

Named Object Table

Logon Control

Table Control

Function
Control SAPFunctions

April 2001 157

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Function Control

Function Control
To use a Function control, you must:

• create the Function control

To do this, call CreateObject(“SAP.Functions”). A Functions collection object is
created automatically.

• establish a connection to an R/3 System

To establish a connection, you must create a Connection object. You can do this either
directly from the Functions collection object, or using a Logon control. Once the
Connection object is created, you can use it to logon to the R/3 System.

• add a Function object to the list (or call the function immediately)

158 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Using the Function Control

Using the Function Control
After creating the Function control, you have to tell it about its connection to the R/3 System.
Then, you can start adding Function objects and calling RFCs. The Function control base-class is
the Functions collection object. You add and remove functions by using the Add and Remove
methods.

Once a function has been added, you can assign parameter values and call it. The Call method
of the Function object returns a Boolean value that tells you whether the call executed with no
problems. Use the Exception property of the Function object to get more information on any
errors. If you have problems calling RFCs, consult the LogFileName and LogLevel properties of
the Function control’s base-class (the Functions collection object). These properties provide
more information for trouble-shooting.

The following code creates the Function object, sets a connection, sets parameters, and calls the
function.
‘ Create the component.

Dim functions As Object

Set functions = CreateObject (“SAP.Functions”)

‘ Set the connection.

Set functions.Connection = conn

‘ Add (retrieve) function from R/3.

func = Functions.Add (“RFC_CUSTOMER_GET”)

‘ Set a parameter.

func.Exports (“NAME1”) = “ACME Steel”

‘ Call the function.

If Func.Call <> True then

 MsgBox “Call Failed. Exception “ + func.exception

End If

For more information, see:

Requesting Functions [Page 160]

Adding a Function [Page 161]

Setting Parameter Values [Page 162]

Viewing Table Objects [Page 163]

Using Parameter and Structure Objects [Page 164]

Using Named Argument Calling Conventions [Page 165]

April 2001 159

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Requesting Functions

Requesting Functions
You must get a Functions collection object in order to access all other objects. Each Functions
collection contains one Connection object. If your application needs to access data from multiple
R/3 Systems, you must create a separate Function control for each system. Each of these
components has its own Connection object.

160 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Adding a Function

Adding a Function
Both ABAP function modules and their separate parameters are represented by the object types
Function, Parameter, Structure, and Table. You must get the Function object explicitly in order to
be able to access the other object types. The Function control adds each function requested to
the Functions collection.

April 2001 161

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Setting Parameter Values

Setting Parameter Values
Before calling an RFC function, you must set export and table parameter values. Depending on
the ABAP function definition, you may not have to use all the formal variables specified in the
interface. If you don’t specify a value for a parameter, it is not sent with the call.

• To set values for import/export parameters defined as simple fields, use the Parameter
object and its property functions.

• For import/export parameters defined as structures, use the Structure object and its
properties to access individual fields.

• To set values for table parameters, use the Table, Rows and Row objects (and their
properties) to access individual table rows and fields.

If the control cannot convert between ABAP data types and your variable data types, it sends an
error message as soon as you fill the parameter.

For information about handling export and import parameters, see Using Parameter and
Structure Objects [Page 164].

For information about handling table parameters, see Viewing Table Objects [Page 163].

Handling parameter objects
RFC objects “depend” on the parent object that contains them. If you assign the object to an
object variable, the variable shares the object with the containing parent object.

After the statement
Set ObjVar = FunctionsOCX (“RFC_PING”)

ObjVar and FunctionsOCX (“RFC_PING”) point to the same object. This is
important because if you remove the object (or its parent) from the relevant
collection, you invalidate the contents of the object variable.

In this example, if you remove Funct1 from its Functions collection, the variable
ObjVar becomes invalid.

There are two exceptions to this rule:

• Table objects that have been detached (“unloaded”) from their parent Function objects,
making the Table control the Table’s new parent. For more information, see Viewing
Table Objects [Page 163].

• Collection objects that have been assigned to object variables.

Both of these become independent of the containing Function object. By contrast, you cannot
detach Export/Import objects in this way. In addition, Table objects that are simply assigned
(rather than unloaded) to a variable also remain shared.

Table and Structure objects are always independent of the Function objects when a remote
function is called directly because there is no Function object created externally.

162 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Viewing Table Objects

Viewing Table Objects
When setting values for table parameters:

• To access fields in a row, use the Table.Item and Row.Value properties.

• To process table rows as units, use the Table.Rows property to loop through all rows, or
the Table.Item property for direct access to a single row.

You use the Row object to retrieve column information in the Table object. Do not attempt to use
the Structure object methods on table rows; the Structure object is only for use with objects from
the Exports and Imports collections.

If you assign a row to a object variable, and then delete either the Table object from
the Tables collection object, or the row from the table (using the any of the
RemoveRow, DeleteTable, or FreeTable methods), you invalidate the contents of the
target object variable.

To avoid this problem, detach Table objects from the Function object. The table
component provides the methods to unload and set for detaching and reattaching
tables. A Table object unloaded to an object variable is no longer shared with the
Function object. However, Table objects that are simply assigned (rather than
unloaded) to a variable remain shared.

April 2001 163

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Using Parameter and Structure Objects

Using Parameter and Structure Objects
If you want to access fields in an export/import parameter defined as a structure, use the
following:

1. Assign the parameter to an object variable:

set StructObj = MyFunct.Exports(“Employee_Struct”) OR

Set FieldObj = MyFunct.Exports(“Company_Number”)

2. Use either Parameter or Structure functions on the variable, depending on whether the
parameter is defined as a field or structure:

StructObj.Value(“Name”) = “Smith” OR

FieldObj.Value = “1234”

Structure objects are provided only to perform operations on export and import parameters. Do
not attempt to use the methods and properties for this object type with table rows.

Structure and Parameter objects are fundamentally different from the other object types. They
are not maintained in their own collection lists, and do not occur in any other object type as a
property or method. As a result, expressions of the form

MyFunction.Structure.Value(“field-name”) OR

MyFunction.Parameter.Value

are not valid and result in runtime errors.

To get information on a parameter’s structure definition, use the online Assistant.

164 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Using Named Argument Calling Conventions

Using Named Argument Calling Conventions
Since named argument calling conventions do not have qualifiers to distinguish the import
parameters from the export parameters like the calling conventions used in ABAP, you must be
aware which is the import parameter and which is the export parameter. From a caller’s point of
view, you can use either variables or constants for exporting parameters. However, you can only
use variables for importing parameters so that the variables can store the returned data.

From the caller’s point of view, if the exporting parameter is a structure and you want to pass
data to this parameter, you must first create a Structure object using the CreateStructure method
of the Functions collection and fill data in the Structure object. If the import parameter is a
structure, you can pass any variable to receive the returned Structure object. There is no need to
create Structure objects yourself.

If you only want to retrieve data in table parameters, you can use any variable. There is no need
to create Table objects yourself. The remote Function object creates the Table objects and stores
them in your variables. If you want to pass data to the table parameters, you must first create a
Table object in the table component and assign data to the able object. Then, you can pass the
table object to the table parameter.

The following example illustrates these two scenarios.

For the remote function interface:
xFunc

 Importing IP LIKE TP-IP

 SIP LIKE SX STRUCTURE SX

 Exporting EP LIKE TP-EP

 SEP LIKE SY STRUCTURE SY

 Tables TP STRUCTURESZ

If you only want to retrieve data, the following VBA code illustrates the calling
statement.

Call the xFunc remote function:
R3.xFunc IP:= 1, SEP:= objStruct, EP:= nVar, TP:=objTable

where objStruct, nVar, and objTable can be uninitialized.

If you want to pass data to the table parameter and the export parameter with the
structure type, the following VBA code illustrates the calling statement:

Create a Structure object with structure type “SX”:

set objMyStruct = R3.CreateStructure(“SX”)

Create a Table object with table structure type “SZ”:

set objTable = R3.CreateTable(“SZ”)

Fill in data for objMyStruct and objTable here:

...

April 2001 165

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Using Named Argument Calling Conventions

Call the xFunc remote function:
R3.xFunc IP:=1, SIP:= objMyStruct, EP:= nVar, SEP:= objStruct,
TP:=objTable

166 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Functions Collection Object

Functions Collection Object
The Functions collection object manages the resources needed to make function calls to an R/3
System. These resources include Function objects and a single Connection object. You must get
a Connection object and log onto the R/3 System before requesting new Function objects.

The Functions collection object is implemented as an SAP standard collection object. For
information on SAP collection objects, see: SAP Standard Collection [Page 145].

Properties [Page 168]

Methods [Page 169]

April 2001 167

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Functions Collection Properties

Functions Collection Properties
The Functions collection object has the following properties:

Functions Collection Properties

Name Parameters Return Type Description

Connection VT_DISPATCH Returns or sets the Connection object. If
no Connection object exists, a new one is
created. See the Connection Object [Page
490]. Read/write.

Count VT_I4 Number of Function objects in the list.
Read-only.

LogFileName VT_BSTR The log file name. Read/write.

LogLevel Level VT_I4 Returns or sets the current log-level. Level
is a VT_I2 with the values 0-9 (where 0
means no log information, and 9 means full
information). Read/write.

For information on SAP collection objects, see: SAP Standard Collection [Page 145].

168 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Functions Collection Methods

Functions Collection Methods
The Functions collection object has the following methods:

Functions Collection Methods

Name Parameters Return Type Description

Add FunctionName VT_DISPATCH or
VT_EMPTY

Creates a Function object and adds it
to the collection. If successful, returns
the Function object interface. The
‘FunctionName’ parameter is required
and is a string (VT_BSTR).

Item Index VT_DISPATCH Returns a Function object from the
collection. The ‘Index’ parameter is
required and may be a string
(VT_BSTR) or an integer (VT_I4).

Remove Index VT_EMPTY Removes a Function object from the
collection. Uses an indexing argument
in the same way as the Item method.

RemoveAll VT_EMPTY Removes all Function objects from
the collection.

For information on SAP collection objects, see: SAP Standard Collection [Page 145].

April 2001 169

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Connection Object

Connection Object
The Function control uses a Connection object to connect to the R/3 System. Only one
Connection object can be associated with a Functions collection. You must log on with the
Connection before any new Function objects can be requested.

You can create the Connection object through the Functions collection, or you can acquire it from
a Logon control. The Logon control [Page 458] provides a Connection object through its
NewConnection [Page 488] method.

Connection objects can be shared by multiple Function controls. Every Connection object
continues to exist as long as there is any control that refers to it.

The following code examples illustrate two ways to create Connection objects:

• Connecting through a Logon Control [Page 171]

• Setting the Connection Implicitly [Page 172]

To create functions and call them in an R/3 System, you first have to establish a connection.
(Function definitions are retrieved from the R/3 System.)

170 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Connecting through a Logon Control

Connecting through a Logon Control
The following code shows how to set a Connection object directly through the Logon control.

Code Comment
Set LogonOCX = CreateObject

 (“SAP.LogonControl”)

Creates a Logon control.

Set fns.Connection =

 LogonOCX.NewConnection
Creates a new Connection object and sets it
in the Functions collection object.

Set fns.Connection.User = “Csmith” Provides logon information to the R/3
System.

...
fns.Connection.Logon (0,True) Silent logon.

April 2001 171

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Setting the Connection Implicitly

Setting the Connection Implicitly
The following code shows how to set a Connection object implicitly from inside the Functions
collection.

Code Comment
Set Conn = RfcObj.Connection Gets the Connection object using the Connection

method of the Functions collection.

Conn.User = “CPIC” Assigns a user name.

Conn.Password = “test” Assigns a password.

...
Conn.Logon(0,False) Opens the connection.

172 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Function Object

Function Object
A Function object calls an RFC function, bundles parameters and makes results available. You
can call a function in two ways, with the Call method or the Dynamic Function Call [Page 174]
method.

Properties [Page 175]

Methods [Page 177]

April 2001 173

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Dynamic Function Call

Dynamic Function Call
Dynamic function calls allow you to treat R/3 function modules as if they were methods of a
Function collection. For example:

result = <FunctionOCX>.RFC_CUSTOMER_GET (Name1 = “JOHN*”)

Creation of a Function object for the function is delayed until the R/3 System is accessed for
function information. If the function RFC_CUSTOMER_GET exists, the Function object is created
and executed.

One positional parameter is allowed. The first parameter can be a string that holds the exception
message after the call.

174 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Function Properties

Function Properties
The Function object has the following properties:

Function Object Properties

Name Parameters Return Type Description

Exception VT_BSTR If an exception occurs during the call, this
returns a string containing the exception text.

Exports Index VT_DISPATCH Returns an Exports collection object (Exports
Collection Object [Page 178]) that contains a
list of export parameters used in the function.
If the index is left empty, the whole collection
is returned. Otherwise, the parameter
indicated by number or string will be returned.
Read-only.

Imports Index VT_DISPATCH Returns an Imports collection object (Imports
Collection Object [Page 181]) that contains a
list of import parameters used in the function.
The index can be empty. If the index is left
empty, the whole collection is returned.
Otherwise, the parameter indicated by
number or string will be returned. Read-only.

Name VT_BSTR Returns an ABAP function name. This is the
default property. Read-only.

Parent VT_DISPATCH The Functions Collection Object [Page 167]
that contains this function.

Tables
[Page 176]

 VT_DISPATCH Returns a Tables collection object that
contains a list of ABAP internal tables used in
the function. See the Table Collection Object
[Page 309] topic in the Table Factory Control.

Description VT_BSTR Returns the documentation for the function
module as found in the R/3 System.

April 2001 175

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Function Property: Tables

Function Property: Tables
Function objects must have all their Table objects attached at all times. If the associated Table
objects are unloaded (live outside of the Function objects), the Function objects will create new
Table objects for themselves. Whenever the existing Table objects are replaced from outside, the
Function object will remove and replace these objects.

When you get a Tables collection object or a Table object from a Function object, you receive a
dispatch pointer to that object directly from the Table Factory control. Treat these pointers
(objects) exactly as described for the corresponding part of the SAP Table Factory [Page 300].

Code Comment
Set customers =

 MyFunct.tables.Item

 (“CUSTOMER_T”)

Here, you attach the dispatch pointer to the Customers
object, then access the Tables property of the Function
object. Inside the Table object, access the item
“Customer T” with the Item method.

The Tables collection is a direct connection to the Table object in the Table Factory control. This
means that it supports all properties and methods of the Tables object in the Tables collection
object.

Code Comment
Set Table = function.Tables
(“TAB1”)

Here, when the “item” is implicit, the Item property
is invoked by default.

176 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Function Methods

Function Methods
The Function object has the following methods:

Function Object Methods

Name Type Description

Call VT_BOOL Calls the ABAP function. If successful, returns True. Packs the RFC
parameters and sends them to R/3.

April 2001 177

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Exports Collection Object

Exports Collection Object
The Exports collection object maintains the export parameters for a Function object. An export
parameter can either be a Parameter Object [Page 188] or a Structure Object [Page 184].

Properties [Page 179]

Methods [Page 180]

178 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Exports Collection Properties

Exports Collection Properties
The Exports collection object has the following properties:

Exports Collection Properties

Name Parameters Return Type Description

Parent VT_DISPATCH Returns the Function object (See Function Object
[Page 173]) that owns this Exports collection
object. Read-only

Item Index VT_DISPATCH Returns an export parameter from the collection.
The ‘Index’ parameter is required and may be a
string (VT_BSTR) or an integer (VT_I4).

Count VT_I4 Number of the export parameters in the list. Read-
only.

April 2001 179

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Exports Collection Methods

Exports Collection Methods
The Exports collection object has the following methods:

Exports Collection Methods

Name Parameters Return Type Description

Remove Index VT_EMPTY Destroys and removes the specified
parameter from the collection. The ‘Index’
parameter is required and may be a string
(VT_BSTR) or an integer (VT_I4).

RemoveAll VT_EMPTY Removes all parameters from the collection.

Unload Index VT_DISPATCH Like the Remove method, except that the
item is not destroyed. After unloading, the
item is no longer a member of the collection,
but continues to exist for other purposes.
Unload returns the unloaded object.

180 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Imports Collection Object

Imports Collection Object
The Imports collection object maintains the import parameters for a Function object. An import
parameter can either be a Parameter object [Page 188] or a Structure object [Page 184].

Properties [Page 182]

Methods [Page 183]

April 2001 181

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Imports Collection Properties

Imports Collection Properties
The Imports collection object has the following properties:

Imports Collection Properties

Name Parameters Return Type Description

Parent VT_DISPATCH Returns the Function object (See Function Object
[Page 173]) that owns this Imports collection
object. Read-only

Item Index VT_DISPATCH Returns an import parameter from the collection.
The ‘Index’ parameter is required and may be a
string (VT_BSTR) or an integer (VT_I4).

Count VT_I4 Number of the import parameters in the list. Read-
only.

182 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Imports Collection Methods

Imports Collection Methods
The Imports collection object has the following methods:

Imports Collection Methods

Name Parameters Return Type Description

Remove Index VT_EMPTY Destroys and removes the specified
parameter from the collection. The ‘index’
parameter is required and may be a string
(VT_BSTR) or an integer (VT_I4).

RemoveAll VT_EMPTY Removes all parameters from the collection.

Unload Index VT_DISPATCH Like the Remove method, except that the
item is not destroyed. After unloading, the
item is no longer a member of the collection,
but continues to exist for other purposes.
Unload returns the unloaded object.

April 2001 183

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Structure Object

Structure Object
The Structure object contains a ABAP structure, as provided by the R/3 System.

Properties [Page 185]

Methods [Page 187]

184 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Structure Properties

Structure Properties
The Structure object has the following properties:

Structure Object Properties

Name Parameters Return Type Description

ColumnCount VT_I2 Returns the number of columns in
the Structure object. Read-only.

Type VT_BSTR Returns the name of the Structure
object. Read-only.

Function VT_DISPATCH Returns the Function object that
owns the Structure object (or nothing
if there is no owner). Read-only.

Name VT_BSTR Returns ABAP name for the
structure. Read-only.

Width VT_I2 Returns the structure width. Read-
only.

ColumnName Index VT_BSTR Gets column name at pos. index

Value Member VT_VARIANT Sets and returns a value for a given
member. This is the default property.
The required ‘member’ parameter is
a string (VT_BSTR)

ColumnOffset Index VT_I2 Returns the first byte for the column
(from the start of the structure).
Read-only.

ColumnLength Index VT_I2 Returns the length of the column in
bytes. Read-only.

ColumnSAPType
[Page 186]

Index VT_I4 Returns the SAP internal type for the
column. Read-only.

ColumnDecimals Index VT_I2 Returns the number of decimal
places to the right of the decimal
point (for numeric columns only).
Read-only.

April 2001 185

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Structure Property: ColumnSAPType

Structure Property: ColumnSAPType
The ColumnSAPType property returns the internal type for the column. Possible values are:

Enum Name Enum Value Meaning

RfcTypeChar 0 String

RfcTypeDate 1 Date

RfcTypeBCD 2 BCD

RfcTypeTime 3 Time

RfcTypeHex 4 Binary

RfcTypeNum 6 Numeric

RfcTypeFloat 7 Float

RfcTypeLong 8 Long

RfcTypeShort 9 Short

RfcTypeByte 10 Byte

186 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Structure Methods

Structure Methods
The Structure object has the following methods:

Structure Object Methods

Name Return Type Description

IsStructure VT_BOOL Helps determine whether a named object is a parameter or a
structure. (For a Structure object, returns TRUE.)

Clear VT_EMPTY Initializes the Structure object to default values.

April 2001 187

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Parameter Object

Parameter Object
The Parameter object contains an RFC parameter. Parameter objects are always contained in an
Exports collection [Page 178] or Imports collection [Page 181].

Properties [Page 189]

Methods [Page 190]

188 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Parameter Properties

Parameter Properties
The Parameter object has the following properties:

Parameter Object Properties

Name Return Type Description

Function VT_DISPATCH Returns the Function object that owns this Parameter
object. Read-only

Length VT_I4 Returns the byte length of the data.

Name VT_BSTR Returns the parameter name.

SAPType VT_I2 Returns the ABAP data type of the parameter.

Type VT_BSTR Returns the RFC type.

Value VT_VARIANT Sets or returns the value of a parameter. This property is
the default.

Description VT_BSTR Returns the parameter description documented in the R/3
System.

April 2001 189

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Parameter Methods

Parameter Methods
The Parameter object has the following methods:

Parameter Object Methods

Name Type Description

IsStructure VT_BOOL Helps determine whether a named object is a parameter or a
structure. Returns always FALSE.

Clear VT_EMPTY Initializes the object to default values.

190 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 The Transaction Control

The Transaction Control

Purpose
The Transaction control is an OCX control that allows you to execute R/3 Batch Input
transactions from external programs.

You can use the Transaction control to enter data into R/3 by executing R/3 transactions.

Implementation Considerations
The Transaction control can be used in COM-compliant applications, such as those programmed
in Visual Basic, C++, and so on.

Features
The Transaction control provides an object oriented view of the R/3 transactions, in that it uses a
hierarchy of transactions, screens, and fields collections and objects [Page 192]. You use these
objects to enter data into R/3 transactions that accept batch input.

The Transaction control simplifies the use of batch input transactions from external programs in
that it eliminates the need to populate the fields of the BDC table and then send the BDC table to
the R/3 system. With the Transaction control you need only assign values to fields on R/3
screens. The Transaction control takes care of the data transfer.

Constraints
The Transaction control only enables transaction calls in batch input mode. External programs
can send screen values to the transaction, but the interface does not return output field values.

For complete transaction execution (with data transfer in both directions), use the SAP
Automation GUI Library [Ext.].

Activities
To use the Transaction control, you must be very familiar with the R/3 transaction you are calling:
you need to know the sequence of screens it contains, and for each screen you need to know the
fields it contains and what values those fields can take.

Using the Transaction control you create a transaction and all of its screens, and then you assign
values to every field you wish use for data entry. You then call the transaction to perform the
batch input.

April 2001 191

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Transaction Control Object Hierarchy

Transaction Control Object Hierarchy
The highest level object in the Transaction control is a Transactions collection object.

The Transactions collection object contains Transaction objects, each of which represents a
single transaction you wish to execute.

The Transaction collection maintains a single R/3 connection for all the Transaction objects it
contains.

Each transaction object contains a Screens collection, representing the set of screens associated
with the transaction.

The Screens collection contains the individual screens as Screen objects.

Every Screen object contains a Fields collection representing the set of fields on that screen.

Every Field object allows you to define the value you wish to enter into that field.

The following diagram summarizes the hierarchy of Transaction control objects.

Transactions
Collection

Transaction
Object

Screens
Collection

Screen
Object

Fields
Collection

Field
Object

192 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Using the Transaction Control

Using the Transaction Control
Using R/3 Transactions Interactively
R/3 transactions are composed of a sequence of screens, into which a user can enter data. An
end user enters data into fields on these screens, then the user chooses a button or menu option
that possibly leads to another screen. After entering data at the last screen in the sequence, the
transaction ends.

Using R/3 Transactions with the Transaction Control
When using the Transaction control, you are using R/3 transactions in Batch Input mode. Note
that Batch Input mode is different from the online mode. Not all transactions that are available in
online mode are available in Batch Input mode.

When working with the Transaction control you need to specify the transaction you are using, its
screens, and the fields you are sending values for. You need to specify similar parameters to
those you specify when transferring data into R/3 with Batch Input methods. For example, to
enter a value into a field, you need to provide field name and field value. To execute a function,
you need to use the constant BDC_OKCODE, representing the command field on the screen.

An easy way to obtain the code of a transaction, its screens and all the necessary fields is by
recording a Batch Input transaction (Transaction SHDB). Using transaction SHDB you record the
desired transaction while going through its screens and entering data as an end user. At the end
of the transaction (which ends the recording) the transaction, the screens and the fields you have
used appear in a tree hierarchy.

Procedure
1. Create the Transactions collection.

2. Create a transaction object for every transaction you are going to use. Do so by using the
Add method of the Transaction collection.

3. Create the screens of the transaction as objects of the Transaction control. Create a screen
by using the Add method of the Screens collection. You then specify the program name and
number as properties of the individual Screen object.

4. Add each of the fields that you wish to use for data entry to the Fields collection, and also
specify the field name and its value by using the Name and Value properties of the Field
object.

5. Set the Connection object: Use the SAP Automation Logon control [Page 458] to create a
Connection object, and assign this connection object to the Connection property of the
Transactions collection. This allows the Transactions collection to take care of the connection
to R/3 for executing the transaction.

6. Call the transaction by using the Call method of the Transaction object.

Note that the Transaction control always calls the transaction in batch input mode. This means
that the external program can send input field values to an R/3 screen, but output field values are
not returned. For complete transaction execution, with data transfer in both directions, use the
SAP Automation GUI Library [Ext.].

Also note that no GUI is displayed when you use the Transaction control.

April 2001 193

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Using the Transaction Control

Example
' Create a Transactions collection:

Set transOCX = CreateObject("SAP.Transactions.1")

' Add a Transaction object for the transaction:

Set trans = transOCX.Add("SE11", "DOMAIN")

' Add screens and fields:

Set Screen = trans.Screens.Add

Screen.Program = "SAPMSRD0"

Screen.Number = "0100"

Create the Fields collection.

Set Fields = Screen.Fields

Fields.Add "RSRD1-OBJNAME", "ZTST"

Fields.Add "RSRD1-DOMA", "X"

Fields.Add "BDC_OKCODE", "=ADD"

Set Screen = trans.Screens.Add

Screen.Program = "SAPMSD01"

Screen.Number = "0100"

Set Fields = Screen.Fields

Text = "Testing at " + Str$(Hour(Now)) + ":" + Str$(Minute(Now))

Fields.Add "DD01V-DDTEXT", Text

Fields.Add "DD01V-DATATYPE", "CHAR"

Fields.Add "DD01V-LENG", "10"

Fields.Add "BDC_OKCODE", "/11"

Set Screen = trans.Screens.Add

Screen.Program = "SAPLSTRW"

Screen.Number = "0100"

Screen.Fields.Add "BDC_OKCODE", "/9"

' Use the Logon Control to create a Connection object.

' Assign the Connection object to the Connection property

' of the Transaction collection:

Dim conn as object

Dim locx as object

set locx = CreateObject ("SAP.LogonControl.1")

set conn = locx.NewConnection

set transOCX.Connection = conn

194 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Using the Transaction Control

' Call the transaction:

if trans.Call <> true then

MsgBox “Call failed…”

End If

See Also
For more details on using Batch Input programming, see the topic Data Transfer [Ext.] in the BC -
Basis Programming Interfaces [Ext.] section of the R/3 Library documentation.

April 2001 195

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

What's New in Release 4.6A?

What's New in Release 4.6A?
The following are the changes to the Transaction Control in Release 4.6A:

• The underlying RFC call for the Call method of the Transaction control has changed from
RFC_CALL_TRANSACTION to ABAP_CALL_TRANSACTION. This architectural change of
the Transaction control ensures that:

Authorization is properly checked with every transaction call −

− The proper return codes are returned to all transactions you call

This change in the underlying RFC call applies to Transaction Control of releases 4.5A or
later.

This functionality is available for release 4.0B with a Hot Package. Refer to SAPNet R/3
Note number 146433 for details and for the path to the Hot Package on sepservX.

• The Call method of the Transactions collection [Page 197] is no longer available. Note that
you call a transaction by using the Call method of the Transaction object [Page 203], instead.

• A new property had been added to the Transaction object [Page 201]: the Subrc property.

• The Message property of the Transaction object [Page 201] had been replaced by the
Messages property.

196 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Transactions Collection Object

Transactions Collection Object
The Transactions collection object allows you to list and view the Transaction objects currently in
use. To create a Transactions collection, use the Visual Basic statement:
CreateObject(“SAP.Transactions”)

The Transaction collection maintains a single R/3 connection for all the Transaction objects
contained in the collection.

Properties [Page 198]

Methods [Page 199]

April 2001 197

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Transactions Collection Properties

Transactions Collection Properties
Property
Name

Return
Type

Access
Type

Description

Count Long Read-only Returns the number of Transactions objects in
the collection list.

Connection Object Read/write Returns or sets the connection used to log on to
the R/3 System.

LogFileName String Read/write The log file name.

LogLevel Integer Read/write Returns or sets the current log level. Level has
values 0-9 (where 0 means no log information,
and 9 means full information).

198 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Transactions Collection Methods

Transactions Collection Methods

In Parameters Return
Type

Metho
d
Name Param Type

Descriptio
n

Transaction
Code

String Add

UserIdentifie
r

Variant

Variant Creates a Transaction object and adds it
to the collection. If successful, returns the
Transaction object. The TransactionCode
parameter is the transaction name defined
in the R/3 System and is required. The
UserIdentifier parameter can be any string
used to identify the set of Transaction
objects with the same transaction code.
This parameter is required.

Transaction
Code

String Item

UserIdentifie
r

Variant

ITransact
ion

Returns a Transaction object from the
collection. The parameters used here are
defined the same as for the Add method.
The Item method is the default method for
the Transactions collection object.

Transaction
Code

Variant Rem
ove

UserIdentifie
r

Variant

Boolean Removes a Transaction object from the
collection. Any references to this removed
Transaction object are invalid. The
parameters here are the same as for the
Add method, except that the
TransactionCode parameter can also be
an Index (numeric) when the UserIdentifier
is omitted.

Rem
ove
All

(None) (None) Removes all Transaction objects from the
collection.

April 2001 199

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Transaction Object

Transaction Object
The Transaction object encapsulates one R/3 transaction: the screens and screen fields relevant
to that transaction.

The Transaction object manages a set of Screen objects and defines the sequences that are
used when calling an R/3 System transaction.

Properties [Page 201]

Methods [Page 203]

200 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Transaction Object Properties

Transaction Object Properties
Propert
y Name

Ret
urn
Typ
e

Acc
ess
Typ
e

Description

Messa
ges

Ta
ble

Re
ad
–
on
ly

Returns the
numbers of all
transaction
messages. The
returned table has
the same structure
as the
BDCMSGCOLL
table in R/3.

Screen
s

IS
cr
ee
ns

Re
ad
–
on
ly

Returns a Screens
collection object
containing a list of
Screen objects.

Transa
ctionN
ame

Str
ing

Re
ad
–
on
ly

Returns the name of
the Transaction
object.

The UpdateMode
determines the type
of update for a
transaction call and
can have the
following values:

'A' Asynchronous update

'S' Synchronous update (the default)

Updat
eMode

Str
ing

Re
ad
-
wri
te

'N' No display

Transa
ctionI
D

Str
ing

Re
ad
-
on
ly

Returns the
UserIdentifier
parameter specified
when the
Transaction object
was created (using
the Add method for
the Transaction
collection).

April 2001 201

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Transaction Object Properties

Subrc Lo
ng

Re
ad
–
on
ly

Returns the sy-
subrc value of the
call transaction
statement in ABAP.

202 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Transaction Object Methods

Transaction Object Methods
Met
hod
Na
me

In
Param
eters

Ret
urn
Typ
e

Description

Ca
ll

(Non
e)

Bo
ol
ea
n

Calls the R/3
System
transaction using
the screen
sequences
defined in the
Transaction
object. If call
transaction is
complete, returns
True. Use the
Message
property to
determine
whether the call
transaction is
successful.

Inde
x

Va
ria
nt

Sc
re
en
s Scre

en
Va
ria
nt

IScreen Returns a Screen object from the Screens
collection associated with the transaction. The
Screen parameter is optional. The Index
parameter is required. If the Screen parameter is
omitted, the Index parameter specifies the order
of the Screen object. Otherwise, it specifies the
program name.

April 2001 203

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Screens Collection Object

Screens Collection Object
The Screens collection object contains a list of all the active Screen objects that belong to the
transaction being executed.

Properties [Page 205]

Methods [Page 206]

204 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Screens Collection Properties

Screens Collection Properties
Property
Name

Return
Type

Access
Type

Description

Count Long Read-
only

Returns the number of Screen objects in the list.

Parent Object Read–
only

Returns the parent Transaction object for the Screens
collection object.

April 2001 205

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Screens Collection Methods

Screens Collection Methods
Met
hod
Nam
e

In
Parame
ter(s)

Ret
urn
Typ
e

Description

Ad
d

(None) IS
cr
ee
n

Creates a Screen
object in the
Screens collection
and returns the
Screen object if
successful.

Index Va
ria
nt

Ite
m

Screen
Numb
er

Va
ria
nt

Object Returns a Screen object from the
collection. The ScreenNumber parameter
is optional. The Index parameter is
required. If the ScreenNumber parameter
is omitted, the Index parameter specifies
the order of the Screen object. Otherwise,
it specifies the program name. The Item
method is the default member for the
Screens collection object.

Index Va
ria
nt

Re
mo
ve

Screen
Numb
er

Va
ria
nt

(None) Removes a single Screen object from the
collection. Any references to the removed
Screen object are invalid. The parameters
are defined the same as for the Item
method, except that the Index parameter
can also be a Screen object, if the
ScreenNumber parameter is omitted.

FromIn
dex

Va
ria
nt

FromS
creen

Va
ria
nt

Mo
ve

ToInde
x

Lo
ng

IScreen Moves the Screen object from its current
position (specified by either FromIndex or
FromScreen) to the position ToIndex. The
Screen object moved is returned.

Progra
mNam
e

Str
ing

Ge
tIn
de
x Screen

Numb
er

Str
ing

Long Returns the index for the Screen object in
the collection. The screen is identified by
ProgramName and ScreenNumber (as
given in the R/3 System).

Ins
ert

Index Lo
ng

Object Inserts the screen Item into the collection
at position Index. Returns the inserted

bj t

206 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Screens Collection Methods

Item Ob
jec
t

object.

April 2001 207

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Screen Object

Screen Object
The Screen object manages a set of Field objects and can have only a subset of fields that are
used in a screen in the R/3 System.

Properties [Page 209]

Methods [Page 210]

208 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Screen Object Properties

Screen Object Properties
Property
Name

Return
Type

Access
Type

Description

Number Strin
g

Read–
only

Returns the screen number of the Screen object.

Progra
m

Strin
g

Read–
only

Returns the program name with which the Screen object
is associated.

Parent Obje
ct

Read–
only

Returns the Screens collection that is the parent of this
screen.

Fields Obje
ct

Read–
only

Returns the Fields collection that includes the fields on
this screen.

April 2001 209

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Screen Object Methods

Screen Object Methods
Method
Name

Parameter(s
)

Return Type Description

Fields Index Object Returns a Fields collection object containing a
list of Field objects. Read–only. The Index
parameter is required and may be a string or an
integer.

210 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Fields Collection Object

Fields Collection Object
The Fields collection object contains the Field objects that are being used by the current Screen
object. It is used for viewing, adding, and deleting items in the Fields collection.

Properties [Page 21]2

Methods [Page 213]

April 2001 211

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Fields Collection Properties

Fields Collection Properties
Property
Name

Return Type Description

Count Long Returns the number of Field objects in the list. Read-only.

Parent IScreen Returns the parent Screen object for the Fields collection
object. Read-only.

212 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Fields Collection Methods

Fields Collection Methods
Meth
od
Name

Paramet
ers

Retur
n
Type

Descript
ion

FieldN
ame

Vari
ant

Add IField Creates and returns a Field object to the collection
if successful. Initializes the value of the field to the
FieldValue parameter. FieldV

alue
Vari
ant If the FieldValue is omitted, returns a Field object

without a value.

If both parameters are omitted, returns an
unnamed, empty Field object.

Item Index Vari
ant

IField Returns a Field object from the collection. The
Index parameter is required and can be either a
field name or an index in the collection. The Item
method is the default member for the Fields
collection object.

Rem
ove

Index Vari
ant

Boolea
n

Removes a single Field object from the collection.
The Index parameter is required and can be either
a field name or an index in the collection. Any
references to the removed Field object are invalid.

April 2001 213

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Field Object

Field Object
The Field object represents user interface elements in the SAPGUI. These elements are usually
used for data entry. The Field Object has properties but no methods:

Properties [Page 215]

214 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Field Object Properties

Field Object Properties
Property
Name

Return
Type

Access
Type

Description

Name String Read–
write

Sets or returns the name of the Field object.

Parent IField
s

Read–
only

Returns the Fields collection object containing the Field
object.

Value Varia
nt

Read–
write

Sets or returns a value of the Field object. This is the
default property.

April 2001 215

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

The Table Tree Control

The Table Tree Control

This section contains the following topics:

Introduction

Introduction [Page]217

Table Tree Object Hierarchy [Page]218

Basic Concept [Page] 219

Control and Object Reference

Table Tree Object [Page]220

Nodes Collection Object [Page]237

Node Object [Page]245

Structures Collection Object [Page]255

Structure Object [Page]262

Design Environment Property Pages [Page] 275

Programming Guide

Connecting Tree Views and Table Objects [Page]272

Configuring the Tree [Page]268

Drag and Drop with Tree Views [Page 274]

Appearance for Different Configurations [Page 283]

Pre-Defined Images [Page 299]

Code Examples [Page 285]

Glossary [Page 286]

216 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Introduction

Introduction
The SAP Table Tree control is an R/3-aware active OLE control that simplifies the handling of
hierarchical data. Using OLE Automation technology, the SAP Table Tree control can work either
as a standalone control or in combination with other SAP controls like the SAP Table Factory
[Page 300].

The Table Tree control can be used independently of any R/3 System. In fact, the control can run
in any active control container as an advanced active OLE control. However, to get full R/3-aware
functionality with the Table Tree control, you must use it together with the SAP Table Factory
[Page 300] control. Combining both controls lets you handle hierarchical R/3 data easily and
quickly.

April 2001 217

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Table Tree Object Hierarchy

Table Tree Object Hierarchy
SAP Table Tree

Control

Nodes
Node

TreeStructure

Tree Structures

Image List Control
(Win32 Standard)

Font

SAPDataObject

SAP Table Control

All Children

218 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Basic Concept

Basic Concept
The SAP Table Tree control is a Windows-active OLE control that can work in various scenarios.
The user can specify the control’s appearance and data in two ways:

• in design mode [Page 275] (using different property pages)

at runtime using OLE automation calls •

In either case, the structure of a node in the tree (i.e., the properties the node has) can be
defined by the user. The user can then store and display any information within a node of the
tree. (See also Configuring the Tree [Page 268]).

The Table Tree control supports several features:

• drag-and-drop operations [Page 274] on demand

A default implementation for drag and drop transfers data in a pre-defined format, yet the
use of your own transfer schemes is also supported. A set of events enables the user to
react immediately on state changes of the control.

•

• persistent storage methods for handling static R/3 data

R/3-aware execution

The SAP Table Tree control can perform as an R/3-aware control when you connect it to
the Views [Page 370] collection of a Table object. Table objects are part of the SAP
Table Factory [Page 300] control. Connecting these controls provides highly automated
procedures for displaying and navigating through hierarchical data obtained from an R/3
System.

April 2001 219

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Table Tree Object

Table Tree Object
The SAP Table Tree object is the highest object in the Table Tree control’s hierarchy. Therefore
it is also called root object [Page 289]. In Visual Basic program, you obtain a Table Tree object
by calling CreateObject(“SAP.TableTreeControl”). In design mode, you can insert a
Table Tree control directly into a form from a toolbar.

Properties [Page 22]1

Methods [Page 227]

Events [Page 228]

220 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Table Tree Properties

Table Tree Properties
The Table Tree object has the following properties:

Table Tree Properties

Name Type Description

Events
[Page 224]

Nodes
[Page 237]

Returns a Collection [Page 298] of
Node [Page 24]5 objects. These nodes
are the root nodes of the tree control.
Read-only.

(See also the Width and Alignment
properties of the Structure [Page 262]
object.)

Structures
[Page 255]

Returns a collection [Page 298] of
Structure [Page 262] objects. The
Structure objects represent node
properties: the set of properties applies
to every node in the tree.

(See Configuring the Tree [Page 268].)

Node
[Page 288] or Item [Page 287] sho

A list of images used for displaying
image items in the tree. The image list
is the standard Windows ImageList
object and is only available on 32 bit
architectures (Windows 95 or Windows
NT 3.51 or later). If no image list object
is assigned, images are taken from a
pre-defined image pool [Page 29]9 .

(See also Structure [Page 262] object
and Node [Page 245] object.)

Separation character or string used in
the FullPath property of the Node
[Page 245] objects.

Long Enables or disables events fired by the
control.

Object

Indentation Short Width of hierarchy expander in pixels.

Object

HideSelecti
on

Boolean Indicates whether the selected
uld

be highlighted when the control does
not own the focus.

ImageList Object

LabelEdit Boolean Indicates whether single items of a
node object may be edited (not
implemented yet).

PathSepara
tor

String

April 2001 221

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Table Tree Properties

Scrollbars CScrollType Indicates the kind of scrollbars. The
Scrollbars property does not force
scrollbars immediately. If the correct
values are set, the scrollbars appear
automatically when the display size
requires them. Otherwise scrollbars are
not available. Possible values are:

 ScrollTypeNone = 0 No scrollbars.

 ScrollTypeHorizontal = 1 Vertical scrollbar
visible when
required.

 ScrollTypeVertical = 2 Horizontal scrollbar
visible when
required.

 ScrollTypeBoth = 3 Both scrollbars
visible when
required.

Sorted Boolean Indicates whether the tree should be
sorted. Sorting is always done when
the first property item in a node is a text
item. (See also Structure [Page 25]5
object).

Returns the currently selected Node
[Page 245] object. If no node is
selected, Nothing [Page 291] is
returned.

DragDrop
[Page 226]

Font [Page 152] object used as default
font.

SelectedNo
de

Object

Read-only.

CDragDropTy
pe

Enables and disables drag-and-drop
operations.

Font Object

ScreenUpd
ate

Boolean Enables or disables screen updating.
This property is useful if many nodes in
the tree are being modified, inserted or
deleted. Changing ScreenUpdate from
FALSE to TRUE always forces a
screen update, no matter whether data
was changed or not.

BorderStyl
e

short Sets the style of border. Possible value
are:

 Enable3D = 0 Draws a 3 D frame

 Simpleframe = 1 Draws a simple
frame

222 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Table Tree Properties

SelectMod
e

CTreeSelectM
ode

Sets the selection mode for single
nodes and items

 trvTreeModeLineSingle = 0 Only entire nodes
may be selected

 trvTreeModeLineMultiple = 1 Not implemented
yet

 trvTreeModeItemSingle = 2 Single items in a
node may be
selected

 trvTreeModeItemMultiple = 3 Not implemented
yet

TableInsertR
t

Object Sets the parent node to insert a
connected SAP Table object [Page
220]. (See also Connecting Tree Views
and Table Objects [Page 272].)

April 2001 223

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Table Tree Property: Events

Table Tree Property: Events
You can use the Events property to enable or disable events or groups of events. Disabling
events can improve performance, especially for operations that manipulate large chunks of data.
Events may also be turned on and off temporarily.

Note that one event cannot be disabled: the DuplicatedKey event is always fired and cannot be
turned off.

The following values are available for the Events property:

Value Description

DisableAllTreeEvents = 0 Disable all events

EnableTableCreate = 1 Fire event after associated table is created.

(Not implemented yet)

EnableTableClear = 2 Fire event after associated table is deleted

(Not implemented yet)

EnableTreeDataChange = 4 Not implemented yet.

EnableNodeInsert = 8 Fire NodeInsert [Page 232] event after a node is inserted.

Fire NodeRemove [Page 233] event after a node is
removed.

Fire DragSourceFill [Page 234], DragComplete, DropEnter
[Page 235] and Drop [Page 236] events.

EnableNodeRemove = 16

EnableBeforeInput = 32 Fire BeforeLabelEdit event before user input.

EnableAfterInput = 64 Fire AfterLabelEdit event after user input.

EnableCollapse = 128 Fire Collapse event before a node is collapsed.

EnableExpand = 256 Fire Expand event before a node is expanded.

EnableClicks = 512 Fire Click, DblClick, ItemClick and ItemDblClick events.

EnableKeyboardEvents =1024 Fire KeyUp and KeyDown events.

EnableSelectionEvent = 2048 Fire SelChange event.

EnableDragDropEvents = 4096

EnableTreeError = 16384 Fire Error event after an error occurred.

EnableStandardTreeEvents Enable summary of standard events.

EnableAllTreeEvents = 32767 Enable all events.

All values may be combined through and or or operations.

‘ Enable NodeInsert and NodeRemove event

224 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Table Tree Property: Events

MyControl.Events = MyControl.Events or EnableOnNodeInsert or _
 EnableOnNodeRemove

‘ Disable NodeInsert and NodeRemove event

MyControl.Events = MyControl.Events and not _

(EnableOnNodeInsert or EnableOnNodeRemove)

April 2001 225

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Table Tree Property: DragDrop

Table Tree Property: DragDrop
Purpose
Enables and disables drag-and-drop operations.

Return Value
type CDragDropType

Description
The following DragDrop values are possible:

Value Description

DragDropModeDisable = 0 Turns off all default drag-and-drop operations.

DragFolders = 1 Only folders [Page 295] are sensitive for dragging. If a folder is
dragged, the leaves [Page 296] in the folder are part of the
drag-and-drop operation

Only leaves [Page 296] from other Table Tree controls may be
dropped

Folders [Page 295] and leaves [Page 29]6 from other Table
Tree controls may be dropped.

DragLeafs = 2 Only leaves are sensitive for dragging.

DragAll = 3 Folders and leaves may be dragged.

DropFolders = 4 Only folders from other Table Tree controls may be dropped.

DropLeafs = 8

DropAll = 12

DragDropFolders = 5 Same as DragFolder and DropFolder.

DragDropLeafs = 10 Same as DragLeafs and DropLeafs.

DragDropAll = 15 Same as DragAll and DropAll.

These values may not be combined by and or or operations. Also, you can
implement drag-and-drop event handlers to override the control’s default behavior
completely. In these cases, it is the responsibility of the application to implement a
reasonable drag-and-drop scenario.

See also Drag and Drop with Tree Views [Page 274].

226 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Table Tree Methods

Table Tree Methods
The Table Tree object has the following methods:

Table Tree Methods

Name Parameter(s) Return Type Description

IsKey String szkey Boolean Returns TRUE, if szKey is the key of any Node
[Page 288] in the table. (See also the Key
property of the Node [Page 245] object).

AboutBox void void Displays the AboutBox dialog.

April 2001 227

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Table Tree Events

Table Tree Events
The SAP Table Tree control fires several events in order to inform the container about state
changes, user interaction and drag-and-drop operations. To enable or disable these events, use
the Table Tree object’s Events [Page 22]4 property.

The Table Tree events are:

Table Tree Events

Name Parameters Description

Click void A mouse click occurred within the control’s
client area.

DblClick void A double click occurred within the control’s
client area.

KeyDown A key was pressed. The virtual key code is
passed in KeyCode, the current state of the
shift key in ShiftState. KeyCode may be
modified within the event-handling routine.

short* KeyCode

short ShiftState

KeyUp short* KeyCode A key was released. The virtual key code is
passed in KeyCode, the current state of the
shift key in ShiftState. KeyCode may be
modified within the event-handling routine.

short ShiftState

Collapse Object Node The Node [Page 24]5 passed in a

Item [Page 287]
object within the Node [Page 288] pa

Structure [Page 262] object.)

s
parameter Node is being collapsed. This
event is fired immediately before the node is
collapsed.

Expand

It is legal to add children to the node in the
Expand event. The added children are
displayed properly afterwards.

Object Node The node passed in as parameter Node is
being expanded. This event is fired
immediately before the node is expanded.

NodeClick Object Node A click occurred on the node passed in as
parameter Node.

ItemClick A click occurred on an Object Node
ssed in

as parameter Node. The parameter Index
may be used to access the item data using
the Value property of the Node [Page 245]
object. (See also the SelectMode property
and

Long Index

228 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Table Tree Events

ItemCblClick A double click occurred onObject Node

Long Index

 Item [Page 287]
within the node passed in as parameter
Node. The parameter Index may be used to
access the item data through the Value
property of the node object. (See also the
SelectMode property and Structure [Page

] objec

The Item [Page 287] with index Index in Node
lost the input focus.

(See also the SelectMode property and
Structure [Page 262] object.)

The selected Node [Page 288] or Item [Page
287] has changed. The new selected node
and item are passed in as parameter Node
and Index. Index indicates the selected item
within the node. If Index = -1, no node is
selected. Otherwise the parameter Index
may be used to access the item’s data
through the Value property of the Node
[Page 245] object.

(See also the SelectMode property and
Structure [Page 262] object).

DuplicatedKey [Page
]

The user has begun to edit an Item [Page
] in Node [Page 288] Node. Index

indicates which item within node. Index may
be used to access the item’s data through
the Value property of Node, or to retrieve the
item’s description from the Structures [Page

] collection. If Cancel is set to TRUE, the
edit operation is postponed. (See also the
SelectMode property and Structure [Page

] object.)

262 t.)

ItemGotFocus Object Node

Long Index

The Item [Page 287] with index Index in
Node received the input focus. (See also the
SelectMode property and the Structure
[Page 262] object.)

ItemLostFocus Object Node

Long Index

SelChange Object Node

Long Index

Object Node An already-existing key is being inserted or
assigned. 231 String* NewKey

String OldKey

Short* Handled

BeforeLabelEdit Object Node
287Long Index

Short* Cancel

255

262

April 2001 229

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Table Tree Events

AfterLabelEdit Object Node

Long Index

Short* Cancel

String NewString

The editing of an Item [Page 287] has
completed. The new text is passed in as
NewString and may be modified by the
container. Index may be used to access the
item’s data through the Value property of the
Node object, or to retrieve the item
description from the Structures [Page 25]5
collection. If Cancel is set to TRUE, the
entire edit operation is being postponed.

NodeInsert [Page 23]2

NodeRemove [Page
]

DragSourceFill [Page
234]

A drag-and-drop operation is starting with
the node Node. DataObject is an SAP Data
Object [Page 149] and may be filled with any
format.

During a Drag and Drop [Page 274]
operation, the mouse pointer was moved
into the client area of the control.

(See also SAP Data Object [Page 149])

Drop [Page 23]6 A drop has occurred on the control’s client
area on node Node. (See also SAP Data
Object [Page 149])

Object Node The node Node is being inserted.

Object Node The node Node is being removed.
233

Object DataObject

Object Node

Short* Handled

DropComplete Object Node A drag-and-drop operation originally started
on Node has been successfully completed.
Effect describes the type of drop. It is up to
the application to consider the Effect.

Long Effect

DropEnter [Page 235] Object DataObject

Long KeyState

Long* Effect

Short* Handled

Object Node

Object DataObject

Long* Effect

Short* Handled

230 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Table Tree Event: DuplicatedKey

Table Tree Event: DuplicatedKey
Purpose
Event-notification that an already-existing key is being inserted or assigned.

Syntax

The DuplicatedKey event-handler has the syntax:
void DuplicatedKey(Object Node, String *NewKey,

String OldKey, Short *Handled)

Parameters
• Node: node [Page 288] to which the key should be attached

• OldKey: key that caused the DuplicatedKey event

• NewKey: return parameter for filling in a new key

• Handled: return parameter that tells the container the event has already been handled

Description
This event is fired after the user tries to:

• insert a Node [Page 245] object with a key that already exists

change a node’s Key [Page 248] property to an already-existing value •

There are several possible reactions to the DuplicatedKey event. Your event-handler could
remove the Node [Page 28]8 by invoking the node’s Remove method. Or the handler could
change the node’s Key [Page 24]8 property to a new value (by returning the new value in the
parameter NewKey). However, you may not modify the Key property of the Node object. This
would not lead to any change of the key.

In any case, you must set the Handled flag to TRUE to inform the control that the event has been
handled. If you don’t do this, an exception is raised. You can also return an empty string in
NewKey. This removes the node from the key map but not from the control. Afterwards, the node
is not accessible via keys anymore, until a valid key is assigned. If the event-handling routine
provides a new key that already exists, a further DuplicatedKey event is fired.

Improper handling of the DuplicatedKey event may lead to an endless loop. This
would be the case if no valid key is provided and the Handled flag is set to TRUE.

April 2001 231

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Table Tree Event: NodeInsert

Table Tree Event: NodeInsert
Purpose
Event-notification that a node has been inserted.

Syntax
The NodeInsert event-handler has the syntax:
void NodeInsert(Object Node)

Parameters
• Node: node [Page 288] being inserted

Description
The NodeInsert event is fired after the node Node was successfully inserted into the
corresponding Nodes [Page 237] collection. All properties and methods of the node including the
Remove method are valid at that time. This is a convenient time to perform application-
dependent validation of the data stored in the node. It is possible to add additional information, to
attach the node to a new parent, or to remove the node. (See also Configuring the Tree [Page

]). 268

232 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Table Tree Event: NodeRemove

Table Tree Event: NodeRemove
Purpose
Event-notification that a node has been removed.

Syntax
The NodeRemove event-handler has the syntax:
void NodeRemove (Object Node)

Parameters
• Node: node [Page 288] being removed

Description
The NodeRemove event is fired immediately before the node Node is removed from the
corresponding Nodes [Page 237] collection. This is a convenient time to invalidate application-
dependent relations to other object.

It is not possible to cancel the Remove method in order to avoid removing the object.
Furthermore all children have already been removed from the Children collection
(Children property of the Node object) and the connection to the parent object has
been released and returns Nothing [Page 291].

April 2001 233

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Table Tree Event: DragSourceFill

Table Tree Event: DragSourceFill
Purpose
Event-notification that a drag-and-drop operation has begun.

Syntax
The DragSourceFill event-handler has the syntax:
void DragSourceFill(Object DataObject, Object Node, Short *Handled)

Parameters
DataObject: Data object containing the data being dragged •

• Node: where the operation is beginning node [Page 288]

• Handled: parameter telling whether the container has handled the event

Description
TheDragSourceFill event is fired when the user starts a on
node Node. The Data object to be used for drag and drop is passed in as DataObject and
represents a .

drag-and-drop operation [Page 274]

SAP Data Object [Page 14]9

If you code an event-handler for this event, your code can fill DataObject with the appropriate
data, and set the Handled flag to TRUE. In this case, any default event processing by the control
is disabled.

If the event-handler for this event does not set Handled to TRUE, the control performs default
event-handling. This includes adding the selected data to the data object using the formats
CF_TEXT, ‘SAPTreeNodeStream’ and ‘SAPTreeItemStream’.

Any data stored in the data object using these formats is overwritten (see also
).

Logon Object
[Page 465]

234 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Table Tree Event: DropEnter

Table Tree Event: DropEnter
Purpose
Event-notification that the user has dragged data into a target control.

Syntax
The DropEnter event-handler has the syntax:
void DropEnter(Object DataObject, Long KeyState, Long * Effect, Short
*Handled)

Parameters
• DataObject: Data object containing the data being dragged

• KeyState: (See the Visual Basic documentation.)

• Effect: Return parameter telling what kind of drop is allowed

• Handled: Parameter telling whether the container has handled the event

Description
The DropEnter event is fired when the mouse pointer is moved into the client area of a control
during a drag-and-drop operation [Page 274]. The DataObject passed to the DropEnter event
handler is a SAP Data Object [Page 149] that was originally filled in the DragSourceFill [Page

] event. (The source control may be either a Table Tree or a Table View control.) 234

By calling the method IsFormatAvailable on the DataObject, your event handler can determine
whether the DataObject contains acceptable information or not. If the DataObject is acceptable,
set the Effect parameter to one of the following values in order to change the cursor accordingly:

Value Description Cursor

DROPEFFECT_NONE = 0 Drop is not possible

DROPEFFECT_COPY = 1 Drop of copy is possible

DROPEFFECT_MOVE = 2 Move of DataObject is possible

Set Handled to TRUE to prevent the control’s default drag-and-drop handling from being invoked.

April 2001 235

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Table Tree Event: Drop

Table Tree Event: Drop
Purpose
Event-notification that the user has dropped data into a target control.

Syntax
The Drop event-handler has the syntax:
void Drop(Object Node, Object DataObject, Long * Effect, Short
*Handled)

Parameters
• Node: target node into which data is being dropped

• DataObject: data object containing the data being dropped

• Effect: parameter telling what kind of drop is being performed

• Handled:

parameter telling whether the container has handled the event

Description
The Drop event is fired if the control’s client area is the drop target of a drag-and-drop operation
[Page 274].

Use DataObject’s IsFormatAvailable and GetData methods to retrieve the data stored in
DataObject. This data was originally filled in the DragSourceFill [Page 234] event and may be
stored in any format. (The source control may be either a Table Tree or a Table View control.)

In most cases, you should then set Handled to TRUE. Otherwise the control’s default drag-and-
drop processing is executed.

The Effect parameter indicates whether the DataObject should be copied, moved or whether a
link should be established.

The Effect parameter is initially set in the DropEnter event-handler, then passed in to Drop event-
handler, and subsequently on to the DropComplete event-handler fired by the drop source
control.

236 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Nodes Collection Object

Nodes Collection Object
The Nodes collection is a collection of Node [Page 245] objects. It is implemented as a standard
collection [Page 145] like many other SAP collections [Page 298] controls.

The Nodes collection may contain as many nodes as desired.

Properties [Page 238]

Methods [Page 240]

April 2001 237

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Nodes Collection Properties

Nodes Collection Properties
The Nodes collection object has the following properties:

Nodes Collection Properties

Name Parameter Type Description

Count Long Returns the number of objects in the
collection. Read-only.

Item [Page
]

Variant vaIndex Object Retrieves a Node [Page 24]5 from the Nodes
collection. 239

238 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Nodes Collection Property: Item

Nodes Collection Property: Item
Purpose
Retrieves a Node object from a Nodes collection.

Syntax
The Item property has the syntax:

Object Item(Variant vaIndex)

Description
The Item property retrieves a Node [Page 245] object from the Nodes [Page 237] collection (and
is the default property for Nodes collection objects). Set the parameter vaIndex to describe the
element you want returned. The following variant data types are legal types for vaIndex:

Any string data type •

The Node [Page 245] object with a Key [Page 248] property equal to vaIndex is returned.
Since Key is a unique value within the entire control, the returned Node object need not
be a member of the Nodes collection for which the method was called: the returned node
may be any node within the entire control. If the key is not valid, vaIndex is converted to
an integer value that is used as index into the collection. This leads either to the desired
node, or to one of two exceptions:

− Bad Index Exception (if vaIndex can be converted to an integer value)

− Type Mismatch Exception (if vaIndex could not be converted to an integer)

• Any type convertible to an Integer

The parameter vaWhat is converted to an integer value and used as index in the
collection.

April 2001 239

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Nodes Collection Methods

Nodes Collection Methods
The Nodes collection object has the following methods:

Nodes Collection Methods

Name Parameters Return Type Description

Remove [Page
241]

Variant vaWhat Boolean Removes a Node [Page 245] object
from the collection.

RemoveAll void void Removes all nodes from the
collection.

Add [Page
242]

Variant vaRelative

CTreeAddType

 Relationship

String Key

Variant Text

Long Image

Long SelectedImage

Object Adds and returns a new Node
object to the collection.

AddEx [Page
244]

Variant vaRelative

CTreeAddType

 Relationship

String Key

Variant Text

Long Image

Long SelectedImage

CTreeNodeType Type

Object Adds and returns a new node
object with a given node type to the
collection.

240 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Nodes Collection Method: Remove

Nodes Collection Method: Remove
Purpose
Remove a Node item from a Nodes collection.

Syntax
The Remove method has the syntax:
Boolean Remove(Variant vaWhat)

Description
Removes a Node [Page 245] object from the Nodes [Page 237] collection. The parameter
vaWhat describes the element to be removed. Legal variant types for vaWhat are Object or any
data type that can be converted into an integer value. If vaWhat has type Object, the
corresponding object is removed from the collection. Otherwise vaWhat is converted to an
integer and used to remove the corresponding node. If the node has any children, all children are
removed prior to removing the node.

When removing a node from the Nodes collection, the Node object becomes invalid.
Any further attempt to work on the object returns an Invalid Object Exception.

April 2001 241

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Nodes Collection Method: Add

Nodes Collection Method: Add
Purpose
Adds a new Node object to the Nodes collection.

Syntax
The Add method has the syntax:
Object Add(Variant vaRelative, CTreeAddType Relationship, String Key,
Variant Text, Long Image, Long SelectedImage)

Parameters
vaRelative: (type Variant) •

Indicates either an already existing node object or Nothing [Page 291] or an empty
variant. A node may be referenced by an object expression containing the node or a
string expression containing the key for the desired node.

The relationship between the new node and vaRelative is described in the parameter
Relationship. The combination of vaRelative and Relationship defines the position of the
new node to be inserted. If vaRelative is empty or Nothing, the new node is inserted as a
root node. Relationship may not be equal to TreeAddFirstChild or, in this case,
TreeAddLastChild.

• Relationship: (type CTreeAddType)

Describes the relationship between vaRelative and the new node. Possible value are:

− (TreeAddLastSibling = 1) Add as last sibling to vaRelative

− (TreeAddNextSibling = 2) Add as next sibling to vaRelative

− (TreeAddPreviousSibling = 3) Add as previous sibling to vaRelative

− (TreeAddFirstChild = 4) Add as first child to vaRelative

− (TreeAddFirstSibling = 5) Add as first sibling to vaRelative

− (TreeAddLastChild = 6) Add as last child to vaRelative

Key: (type String) •

A unique Key [Page 248] value used to identify the Node [Page 245] object. This value
may later be used to retrieve the node through the Nodes collection’s Item property. A
valid value for Key is also an empty string. This prevents the key from being inserted into
the key map.

• Text: (type Variant)

Describes initialization data for the new node to be inserted. There are two valid variant
data types for this parameter:

Any data type that can be converted to a string −

The first Item [Page 287] of type text is initialized with Text. (See also Structure
Object [Page 262]).

242 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Nodes Collection Method: Add

Object −

The object pointed to by Text must be a Node [Page 245] object. All items [Page
287] with the same name and data type in both nodes (that is, in the Text node and
the newly created node) are copied from Text to the new node. The item need not be
a node from the same control, but it must be a node from the same application.

Image: (type Long) •

Indicates the image to be used for the first image typed item. If Image equals -1, pre-
defined images for folders [Page 295] and leafs [Page 296] are used. Otherwise, Image
is an index in the ImageList property of the Table Tree object. (See also the properties
for The Table Tree Control [Page 216].)

• SelectedImage: (type Long)

(Not yet supported.)

Return Value
type Object

Description
This method adds a new Node [Page 245] object to the Nodes [Page 237] collection.

Note that adding a new node does not necessarily mean the node becomes visible. If any sibling
of the node is visible, the new node will also be visible if possible. (See also the node’s Type
[Page 249] property and the root’s [Page 289] Type property). If you want the node to be visible,
call EnsureVisible on the new node object.

The node’s Type property is initialized with trvNodeTypeFolder. If you want a node of type
trvNodeTypeLeaf inserted, call AddEx [Page 244] or modify the Type property of the new node
object.

April 2001 243

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Nodes Collection Method: AddEx

Nodes Collection Method: AddEx
Purpose
Adds a new Node object to the Nodes collection, and sets the node’s type.

Syntax
The Add method has the syntax:

Object AddEx(Variant vaRelative,

 CTreeAddType Relationship,

 String Key,

 Variant Text,

 Long Image,

 Long SelectedImage,

 CTreeNodeType Type)

Description
This method is the same as the Nodes collection’s Add [Page 242] method, except that you can
pass the type of the new node to the method as additional parameter.

244 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Node Object

Node Object
The Node object is a single object that represents a single entry in the tree. A node may consist
of as many single structure items [Page 287] as desired. (See also Structure Object [Page 262]).

Properties [Page 246]

Methods [Page 253]

April 2001 245

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Node Object Properties

Node Object Properties
The Node object has the following properties:

Node Object Properties

Name Parameter Type Description

Expanded Boolean Indicates whether the node is currently
expanded. If the Expanded property is
assigned TRUE, the node is expanded as
if the user had clicked on the expander
symbol.

Index Visible Returns the index for the node within the
Nodes [Page 237] collection. Read-only.

Selected Long Indicates whether the node is currently
selected. May also be written.

Visible Boolean Indicates whether the node is currently
visible. Read-only.

(see also EnsureVisible)

Key [Page 248] String Unique identifying key value or an empty
string.

Parent Object Returns the parent node object or
Nothing [Page 291] if the node is a root
node [Page 290]. This property may also
be written in order to move a node to a
different location in the tree.

LastSibling Object Returns the last node at the sibling level,
or Nothing [Page 291] when invoked on
an empty collection. Read-only.

FirstSibling Object Returns the first node at the sibling level, or
Nothing [Page 291] when invoked on an
empty collection. Read-only.

Next Object Returns the next node at the sibling level,
or Nothing [Page 291] when invoked on the
last node in a collection. Read-only.

Previous Object Returns the previous node at the sibling
level, or Nothing [Page 291] when invoked
on the first node in a collection. Read-only.

Child Object Returns the first child node, of Nothing
[Page 291] if the node does not have any
children. Read-only.

246 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Node Object Properties

Children Object Returns a Nodes [Page 237] collection
containing all the child nodes at the next
level. Even though a node may not have
any children, a valid object is always
returned. If the node does not have any
children, the Count property for the
Children collection returns a value of 0.
Read-only.

Type [Page 264] CNodeType Indicates the type of the node.

Font Object Font [Page 152] object used for all text
items in the node.

ForceExpander
[Page 250]

 Boolean If TRUE, the node is forced to display an
expander symbol, no matter whether the
Children collection is empty or not.

AllChildren [Page
251]

 Collection Enumerator with an IEnumVARIANT
interface.

FullPath String Returns the full path of the object
consisting of the name and the names of
all parents. Each name is separated by
the value assigned to the PathSeparator
property of the Table Tree Object [Page
220]

Data Array of Variant Returns a safe array containing the data of
all items [Page 287] within the node.

Value Long Idx Variant Returns the value of a single item of the
node. The data of a single item may also
be accessed by Dynamic Node Properties
[Page 293] created at runtime.

April 2001 247

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Node Object Property: Key

Node Object Property: Key
Purpose
Identifies a Node object uniquely with the Table Tree control.

Return Value
type String

Description
Every node can be identified by the value of its Key property. The Key value is unique not merely
within a single Nodes collection but throughout the entire control. Use a key to retrieve a node
from the control by calling the Item [Page 287] method of the Nodes [Page 237] collection.

If you attempt to insert a node with a key that already exists, or to change a key to an already
existing value, a DuplicatedKey [Page 231] event is fired.

Nevertheless, if you are not interested in the key values, you may assign an empty string as key
value to a node. This removes the node from the key map, but keeps the node itself within the
control. All operations not involving a key may still be performed.

You can assign the empty string as Key value to as many nodes as desired.

248 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Node Object Property: Type

Node Object Property: Type
Purpose
Indicates the type of the Node object.

Return Value
type CNodeType

Description
The Type property can return four possible values:

Value Description Default Icon

trvNodeTypeFolder = 0 The node is a folder [Page 295] Text

trvNodeTypeLeaf = 1 The node is a leaf [Page 296] node Text

trvNodeTypeHidden = 2 The node is hidden Node is not displayed

trvNodeTypeDisabled = 4 The node is disabled Text

Different value may be combined by and or or operations.

 ‘ Hide a node

Node.Type = Node.Type or trvNodeTypeHidden

 ‘ Show a node

Node.Type = Node.Type and (not trvNodeTypeHidden)

Since trvNodeTypeFolder equals 0, and the node may also be hidden or disabled, it
is not possible to determine whether a node is a folder by comparing the Type
property with trvNodeTypeFolder. The proper method is to check whether a node is a
leaf. For example:
‘ Check for Folder

if Node.Type and trvNodeTypeLeaf <> trvNodeTypeLeaf then......

 ‘ Check for Leaf

if Node.Type and trvNodeTypeLeaf = trvNodeTypeLeaf then...

April 2001 249

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Node Object Property: ForceExpander

Node Object Property: ForceExpander
Purpose
Forces display of an expander symbol for a node.

Return Value
type Boolean

Description
Set the ForceExpander property to TRUE, if you want to force the node to display an expander
symbol, regardless of whether the node has child nodes or not.

ForceExpander is intended for use with a special performance-improvement scenario. An
application may find it desirable to delay filling a tree. In this case, it does not fill entire trees but
rather only particular folders, as requested by the user. When requested, the filling can be done
by the Expand event handler. It is thus possible to add all children for the expanding node at the
last moment.

However, this technique would not work when a node that had no Children, since in this case, the
node would normally be displayed without an Expander symbol [Page 294]. As a result, it would
not be possible to expand the node, and thus also impossible to fill the folder.

In this situation, the application can set the ForceExpander property to TRUE in order to allow the
user to expand the corresponding node.

250 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Node Object Property: AllChildren

Node Object Property: AllChildren
Purpose
Returns a collection object containing all descendants for a node.

Return Value
type Collection

Description
The Allchildren property returns a collection object. This property stands for an IEnumVARIANT
interface that lets the control user reference the descendants of the node, regardless of whether
the node is expanded, enabled, visible, or hidden.

Dim Node As Object

Set Node = Tree.Nodes.Item(1);

for each node in Node.AllChildren

node.Type = node.Type and not NodeTypeHidden

next node

C++ :
LPENUMVARIANT lpEnum;

HRESULT hr;

hr = pNode->QueryInterface(IID_IEnumVARIANT,(LPVOID FAR *)&
lpEnum);

if (SUCCEEDED(hr))

{

 VARIANT vaChildNode;

 lpEnum->Reset();

 while (hr == NOERROR)

{

 VariantInit(&vaChildNode);

 hr = lpEnum->Next(1,&vaChildNode,NULL);

 if (hr == NOERROR)

 {

hr = VariantChangeType(&vaChildNode,

&vaChildNode,VARIANT_NOPROPVALUE,VT_DISPATCH);

 if (SUCCEEDED(hr))

 {

April 2001 251

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Node Object Property: AllChildren

 LPDISPATCH lpChildNode;

 lpChildNode = V_DISPATCH(&vaChildNode);

 // work on the automation interface

 ...

}

VariantClear(&vaChildNode);

 }

 }

lpEnum->Releas();

}

252 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Node Object Methods

Node Object Methods
The Node object has the following methods:

Node Object Methods

Name Parameter Return Type Description

EnsureVisible Boolean Forces the node to be visible,
expanding all parent nodes if
necessary.

Remove void Removes the node from the
parent Nodes [Page 237]
collection. For root nodes [Page
290], the node is removed from
the Table Tree object.

SaveData [Page
254]

String DocName

String StreamName

Boolean Saves the data for the node and
all descendant nodes.

LoadData [Page
254]

String DocName

String StreamName

Boolean Loads the data for the node and
all descendant nodes.

April 2001 253

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Node Object Method: SaveData, LoadData

Node Object Method: SaveData, LoadData
Purpose
Saves or loads all data belonging to the node (and its descendants) to or from a file.

Syntax
The SaveData method has the syntax:
SaveData(String DocName, String StreamName)

The LoadData method has the syntax:
LoadData(String DocName, String StreamName)

Return Value
type Boolean

Description
These two methods save or load all data of the node (and of its descendants) to or from a file.

The parameters specify the compound document in DocName and a stream in StreamName. If
the document does not exist, a document is created. If the stream does not exist, a stream is
created, otherwise the existing stream is overwritten.

For these methods, the compound document is a file, and the stream contains data for a single
tree (single node and its descendants). For multiple trees, different stream names are used to
store different sets of nodes (or other data) in the compound document. For more information on
compound documents, see the OLE2 references.

When loading a node’s data with LoadData, the stream need not necessarily be created by a
node with the same structure [Page 262] as the node to which the data is being loaded.

During loading, the same mechanism that is used with Drag and Drop with Tree Views [Page
274] works. Any property item in the node being loaded is compared with the item from the
loading stream. If the Name and the Type [Page 264] for the target item are the same as those
from the loading stream, the target item is assigned the data from the stream. Otherwise the
target item remains untouched.

254 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Structures Collection Object

Structures Collection Object
The Structures collection is a named collection [Page 147] of structure [Page 262] objects. Within
this named collection the name of an object must be unique. The Structures collection and the
Structure object are used to define the content and appearance of the tree control. (See also
Configuring the Tree [Page 268] and Design Mode [Page 275]).

Properties [Page 256]

Methods [Page 258]

April 2001 255

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Structures Collection Properties

Structures Collection Properties
The Structures collection object has the following properties:

Structures Collection Properties

Name Parameter Type Description

Count Long Returns the number of objects in
the collection. Read-only.

Item [Page 257] Variant vaIndex Object Returns the Structure object
indexed by vaIndex. Read-only.

TableKeyIndex long Defines the column index in a
connected SAP Table object, for the
nodes’ Key property.

(See also Connecting Tree Views
and Table Objects [Page 272])

TableForceExpanderIndex long Defines the column index in a
connected SAP Table object, for the
nodes’ ForceExpander property.

(See also Connecting Tree Views
and Table Objects [Page 27]2)

TableIsFolderIndex long Defines the column index in a
connected SAP Table object, for the
nodes’ Type property. If the value is
0, the type is assumed to be a leaf
[Page 296], otherwise it is a folder
[Page 295].

(See also Connecting Tree Views
and Table Objects [Page 27]2)

TableExpandedIndex long Defines the column index in a
connected SAP Table object, for the
nodes’ Expanded property.

(See also Connecting Tree Views
and Table Objects [Page 27]2)

256 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Structures Collection Properties: Item

Structures Collection Properties: Item
Purpose
Retrieves a Structure object from a Structures collection object.

Syntax
The Item property has the syntax:
Object Item(Variant vaIndex)

Description
The Item property returns a structure [Page 262] object. The parameter vaIndex identifies the
Structure object to be returned. This may either be the Index or the Name of the Structure object.
A further method for retrieving an item is to invoke the item’s name directly as a property. (See
also Named Collection [Page 147]).

Dim Structures As Object

Set Structures = Tree.Structures

Structures.Add(“ItemA”)

Structures.Add(“ItemB”)

Structures.ItemA.Type = TreeStructureText

April 2001 257

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Structures Collection Methods

Structures Collection Methods
The Structures collection object has the following methods:

Structures Collection Methods

Name Parameter Return Type Description

Add [Page 259] Variant vaWhat Object Adds a structure [Page 262] object to the
collection and returns the new object.

Remove [Page
]

Variant vaIndex Boolean Remove the Structure object indexed by
vaIndex. The meaning of vaIndex is the
same as with the Item [Page 257] property.

Insert [Page
]

Variant vaIndex

Variant vaWhat

Object Inserts a new structure object in the
collection and returns the new object.

260

261

258 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Structures Collection Method: Add

Structures Collection Method: Add
Purpose
Adds a Structure object to a Structures collection object.

Syntax
The Add method has the syntax:
Object Add(Variant vaWhat)

Description
Add may be used in two different variants. If you set vaWhat to a string, the Name property of the
new Structure object is initialized with that parameter. Otherwise, set the parameter to
VT_EMPTY to create a new default-initialized object. The Name property of the object should be
initialized in any case, because this name is used to access the items [Page 287] within a node
[Page 245] object.

April 2001 259

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Structures Collection Method: Remove

Structures Collection Method: Remove
Purpose
Removes a Structure object from a Structures collection object.

Syntax
The Remove method has the syntax:
Object Remove(Variant vaIndex)

 Description
Removes the Structure object indexed by vaIndex. The meaning of vaIndex is similar to that of
the Item [Page 257] property.

It is not possible to remove a Structure object with Type trvTreeStructureHierarchy. In order to
remove a hierarchy-typed item, the Table Tree object’s Type [Page 264] property must be set to
trvTreeTypeLeafs.

260 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Structures Collection Method: Insert

Structures Collection Method: Insert

Purpose
Inserts a Structure object into a Structures collection object.

Syntax
The Insert method has the syntax:
Object Insert(Variant vaIndex, Variant vaWhat)

Description
Inserts a new structure object into the collection. The vaWhat parameter has the same meaning
as in the Add [Page 259] method. The vaIndex parameter is an index describing the position
where the object should be inserted. VaIndext has the same meaning as the vaIndex parameter
for the Item [Page 257] property.

April 2001 261

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Structure Object

Structure Object
The Structure object is used to define the content and appearance of the Table Tree control. For
example, you can define the kind of data stored in a node, which parts of the data are visible, and
how the node appears on screen. Specifically, a Structure object defines a single property item in
a tree node. All nodes in the tree have the same set of property items.

Further Table Tree features are described in:

Structure Object Properties [Page 263] •

Configuring the Tree [Page 268] •

Connecting Tree Views and Table Objects [Page 27]2 •

• Drag and Drop with Tree Views [Page 27]4

262 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Structure Object Properties

Structure Object Properties
The Structure object has the following properties:

Structure Object Properties

Name Type/Parameter Description

Type [Page 26]4 CTreeStructureType Defines the type of the Structure item.

Alignment [Page 266] CTreeStructureAlign Defines the alignment of the structure item.

Width Short The width of the structure item in pixel. Only
necessary if the Alignment property is not
trvTreeAlignAuto.

Name String The name of the item.

(See also Configuring the Tree [Page 26]8).

Hidden [Page 267] Boolean Indicates whether the structure item should
be displayed.

Index Long Returns the index of the object in the
structures [Page 255] collection. Read-only.

TableIndex Long Returns the index of the corresponding
column in the SAP Table object [Page 300],
if the control was added to the SAP Table
object’s Views collection [Page 370] (see
also Connecting Tree Views and Table
Objects [Page 272]).

HasFocusRect Boolean Indicates whether the structure item
contributes to the focus rectangle drawn
around the selected Node [Page 288] and
items [Page 287].

ExpandOnDblClick Boolean Indicates whether the node is expanded if
the item is double-clicked.

April 2001 263

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Structure Object Property: Type

Structure Object Property: Type
Purpose
Specifies the type of a Structure object.

Return Value
type CTreeStructureType.

Description
There are three valid values for the Type property:

Type property values

Value Description Default Appearance

trvTreeStructureHierarc
hy = 0

Defines a hierarchy
item. This item does not
store any data but
returns the Level [Page
297] of a Node [Page
288]. This type may only
be used as first
structure object in a
Structures [Page 255]
collection. The name of
the item is always
forced to be ‘Level’. The
corresponding node’s
Level property is always
read-only.

 for non-expanded
folders [Page 295]

 for expanded folders

TreeStructureImage = 1 Defines an image item.
A node may contain as
many different image
items as desired. The
corresponding dynamic
node property [Page
293] is read/write and
may store any variant
data which may be
converted to an Integer.
This value is used as
index in the ImageList or
may be -1 for the default
icons.

Default icons
depending
on the type
of the node.

264 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Structure Object Property: Type

TreeStructureText = 2 Defines a text item. A
node may contain as
many different text items
as desired. The
corresponding dynamic
node property [Page
293] is read/write and
may store any variant
data which may be
converted to a String.
Text items are displayed
with the font assigned to
the node object’s font
property. If this property
is not assigned, the font
of the root object [Page
289] is used.

Text

Text

….

Default text
depending
on the
chosen font
and type of
a node.

April 2001 265

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Structure Object Property: Alignment

Structure Object Property: Alignment
Purpose
Specifies the alignment of a Structure object.

Return Value
type CTreeStructureAlign.

Description
There are four valid values for the Alignment property:

Alignment property values

Value Description

trvTreeAlignLeft = 0 The item’s alignment is left-justified. For hierarchy items, the
expander [Page 294] symbol is left-aligned within the node’s level.

trvTreeAlignCenter = 1 The item is centered. For hierarchy items, the expander symbol is
centered within the node’s level.

The item’s alignment is right-justified. For hierarchy items, the
expander symbol is right-aligned within the node’s level.

The item is aligned according to the size of the item. For hierarchy
and image items, the alignment depends on the width of the
corresponding bitmap or icon. For text items, the alignment
depends on the text length and the selected font.

trvTreeAlignRight = 2

trvTreeAlignAuto = 3

266 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Structure Object Property: Hidden

Structure Object Property: Hidden
Purpose
Specifies the alignment of a Structure object.

Return Value
type Boolean.

Description
Hidden items are most convenient for storing data that is associated with a node, but should not
influence the visual appearance of the node. This avoids additional maps or tables where
associated information is stored.

An example might be the hierarchically-ordered staff of a company. While navigating through the
hierarchy, perhaps only the staff member’s name is of interest. However, after selecting the
node, all the information about the staff member is desired. This could be defined over several
Structure items: the Structure containing the ‘Name’ item with a Hidden property set to FALSE.
The Structure(s) containing all other information have the Hidden property set to TRUE.

(See also Configuring the Tree [Page 26]8)

April 2001 267

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Configuring the Tree

Configuring the Tree
The SAP Table Tree control features a dynamic node structure that lets users store any data
desired in a Node object [Page 245].

Node objects can also have any number of properties (called Item [Page 287]s) that characterize
the node. These properties constitute the node’s internal structure: all nodes in a control have the
same structure. (That is, they all have the same set of properties).

The node structure is defined by a series of structure objects [Page 262] maintained in the
Structures [Page 25]5 collection. Each Structure object corresponds to a single property item: for
each item, a property is created in each Node object. The name of the Structure object is the
same as the name of the property in each node.

Three property items are fixed (pre-defined) for all nodes, and any others are dynamically
created. You create a dynamic node property [Page 29]3 for the control by adding a Structure
object to the Structures collection.

The fixed properties are Level, Image, and Name: every tree node has a hierarchy level, a bit
image, and a text name. The fixed properties are automatically contained in the Structures
collection.

In order to maintain all desired information in a node, you can define some property items as
hidden. Hidden items are not displayed: the node is only used as a storage location for the data.
Thus it is not necessary to maintain additional tables or arrays to store data associated with a
node. This is particularly useful with programming languages like Microsoft Visual Basic where
pointers are not part of the language definition.

This configuration also plays an important role if your application uses any drag-and-drop,
persistent storage, or clipboard operations. For example, when dragging a node from one control
to another, all source control properties having the same Name and Type [Page 264] as items in
the destination control will be transported to the destination control.

A similar case applies when the compound stream created by a call to SaveData on a node
[Page 245] is used to insert new nodes into a different control. In this case too, all items with the
same Name and Type in the target control are fed by data from the stream.

The following VB 4.0 example illustrates the relationship between the configuration of
the Structures [Page 255] collection, the data stored in a node [Page 245] object,
and the appearance of the tree. The example here maintains a company’s personnel
hierarchy in a table tree. (The complete example is found under STAFF.VBP and
STAFF.FRM on the distribution disks.)

In design mode, SAP Table Tree controls with the name ‘StaffTree’ were placed on a
form and five structure items defined as in the following table.

Structures Collection

Item Index Item Name Item Type Hidden Alignment

1 Level trvTreeStructureHierarchy FALSE Auto

2 Image trvTreeStructureImage FALSE Auto

3 Name trvTreeStructureText FALSE Auto

268 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Configuring the Tree

4 EmployeeID trvTreeStructureText TRUE don’t care

5 Department trvTreeStructureText TRUE don’t care

While initializing the control, several nodes are inserted in the control.

Initialization code :
Private Sub Form_Load()

Dim RootFolder As Object

Dim Folder As Object

Dim Leaf As Object

Set RootFolder = StaffTree.Nodes.AddEx(_

, trvTreeAddFirstSibling,"StaffHierarchy",_

"My Company", -1, -1, NodeTypeFolder)

RootFolder.EnsureVisible

Set Folder = StaffTree.Nodes.AddEx(_

RootFolder, trvTreeAddFirstChild, "Sales", "Sales", _

-1, -1, trvNodeTypeFolder)

Set Leaf = Folder.Children.AddEx(_

Folder, trvTreeAddFirstChild, "", "Peter",_

 -1, -1, trvNodeTypeLeaf)

 ' Set an unique key as combination of name and
department

Leaf.Key = Leaf.Parent.Key & Leaf.Name

Set Leaf = Folder.Children.AddEx(_

Folder, trvTreeAddFirstChild, "", "Frank",_

 -1, -1, trvNodeTypeLeaf)

 ' Set an unique key as combination of name and
department

Leaf.Key = Leaf.Parent.Key & Leaf.Name

Set Leaf = Folder.Children.AddEx(_

Folder, trvTreeAddFirstChild, "", "Paula", _

-1, -1, trvNodeTypeLeaf)

 ' Set an unique key as combination of name and
department

Leaf.Key = Leaf.Parent.Key & Leaf.Name

End Sub

April 2001 269

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Configuring the Tree

The Department and EmployeeID is supplied within the Table Tree Event:
NodeInsert [Page 23]2 event handler:

Dim Node As Object

MinID = ActID

Private Sub StaffTree_NodeInsert(ByVal NewNode As Object)

Dim MinID As Integer

Dim NumPos As Integer

Dim ActID As Integer

MinID = 0

If (Not NewNode.Parent Is Nothing) And _

 ((NewNode.Type And trvNodeTypeLeaf) =
trvNodeTypeLeaf) Then

NewNode.Department = NewNode.Parent.Name

For Each Node In NewNode.Parent.AllChildren

NumPos = InStr(1, Node.EmployeeID, "#")

If NumPos > 0 Then

ActID = Val(Mid$(Node.EmployeeID, NumPos +
1,Len(Node.EmployeeID)))

If ActID > MinID Then

End If

 End If

 Next Node

NewNode.EmployeeID = NewNode.Parent.Name & "#" & (MinID + 1)

End If

End Sub

By defining a Structure item ‘EmployeeID’ and ‘Department’, the new dynamic properties [Page
293] are parts of the node [Page 245] object. Because the Hidden [Page 267] property of these
items [Page 287] equals TRUE, the resulting tree is displayed:

270 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Configuring the Tree

April 2001 271

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Connecting Tree Views and Table Objects

Connecting Tree Views and Table Objects
The SAP Table Tree control becomes an R/3-aware control by connecting it to a SAP Table
object. A Table object is part of the Table Factory control.

The connection is defined through the Structures [Page 255] TableIndex properties and the
structure [Page 262] TableIndex property. These properties define the column from which the
associated values are taken. If a Table Tree object is added to the Views [Page 370] collection of
a Table object, a node is inserted for each row in the table. All necessary information is taken
from the table to initialize the new nodes.

Special treatment is reserved for the first Structure item’s TableIndex. This property is used as a
row index in the Table object to define the parent of a node. Consequently, the content of the
Table object has to define a completely consistent subtree and may not add any nodes
elsewhere.

In addition, the application must define the node that indicates where to insert the new subtree
through the Table Tree object’s TableInsertRoot property. If this property equals nothing, the
subtree is inserted into the root. Otherwise this property must point to an already existing node.
In this case, this node is used as parent for the subtree.

Unlike the connection between a Table View control and a Table object, the connection to the
Table Tree is only temporary. After the new nodes are inserted, the Table Tree control cancels
the connection.

Dim oStructs As Object

Set oStructs = oTree.Structs

Set oTree.TableInsertRoot = Nothing

oStructs.TableKeyIndex = 1

oStructs.TableForceExpanderIndex = 2

oStructs.Item(1).TableIndex = 3

oStructs.Item(3).TableIndex = 4

oTab.Views.Add oStructs.Object

...

Table Object’s Content

“KeyRoot” 1 0 “Root”

“KeyFo1” 1 1 “Folder”

“KeyLe1” 0 1 “Leaf1”

“KeyLe2” 0 1 “Leaf2”

“KeyLe3 0 2 “Leaf3”

272 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Connecting Tree Views and Table Objects

Tree’s appearance:

April 2001 273

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Drag and Drop with Tree Views

Drag and Drop with Tree Views
The SAP Table Tree control implements several standard drag-and-drop scenarios. The drag-
and-drop behavior is defined through the DragDrop [Page 226] property of the Table Tree object.

Drag and Drop may be disabled, dragging may be enabled for folders [Page 295] and/or leafs
[Page 296], dropping may be enabled for folder and/or leafs, or both drag and drop may be
enabled for folders and / or leafs. If folders are drag-and-dropped, all sub-folders (that is, all
children and grandchildren) are part of the data transport in a control specific format. Additionally
all item data for the drag source node is stored in the data transport object in CF_TEXT format.

If drag and drop happens between two SAP Table Tree controls, the control-specific formats
ensure enhanced data transfers. All items defined with the same Name and Type [Page 249] in
the source control and in the destination control are transported to the destination control. This
happens even if the sequence of the items in both controls is different. If the destination control
has items that are not part of the data transport object, these items are created with default
values.

Drag and Drop operations within one control support move and copy operations. Drag and drop
between two controls supports only copy operations as the default implementation.

The data transport scenarios mentioned also work across process boundaries. If the default
drag-and-drop implementation is not sufficient, you can program event handlers for the
DragSourceFill [Page 234], DragComplete, DropEnter [Page 235] and Drop [Page 236] events
that satisfy more sophisticated demands.

The compound stream created by a call to the SaveData method on a Node object may be used
to insert new nodes into a different control. Again, all items with the same Name and Type in the
control being loaded are fed by data from the stream.

274 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Design Environment Property Pages

Design Environment Property Pages
Most container programs and development environments that are OLE-aware support a design
environment for designing forms and dialogs interactively. Within this environment, a toolbar
window offers a choice of control that the user can place on the form.

The SAP Table Tree control is indicated by . A typical view of the design environment is
shown below.

The control’s appearance depends on the configuration of the SAP Table Tree control, just as the
properties available depend on the container. Some containers add additional properties like
Visible, Default, Parent or Cancel. These additional properties are described in the container’s
manual.

The container also determines whether property are displayed as in Microsoft Visual Basic, or
whether they are only available through property pages at the design time. Nevertheless, almost
every control container supports a right mouse button menu with entries that invoke the control’s
property pages. The SAP Table Tree control supports five property pages :

Table Tree Property Page: General [Page 276]

Table Tree Property Page: Structure [Page 278]

Table Tree Property Page: Events [Page 280]

Table Tree Property Page: Fonts [Page 281]

Table Tree Property Page: Colors [Page 282]

Appearance for Different Configurations [Page 283]

April 2001 275

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Table Tree Property Page: General

Table Tree Property Page: General

Property Description

Structure
Items

Enter the number of items in a tree
node. Valid values are 1..255

(see also Configuring the Tree
[Page 268]).

Hierarchy
Ident

Enter the width of the hierarchy
item in pixels. This value is only
used if the Alignment [Page 266]
property of the hierarchy item is not
set to TreeAlignAuto.

Selection
Mode

Choose the selection mode:

 Single column, line selection Only an entire node may obtain the focus.
All items with an property HasFocusRect
set to TRUE are displayed with the window
highlight color as a background color.

 Multiple column, line selection (Not yet supported)

Single column, item selection Single items may be selected. Each item
with the HasFocusRect property set to
TRUE may catch the focus. Only the
corresponding item is displayed with the
window highlight color as background
color. Selection may be moved by using
the left and right key.

 Multiple column, item selection (Not yet supported)

Control
Type

Choose the general appearance of
the tree:

 Show folders Only folders [Page 295] are displayed in
the tree. Nevertheless, a node may also
contain leaves.

Show leafs Only leaves [Page 296] are displayed.

(See also Appearance for Different
Configurations [Page 283]).

 Show folders and items Leaves and folders are displayed. Folders
are always displayed prior to any leaf
[Page 296].

276 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Table Tree Property Page: General

DragDro
pMode

Choose the desired mode (see
DragDrop [Page 226] property).

April 2001 277

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Table Tree Property Page: Structure

Table Tree Property Page: Structure
The property page Structure defines single Structure items (see also Configuring the Tree [Page

]). Within this property page the number of Structure items defined in the Table Tree Property
Page: General [Page 276] may be configured.
268

Property Description

Item Choose the item you want
to configure.

Name Enter a unique name for
the item. A dynamic node
property [Page 293] is
generated for this name
for every node [Page 245]
object during runtime. The
name may also be empty.
Then the item is only
accessible through the
Data property of the Node
object with an appropriate
index.

Width Enter the number of pixels
to be used for displaying
the item. This value is only
used as long as Alignment
is not set to Auto.

Hidden Set Hidden to FALSE if
the item should be
displayed.

Focus Set Focus to TRUE if the
item should take on the
focus.

(See also SelectMode
property of Table Tree
object [Page 220].)

Expand
OnDblCl
ick

Set ExpandOnDblClick to
TRUE if the node should
be expanded or collapsed
when the user invokes a
double-click on the item.

278 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Table Tree Property Page: Structure

Alignme
nt

Choose the desired
alignment type for the
item. If Auto is not used,
the item is displayed using
the number of pixels
defined in the Width
property while painting.

Type Choose the desired item
type:

Hierarchy The item is the hierarchy item and drawn as an
hierarchy expander [Page 294]. This type is
only disabled but may not be modified or
assigned. The hierarchy item may be removed
by changing the type property of the Table
Tree object to ‘Show leafs’ in the Table Tree
Property Page: General [Page 27]6 Dialog.

 Image The item is an image. The corresponding
dynamic node property [Page 29]3 is an index
in the ImageList property of the Table Tree
object [Page 220].

 Text The item is from type text. The corresponding
dynamic node property is converted to a
VT_VSTR value and displayed when the node
is painted.

TableC
olumnIn
dex

Enter the column index of
a connected SAP Table
control.

(See also Connecting Tree
Views and Table Objects
[Page 272])

The hierarchy type is only allowed for the first Item [Page 287]. If a hierarchy item is
used, the name is forced to ‘Level’. The according node creates a dynamic ‘Level’
property which returns the level of the according node within the entire tree. This
property is always read-only. It is not possible to define more than one item of type
hierarchy. If the hierarchy type is omitted by modifying the Table Tree object‘s Type
[Page 249] property, the general behavior of the control changes (see Appearance
for Different Configurations [Page 283]).

April 2001 279

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Table Tree Property Page: Events

Table Tree Property Page: Events
This property page is used to enable or disable events fired to the container at runtime. The main
aspect of disabling events is for performance reasons. More sophisticated scenarios will change
this property through the Events property of the Table Tree object on demand during runtime.

280 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Table Tree Property Page: Fonts

Table Tree Property Page: Fonts
This property page allows the user to define the default font [Page 152] used by the control.
Usually this is the default font assigned to the entire form by the control container.

April 2001 281

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Table Tree Property Page: Colors

Table Tree Property Page: Colors
Information about property page colors will be available in further releases.

282 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Appearance for Different Configurations

Appearance for Different Configurations
The SAP Table Tree control may not only be used as a tree control: it can also act as an image
list or a check list (not implemented yet). This results when you define a structure [Page 262] in
the Structures [Page 255] collection that has no hierarchy item. You omit hierarchy items [Page
287] by defining the control type as ‘Leafs only’ in design mode or by assigning the Type property
a value of TreeTypeLeafs. All methods and properties for the control work similarly, with the
exception of the Add and AddEx methods of the Nodes collection.

Without having defined a hierarchy typed item, it is not possible to insert any child nodes and
nodes of type Folder [Page 295]. The functionality is reduced to one Nodes collection (the Table
Tree object’s Nodes collection [Page 23]7) that contains only leafs [Page 296].

A control configured without hierarchy typed item, two image typed items and a text
item would appear as follows:

A control configured with hierarchy typed item, one image typed item and a text item
would appear as follows:

April 2001 283

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Appearance for Different Configurations

A control configured with hierarchy typed item, one image typed item, two text items
and single item selection would appear as follows:

284 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Code Examples

Code Examples
You can find Visual Basic examples of how to use the Table Tree OCX in your installation
directory. Look for the SAPGUI directory, and within it, find the subdirectories:
rfcsdk/ocx/demo

Within the rfcsdk/ocx/demo directory, you find Visual Basic project files whose forms
demonstrate the following techniques:

Visual Basic Examples

Technique VB Project Name

First Steps 1ststept.vbp

Item Definition staff.vbp

Duplicated Key DupKey.vbp

Drag and Drop DragDrop.vbp

Table Connection Connect.vbp

April 2001 285

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Glossary

Glossary
The following glossary terms are described:

Item [Page 287]

Node [Page 28]8

Root Control/Root [Page 28]9

Root Node [Page 29]0

Nothing [Page 291]

CreateObject [Page 292]

Dynamic Node Properties [Page 293]

Hierarchy Expander/Expander Symbol [Page 294]

Folder [Page 295]

Leaf [Page 296]

Level [Page 29]7

Collection [Page 29]8

286 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Item

Item
An item (or property item) describes a single characteristic of a node [Page 245] object. Items are
defined by structure [Page 262] objects in the Structures [Page 25]5 collection. Since the
collection of Structure objects is the same for all nodes in a tree, all nodes have the same set of
characteristic properties.

Some property items are pre-defined (for example, Level, Image, and Name), but all others are
dynamically defined. A node may contain up to 255 items, which allows a highly flexible
configuration of the SAP Table Tree control. The entire appearance of the control and the data
stored in the control is configured by the Structures [Page 25]5 collection.

April 2001 287

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Node

Node
A Node object is single entry in the tree. A node’s internal structure is defined by its property
items [Page 28]7 . Property items contain the data and description for each node. (See
Configuring the Tree [Page 268]).

288 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Root Control/Root

Root Control/Root
The root control is the highest level object in the object hierarchy. It is accessible through the
Table Tree object returned by CreateObject [Page 29]2 .

April 2001 289

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Root Node

Root Node
A root node is a node [Page 245] located at the highest level of the tree’s hierarchy. A root node
has no parent node and is part of the root control’s (i.e., the Table Tree object’s) Nodes [Page

] collection. 237

290 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Nothing

Nothing
VBA key word for an empty object. This value is the same as NULL in C++ or nil in Pascal.

April 2001 291

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

CreateObject

CreateObject
VBA function to create an OLE object. See VBA help for more information

292 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Dynamic Node Properties

Dynamic Node Properties
Dynamic Node Properties represent properties that are created dynamically at runtime. These
properties are created for each node, as specified by the Structure objects that define each
property. These properties are not to be seen in an object browser and have to be defined by the
user.

See also:

Configuring the Tree [Page 268] •

Structures [Page 25]5 collection object •

• structure [Page 262] object

April 2001 293

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Hierarchy Expander/Expander Symbol

Hierarchy Expander/Expander Symbol
The hierarchy expander looks like for non-expanded folders and for expanded folders. If a
node does not have any children, no expander is drawn unless the ForceExpander property is
set to TRUE.

294 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Folder

Folder
A folder is a node object which is able to contain further nodes in its Children collection. The
default icons for a folder are as follows:

Closed folder Expanded property equals FALSE.
Open folder Expanded property equals TRUE.
Disabled folder TreeNodeDisabled bit is set in the node‘s Type [Page 249] property.

April 2001 295

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Leaf

Leaf
A leaf is a node object which is not able to contain further nodes in its Children collection.
The default icons for a leaf are as follows:

Enabled leaf TreeNodeDisabled bit is cleared in the node‘s set in the node‘s Type
[Page 249] property.

Disabled leaf TreeNodeDisabled bit is set in the node‘s Type property.

296 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Level

Level
The Level is a node property (item) that is automatically created if a structure [Page 262] object
of type TreeStructureHierarchy exists in the Structures [Page 255] collection. The Level property
is always read-only and returns the hierarchy level of a node as a long integer. A root node’s
Level equals 0.

April 2001 297

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Collection

Collection
A collection is a summary of objects. A collection usually supports methods like Item, Add, Insert
and Remove (see SAP Standard Collection [Page 145]). You can iterated through collection
objects by using For … Each loops in Visual Basic or the IEnumVARIANT interface in C++ (see
AllChildren [Page 251]).

298 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Pre-Defined Images

Pre-Defined Images
The following images are stored in the SAP Table Tree control with the index listed on the right
hand side. If no image list is assigned to the ImageList property of the Table Tree object, these
images are displayed. Which image is to be displayed in each node is determined in the node’s
dynamic image typed properties.

April 2001 299

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

The Table Factory Control

The Table Factory Control
This section contains the following topics:

300 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 The Table Factory Control

Programming with the Table Factory

Introduction [Page]302

Table Factory Object Hierarchy [Page] 303

Control and Object Reference

Table Factory Object [Page] 305

Tables Collection Object [Page]309

Table Object [Page]316

RFCTableParameter Object [Page]338

Rows Collection Object [Page] 340

Row Object [Page]347

Columns Collection Object [Page]350

Column Object [Page]358

Ranges Collection Object [Page] 362

Range Object [Page]366

Views Collection Object [Page]370

Matrix Object [Page] 374

Programming Guide

How to Connect Views to a Table [Page] 373

Creating a Table Object [Page]334

Using SelectTo* Methods [Page]335

Displaying and Navigating Table Data [Page]337

Code Examples [Page] 375

Glossary [Page 383]

April 2001 301

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Introduction

Introduction
The SAP Table Factory control encapsulates internal table (ITAB) handling as provided by the
RFC Library. It eases the way the desktop programmer can use internal tables.

The SAP Table Factory is designed to work optimally with Visual Basic 4.0 (3.0), VBA and C++
through provided wrapper classes. Future releases will also support dual interface in the 32-Bit
version.

This version of the component can be created by adding custom controls in Visual Basic (VB) 4.0
and Visual C (VC) 4.0 or by the following line of code:
Dim oTableFactoryCtrl as Object

Set oTableFactoryCtrl = CreateObject (“SAP.TableFactory.1”)

This code creates the highest level object in the control, the Table Factory object.

302 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Table Factory Object Hierarchy

Table Factory Object Hierarchy

SAP Table Factory

Tables

Legend Object CollectionCreateable
Object

Matrix

TableParamete

Table View
Control

CretaesContains (1:m) Contains (1:1)

Row Column Range

ViewsRangesColumnsRows

Table

April 2001 303

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Using the Table Factory Control

Using the Table Factory Control
Each Function object owns a collection of R/3 tables. The Table Factory control gives you easy
access to these SAP internal tables. If used from within the Function control, the Table Factory is
invisible to the user. The Table Factory control provides a Tables collection object that is used as
a property in the Function object. When you access the function’s Tables collection, Visual
Basic gets a “dispatch pointer” to the Table control. In the previous example, the
RFC_CUSTOMER_GET call returns an internal table with the name “CUSTOMER_T”. To get the
last row of that table and display the ZIP code, for example, use the following code:
‘ Get table.

Set customers = func.Tables (“CUSTOMER_T”)

‘ Get zipcode of last row.

zipCode = customers (customers.RowCount, "PSTLZ")

304 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Table Factory Object

Table Factory Object
The Table Factory control object is the highest object in the control’s hierarchy. You obtain a
Table Factory object by calling CreateObject [Page 29]2 in VBA or by inserting a Table Factory
control directly into a form from a toolbar.

Properties [Page 30]6

Methods [Page 307]

Events [Page 308]

April 2001 305

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Table Factory Properties

Table Factory Properties
The Table Factory object has the following properties:

Table Factory Properties

Name Type Description

Events Long Enables or disables events [Page 308] fired by the Table Factory control.

306 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Table Factory Methods

Table Factory Methods
The Table Factory object has the following methods:

Table Factory Methods

Name Return Type Description

NewTable Object Creates and returns a new Table [Page 316] object.

NewTables Object Creates and returns a new Tables [Page 309] collection
object.

AboutBox Displays the AboutBox dialog.

NewStructure Object Creates and returns a new object of type Structure [Page
]. 184

April 2001 307

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Table Factory Events

Table Factory Events
The Table Factory object has the following events:

Name Parameter(s) Description

Error Object An error occurred in one of the objects.

Events or groups of events may be enabled or disabled by setting bits in the events string
returned by the Events property. Disabling events may lead to improved performance, especially
for operations that manipulate large chunks of data. Events may also be turned on and off
temporarily. The following values are available for the events property:

ttaDisableAllTableEvents = 0 Disable all events

ttaEnableOnTableCreate = 1 Fire event after associated table is created

ttaEnableOnTableClear = 2 Fire event after associated table is cleared

ttaEnableOnTableDelete = 4 Fire event after associated table is deleted

ttaEnableOnTableDataChange = 8 Fire event after any data has changed

ttaEnableOnRowInsert = 16 Fire event after a row is inserted

ttaEnableOnRowRemove = 32 Fire event after a row is removed

ttaEnableOnColumnInsert = 32 Fire event after a column is inserted

ttaEnableOnColumnRemove = 64 Fire event after a column is removed

ttaEnableAllTableEvents = 32767 Enable all events

All values may be combined through and or or operations.

Rem Enable TableCreate and TableInsert event

MyControl.Events = MyControl.Events or _

ttaEnableOnTableCreate or ttaEnableOnTableDelete

Rem Disable RowInsert and RowRemove event

MyControl.Events = MyControl.Events and not _

(ttaEnableOnRowInsert or ttaEnableOnRowRemove)

308 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Tables Collection Object

Tables Collection Object
The Tables collection is a collection of Table objects. It is implemented as a standard collection
like many other SAP active control collections.

Properties [Page 31]0

Methods [Page 311]

April 2001 309

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Tables Collection Properties

Tables Collection Properties
The Tables collection object has the following properties:

Tables Collection Properties

Name Parameters Type Description

Count Long Returns the number of objects in the
collection. Read-only.

Item [Page 287] VARIANT
vaWhichItem

DISPATCH Retrieves a Table [Page 31]6 object from
the table collection. Read-only.

310 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Tables Collection Methods

Tables Collection Methods
The Tables collection object has the following properties:

Tables Collection Methods

Name Parameters Description

Remove [Page
]

VARIANT vaWhat Removes a Table [Page 31]6 object from the
collection.

RemoveAll Removes all Table objects from the collection.

Add [Page 31]5 VARIANT vaWhat Adds a new table to the collection.

Insert VARIANT vaWhichItem

VARIANT vaWhat

Inserts a Table object at a given position in the
collection.

Unload [Page
]

VARIANT vaWhat Unloads a table from the collection.

312

313

April 2001 311

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Tables Collection Method: Remove

Tables Collection Method: Remove
Purpose
Removes a table from the Tables collection.

Syntax
The Remove method has the syntax:

Remove (VARIANT vaWhat)

Description
The parameter vaWhat describes the element to be removed. Legal variant types for vaWhat are
VT_DISPATCH, VT_BSTR or any data type that can be converted to an integer value.

If vaWhat has type VT_DISPATCH, the corresponding object is searched in the collection and
removed. If vaWhat has type VT_BSTR, the first table with that name is removed. Otherwise
vaWhat is converted to an index and the corresponding table is removed.

When removing a table from the Tables collection, the Table object becomes invalid.
Any further attempt to work on the object returns an invalid object exception. Use the
Unload [Page 313] method to remove a Table object without invalidating it.

312 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Tables Collection Method: Unload

Tables Collection Method: Unload
Purpose
Unloads a table from the Tables collection.

Syntax
The Unload method has the syntax:

Unload (VARIANT vaWhat)

Description
The parameter vaWhat describes the element to be unloaded. The return value is the unloaded
Table object. This method enables the programmer to remove a table from the Tables collection
without invalidating it.

April 2001 313

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Tables Collection Method: Item

Tables Collection Method: Item
Purpose
Retrieves a table from the Tables collection.

Syntax
The Item method has the syntax:

Item (VARIANT vaWhichItem)

Description
The parameter vaWhichItem describes the element to be returned. The following variant data
types for arWhichItem are legal:

Type Description

VT_BSTR, VT_LPCSTR, VT_LPWSTR

VT_BSTR *, VT_LPCST *, VT_LPWSTR *

The first table with name vaWhatItem is
returned. If the name is not found,
vaWhichItem is converted to an integer value
which is used as index in the collection.

Any type convertible to a VT_I4 The parameter vaWhichItem is converted to an
integer value and used as index in the
collection.

314 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Tables Collection Method: Add

Tables Collection Method: Add

Syntax

Purpose
Adds a new table to the collection.

The Add method has the syntax:

Add (VARIANT vaWhat)

Description
Set the type for the vaWhat parameter to:

• VT_EMPTY, to create a new table

• VT_BSTR, to create a new table with the parameter name vaWhat

• VT_DISPATCH, to add the Table object to the end of the collection

April 2001 315

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Table Object

Table Object
The Table object is the key object in the SAP Table Factory. It maintains an internal table (ITAB)
passed in from the native RFC interface. The Table object actually handles data read from or
written to the R/3 System, providing a full two-dimensional view of this data.

The same Table object can contain different internal tables, as long as they have the same
structure. (See AttachHandle [Page 326] and DetachHandle [Page 327]).

Available information on Table objects:

Properties [Page 31]7

Methods [Page 319]

Other programming information:

Creating a Table Object [Page 33]4

Using SelectTo* Methods [Page 335]

Displaying and Navigating Table Data [Page 33]7

316 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Table Object Properties

Table Object Properties
A Table object has the following properties:

Table Object Properties

Name Parameters Type Description

RowCount Long Returns the number of Rows
contained in the table. Read-
only.

ColumnCount Long Returns the number of Columns
contained in the table’s Columns
collection. Read-only.

RfcParameter Object Returns a RFCTableParameter
[Page 338] object. Read-only

Rows Object Returns a Row [Page 347]
object. Read-only

Columns Object Returns a Column [Page 35]8
object. Read Only

Ranges Object Returns an object of type
Ranges [Page 366]. Read-only.

Views Object Returns an object of type Views.
Read-only

Data [Page 318] Array of VARIANT Returns the Table object in the
form of an array.

Value long RowIndex

VARIANT

 ColumnIndex

VARIANT Access a single value in the
table.

April 2001 317

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Table Property: Data

Table Property: Data
Purpose
Accesses (sets or gets) Table object data as if it were an array.

Description
The Data property copies data quickly between an array and a Table object. For example, this
property can be used to fill an Excel Range or as a return value of a Visual Basic function. Used
as a get operation, the Data property gets the data from a Table object and returns it in safe-
array form:
MyArray = MyTable.Data

Used as a set operation, the Data property takes data from an array and loads it in the Table
object:
MyTable.Data = MyArray

If you use the Data property as a set operation, and the provided array contains more rows than
the table actually has, the table is resized automatically. The table is always filled starting in cell
(1,1). If you want to start with a different left upper corner, use the Range [Page 366] object.

If you copy an array to a Table object, and the array has more columns than the
table, Column objects will not be added automatically to the Columns collection.

318 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Table Object Methods

Table Object Methods
A Table object has the following methods:

Table Object Methods

Name Parameter(s) Return Type Description

CreateFromR3Repository
[Page 322]

VARIANT

 R3Connection

String

 RepositoryEntry

String

 ParameterName

Boolean This methods defines a
column structure for a
Table object by reading
all information from the
R/3 repository.

CreateFromHandle [Page
323]

VARIANT

 R3Connection

Long TableHandle

String

 RepositoryEntry

String

 ParameterName

Boolean This methods defines a
column structure for a
Table object by reading
all information from the
R/3 Repository and
associating the table
handle with it.

CreateFromTable [Page
]

Object Table Boolean This method defines a
column structure for a
Table object by copying
the column structure of
the input Table object.

Create [Page 325] String

 ParameterName

Long

 TableLineLength

Boolean This method defines a
single-column structure
for a Table object. The
column has width
TableLineLength.

AttachHandle [Page 326] Long TableHandle Boolean This method attaches a
TableHandle (H_ITAB) to
a Table object.

DetachHandle [Page 327] Long This method detaches the
TableHandle from the
Table object. The Table
object structure is still
valid.

Refresh [Page 328] void void Forces an internal state
update.

324

April 2001 319

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Table Object Methods

FreeTable void void Frees all data in the
Table.

DeleteTable void void Deletes the table data
and structure.

SelectToMatrix [Page 329] VARIANT

 RowVector

This method returns a
Matrix [Page

Long

 RowAssocIndex

VARIANT

 ColumnVector

Long

 ColumnAssocIndex

Long

 DataAssocIndex

Object

SelectMatrixToNumber
[Page 330]

VARIANT

 RowVector

Long

 RowAssocIndex
VARIANT

 ColumnVector

Long

 ColumnAssocIndex

Long

 DataAssocIndex

Long Decimals

Object This method returns a
Matrix [Page 374] object
containing a two-
dimensional view of one
column of the table. It
also tries to convert the
result into numbers.

SelectToVector [Page 331] VARIANT

 RowVector

Long

 RowAssocIndex

Long

 DataAssocIndex

Object This method returns a
Matrix [Page 374] object
using one input
dimension.

374] object
containing a two-
dimensional view of one
column of the table.

320 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Table Object Methods

SelectVectorToNumber
[Page 332]

VARIANT

 RowVector

Long

 RowAssocIndex

Long

 DataAssocIndex

Long Decimals

Object This method returns a
Matrix [Page 374] object
using one input
dimension. It also tries to
convert the result into
numbers.

BuildTiledRanges [Page
333]

Long Size Object Returns a Range [Page
362] collection whose
ranges together
completely span the
table.

April 2001 321

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Table Method: CreateFromR3Repository

Table Method: CreateFromR3Repository
Purpose
Defines the column structure for a Table object using R/3 Repository information.

Syntax
The CreateFromR3Repository method has the syntax:
CreateFromR3Repository(R3Connection, RepositoryEntry, ParameterName)

Parameters
• R3Connection: Can be a Connection object as provided by the Logon control [Page

458], or an RfcHandle as used by the native RFC API.

• RepositoryEntry: Name of the structure in the SAP R/3 Repository.

• ParameterName: Formal parameter name declared for the table in the function module
interface (in the R/3 Function Library). This name is used to identify the table in a Tables
collection.

Description
This method returns TRUE on success, otherwise FALSE.

See also Creating a Table Object [Page 334].

322 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Table Method: CreateFromHandle

Table Method: CreateFromHandle
Purpose
Defines the column structure for a Table object using R/3 Repository information, and associates
an R/3 internal table handle with the object.

Syntax
The CreateFromHandle method has the syntax:

• R3Connection: Can be a Connection object as provided by the

CreateFromHandle(R3Connection, TableHandle, RepositoryEntry,

ParameterName)

Parameters
Logon control [Page

], or an Rf458 cHandle as used by the native RFC API.

• ParameterName: Formal parameter name declared for the table in the function module
interface (in the R/3 Function Library). This name is used to identify the table in a Tables
collection.

• associates the provided ITAB handle with the Table object

• TableHandle: the ITAB handle as it used by the native RFC API.

• RepositoryEntry: Name of the structure in the SAP R/3 Repository.

Description
This method:

• creates the column structure for a Table object by reading information from the R/3
repository

The CreateFromHandle method lets you use Table objects with internal tables provided by
foreign applications. The method returns TRUE on success, otherwise FALSE.

See also Creating a Table Object [Page 334].

April 2001 323

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Table Method: CreateFromTable

Table Method: CreateFromTable
Purpose
Defines the column structure for a table by copying the structure of an input Table object.

Syntax

Use this method to copy the input table’s column structure and use it with the Table object.
CreateFromTable returns TRUE on success, otherwise FALSE.

The CreateFromTable method has the syntax:
CreateFromTable(Table)

Description

See also Creating a Table Object [Page 334].

324 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Table Method: Create

Table Method: Create

The Create method has the syntax:

The method returns TRUE on success, otherwise FALSE.

Purpose
Defines a single-column structure for a Table object.

Syntax

Create(TableName, TableLength)

Description
This method defines a column structure with a single column for the Table object. The
TableLength parameter specifies the overall length of each table row. You can then add columns
to the table object using the Add method in the Columns collection object.

See also Creating a Table Object [Page 334].

April 2001 325

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Table Method: AttachHandle

Table Method: AttachHandle

The AttachHandle method has the syntax:

Purpose
Attaches a table handle to the current Table object.

Syntax

AttachHandle(TableHandle)

Description
All old data is lost and the old table is destroyed, but the old structure is used. This enables the
use of the Table object for tables which are created by other libraries or applications.

326 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Table Method: DetachHandle

Table Method: DetachHandle
Purpose
Detaches the ITAB handle from the Table object

Description
This method does the opposite of the AttachHandle method: invalidates all associated objects
(like Rows) and returns the ITAB handle.

April 2001 327

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Table Method: Refresh

Table Method: Refresh
Purpose
Refreshes the internal status of a Table object.

Description
Use the Refresh method to force an update of a Table object’s internal state. Normally, you call
this method after making any RFC calls that update Table object data. The Refresh method is
primarily useful if there is a view connected to the Table object, and the view must be notified of a
data change, so it can update its display.

328 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Table Method: SelectToMatrix

Table Method: SelectToMatrix
Purpose
Returns a Matrix object containing a two-dimensional view of one column of the table.

Syntax
The SelectToMatrix method has the syntax:

SelectToMatrix(RowVector, RowAssocIndex, ColumnVector,

ColumnAssocIndex, DataAssocIndex)

Parameters
• RowVector: Array of values for the first dimension of the returned matrix.

• RowAssocIndex: Index of the table column with which RowVector values are to be
compared.

• ColumnVector: Array of values for the second dimension of the returned matrix.

• ColumnAssocIndex: Index of the table column with which the ColumnVector values are
to be compared.

• DataAssocIndex: Index of the table column from which the desired data is to be taken.

Description
The SelectToMatrix method selects data from the Table object based on selection criteria applied
to two columns of the table. For each row where the two columns match the selection criteria,
data values from a third column are collected. The data collected is then returned as a two-
dimensional Matrix object, using the selection criteria as values for the row and column
dimensions.

For more information on this process, see Using SelectTo* Methods [Page 335].

Related Information
SelectMatrixToNumber [Page 330]

SelectToVector [Page 33]1

SelectVectorToNumber [Page 33]2

April 2001 329

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Table Method: SelectMatrixToNumber

Table Method: SelectMatrixToNumber
Purpose
Returns an Matrix object containing a two-dimensional view of one column of the table.

Syntax
The SelectMatrixToNumber method has the syntax:

SelectMatrixToNumber(RowVector, RowAssocIndex, ColumnVector,

ColumnAssocIndex, DataAssocIndex, Decimals)

Parameters
• RowVector: Array of values for the first dimension of the returned matrix.

• RowAssocIndex: Index of the table column with which RowVector values are to be
compared.

• ColumnVector: Array of values for the second dimension of the returned matrix.

• ColumnAssocIndex: Index of the table column with which the ColumnVector values are
to be compared.

• DataAssocIndex: Index of the table column from which the desired data is to be taken.

• Decimals: Type of conversion to be used on the data. A value of 0 means a conversion
to long; a value greater than 0 means a conversion to double.

Description
SelectMatrixToNumber is like SelectToMatrix [Page 329], except that it tries to convert the
resulting values into integer and float numbers. If the original data is not numeric, this method
produces meaningless data.

SelectMatrixToNumber is useful because the RFC Library tends to use TYPC and most RFC
tables use the NUMC, writing out packed datatypes. On the front-end, however, integer and float
values are more appropriate.

For more information about the selection process, see Using SelectTo* Methods [Page 335].

Related Information
SelectToMatrix [Page 329]

SelectToVector [Page 33]1

SelectVectorToNumber [Page 33]2

330 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Table Method: SelectToVector

Table Method: SelectToVector
Purpose
Returns a Matrix object containing one vector of data from the Table object.

Syntax

• InputAssocIndex: Index of the table column with which the InputData values are to be
compared.

The SelectToVector method is implemented in this way to provide compatibility with data
structures imported and exported by many desktop applications such as Microsoft Excel.

The SelectToVector method has the syntax:
SelectToVector (InputData, InputAssocIndex, DataAssocIndex)

Parameters
• InputData: Array of values for the row or column dimension of the returned matrix

• DataAssocIndex: Index of the table column from which the desired data is to be taken.

Description
The difference between this method and the SelectToMatrix method is that the selection criteria
are applied to only one column of the Table object.

The InputData parameter contains the selection criteria, however, in a two-dimensional
SafeArray. This means the calling program should place the selection values in either a single
row of InputData, or a single column. When you do this, the resulting matrix has:

• n-rows and one column, if InputData contains multiple row values for a column

• one row and n-columns, if InputData contains multiple column values for a row

If you want to apply two dimensions of selection criteria to a matrix selection, use SelectToMatrix
[Page 329] or SelectMatrixToNumber [Page 33]0 .

For more information on the selection process, see Using SelectTo* Methods [Page 33]5 .

Related Information
SelectToMatrix [Page 329]

SelectMatrixToNumber [Page 330]

SelectVectorToNumber [Page 33]2

April 2001 331

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Table Method: SelectVectorToNumber

Table Method: SelectVectorToNumber
Purpose
Returns an Matrix object containing a two-dimensional view of one column of the table.

Syntax
The SelectVectorToNumber method has the syntax:

SelectVectorToNumber(InputData, InputAssocIndex, DataAssocIndex,

Decimals)

Parameters
• InputData: Array of values for the row or column dimension of the returned matrix

• InputAssocIndex: Index of the table column with which the InputData values are to be
compared.

• DataAssocIndex: Index of the table column from which the desired data is to be taken.

• Decimals: Type of conversion to be used on the data. A value of 0 means a conversion
to long; a value greater than 0 means a conversion to double.

Description
SelectVectorToNumber is like SelectToVector [Page 331], except that it tries to convert the
resulting values into integer and float numbers. If the original data is not numeric,
SelectVectorToNumber produces meaningless data.

This method is useful because the RFC Library tends to use TYPC and most RFC tables use the
NUMC, writing out packed datatypes. On the front-end, however, integer and float values are
more appropriate.

For more information about the selection process generally, see Using SelectTo* Methods [Page
]. 335

Related Information
SelectToVector [Page 33]1

SelectToMatrix [Page 329]

SelectMatrixToNumber [Page 330]

332 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Table Method: BuildTiledRanges

Table Method: BuildTiledRanges
Purpose
Creates a series of Range objects that together span all rows of a table.

Syntax
The BuildTiledRanges method has the syntax:
BuildTiledRanges(Size)

Parameters
Size: Number of rows to be placed in each range

Description
This method provides an easy way to build a collection of “tiled ranges” that together completely
cover the table. This method is useful for adjusting table data access according to the displayed
data in your user interface.

The Size parameter indicates the number of rows each resulting Range [Page 366] object is to
contain.

April 2001 333

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Creating a Table Object

Creating a Table Object
You create a Table object by using either the Add method (in the Tables collection) or the
NewTable method (in the TableFactory object). However, these methods do not define the
structure for the table. You can define the structure in one of the following ways:

By structuring the table explicitly: •

Use the Create [Page 325] method. You provide the table name and the internal length
of one row. In order to build a structure, just add new columns to the Table object. (You
do this with the Columns collection

•

−

By using the R/3 System:

Create a new table using method CreateFromR3Repository [Page 322].

Create the structure for a given ITAB handle by using method CreateFromHandle
[Page 323].

−

Both methods use an RFC connection to obtain the actual structure of a table in the R/3
System. The first parameter for these functions is the RFC connection: either a
Connection object (as produced by the SAP Logon Control [Page 45]8), or a native RFC
handle (a parameter of type Long). C/C++ programmers can use the VisualRFCService
Handle by using a VARIANT of type CY, with the application handle in the lower part and
the Login ID in the upper part of that structure.

• By copying the structure from another Table object

Use the method CreateFromTable [Page 324] to do this.

After creating the Table’s structure, you can always change it by adding, removing and changing
the column description. However, these changes must never exceed the row length originally
defined by the Create methods.

This dynamic behavior of the Columns [Page 350] allows RFC-enabled programs to use black
box (generic) tables. An example is a function module that passes back information in a single-
column table and provides information about the table’s structure in a second table. This
approach enables the use of RFC functions that can return different types of tables based on the
values of input parameters.

334 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Using SelectTo* Methods

Using SelectTo* Methods
The SelectTo* methods provide a special view of the table (like a dejoin). These methods return
all table data that satisfies value specifications for certain table dimensions.

In the example below, the SelectTo method returns a two-dimensional view of one column of a
table. Suppose the desktop application requests data from a particular table column (the
“desired-data” column), where the values to be selected depend on values in two other (“key-
value”) columns of the table. The desktop program specifies the values in the “key-value”
columns when calling the SelectTo method:

• the “key-value” columns are InputVector1 and InputVector2

• the “ResultTable from R/3” shows the original table, as transferred from R/3

− the “key-value” columns contain r-values {r1, r2, r3} and c-values {c1, c2}.

− the “desired-data” column contains m-values {m1, m2, m3, m4, m5}

• the “Desktop Report” shows the two-dimensional matrix of m-values created by the
SelectTo method

Desktop Report

r1

r2

r3

c1 c2 r1

r2

r3

c1

c2

r1

r1

r3

r2

r3 c2

c2

c1

c1

c1

m4

m5

m3

m2

m1

m4

m5m3

m2m1

0

InputTable1/
InputVector1

InputTable2/
InputVector2

ResultTable
from R/3

MatrixSelection with Rowvector= InputVector1, columnVector= InputVector2, dataColumn = 1

Calling programs can request data by specifying either one or two input vectors. To specify
values using:

two input vectors, use SelectToMatrix [Page 32]9 or SelectMatrixToNumber [Page 330] •

April 2001 335

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Using SelectTo* Methods

• one input vector, use SelectToVector [Page 331] or SelectVectorToNumber [Page 332]

336 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Displaying and Navigating Table Data

Displaying and Navigating Table Data
Table objects have many features. You can:

• Use the Ranges [Page 362] property to define special views over a Table object (for
example, only the first 20 rows in a table, or one of the last two columns).

•

−

Use additional controls together with the Table Factory to automate access to R/3 table
structures or hierarchical data:

The The Table View Control [Page 389] provides functions for displaying and
navigating R/3 table data by row, column or cell.

The The Table Tree Control [Page 216] provides special functions for displaying
hierarchical data as packed into an R/3 table.

−

The table view and table tree controls provide R/3-specialized access routines when you
connect them to the Table object’s Views [Page 370] collection.

April 2001 337

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

RFCTableParameter Object

RFCTableParameter Object
The RfcTableParameter object manages all information needed for actually using a table in an
RFC function call. (The table corresponds to the Table parameter in the RfcCall and RfcReceive
RFC functions.)

Available information on RfcTableParameter objects:

Properties [Page 339]

The following example describes the code necessary for packing a Table object into the RfcCall.
This code is used internally by the function control [Page 155].

Dim oParameter as Object

Dim Table as RFC_TABLE

Dim RfcRc as short

Dim hRfc as long

Set oParameter = oTable.RfcParameter

Table.Name = oParameter.Name

Table.Length = oParameter.NameLength

Table.Type = oParameter.Type

Table.itab = oParameter.TableHandle

RfcRc = RfcCall (hRFc, “MYRFCFUNCTION”, 0, 0, Table)

338 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 RfcTableParameter Object Properties

RfcTableParameter Object Properties
The RfcTableParameter object has the following properties:

RfcTableParameter Object Properties

Name Type/Parameter Description

Name String Parameter name of the table. Read-only.

NameLength Long Length of the name. Read-only.

TableHandle Long ITAB handle of the table. Read-only.

RowLength Long Length of one row in the table. Read-only.

Type Long RFC Type of the table. Read-only.

TypeName String Description of the RFC Type. Read-only.

April 2001 339

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Rows Collection Object

Rows Collection Object
The Rows collection object is a collection of Row [Page 347] objects. The Rows collection is
implemented as a standard collection like many other SAP active control collections. It eases the
row access to the table data.

Properties [Page 34]1

Methods [Page 343]

340 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Rows Collection Properties

Rows Collection Properties
The Rows collection object has the following properties:

Rows Collection Properties

Name Type Description

Count Long Returns the number of objects in the
collection. Read-only.

Item [Page 342] VARIANT vaWhichItem Retrieves a Row [Page 34]7 from the rows
collection. Read-only.

April 2001 341

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Rows Collection Property: Item

Rows Collection Property: Item
Purpose
Retrieves a Row [Page 34]7 from the Rows collection.

Description
The parameter vaWhichItem describes the element to be returned. The following variant data
types for arWhichItem are legal:

Type Description

VT_BSTR, VT_LPCSTR, VT_LPWSTR

VT_BSTR *, VT_LPCST *, VT_LPWSTR *

The Row object with the key value vaWhatItem
is returned. If no key column is defined,
vaWhichItem is converted to an integer value
and used as index into the collection.

See Defining a Key Column for a Table [Page
].

Any type convertible to a VT_I4. The parameter vaWhichItem is converted to an
integer value and used as index into the
collection.

352

342 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Rows Collection Methods

Rows Collection Methods
The Rows collection object has the following methods:

Rows Collection Methods

Name Parameter Description

Remove [Page 344] VARIANT vaWhat Removes a Row [Page 34]7 object from the
collection.

RemoveAll Removes all Row [Page 34]7 objects from the
collection.

Add [Page 34]5 VARIANT vaWhat Adds a new Row [Page 347] object to the
collection.

Insert [Page 346] VARIANT vaIndex Inserts a new Row [Page 34]7 object at a given
position to the collection.

April 2001 343

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Rows Collection Method: Remove

Rows Collection Method: Remove
Purpose
Removes a Row [Page 34]7 from the Rows collection.

Description
The parameter vaWhat describes the element to be removed. Legal variant types for vaWhat are
VT_DISPATCH or any data type that may be converted into an integer value. If vaWhat has type
VT_DISPATCH, the corresponding object is searched in the collection and removed. Otherwise
vaWhat is converted to an index and the corresponding row is removed.

When removing a row from the rows collection, the Row object becomes invalid. Any
further attempt to work on the object returns an invalid object exception.

344 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Rows Collection Method: Add

Rows Collection Method: Add
Purpose
Adds a new row to the collection.

Description
The parameter vaWhat describes the element to be added. If vaWhat has type VT_EMPTY, a
new Row [Page 347] is added. If vaWhat is of type VT_DISPATCH, a copy of the Row object is
added to the end of the collection.

The return value is always a new Row [Page 347] object.

April 2001 345

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Rows Collection Method: Insert

Rows Collection Method: Insert

Inserts an object into the collection at the position provided by vaIndex.

Insert(vaIndex)

Purpose

Syntax
The Insert method has the syntax:

Description
The new Row is inserted at the position indicated by vaIndex. All following Rows are
automatically reindexed.

346 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Row Object

Row Object
The Row object is an object that represents a single line of the table. This object has the
following properties:

Properties [Page 34]8

Methods [Page 349]

April 2001 347

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Row Object Properties

Row Object Properties

Row Object Properties

Type

The Row object has the following properties:

Name Parameters Description

 Long
Table [Page 316]. Read-only.

 Array of VARIANT

Value VARIANT ColumnIndex VARIANT Returns a single value in the row.
ColumnIndex is either an index or a
name.

Index Actual index of the Row in the

Data Gets/sets the data (all column
values) in the Row object. The data
is returned as an array.

348 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Row Object Methods

Row Object Methods
The Row object has the following methods:

Parameter

Row Object Methods

Name Description

 Clears the contents of the Row object. Any read accesses after clearing
return undefined values.

Clear

April 2001 349

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Columns Collection Object

Columns Collection Object
The Columns collection object is a named collection of Column [Page 358] objects. It is
implemented as a standard collection like many other SAP active control collections. It eases the
column access to the table data. The columns collection is also responsible for the definition of
the actual structure of the table.

Properties [Page 35]1

Methods [Page 353]

350 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Columns Collection Properties

Columns Collection Properties
The Columns collection object has the following properties:

Columns Collection Properties

Name Type Description

Count Long Returns the number of objects in the
collection. Read-only.

Item [Page 355] VARIANT vaWhichItem Retrieves a Column [Page 358] from the
columns collection. Read-only.

KeyColumn VARIANT Defines a column of the table that contains
key information. See Defining a Key Column
for a Table [Page 35]2 .

April 2001 351

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Defining a Key Column for a Table

Defining a Key Column for a Table

• The column values must be of type String (RFC_CHAR).

• All values in the Column must be unique

Dim oTable as Object

Dim oRow as Object

Dim oCustRow as object

REM oTable contains the following columns ‘Name’ and
‘CustomerID’, ‘Street’ …

REM CustomerID is unique in the table

oTable.Columns.KeyColumn = “CustomerID”

Set oCustRow = oTable.Rows.Item (sCustomerId)

oCustRow.Value(1) = ….

For each oRow in oTable.Rows

 if sCustomerId = oRow.Value(“CustomerID”)

 Set oCustRow = oRow ‘Remember Row object

 end if

Next oRow

oCustRow.Value(1) = ….

You can access a given table Row [Page 347] by calling the Item property with a key value as
parameter. To enable key access, you must specify the column in which the key value should be
found. Use the KeyColumn property to specify the column name or index of the column. The
following restrictions apply to the column used as a key column:

dim sCustomerId as string

sCustomerId = ‘0815’

REM Good: Find a special row by using key access

REM Bad: Normal search to find the data for the specified
CustomerID

 break

352 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Columns Collection Methods

Columns Collection Methods
The Columns collection object has the methods:

Columns Collection Methods

Name Parameter Description

Remove [Page 354] VARIANT vaWhat Removes a Column [Page 358] object from the
collection.

RemoveAll Removes all Column objects from the
collection.

Add [Page 35]6 VARIANT vaWhat Adds a new Column object to the collection.

Insert [Page 357] Long lndex

VARIANT vaWhat

Inserts a new Column object at a given
position in the collection.

April 2001 353

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Columns Collection Method: Remove

Columns Collection Method: Remove
 Purpose

Removes a Column [Page 358] object from the Columns collection.

Syntax
The Remove method has the syntax:

Description
The parameter vaWhat describes the element to be removed. Legal variant types for vaWhat are
VT_BSTR or any data type that can be converted to an integer value. If vaWhat has type
VT_BSTR, the first object with that name in the collection is removed. Otherwise vaWhat is
converted to an index and the corresponding column is removed.

Remove(vaWhat)

When removing a column from the Columns collection, the Column object becomes
invalid. Any further attempt to work on the object returns an invalid object exception.

354 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Columns Collection Method: Item

Columns Collection Method: Item
Purpose
Retrieves a Column [Page 358] object from the Columns collection.

Syntax
The Item method has the syntax:

Item(vaWhichItem)

Description
The parameter vaWhichItem tells describes the element to be returned. The following variant
data types for vaWhichItem are legal:

Type Description

VT_BSTR, VT_LPCSTR, VT_LPWSTR

VT_BSTR *, VT_LPCST *, VT_LPWSTR *

The column with the name vaWhichItem is
returned. If the name is undefined,
vaWhichItem is converted to an integer value
and used as an index into the collection.

Any type convertible to a VT_I4. The parameter vaWhichItem is converted to an
integer value and used as index into the
collection.

April 2001 355

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Columns Collection Method: Add

Columns Collection Method: Add
Purpose
Adds a new Column object to the collection.

Syntax
The Add method has the syntax:

Description
The Add method always returns a new Column [Page 358] object.

If the vaWhat parameter has type VT_EMPTY, a new column is added. If vaWhat is of type
VT_DISPATCH, a copy of the Column object is added to the end of the collection.

Add(vaWhat)

356 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Columns Collection Method: Insert

Columns Collection Method: Insert
Purpose
Inserts a Column object into the collection.

Syntax
The Insert method has the syntax:

Insert(Index, vaWhat)

Description
This method inserts an object into the collection at the position provided by Index (a number or
string).The vaWhat parameter is optional, but if provided, must be a Column object. In this case,
the new column is inserted at the indicated index. All following Columns are then automatically
reindexed.

April 2001 357

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Column Object

Column Object
The Column Object is responsible for access to second dimension of the Table object. It enables
data access to columns and also specifies the actual structure definition of the table.

Properties [Page 35]9

Methods [Page 361]

358 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Column Object Properties

Column Object Properties
The Column object has the properties:

Column Object Properties

Name Type/Parameter Description

Index Long Index of the column in the Table [Page 316]. Read-
only.

Name String Name of the column.

Type CRfcType [Page 36]0 Data type of the column.

TypeName String Description name of the type. Read-only.

IntLength Long Width of the column.

Decimals Long Number of decimals.

Offset Long Internal start address of the column. Read-only.

Data Array of VARIANT Gets/sets the data (all row values) for the Column
object. The data is returned as an array.

Value Long RowIndex Access a single value in the column.

April 2001 359

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Column Object Property: Type

Column Object Property: Type
The Type property has the following valid values:

Value Description

RfcTypeChar = 0 The values are of type String (the default type).

RfcTypeDate = 1 The values are of type Date (special string format).

RfcTypeBCD = 2 The values are of BCD String (compressed packed data).

RfcTypeTime = 3 The values are of type Time (special string format).

RfcTypeHex = 4 The values are binary data.

RfcTypeNum = 6 The values are strings that only contain numbers.

RfcTypeFloat = 7 The values are of type float.

RfcTypeLong = 8 The values are of type long.

RfcTypeShort = 9 The values are of type short.

RfcTypeByte = 10 The values are the integers in the range 0-255.

360 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Column Object Methods

Column Object Methods
The Column object has the methods:

Column Object Methods

Name Parameter Description

Clear Clears the contents of Column. Any read accesses following a call to
Clear will return undefined values.

April 2001 361

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Ranges Collection Object

Ranges Collection Object
The Ranges collection object is a collection of Range [Page 366] objects that provide direct
access to parts of the Table [Page 316] object. It eases table manipulation by letting you define
views of the table. This is useful, for example, when you only need the second and third column
of a table, or only the rows actually displayed in your User Interface control.

Properties [Page 36]3

Methods [Page 364]

362 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Ranges Collection Properties

Ranges Collection Properties
The Ranges collection object has the following properties:

Ranges Collection Properties

Name Parameters Type Description

Count Long Returns the number of objects in the collection.
Read-only.

Item Long lWhichItem DISPATCH Retrieves a Range [Page 366] object from the
Ranges collection. Read-only.

April 2001 363

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Ranges Collection Methods

Ranges Collection Methods
The Ranges collection object has the following methods: Ranges Collection Method: Add [Page
365]

Ranges Collection Methods

Name Parameter Description

Remove Long lWhat Removes a Range [Page 366] object from the
collection.

RemoveAll Removes all Range [Page 366] objects from the
collection.

Insert Long lWhichItem

VARIANT vaWhat

Inserts a new Range [Page 366] object at a given
position to the collection.

Add [Page 365] VARIANT vaWhat,

Long LowerBound,

Long UpperBound,

Long LeftBound,

Long RightBound

Adds a new Range [Page 366] object to the
collection.

All Parameters are optional.

364 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Ranges Collection Method: Add

Ranges Collection Method: Add
Purpose
Adds a new Range object to the collection.

Syntax
The Add method has the syntax:
Add(What, LowerBound, UpperBound, LeftBound, RightBound

Description
This method adds a new Range object to the collection and returns the newly added object.

The What parameter is optional, and can be either a Range [Page 366] object or omitted. In the
former case, the Range object is appended to the Ranges collection. In the latter case, a new
Range object is added.

The other parameters are also optional and provide the bounds of the range. If they are missing,
the new Range object uses the table boundaries. It can be resized afterwards by accessing the
properties of the Range object.

Dim oTable as Object

Dim oRange as Object

REM Different usages of the Add method

REM 1. Standard

Set oRange = oTable.Ranges.Add

REM oRange contains the whole table

REM 2. Create a Range which contains the Rows 2 to 10

Set oRange = oTable.Ranges.Add (, 2, 10)

Rem 3. Create a Range that contains the Columns 2 and 3

Set oRange = oTable.Ranges.Add (,,,2,3)

Rem 4. Build a Range collection, in that each Range has 5 Rows

Dim oRanges as Object

Set oRanges = oTable.BuildTiledRange(5)

Set oRange = oRanges.Item(3)

April 2001 365

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Range Object

Range Object
The Range object is a two-dimensional view of all or part of a Table object. It is like a Range
object in Microsoft EXCEL.

Properties [Page 367]

Methods [Page 369]

366 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Range Object Properties

Range Object Properties
The Range object has the properties:

Range Object Properties

Name Type/Parameter Description

LowerBound
[Page 368]

Long Lower index. Determines the starting row in the
Table object.

UpperBound
[Page 368]

Long Upper index. Determines the ending row in the
Table object.

LeftBound [Page
368]

Long Left index. Determines the starting column in the
Table object.

RightBound
[Page 368]

Long Right index. Determines the ending column in the
Table object.

Data Array of VARIANT Gets/sets the data (all values) of the Range object.
The data is returned as an array.

Value Long RowIndex

Long ColumnIndex

Returns a single value in the Range object.

April 2001 367

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Boundaries of a Range Object

Boundaries of a Range Object
The boundaries of a Range object can be set in two ways:

• by using the parameters of the Add method [Page 365] on a Ranges collection object

• by setting the bounds explicitly with the LowerBound, UpperBound, LeftBound, or
RightBound properties

All boundaries are checked against the underlying Table object. An OLE exception is triggered if
a bound exceeds the corresponding table dimension.

Dim oRange as Object

Dim oTable as Object

Rem 1. Set the Boundaries through the properties

Set oRange = oTable.Ranges.Add

oRange.LowerBound = 2

oRange.UpperBound = 4

oRange.LeftBound = 2

oRange.RightBound = 4

Rem 2. Set the Boundaries via the Ranges.Add method

Set oRange = oTable.Ranges.Add (2,4,2,4)

368 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Range Object Methods

Range Object Methods
The Range object has the methods:

Range Object Methods

Name Parameter Description

Clear void Clears the contents of the Range. Any following read accesses return
undefined values.

April 2001 369

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Views Collection Object

Views Collection Object
The Views collection object contains all views related to the Table object. The objects in a View
collection are not “View objects”, but rather additional controls that are used together with the
Table object.

Properties [Page 371]

Methods [Page 372]

Using Views with Table Objects

A view provides the ability to connect additional “table-related” controls to the Table object.
These additional controls provide ways of accessing and displaying the data stored in the Table
object.

Any object implementing the ISAPInternalLock and ISAPInternalViewNotification interface can be
added to the Views collection. Currently, A table-related control is either a Table View control or a
Table Tree control.

For more details, see:

The Table View Control [Page 389] •

The Table Tree Control [Page 216] •

• How to Connect Views to a Table [Page 373].

370 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Views Collection Properties

Views Collection Properties
The Views collection object has the following properties:

Views Collection Properties

Name Type Description

Count Long Returns the number of objects in the collection. Read-only.

Item Long lWhichItem Returns an view from the Views collection. Read-only.

April 2001 371

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Views Collection Methods

Views Collection Methods
The Views collection object has the following methods:

Views Collection Methods

Name Parameter Description

Remove Long lWhat Removes a View object from the collection.

RemoveAll Removes all View objects from the collection.

Add Object oWhat Adds a View to the collection.

Insert Long lWhichItem

Object oWhat

Inserts a new View at a given position to the collection.

Dim oTableView as Object REM SAP.TableView Object

Dim oTable as Object

oTable.Views.Add oTableView

oTable.Value (1,1) = “Testdata”

REM The String “Testdata” is automatically displayed in
TableView

REM If the OTableView is an object which lies on a Visual
Basic Form

REM the following code must be used

oTable.Views.Add oTableView.Object Rem access the dispatch
interface of the TableView

372 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 How to Connect Views to a Table

How to Connect Views to a Table
The ability to connect a view to the Table object eases the way a programmer can display data
stored in the Table object. The view (a separate control) can be added directly to the Views
collection of the Table object. Afterwards all data changes in the Table object are automatically
displayed in all views stored in the Views collection.

Any object which implements the ISAPInternalLock and ISAPInternalViewNotification interface
can be added to the Views collection. At the moment, the SAP Table View control and the SAP
Tree View control can be used as views.

For additional information, see:

Connecting Tree Views and Table Objects [Page 272] •

• Connecting Table Views and Table Objects [Page 413]

Dim oTableView as Object REM SAP.TableView Object

Dim oTable as Object

oTable.Views.Add oTableView

oTable.Value (1,1) = “Testdata”

REM The String “Testdata” is automatically displayed in
TableView

REM If the oTableView is an object which lies on a Visual
Basic Form

REM the following code must be used

oTable.Views.Add oTableView.Object

April 2001 373

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Matrix Object

Matrix Object
The Matrix object is the result of the SelectTo* [Page 335] methods provided in the Table [Page
316] object. The Matrix object has the following properties:

Matrix Object Properties

Name Type Description

RowCount Long Returns the number of rows in the matrix. Read-
only.

ColumnCount Long Returns the number of columns in the matrix.
Read-only.

IsRowVector Boolean Returns TRUE if the matrix contains only one
row. Read-only.

IsColumnVector Boolean Returns TRUE if the matrix contains only one
column. Read-only.

Data Array of VARIANT Gets/sets the data values in the Matrix object.
The data is returned as an array.

Row Long Index Gets/sets the data values in one row of the
matrix. The data is returned as an array.

Column Long Index Gets/sets the whole data of one column of the
matrix. The data is returned as an array.

Value Long RowIndex, Long
ColumnIndex

Gets/sets the value of one matrix entry.

374 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Code Examples

Code Examples
This section contains the following examples:

First Steps [Page 376]

Accessing Table Data [Page 377]

Automatic Display [Page 380]

Using Dynamic Structures for a Table [Page 381]

April 2001 375

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

First Steps

First Steps

Rem oConnection was obtained by the Logon control.

Dim oTableFactoryCtrl as Object

Dim oTable as Object

Rem Create an instance of the Table Factory.

Set oTableFactoryCtrl = CreateObject (“SAP.TableFactory.1”)

Rem Get a new Table object.

Set oTable = oTableFactoryCtrl.NewTable ()

if oConnection.IsConnected () = tloConnected then

 oTable.CreateFromR3Repository (oConnection, “RYPBMHI39,
“NODETAB”)

else

 Set oTable = Nothing

end if

Rem Now you have a fully initialized Table object.

Rem To display the column structure:

Dim oColumn as Object

For each oColumn in oTable.Columns

 msgbox oColumn.Name

 msgbox oColumn.TypeName

next oColumn

376 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Accessing Table Data

Accessing Table Data
The following code demonstrates techniques for accessing the data stored in a Table object.

Rem This example assumes that we have a table with 10 Rows and 5
Columns.

Dim vVal as VARIANT

Dim i as Long

Dim j as Long

Rem You can access each entry direct in the Table object

vVal = oTable.Value (1,1) ‘ or vVal = oTable(1,1)

Rem Alternatively, the column index can be a string

vVal = oTable.Value (1,”KUNNR”) ‘ or vVal = oTable(1,”KUNNR”)

Rem Setting a value works the same way

oTable.Value (1,1) = vVal

Rem You can access each entry of a table row using the Row object

Dim oRow as Object

Set oRow = oTable.Rows.Item (1) ‘ or Set oRow = oTable.Rows(1)

vVal = oRow.Value (1) ‘ or vVal = oRow(1)

Rem Alternatively, the column index can be a string

vVal = oRow.Value (“KUNNR”) ‘ or vVal = oRow(“KUNNR”)

Rem Setting a value works the same way

oRow.Value (1) = vVal

Rem You can access each entry in a table column using the Column
object.

Dim oColumn as Object

Set oColumn = oTable.Columns.Item(1) ‘ or Set oColumn=oTable.Columns(1)

vVal = oColumn.Value (1) ‘ or vVal = oColumn(1)

Rem Setting a value works the same

oColumn.Value (1) = vVal

Rem You can change the viewport to the table by using the Range object.

Rem The following line of code builds a Ranges collection in which

Rem each Range consists of 2 Rows of the Table

April 2001 377

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Accessing Table Data

oTable.BuildTiledRanges (2)

Rem You can access each entry in a table range using the Range object

Dim oRange as Object

Set oRange = oTable.Ranges.Item(1) ‘ or Set oRange=oTable.Ranges(1)

vVal = oRange.Value (1,1) ‘ or vVal = oRange(1,1)

Rem Setting a value works the same way

oRange.Value (1,1) = vVal

Rem In order to speed up access to all data, the Data property

Rem is provided for each of the object types to be accessed.

Rem The following lines of code provide the standard technique for

Rem accessing all data in the table.

Dim vVal as VARIANT(10,5)

Dim i as Long

Dim j as Long

For i = 1 To Table.RowCount

 For j = 1 To Table.ColumnCount

 vVal (i,j) = Table.Value(i,j)

 Next i

Next oRow

Rem By using the data property, the above code shrinks to one line:

Dim vVal as VARIANT

vVal = Table.Data

Rem Set values in the same way. Rows are added automatically,

Rem but columns are not.

Table.data = vVal

Rem The same works for a Row, a Column and a Range.

Dim oRow as Object

Dim oColumn as Object

Dim oRange as Object

Set oRow = oTable.Rows(1)

Set oColumn = oTable.Columns(2)

Set oRange = oTable.Ranges(3)

vVal = oRow.Data

378 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Accessing Table Data

vVal = oColumn.Data

vVal = oRange.Data

oRow.Data = vVal

oColumn.Data = vVal

oRange.Data = vVal

April 2001 379

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Automatic Display

Automatic Display
Once a Table object and a Table View object are connected, all data changes made in one
object are directly propagated to the other. This propagation can flow in both directions and
happens automatically (no additional coding):
Rem oTableView1 is an SAP Table View object placed on the

Rem Visual Basic Form

Rem oTable is a Table object

oTable.Views.Add oTableView1.object ‘ Connect the grid with the table

oTable(1,1) = “Hallo” ‘ Hallo is automatically displayed by the grid

380 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Using Dynamic Structures for a Table

Using Dynamic Structures for a Table
Some SAP BAPI function modules (Business API) use generic table parameters and return the
actual structure of the data table in a second table. The Table object is capable of using another
interpretation of its contents by simply changing its column structure. The actual column structure
is restricted to the row length of the dummy table. The following code demonstrates how you can
achieve this:
Dim oFuncOCX as Object

Dim oFunc as Object

Dim oFieldTab as Object

Dim oDataTab as Object

Dim colObj as Object

Dim k as Long

Rem Create a Function control

Set oFuncOCX = CreateObject (“SAP.Functions”)

Rem Add a BAPI to the Functions collection

Set oFunc = oFuncOCX.Add (“MC_RFC_BAPI_OIWID”)

if not oFunc.Call then stop end if ‘ if error stop

Rem Access the table parameter

Set oFieldTab = oFunc.Tables(“FIELDS”)

Set oDataTab = oFunc.Tables(“DATA”)

Rem Clear the old column structure

For k = oDataTab.columnCount To 1 Step -1

 oDataTab.Columns.Remove k

Next

Rem Imprint the new structure

For k = 1 To oFieldTab.RowCount

 Set colObj = oDataTab.Columns.Add

 colObj.intlength = Val(oFieldTab.cell(k, 3))

 If InStr("FNPI", oFieldTab.cell(k, "type")) > 0 Then

 colObj.type = 7

 else

 colObj.type = 0

April 2001 381

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Using Dynamic Structures for a Table

 End If

Next

382 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Glossary

Glossary
Table [Page 384]

Row [Page 385]

Column [Page 386]

Matrix [Page 387]

Range [Page 388]

April 2001 383

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Table

Table
The Table object represents (encapsulates) an internal table as it is provided by the RFC library.

384 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Row

Row
The Row object represents a single line of a Table object, e.g. the line operations of the RFC-
ITAB handling.

April 2001 385

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Column

Column
The Column object represents a single column of the underlying Table object. There is no
corresponding “direct handling” in the RFC library.

386 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Matrix

Matrix
The Matrix object represents a two-dimensional data array. It serves as a result of the SelectTo*
methods provided by the Table object.

April 2001 387

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Range

Range
The Range object serves as a view of the underlying table, similar to Range objects in an Excel
spreadsheet.

388 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 The Table View Control

The Table View Control
This section contains the following topics:

Introduction

Introduction [Page]390

Table View Control Object Hierarchy [Page]391

Basic Concept [Page]392

Control and Object Reference

Table View Object [Page]396

Columns Collection Object [Page]417

Column Object [Page]423

Rows Collection Object [Page 429]

Row Object [Page 435]

Cell Object [Page 438]

Design Environment Property Pages [Page 441]

Programming Guide

Connecting Table Views and Table Objects [Page 413]

Drag and Drop with Table Views [Page 416]

Glossary [Page 449]

April 2001 389

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Introduction

Introduction
The SAP Table View control is an R/3-aware active OLE control that simplifies the handling of
table data. Using OLE Automation and OLE control technology, the SAP Table View control can
either work as a standalone control or in combination with other SAP OLE controls like the SAP
Table Factory [Page 300].

Using the SAP Table View control is not necessarily combined with the use of any R/3 system. It
can run in every OLE control container as an advanced active OLE control. Nevertheless, the
SAP Table View control exploits its full functionality in conjunction with the SAP Table Factory
[Page 300]. Combining both active OLE controls allows the user an easy and very quick way to
navigate through hierarchical structures.

390 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Table View Control Object Hierarchy

Table View Control Object Hierarchy

Columns Column

Row

Rows

Font

SAPDataObject

SAP
Table Control

Cell

Font

SAP Table View
Control

April 2001 391

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Basic Concept

Basic Concept
The SAP Table View control is a Windows ActiveX OLE control that may be used in various
scenarios. It is up to the user of the control to define the appearance and data stored in the
control. This is either done interactively in design mode (see Design Environment Property Pages
[Page 441]), or at runtime through OLE Automation calls.

For this purpose, the object hierarchy of the Table View control is separated into columns, rows,
and cells. This separation makes access to data and properties of the control easier. Different
fonts may be assigned to each object. Different formatting is available for each column. Each
column can also be combined with one of several data types. The user interface is changed
according to these data types. For example, Boolean values are displayed as checkboxes and
selection data types as drop-down combo boxes. Drag-and-drop clipboard operations are
supported in a standard text-format-based implementation. Nevertheless, these operations may
also be adapted easily to the application’s needs.

Last but not least, the SAP Table View control can become an R/3-aware control through
connection to the Views [Page 37]0 collection of a SAP Table object [Page 30]5 . This results in
an highly automated procedure for the display and navigation of table data obtained from an R/3
System or any other data source.

392 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Using the Table View Control

Using the Table View Control
The Table View control provides views of tables that have been retrieved from R/3. It also allows
you to edit the data shown in the view, and automatically gets the table contents updated. You
get access to a Table View control by using a variable. This is easy in Visual Basic (Version >=
4.0).

To bind a table view to a table, get the table (such as Customers) and the view (such as
SAPTableView), and then notify the table that it now has a view.

‘ Establish view-table connection.

Customers.Views.Add SAPTableView.Object

Customers.Refresh

Below is a complete procedure for displaying a table from Visual Basic. The first step is to drop a
table view onto a form and set its name.

When you have retrieved the table via an RFC, connect it to the view. In Visual Basic, create a
form, then select SAP Generic Table View Control in the Custom Control dialog.

April 2001 393

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Using the Table View Control

An icon is placed in the toolbox . Click on this icon, and then create the control in the
area on the form where you want the table data displayed. Change the name of the new object
(in the Properties window) to SAPTableView (the name is optional, as long as you use the same
name in the script).

Create a text-entry field, and name it (for example) NameInput. Then, add a button and add the
following code to it (the click callback function):
Private Sub Command1_Click()

‘ Create function component.

Dim fns As Object

Set fns = CreateObject("SAP.Functions.1")

fns.logfilename = "c:\tmp\table+viewlog.txt"

fns.loglevel = 8

Dim conn As Object

Set conn = fns.Connection

conn.Client = "000"

conn.Language = "E"

conn.tracelevel = 6

if conn.logon(0, 0) <> True then

 MsgBox “Could not logon!”

End If

Dim Customers, Customer As Object

Dim Result As Boolean

‘ Get the name to display from NameInput and call function …

Result = fns.RFC_CUSTOMER_GET(Exception, NAME1:=NameInput, KUNNR:="*",
CUSTOMER_T:=Customers)

If Result <> True Then

 MsgBox "Got " + Str$(Customers.RowCount) + " rows."

 MsgBox (“Call error: “ + Exception)

 Exit Sub

Else

 ' try to display table view.

 Customers.views.Add TheTableView.object

 Customers.Refresh

End If

Set fns = Nothing

394 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Using the Table View Control

Set conn = Nothing

End Sub

The resulting form should resemble the following:

April 2001 395

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Table View Object

Table View Object
The SAP Table View object is the highest object in the control’s hierarchy, and therefore is also
called the root object [Page 451].You obtain a Table View object by:

• calling CreateObject(“SAP.TableViewControl”) in a Visual Basic application

• inserting a Table View control directly into a Visual Basic form from a toolbar

Properties [Page 39]7

Methods [Page 405]

Events [Page 406]

396 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Table View Properties

Table View Properties
The Table View object has the following properties:

Table View Properties

Name Type Description

Events Long Enables or disables events fired by
the control.

BorderStyle short Sets the border style for the control.
Possible values are:

 Enable3D = 0 (Draws a 3D frame)

 Simpleframe = 1 (Draws a simple
frame)

Defines the table foreground color.
This color is used for displaying text.

BackColor OleColor Defines the table background color.

Enabled Boolean Enables or disables the entire
control.

HWnd Handle Window handle of the control.

Parent Handle Window handle of the parent
window.

Font Object Font object used as default font for
displaying text.

ActiveColu
mn

Long Returns or sets the column index for
the active cell [Page 455].

ActiveRow Long Returns or sets the row index for the
active cell [Page 45]5 .

Columns
[Page 417]

Object Collection of all Column objects in
the Table View. Read-only.

Rows [Page
429]

Object Collection of all Row objects in the
Table View. Read-only.

ColumnCou
nt

Long Number of columns.

RowCount Long Number of rows.

FixedColum
ns

Long Number of fixed columns. Fixed
columns are columns which do not
scroll.

FixedRows Long Number of fixed rows. Fixed rows
are rows which do not scroll.

ForeColor OleColor

April 2001 397

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Table View Properties

Selection
[Page 401]

Object Returns or sets the current selection.

HideSelecti
on

Boolean Indicates whether the selected range
should be highlighted when the
control does not own the input focus.

ShowGridLi
nes

Boolean Indicates whether grid lines should
be drawn.

ShowHScro
llBar

Boolean Indicates whether a horizontal
scrollbar should be attached to the
control.

ShowVScrol
lBar

Boolean Indicates whether a vertical scrollbar
should be attached to the control.

ShowRowH
eaders

Boolean Indicates whether a row header
should be displayed. (See also
Header property of row [Page 435]
object).

ShowColHe
aders

Boolean Indicates whether a column header
should be displayed

(see also Header property of column
[Page 423] object).

EnableProt
ection
[Page 402]

Boolean Enables or disables the protection of
cells, rows or columns.

SelectMode CSelModeT
ype

Sets or returns the current selection
mode. Possible values are:

 tavSelModeDisable = 1 No selection is
possible.

 tavSelModeCell = 2 Selection of single
cells, rows and
columns is possible.

 tavSelModeRow = 3 Only entire rows may
be selected.

 tavSelModeCol = 4 Only entire columns
may be selected.

DragDrop CDragDrop
Type

Sets or returns the current drag and
drop mode.

(See also DropEnter [Page 411],
Drop [Page 412], DragSourceFill
[Page 410] and DragComplete
events.)

Possible values are:

 tavDragDropModeDisable = 1 Drag and Drop is
disabled.

398 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Table View Properties

 tavDragOnly = 2 The control may only
be used as drag
source.

 tavDropOnly = 3 The control may only
be used as drop
target.

 tavDragDropAll = 4 Full drag and drop is
enabled.

Formula Variant Not implemented yet. Returns the
same as Value.

Value [Page
]

Variant Returns the data of a single cell.

Data Array of
Variant

Sets or returns the entire data of the
control in a two dimensional array. A
single element of the array has type
variant.

Cell [Page
404]

Object Returns a Cell object [Page 438].
Read-only.

AutoConfig CAutoConfi
g

Defines how the connection to a
SAP Table object [Page 220] is
established. Possible values are:

(See also Connecting Table Views
and Table Objects [Page 413].)

 tavAutoConfigDisabled = 0 The connection is
defined by the
TableIndex property of
the column [Page 423]
and row [Page 435]
objects.

 tavAutoConfigRows = 1 The connection is
defined by the
TableIndex property of
the column [Page 42]3
objects. Rows are
automatically
maintained by the
connection.

 tavAutoConfigCols = 2 The connection is
defined by the
TableIndex property of
the row [Page 435]
objects. Columns are
automatically
maintained by the
connection.

403

April 2001 399

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Table View Properties

 tavAutoConfigAll = 3 The connection is
automatically
maintained by the
connection.

Table Object Returns the SAP Table object [Page
] connected to the view. (See

also Connecting Table Views and
Table Objects [Page 413])

220

400 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Table View Property: Selection

Table View Property: Selection
Purpose
The Selection property returns or sets the current selection.

Description
The current selection is an object representing either a single cell or a range [Page 456] of cells.
The SAP Table View control allows only one selected range. In either case, the selected object
has properties and methods of its own:

Property Type Description

<default property> String Sets or returns the selection.

UpperBound Long Set or returns the uppermost selected row

LowerBound Long Set or returns the lowermost selected row

LeftBound Long Set or returns the leftmost selected column

RightBound Long Set or returns the rightmost selected column

Use the <default property> for the selected object to determine what part of the table was
selected. The default property returns a string value that uses a special notation to specify the
selection:

• Single cells: The column is identified by a character and the row by a number. A1 would
be the first row in the first column. B5 would be the fifth row in the second column.

• Ranges: Codes for the left topmost and the right bottom-most cells are separated by a
colon. A range consisting of all cells starting from the second row in the second column
to the fifth row in the fourth column would be set or returned by a range string of ‘B2:D5’.

The following method is also available with the selected object:

Method Parameter Description

Set Long Lower

Long Left

Long Upper

Long Right

Sets the current selection.

When you want to set all selection boundaries at once, the Set method is more efficient than
making four calls to the boundary properties.

April 2001 401

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Table View Property: EnableProtection

Table View Property: EnableProtection
Purpose
Globally enables and disables modifications to the Table View.

Description
You can protect all or part of a Table View against modifications. If the user tries to modify a
protected cell, an Error event is fired.

To turn on protection, set the EnableProtection property to TRUE.

To specify which cell [Page 438], row [Page 43]5 , or column [Page 423] you want to protect, you
must also set the Protection properties in each individual item. However, if you set the individual
Protection properties without setting the global EnableProtection, all cells remain open for
modifications.

402 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Table View Property: Value

Table View Property: Value
Purpose
Sets or returns the data in a specified cell.

Syntax
The Value property has the syntax:
Value(Long Row, Long Column)

Description
The Value property sets or returns the data in the cell identified by Row and Column.

April 2001 403

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Table View Property: Cell

Table View Property: Cell
Purpose
Returns a Cell Object [Page 438] for given row and column values.

Syntax
The Cell property has the syntax:
Cell(Long Row, Long Column)

Description
This property returns the Cell object defined by Row:Column. This property is read-only.

404 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Table View Methods

Table View Methods
The Table View object has the following methods:

Table View Methods

Name Parameter(s) Return Type Description

AboutBox void void Displays the AboutBox dialog.

CopyToClipboard void Boolean Copies the current selection to the
clipboard using CF_TEXT format.

PasteFromClipboard void Boolean Pastes the content of the clipboard
starting at the active cell. Returns
TRUE if the paste operation was
successful.

ClearSelection void void Deletes data values for the current
selection.

Clear void void Deletes data values for the entire
table.

ColumnAutoWidth Long Column1

Long Column2

void Adjusts the width of the columns
specified by Column1..Column2
automatically, as required by column
contents.

April 2001 405

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Table View Events

Table View Events
The SAP Table View control fires several events in order to inform the container on state
changes, user interaction and drag and drop operations. The events may be enabled or disabled
through the Table View object’s Events property [Page 397].

The events are:

SAP Table View Events

Name Parameters Description

DblClick void A double-click
occurred within the
control’s client area.

KeyDown short*
KeyCode

short
ShiftState

A key was pressed.
The virtual key code
is passed in
KeyCode, the current
state of the shift key
in ShiftState.
KeyCode may be
modified within the
event-handling
routine.

KeyUp short*
KeyCode

short
ShiftState

 A key was released. The virtual key
code is passed in KeyCode, the
current state of the shift key in
ShiftState. KeyCode may be
modified within the event-handling
routine.

TableCreate void A connected SAP
Table object [Page
220] has created its
table.

TableClear A connected SAP
Table object was
cleared.

Long Row1

Long Row2

Long
Column1

Long
Column2

Variant
vaData

The data in the range [Page 456]
Row1:Column1 to Row2:Column2
has changed. The new data is
passed in vaData. If only one cell
has changed, vaData contains data
of a simple variant type, if an entire
range has changed, vaData contains
an array of variant.

DataChange

406 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Table View Events

RowInsert Object Row A new row [Page 43]5 object was
inserted. The new Row object is
passed as parameter Row.

ColumnInsert Object
Column

 A new column [Page 423] object is
being inserted. The new Column
object is passed in as parameter
Column.

RowRemove Object Row The row [Page 435] object Row is
being removed. It is not possible to
cancel the remove operation within
the remove event handler.

ColumnRemove Object
Column

 The column [Page 423] object
Column is removed. It is not
possible to cancel the remove
operation within the remove event
handler.

BeforeInput Object Cell The user starts an input action in the
cell Cell. The corresponding Row
and Column objects and indices are
accessible through the Row and
Column property of the Cell [Page

] object.

AfterInput Object Cell

Variant
NewValue

 The user ends an input action in the
cell Cell. The according Row and
Column objects and indices are
accessible through the Row and
Column property of the Cell [Page

] object. The new value for the
cell is passed to the event handler in
NewValue.

DragSourceFill
[Page 410]

Object
DataObject

Short*
Handled

 A drag-and-drop [Page 416]
operation is starting. DataObject is a
SAP Data Object [Page 14]9 and
may be filled with any format.

DropComplete Long Effect A drag-and-drop [Page 416]
operation has been completed.
Effect describes the type of drop
done. It is up to the application to
consider the Effect.

438

438

April 2001 407

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Table View Events

DropEnter
[Page 411]

Object
DataObject

Long
KeyState

Long*
Effect

Short*
Handled

 During a drag-and-drop [Page 416]
operation, the mouse pointer was
moved into the client area of the
control.

(See also SAP Data Object [Page
])

Drop [Page 41]2 Object
DataObject

Long Row

Long
Column

Long*
Effect

Short*
Handled

 A drop has occurred on the control’s
client area.

(See also SAP Data Object [Page
])

SelChange Long
RowLow

Long
ColumnLo
w

Long
RowHigh

Long
ColumnHig
h

 The selection [Page 401] property
has changed. The parameters
RowLow, ColumnLow, RowHigh,
ColumnHigh are the new selection.
If only one cell is selected, the high
values equal the low values.

Error Short
Number

String*
Description

Long
Scode

String
Source

String
HelpFile

Long
HelpConte
xt

Short*
CancelDisp

 This event is fired after an error has
occurred. Description is a literal
error description. Scode is the
corresponding OLE error code or
control specific error code. Source is
the name of the control causing the
error, HelpFile and HelpContext
define where to find specific help on
the error that occurred. CancelDisp
must be set to TRUE if no error
message box should appear. Setting
CancelDisp to FALSE is very
convenient during development. For
release applications, this parameter
should be set to TRUE in most
cases.

149

149

408 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Table View Events

If special errors should be treated in the error event handler, the Scode and the
Number parameter are to be used as the describing element. The Description
parameter is language-dependent and may vary with different versions of the control.

April 2001 409

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Table View Event: DragSourceFill

Table View Event: DragSourceFill
Purpose
Event-notification when a user starts a drag-and-drop operation.

Syntax
The DragSourceFill event has the syntax:
DragSourceFill(Object DataObject, Short *Handled)

Description
This event is fired at the source control when the user starts a drag-and-drop [Page 41]6
operation. The data object to be used for drag and drop is passed in to the event-handler as
DataObject and represents a SAP Data Object [Page 149].

If you code an event-handler for this event, your code can fill DataObject with the appropriate
data, and set the Handled flag to TRUE. In this case, any default event processing by the control
is disabled.

If your event-handler does not set Handled to TRUE, the control performs default event-handling.
This includes adding the selected data to the data object using the format CF_TEXT. Any data
previously stored in the data object using this format is overwritten.

410 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Table View Event: DropEnter

Table View Event: DropEnter
Purpose
Event-notification when a user drags a drag-and-drop object into the target control.

Syntax
The DropEnter event has the syntax:
DropEnter(Object DataObject, Long KeyState, Long * Effect, Short
*Handled)

Description
The DropEnter event is fired when the mouse pointer is moved into the client area of a control
during a drag-and-drop [Page 416] operation. The DataObject passed to the DropEnter event
handler is a SAP Data Object [Page 149]) that was originally filled in the DragSourceFill [Page
410] event. (The source control may be either a Table View or a Table Tree control.)

Your event-handler for DropEnter can call the IsFormatAvailable method (on the DataObject) to
determine whether DataObject contains acceptable information or not. If the DataObject is
acceptable, set the Effect parameter to one of the following values in order to change the cursor
accordingly:

Value Description Cursor

DROPEFFECT_NONE = 0 Drop is not possible.

DROPEFFECT_COPY = 1 Drop of copy is possible.

DROPEFFECT_MOVE = 2 Move of DataObject is possible.

Set the Handled parameter to TRUE if you want to disable the control’s default drag and drop
handling.

See your Visual Basic documentation for information on the contents of the KeyState parameter.

April 2001 411

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Table View Event: Drop

Table View Event: Drop
Purpose
Event-notification when a user drops a drag-and-drop object into the target control.

Syntax
The Drop event has the syntax:
Drop(Object DataObject, Long Row, Long Column, Long * Effect, Short
*Handled)

Description
The Drop event is fired if the control’s client area is the drop target of a drag-and-drop [Page 41]6
operation. The parameters Row and Column indicate the location in the table where the
DataObject was dropped.

Invoke the IsFormatAvailable and GetData methods (on the DataObject) to retrieve any data
stored in the DataObject. This data was originally filled in the DragSourceFill [Page 410] event
and can be in any format. (The source control may be either a Table View or a Table Tree
control.)

The Effect parameter indicates whether the DataObject should be copied, moved or whether a
link to the data source object should be established (see also DropEnter [Page 411]event). The
Effect parameter will subsequently be passed on to the drop source control when the
DropComplete event is fired.

Set the Handled parameter to TRUE if you want the control’s default drag and drop handling to
be canceled.

412 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Connecting Table Views and Table Objects

Connecting Table Views and Table Objects
Although the SAP Table View control can be used alone, you must connect it to a Table object’s
Views collection to exploit its full functionality. Connecting the view control to the Table object
means that data is transported automatically between both controls in both directions. Any
change of data either by user interaction or through the control’s automation is transferred to the
Table object. The same scenarios work when data is changed in the Table object. Any formatting
or data conversion done within the Table object is immediately reflected in the view control.

Connecting and Disconnecting the Controls

The connection is easily established. Every Table object exports a Views [Page 370] collection.
This collection maintains all objects using the Table object as data source. By adding an instance
of a Table View control to this View collection (in the Table object), the connection is established.
The connection is released by removing the Table View object from the Table object’s Views
collection.

Dim oTableFactory As Object

Dim oTable As Object

‘ Create TableFactory and Object

 Set oTableFactory = CreateObject(“SAP.TableFactory.1”)

 Set oTable = oTableFactory.NewTable

 ‘ Establish view - connection

 oTable.Views.Add SAPTableView1.Object

 ‘... Do anything

‘ Remove view - connection

OTable.Views.Remove(1)

•

How the Connection is Managed

The connection between the Table View and Table Factor controls is configured through:

the AutoConfig property in the Table View object

• the TableIndex property in the Row [Page 435] and Column [Page 423] objects (in the
Table View control)

The TableIndex properties in the Table View object are the key to the connection mechanism.
These indexes tell which Table View row or column corresponds to which Table Factory row and
column. Thus each Table View cell may address data in the Table object using its TableIndex
properties. The AutoConfig property in the Table View object distinguishes between four different
modes:

Value Description

April 2001 413

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Connecting Table Views and Table Objects

tvaAutoConfigDisabled = 0 The TableIndex of the Row [Page 435] and Column [Page
] objects are provided and maintained by the application

using the control. No automated mechanism works for these
properties. If all TableIndex properties are set to 0, the
behavior is the same as if there were no connection.

tvaAutoConfigRows = 1 The TableIndex of all Row objects are provided and
maintained automatically through the connection. If rows are
inserted or removed in the Table object, all TableIndex
properties (in the relevant Table View Rows) are updated
automatically. The relevant new or outdated Rows in the Table
View are also automatically inserted or deleted.

The TableIndex of all Column objects are provided and
maintained automatically through the connection. If columns
are inserted or removed in the Table object, all TableIndex
properties (in the relevant Table View Columns) are updated.
The relevant new or outdated Columns in the Table View are
also automatically inserted or deleted.

tvaAutoConfigAll = 3 All TableIndex properties are provided and maintained
automatically through the connection. All modifications in the
Table object are reflected automatically for all Table View
rows and columns.

423

tvaAutoConfigCols = 2

The entire connection is driven by the Row [Page 43]5 object and Column [Page

] object’s TableIndex properties. Nevertheless it is possible to insert and remove
rows and columns through the SAP Table View control’s Rows [Page 429] and
Columns [Page 417] collections. These rows and columns are not configured
automatically in any case. This allows the application to insert or remove rows and
columns from the Table View without any effect on the Table object. If the Table
View object and the Table object need to be kept synchronous, the application
should always work on the Table object.

423

How Events are Communicated

The following rules apply to the connection:

Event Reaction

Data changed in the Table object Corresponding cell data in the Table View object is
changed immediately.

Corresponding cell data in the Table object is
changed immediately.

Row deleted in the Table object Corresponding row is deleted in the Table View
object.

Row deleted in the Table View object No modification of the Table object.

Column deleted in the Table object Corresponding column is deleted in the Table View
object.

Data changed in the Table View
object

414 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Connecting Table Views and Table Objects

Column deleted in the Table View
object

No modification to the Table object.

Row inserted in the Table object A new row is inserted in the Table View object if it is
possible to determine the position. Otherwise a new
row is added.

Row inserted in the view object No modification to the Table object.

Column inserted in the Table object A new column is inserted in the view object if it is
possible to determine the position, otherwise a new
column is added.

Column inserted in the Table View
object

No modification to the Table object.

Table object cleared All Table View rows with a connection to the Table
object are cleared.

Table View object cleared Each Table View cell with a connection to the Table
object clears the corresponding value in the Table
object.

Table object deleted Each Table View row and each column with a
connection to the Table object is removed.

Table View object deleted No modification to the Table object.

April 2001 415

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Drag and Drop with Table Views

Drag and Drop with Table Views
The SAP Table View control implements several standard drag and drop scenarios. The drag
and drop behavior is defined through the DragDrop property of the Table View object.

Standard drag and drop may be disabled, only dragging may be enabled, only dropping may be
enabled or both drag and drop is enabled. Standard drag-and-drop operations are always
performed using CF_TEXT format. Standard drag-and-drop operations within one control support
move and copy operations; drag and drop between two controls supports only copy operations
as default implementation.

The data transport scenarios mentioned also work across process boundaries.

If the default drag and drop implementation is not sufficient, you can implement event handlers
for the DropEnter [Page 41]1 , Drop [Page 412], DragSourceFill [Page 41]0 and DragComplete
events to fulfill more complicated requirements.

416 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Columns Collection Object

Columns Collection Object
The columns collection is a collection of column [Page 423] objects. It is implemented as a
named collection [Page 14]7 . The Columns collection object maintains the number and
arrangement of columns, the column headings and column heading fonts.

Properties [Page 41]8

Methods [Page 419]

April 2001 417

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Columns Collection Properties

Columns Collection Properties
The Columns collection object has the following properties:

Columns Collection Properties

Name Parameter Type Description

Item Variant vaIndex Object Returns the object indexed by vaIndex. If vaIndex is
from type VT_BSTR, the object is returned by name,
otherwise the value is converted to an integer and
used as index.

Count Long Returns or sets the number of objects in the
collection. Legal values for this property range from 0
to 255.

Height Short Defines the height of the column headers. The height
is measured in twips.

Font
[Page

]

 Object Defines the font used for the column headers.

152

418 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Columns Collection Methods

Columns Collection Methods
The Columns collection object has the following methods:

Columns Collection Methods

Name Parameters Return Type Description

Add [Page 420] Variant vaWhat Object Adds an object to the collection.

Remove [Page 421] Variant vaIndex Boolean Remove an object from the
collection.

Insert [Page 422] Variant vaIndex

Variant vaWhat

Object Inserts an object into the collection.

April 2001 419

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Columns Collection Methods: Add

Columns Collection Methods: Add
Purpose
Adds an object to the Columns collection.

Syntax
The Add method has the syntax:

Add (Variant vaWhat)

Returns
type Object

Description
The Add method adds an object to the Columns collection and returns the new object.

Legal types for the parameter vaWhat are:

Type Description

Object that does not equal nothing [Page
453].

An already-existing object is added. This
object must be a Column [Page 423] object.
This variant type is used to display the same
column more than once.

Object that equals nothing, VT_EMPTY or
VT_ERROR

A new Column object is created and added
to the collection.

420 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Columns Collection Methods: Remove

Columns Collection Methods: Remove
Purpose
Removes an object from the Columns collection.

Syntax
The Remove method has the syntax:

Remove (Variant vaIndex)

Returns
type Boolean

Description

Legal types for the parameter vaIndex are :

Type Description

Any type convertible to an integer. The parameter vaIndex is converted to an integer and
used as index in the collection. The corresponding
object is removed from the collection and marked as
invalid. Any further attempt to work on this object
leads to an ‘Invalid object’ exception.

String not convertible to an integer. The parameter vaIndex is used to search and remove
the object with the corresponding name from the
collection.

Object The parameter vaIndex is used to search and remove
the objects which are the same as vaIndex.

If vaIndex is any type except Object, only one element is removed from the
collection. If vaIndex is of type Object, all columns addressed by vaIndex are
removed. This occurs if the object was inserted or added more often than once.

April 2001 421

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Columns Collection Methods: Insert

Columns Collection Methods: Insert
Purpose
Inserts an object into the Columns collection.

Syntax
The Insert method has the syntax:

Insert(Variant vaIndex,Variant vaWhat)

Returns
type Object

Description

This method inserts an object into the collection. Legal types for the parameter vaIndex are:

Type Description

Any type convertible to an integer The parameter vaIndex is converted to an
integer and used as index in the collection. The
object is inserted prior to the object found.

String that is not convertible to an integer The parameter vaIndex is used to search the
object by name. Prior to this object the new
object is inserted.

Object The parameter vaindex is used to search the
objects. Prior to this object the new object is
inserted.

Legal types for the parameter vaWhat are the same as for the Add [Page 420] Method.

Using a vaWhat parameter that is a Column object is legal. A column may be
inserted as many times as desired.

422 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Column Object

Column Object
The Column object is a named object [Page 45]7 . It controls the behavior, arrangement and
display of one column. Data may also be accessed through the column object.

Properties [Page 42]4

Methods [Page 428]

April 2001 423

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Column Object Properties

Column Object Properties
The Column object has the following properties:

Column Properties

Name Parameter Type Description

Type [Page
426]

 CViewColType Defines the type of column.

Header String Column heading text.

Length Short not implemented yet.

Protection Boolean Sets this property to TRUE to protect the
entire column against user input and
modifications. This flag is used only if the
Table View object’s EnableProtection [Page

] property is set to TRUE.

Width Short Width of this column. The value is measured
in average character width units.

Font [Page
]

 Object Font used for this column.

Format String Defines the format for all cells in this column.

Data Array of Variant Returns the data of the entire column in a
two-dimensional array. The first dimension
always equals one, the second dimension
equals the number of cells in the column.

Index Long Returns the index in the object’s Columns
[Page 417] collection. Read-only.

Visible Boolean Indicates whether the column should be
visible. If this property is set to TRUE, the
column becomes invisible by setting the
columns width to 0.

Alignment
[Page 427]

 Short Controls the alignment of the cells in this
column.

TableIndex Long Returns the index of an associated column in
a SAP Table object [Page 220] if a
connection to a SAP Table object is
established.

(See Connecting Table Views and Table
Objects [Page 413]).

Value Long Row Variant Returns or sets the value for the cell with the
corresponding Row index.

Cell Long Row Object Returns a Cell [Page 438] object for the cell
with the corresponding Row index.

402

152

424 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Column Object Properties

Formula Long Row Variant Same as value.

April 2001 425

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Column Object Properties: Type

Column Object Properties: Type
Purpose
Specifies the type of a Column object.

Returns
type CviewColType

Description
Legal values for Type are :

Value Description Appearance

tavColumnGeneral = 1 General data type. The data is
converted automatically to numeric,
date or time values (if possible) and
displayed accordingly. If the
Alignment [Page 42]7 property is set
to tavColumnAlignGeneral, the
display is also justified automatically.

tavColumnText = 2 All data is treated as text data. The
display is aligned according to the
Alignment property. Data is not
converted. This is especially
necessary if text data like ‘0001’
should be stored in a cell.

tavColumnBoolean = 3 All data is stored as Boolean. A
check box is used for displaying and
modifying data.

tavColumnSelection = 4 not implemented yet

tavColumnNumeric = 5 Same as tavColumnGeneral.

tavColumnObject = 6 not implemented yet

tavDate = 7 not implemented yet

ravTime = 8 not implemented yet

426 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Column Object Properties: Alignment

Column Object Properties: Alignment
Purpose
Controls the alignment of the cells in the Column object.

Returns
type Short

Description
Legal values for Alignment are:

Value Description

tavColumnAlignGeneral = 1 Text is aligned left justified, numerical, date and time values
are aligned right justified.

tavColumnAlignLeft = 2 All output is aligned left justified.

tavColumnAlignCenter = 3 All output is centered.

tavColumnAlignRight = 4 All output is aligned right justified.

tavColumnAlignFill = 5 All output is aligned left justified and repeated until the entire
column width is filled.

April 2001 427

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Column Object Methods

Column Object Methods
The Column object has the methods:

Column Methods

Name Parameter Type Description

Clear void void Clear the entire column.

428 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Rows Collection Object

Rows Collection Object
The Rows collection is a collection of Row [Page 435] objects. It is implemented as a standard
collection [Page 145]. The rows collection controls the number and arrangement of rows, row
headings and row heading fonts.

Properties [Page 430]

Methods [Page 431]

April 2001 429

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Rows Collection Properties

Rows Collection Properties
The Rows collection object has the following properties:

Rows Collection Properties

Name Parameters Type Description

Variant vaIndex Object Returns the object indexed by vaIndex. VaIndex
may be from any variant type convertible to an
integer value.

Count Long Returns or set the number of objects in this
collection. Legal values for this property are 0 to
16384.

Width Short Defines the width of the row headers in average
character units.

Font [Page
152]

 Object Defines the font used for the row headers.

Item

430 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Rows Collection Methods

Rows Collection Methods
The Rows collection object has the following methods:

Rows Collection Methods

Name Parameters Return Type Description

Add [Page 43]2 Variant vaWhat Object Adds an object to the collection.

Remove [Page
]

Variant vaIndex Boolean Removes an object from the collection.

Insert [Page 434] Long Index

Variant vaWhat

Object Inserts an object into the collection.

433

April 2001 431

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Rows Collection Methods: Add

Rows Collection Methods: Add
Purpose

Type Description

Adds an object to the Rows collection

Syntax
The Add method has the syntax:
Add(Variant vaWhat)

Returns
type Object

Description
This method adds an object to the Rows collection and returns the object added. Legal types for
the parameter vaWhat are :

Any variant data type convertible to an
integer value

A new Column object is created and added
to the collection.

432 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Rows Collection Methods: Remove

Rows Collection Methods: Remove
Purpose
Removes an object from the Rows collection

Syntax
The Remove method has the syntax:
Remove(Variant vaIndex)

Returns
type Object

Description
Removes an object from the Rows collection. Legal types for the parameter vaIndex are:

Type Description

Any variant data type convertible to an
integer value.

The parameter vaIndex is converted to an
integer and used as index in the collection.
The corresponding object is removed from
the collection and marked as invalid. Any
further attempt to work on this object leads to
an ‘Invalid object’ exception.

Object The parameter vaIndex is used to search
and remove the objects which are the same
as vaIndex.

If vaIndex is of type Object, the entire collection is searched for the object. This may
be very ineffective for large tables. Since a Rows [Page 429] collection may hold the
same object only once, it is better to remove a row by its index or to invoke the
remove method on the row object.

 ‘ do not use this construction :

Rows.Remove(Row)

‘ remove by Row index :

Rows.Remove(Row.Index)

‘ remove by row remove method :

Row.Remove

April 2001 433

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Rows Collection Methods: Insert

Rows Collection Methods: Insert
Purpose
Inserts an object into the Rows collection

Syntax
The Insert method has the syntax:
Remove(Variant vaIndex, Variant vaWhat)

Returns
type Object

Description
Inserts an object into the collection. Legal types for the parameter vaIndex are:

Type Description

Any type convertible to an integer. The parameter vaIndex is converted to an integer and
used as index in the collection. The object is inserted
prior to the object found.

Object The parameter vaindex is used to search the objects.
Prior to this object the new object is inserted.

Legal types for the parameter vaWhat are the same as for the Add [Page 432] Method.

If vaIndex is of type Object, the entire collection is searched for the object. This may
be very ineffective. Since a Row collection may hold the same object only once, it is
better to use the Row [Page 435] object’s Index property.
Rows.Insert(Row.Index,)

434 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Row Object

Row Object
The Row object manages the behavior, arrangement and display of a single row. Data may also
be accessed through the row object.

Properties [Page 436]

Methods [Page 437]

April 2001 435

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Row Object Properties

Row Object Properties
The Row object has the following properties:

Row Object Properties

Name Parameters Type Description

Height Short Height of row. The value is measured in
twips.

Header String Row heading text.

Protection Boolean Sets this property to TRUE to protect the
entire row against user input and
modifications. This flag is only used if the
Table View object’s [Page 451]
EnableProtection [Page 402] property is
set to TRUE.

Font [Page
]

 Object Font used for this row.

Data Array of Variant Returns the data of the entire row in a two-
dimensional array. The first dimension
equals the number of cells in the row, the
second dimension always equals one.

Index Long Returns the index in the object’s Rows
[Page 429] collection. Read-only.

TableIndex Long Returns the index of an associated row in
a Table View Object [Page 396], if a
connection to a SAP Table object is
established.

(See Connecting Table Views and Table
Objects [Page 413])

Long Column Variant Returns or sets the value for the cell with
the according Column index.

Formula Long Column Variant Same as value.

Cell Long Column Object Returns a Cell [Page 438] object for the
cell with the according Column index.

152

Value

436 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Row Object Methods

Row Object Methods
The Row object has the following methods:

Row Object Methods

Name Description

Clears the entire row.

Remove Removes the row from its Rows [Page 429] c

Clear

ollection.

April 2001 437

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Cell Object

Cell Object
The Cell object allows access data in a single cell. It is also possible to protect a single cell
against changes or to change the appearance of the cell’s font. Special properties for different
types of cells are available (see also the Type [Page 426] property of Column [Page 423] object).

Properties [Page 439]

Methods [Page 440]

438 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Cell Object Properties

Cell Object Properties
The Cell object has the properties:

Cell Object Properties

Name Type Description

Protection Boolean Set this property to TRUE to protect the cell against user input
and modifications. This flag is only used, if the Table View
object’s EnableProtection [Page 402] property is set to TRUE.

Font [Page 15]2 Object Font used for this cell.

Value Variant Returns or sets the value for the cell.

Formula Variant Same as value.

CheckLabel String Set or returns the label for the check box. Check boxes are
only displayed for cells in columns of Type [Page 426]
tvaColumnBoolean.

Row Object Returns the Row [Page 43]5 object for this cell. Read-only.

Column Object Returns the Column [Page 423] object for this cell. Read-only.

April 2001 439

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Cell Object Methods

Cell Object Methods
The Cell object has the following methods:

Cell Object Methods

Name Description

Clear Clears the cell.

440 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Design Environment Property Pages

Design Environment Property Pages
Most OLE control-aware container programs and development environments support a design
environment that enables the user to interactively design forms and dialogs. Within this design
environment, the user can choose controls from a toolbar window and place on the from.

The SAP Table View control is indicated by . A typical view on the design environment is
shown below.

The control’s appearance depends on its configuration, just as the available properties for the
control depend on the container. Some containers add additional properties like Visible, Default,
Parent or Cancel. These extended properties are described in the container’s manual.

It is also up to the container whether a single property is displayed as in Microsoft Visual Basic,
or whether the properties are only available through the property pages at design time.
Nevertheless, every control container should support a right mouse button menu on the control
with a menu entry properties, which invokes the control’s property pages. The SAP Table View
control supports seven property pages:

Table View Property Page: General [Page 442]

Table View Property Page: Flags [Page 443]

Table View Property Page: Events [Page 444]

Table View Property Page: Columns [Page 44]5

Table View Property Page: Rows [Page 446]

Table View Property Page: Fonts [Page 447]

Table View Property Page: Colors [Page 448]

April 2001 441

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Table View Property Page: General

Table View Property Page: General
Set the following properties just as you would in a Visual Basic program. For possible values of
properties, see Table View Properties [Page 39]7 .

Property Description

Row Count Enter the number of rows.

Column Count Enter the number of rows.

Fixed Rows Enter the number of fixed (non-scrollable) rows.

DragDrop Mode Choose the desired drag-and-drop mode.

Selection Choose the desired SelectMode value.

Configuration Choose the desired configuration for a connection to a SAP Table
object [Page 413].

Row Header
Width

Enter the row header width in average character units.

Column Header
Height

Enter the column header height in twips.

Fixed Columns Enter the number of fixed (non-scrollable) columns.

442 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Table View Property Page: Flags

Table View Property Page: Flags
Set the following properties just as you would in a Visual Basic program. For possible values of
properties, see Table View Properties [Page 397].

Property Description

Vertical Scrollbar Enable vertical scroll bars.

Horizontal Scrollbar Enable horizontal scroll bars.

Protection Set the EnableProtection [Page 402] property.

Show Grid Lines Selected whether grid lines should be drawn.

HideSelection Selected whether selection should be highlighted if the control
does not own the input focus.

Show Column Headers Select whether column headers should be displayed.

Show Row Headers Select whether row headers should be displayed.

April 2001 443

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Table View Property Page: Events

Table View Property Page: Events
This property page is used to enable or disable events fired to the container during runtime. The
main reason to disable events is to improve performance. More sophisticated scenarios can set
these properties dynamically (using the Events property of the Table View object at runtime).

For more information on enabling and disabling events, see:

Table View Properties [Page 397]

Table View Events [Page 40]6

444 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Table View Property Page: Columns

Table View Property Page: Columns
Set the following properties just as you would in a Visual Basic program. For more information,
see:

Column Object [Page 423]

Column Object Properties [Page 424]

Columns Collection Object [Page 417]

Property Description

Column Select the desired column.

Header Enter the column header.

TableIndex Enter the index of the associated table column for a connection to a SAP
Table object [Page 413].

Width Enter the width of the column in average character units.

Format Enter the desired format string.

Name Enter the name of the column. The Column object is a Named Object [Page
457] in the Columns collection. The Name property may be used to access
the Column object through dynamic properties [Page 293].

Alignment Select the desired Alignment [Page 427] for this column.

 Type [Page 426] for this column.

Visible Set the column to visible or invisible

Protected Mark the column as protected.

(See also EnableProtection [Page 402])

Type Select the

April 2001 445

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Table View Property Page: Rows

Table View Property Page: Rows
Set the following properties just as you would in a Visual Basic program. For more information,
see:

Row Object [Page 435]

Row Object Properties [Page 436]

Rows Collection Object [Page 429]

Property Description

Row Select the desired row.

Header Enter the row header.

Height Enter the height of the row in twips.

TableIndex Enter the index of the associated table column for a connection to a SAP
Table object [Page 413].

Protected Mark the row as protected.

(See also EnableProtection [Page 402])

446 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Table View Property Page: Fonts

Table View Property Page: Fonts
This property page allows the user to define the default font [Page 152] used by the control.
Usually this is the font assigned to the entire form by the control container.

April 2001 447

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Table View Property Page: Colors

Table View Property Page: Colors
Set the following properties just as you would in a Visual Basic program. For more information,
see:

Table View Properties [Page 397]

Property Description

ForeColor Select the desired ForeColor [Page 397], also used as standard text color.

BackColor Select the desired ForeColor [Page 397] for the control.

448 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Glossary

Glossary
Collection [Page 45]0

Root Control, Root [Page 45]1

Root Node [Page 45]2

Nothing [Page 453]

CreateObject [Page 454]

Active Cell [Page 455]

Range [Page 456]

Named Object [Page 457]

April 2001 449

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Collection

Collection
A collection object maintains a set of other objects that all have the same type. A collection
usually supports methods like Item, Add, Insert and Remove (see SAP Standard Collection
[Page 145]). You can iterate through a collection by using For … Each loops in Visual Basic or
the IEnumVARIANT interface in C++ (see Node Object Property: AllChildren [Page 251]).

450 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Root Control, Root

Root Control, Root
The root control is the highest level object in the object hierarchy. It is accessible through the
object returned by CreateObject [Page 45]4 .

April 2001 451

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Root Node

Root Node
A root node is a Node [Page 245] located at the highest level of the tree’s hierarchy. It has no
parent node and is part of the Table View object’s Nodes [Page 237] collection.

452 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Nothing

Nothing
VBA key word for an empty object. This value is the same as NULL in C++ or nil in Pascal.

April 2001 453

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

CreateObject

CreateObject
VBA function to create an OLE object. See your Visual Basic documentation for complete
information.

454 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Active Cell

Active Cell
The active cell is the cell that receives user input if the SAP Table View control owns the input
focus. Subsequent user input is done in this cell. The active cell is marked with a black simple
frame.

April 2001 455

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Range

Range
A range is a rectangular area that groups cells together. A range is usually displayed using
inverted colors.

456 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Named Object

Named Object
A Named Object is an object that exposes a property called Name of type String and is stored in
a Named Collection [Page 147]. Within the Named collection, the object is accessible through its
name.

April 2001 457

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

The Logon Control

The Logon Control
This section contains the following topics:

Introduction

Introduction [Page]459

Logon Control Object Hierarchy [Page]460

Using the SAP Logon Control [Page] 461

Control and Object Reference

Logon Object [Page]465

Connection Object [Page 490]

Programming Guide

Code Examples [Page 498]

Glossary [Page 501]

458 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Introduction

Introduction

This version of the component can be created via the Custom Control Adding in Visual Basic
(VB) 4.0 and Visual C (VC) 4.0 or by the following line of code:

The SAP Logon control is an ActiveX control that encapsulates the connection process as
provided by the RFC Library. It eases the way the desktop programmer can connect a client
application with R/3. The SAP Logon control is designed in such a way that it can be used
optimally to work with Visual Basic 4.0, VBA and C++ through provided wrapper classes. Future
releases will also support Dual Interface in the 32-Bit version.

Dim oLogonCtrl as Object
Set oLogonCtrl = CreateObject (“SAP.Logoncontrol.1”)

Note that the Logon Control is being replaced by the DCOM Connector Logon
Component [Ext.] for applications using the SAP DCOM Connector.

April 2001 459

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Logon Control Object Hierarchy

Logon Control Object Hierarchy

SAP Logon Control

Connection

Legend

Object

Createable
Object

Cretaes

460 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Using the SAP Logon Control

Using the SAP Logon Control
The SAP Logon control handles the remote access to an R/3 System. To access R/3, your
program must do the following:

2. Obtain a

1. Obtain a Logon object.

Get this object by calling CreateObject(“SAP.Logoncontrol”) or by inserting a
Logon control directly into a form from a toolbar.

 Connection Object [Page 490] object.

Get a Connection object by using the Logon object’s Logon Method: NewConnection
[Page 488] method or by handling a Click Event.

3. Call the Connection object’s Logon [Page 494] method.

The Logon method tries to establish the connection immediately and returns TRUE if
successful, otherwise FALSE. In the latter case, the IsConnected [Page 492] property
provides detailed information about the source of the failure.

The following topics are available:

Logon Object [Page]465

Connection Object [Page]490

Using Logon Controls in Design Mode [Page]496

Code Examples [Page]498
Connecting Directly with the Logon Control [Page 499]
Logging on Silently [Page 500]

April 2001 461

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Connecting to the R/3 System

Connecting to the R/3 System
The Connection object is a property of the Function control and the Transaction control. It is
created automatically when you request the relevant collection for either the Function or the
Transaction control. The Logon control creates connections. If you have a Connection object
obtained from another control or directly from the Logon control, you can set it in the Function or
Transaction control.

The Connection object’s Logon method establishes the connection to the R/3 System. This
method has a parameter that can suppress the dialog box when the user logs in. This parameter
allows you to automatically log the user into a fixed account or provide your own logon dialogs.

To establish a connection, you must call the Logon method for your Connection object. For more
information, see Using the Logon Control to Connect to R/3 [Page 46]3 .

462 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Using the Logon Control to Connect to R/3

Using the Logon Control to Connect to R/3
Most controls deal directly with R/3 and therefore need a connection to the application server. To
get a connection, you need to create a Logon object and call the NewConnection method on that
object. The result of this call is the connection object. To log on to the R/3 System, you use the
Logon control. The example code generates the window shown below:

set LogonControl = CreateObject (“SAP.LogonControl.1”)

set conn = LogonControl.NewConnection

 MsgBox “Cannot log on!”

End If

 ‘ Create the Control.

Dim LogonControl As Object

‘ Create the connection.

Dim conn As Object

‘ Log on.

if conn.Logon (0, True) <> True then

You can set parameters for the logon process such as user name and password. See the
<LOGON control SECTION> for details. Depending on the parameters you set in the Logon
control, one or two dialog boxes are displayed that ask for the input needed to make the
connection. One of these dialog boxes is:

April 2001 463

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Using the Logon Control to Connect to R/3

464 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Logon Object

Logon Object
The SAP Logon object is the highest object in the Logon control hierarchy. It is obtained by
calling CreateObject in Visual Basic or by inserting the control directly into a design-mode form
from a toolbar.

The following topics are available:

Properties [Page 466]

Methods [Page 486]

Events [Page 489]

April 2001 465

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Logon Object Properties

Logon Object Properties
The Logon object has the following properties:

SAP Logon Properties

Name Type Description

Events [Page 467]

RFCWithDialog [Page 482]

Long Enables or disables events fired by the control.

Caption String Text on the button.

BackColor Color Background color of the button.

hWnd HWND Window handle of the button.

Enabled Enabled Enables the button.

Font Font Font of button text.

Parent HWND Window handle of Parent Window.

Default Boolean Button Default pushbutton.

ApplicationName String Name of the application that uses the Logon
control, used to identify connections.

System String SAP R/3 System name.

ApplicationServer String Application Server of the R/3 System.

SystemNumber Long System number of the R/3 System.

MessageServer String Message Server of the R/3 system that is doing the
load balancing.

GroupName String Name of the group of R/3 Application Servers you
want to connect to.

TraceLevel Long Debug On/Off.

Long Enables support for RFC with SAPGUI (3.0C or
later).

Client String Client in the R/3 System.

User String User of the R/3 System.

Language String Language you use want to use in the R/3 System.

466 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Logon Property: Events

Logon Property: Events
Purpose
Enables or disables events [Page 489] fired by the Logon object control.

Description
Events or groups of events can be enabled or disabled using the Events property. Disabling
events may lead to improved performance, especially for operations with large chunks of data.
Events may also be turned on and off temporarily. The following values are available for the
Events property:

Events property values

tloDisableAllLogonEvents = 0 Disable all events.

tloEnableOnClick = 1 Fire event after logon button is clicked.

tloEnableOnLogoff = 2 Fire event after associated connection is
disconnected.

tloEnableOnError = 4 Fire event after an error has occurred.

tloEnableOnCancel = 8 Fire event after the user has clicked the Cancel
button in the logon dialog.

tloEnableAllLogonEvents = 32767 Enable all events.

All values may be combined through and or or operations.

Rem Enable OnClick and OnLogoff event

MyControl.Events = MyControl.Events or _

EnableOnClick or EnableOnLogoff

Rem Disable OnCancel event

MyControl.Events = MyControl.Events and not _

(EnableOnCancel)

April 2001 467

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Logon Property: Caption

Logon Property: Caption
Purpose
Gets or sets the button text.

Returns
type String.

468 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Logon Property: BackColor

Logon Property: BackColor
Purpose
Gets or sets the background color of the button.

Returns
type Color.

April 2001 469

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Logon Property: hWnd

Logon Property: hWnd
Purpose
Gets or sets the window handle of the button.

Returns
type HWND.

470 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Logon Property: Enabled

Logon Property: Enabled
Purpose
Enables the button.

type Enabled.

Returns

April 2001 471

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Logon Property: Font

Logon Property: Font
Purpose
Gets or sets the font of the button text.

Returns
type Font.

472 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Logon Property: Parent

Logon Property: Parent
Purpose
Window handle of the parent window.

Returns
type HWND.

April 2001 473

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Logon Property: Default

Logon Property: Default
Purpose
Button default pushbutton.

Returns
type Boolean.

474 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Logon Property: ApplicationName

Logon Property: ApplicationName
Purpose
Name of the application that uses the Logon control, used to identify connections.

Returns
type String.

April 2001 475

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Logon Property: System

Logon Property: System
Purpose
SAP R/3 System name.

Returns
type String.

476 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Logon Property: ApplicationServer

Logon Property: ApplicationServer
Purpose
Application server of the R/3 System.

Returns
type String.

April 2001 477

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Logon Property: SystemNumber

Logon Property: SystemNumber
Purpose
System number of the R/3 System.

Returns
type Long.

478 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Logon Property: MessageServer

Logon Property: MessageServer
Purpose
Message server for the R/3 System that is performing load balancing.

Returns
type String.

April 2001 479

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Logon Property: GroupName

Logon Property: GroupName
Purpose
Gets or sets the name of the group of R/3 application servers you want to connect to.

Returns
type String.

480 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Logon Property: TraceLevel

Logon Property: TraceLevel
Purpose
Sets debugging mode on or off.

Returns
type Long.

April 2001 481

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Logon Property: RFCWithDialog

Logon Property: RFCWithDialog
Purpose
Enables supports RFC with SAP GUI (3.0C or later).

Returns
type Long.

Description
Set this property to a non-zero value when you want to start the SAPGUI before making RFC
calls. The running SAPGUI allows you to call RFC functions that display SAP screens.

You can only use this property for connecting against R/3 Systems with Release 3.0C or later.

482 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Logon Property: Client

Logon Property: Client
Purpose
Gets or sets the client in the R/3 System.

Returns
type String.

April 2001 483

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Logon Property: User

Logon Property: User
Purpose
Gets or sets the user of the R/3 System.

Returns
type String.

484 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Logon Property: Language

Logon Property: Language
Purpose
Gets or sets the language you want to use in the R/3 System.

Returns
type String.

April 2001 485

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Logon Object Methods

Logon Object Methods
The Logon object has the following methods:

SAP Logon Methods

Name Return Type Description

Enable3D [Page 487] void This method makes sure that the dialogs provided
have a 3D look and feel.

NewConnection [Page
488]

Object Returns and produces a new object of type
Connection [Page 502].

AboutBox Displays the AboutBox dialog.

486 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Logon Method: Enable3D

Logon Method: Enable3D
Purpose
This method makes sure that the provided dialogs have the 3D look and feel.

Parameters
None.

Description
This property is not needed in Visual Basic 4.0 or Visual C++ 4.0. It is needed in Excel 7.0 due to
the fact that the subclassing mechanism does not work directly in that environment.

April 2001 487

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Logon Method: NewConnection

Logon Method: NewConnection
Purpose
Creates and returns a new object of type Connection [Page 502].

Parameters
type Object.

Description
The Connection object created handles the connection to the R/3 System. All property values are
assigned to the newly-obtained Connection object.

488 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Logon Object Events

Logon Object Events
The Logon object has the following events:

SAP Logon Control Events

Name Parameters Description

Error Object Connection An error occurred in one of the objects.

Click Object Connection The user has clicked on the logon button.

Logoff Object Connection The connection has been closed.

Cancel Object Connection During the logon for the connection, the user clicked on the
Cancel button in the logon dialog.

All properties of the Logon object serve as the default assignment for a Connection
object obtained by the method NewConnection or the Click event.

April 2001 489

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Connection Object

Connection Object
The Connection object holds all information about the status and the parameters of one
connection to an R/3 System. All Connection object properties can either be set in the design
environment using a SAP Logon control [Page 465] object or before the method Logon [Page
494] is called on the Connection object. After a successful logon has taken place, all connection
parameters are set to read-only, due to the fact that an established connection cannot be
changed. The property IsConnected [Page 492] displays the actual status of the connection.

Each R/3 user must use a password to logon to an R/3 System. The SAP Logon
control will never save the password, it must be either provided by the client
application (to do a silent logon) or it is prompted during logon. All password access
is write-only.

The following topics are available:

Properties [Page 491]

Methods [Page 493]

490 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Connection Object Properties

Connection Object Properties
The Connection object has the following properties:

Connection Properties

Name Type Description

ApplicationName String Name of the application that uses the
Logon control, used to identify
connections.

System String SAP R/3 System name.

ApplicationServer String Application server of the R/3 System.

SystemNumber Long System number of the R/3 System.

MessageServer String Message Server of the R/3 System that is
doing the load balancing.

GroupName String Name of the group of R/3 Application
Servers you want to connect to.

TraceLevel Long Debug On/Off.

RFCWithDialog [Page
482]

Long Support RFC with SAPGUI (3.0C or later).

Client String Client in the R/3 System.

User String User of the R/3 System.

Password String Password of the user. Write-only.

Language String Language you use want to use in R/3.

IsConnected [Page
492]

CRfcConnectionStatus Current status of the Connection object.
Read-only.

April 2001 491

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Connection Property: IsConnected

Connection Property: IsConnected
Purpose
Checks the current status of the Connection object and the R/3 connection.

Returns
type String.

Description
Use this property after the Logon [Page 494] method has returned FALSE. All valid values for the
IsProperty property are given in the RfcConnectionStatus table:

RfcConnectionStatus values

tloRfcNotConnected= 0 The R/3 connection is not established, Logon was not
called, or Logoff has been called.

tloRfcConnected = 1 The R/3 connection is established.

TloRfcConnectCancel= 2 The R/3 connection is not established due to the fact
that the user pressed the Cancel Button during Logon.

tloRfcConnectParameterMissing = 4 The R/3 connection could not be established, due to
the fact that a silent logon was attempted with
connection parameters.

TloRfcConnectFailed = 8 The R/3 connection failed. Call LastError to display
additional information.

492 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Connection Object Methods

Connection Object Methods
The Connection object has the following methods:

Name Parameters Description

Logon [Page 494] HWND hWnd

Boolean Silent

Establishes a connection to the R/3 System.
Returns TRUE if successful, FALSE otherwise.

Logoff [Page 495] Disconnects a connection from the R/3 object.

Reconnect Tries to reestablish a connection to the R/3
System.

LastError Displays a dialog which shows all information about
the last RFC Error.

SystemInformation Displays a dialog with all system information about
the connected R/3 System.

April 2001 493

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Connection Method: Logon

Connection Method: Logon
Purpose
This method performs a remote logon to the R/3 System.

Syntax
The Logon method has the syntax:

Logon (HWND ParentWindow, Boolean Silent)

Returns
type Boolean.

Description
Set the Silent parameter to FALSE if you want the system to display a Logon dialog. If not, set all
parameters in advance: the system will log the user on silently. If you set Silent to TRUE and
omit logon parameter values, the method always fails.

If the method succeeds, it returns TRUE, otherwise FALSE. When FALSE, use the IsConnected
[Page 492] property to determine the type of logon failure.

494 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Connection Method: Logoff

Connection Method: Logoff
Purpose
Disconnects an established RFC connection.

Returns
void.

Description
The Logoff method resets all Connection object properties to Read/Write mode. After this, all
properties may be changed by the client program. Once disconnected, all function calls sent to
the connection will fail.

April 2001 495

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Using Logon Controls in Design Mode

Using Logon Controls in Design Mode
The SAP Logon control supports most of its configuration in the Design Environment of Visual
C++ 4.0 and Visual Basic 4.0.

The following picture shows the appearance of the SAP Logon control in Visual Basic 4.0
Toolbox and as it is placed on a form.

If you have placed the control in a form, you can edit its properties by using the right mouse
button. The following two graphics show the layout of the Logon control property pages:

• User Page

• System Page

496 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Using Logon Controls in Design Mode

April 2001 497

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Code Examples

Code Examples
Example code for establishing a connection is provided in the following examples:

Connecting Directly with the Logon Control [Page 499]

Logging on Silently [Page 500]

498 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Connecting Directly with the Logon Control

Connecting Directly with the Logon Control
This example shows the direct use of the Logon control in an application serving as an OLE
Automation Client:
Dim oLogonCtrl as Object

Dim oConnection as Object

Rem ***Create the Logon Control

Set oLogonCtrl = CreateObject (“SAP.Logoncontrol.1”)

Rem ***Get a connection object

Set oConnection = oLogonCtrl.NewConnection

Rem ***Try to connect to the R/3 System

if oConnection.Logon (Form.hWnd, FALSE) = FALSE then

 MsgBox “R/3 connection failed”

end if

Rem ***Now the connection is established: you can call your functions

You can also place connection code in an event subroutine:
Dim oConnection as Object

Private Sub SAPLogonControl1_Click()

Set oConnection = SAPLogonControl.NewConnection

Rem ***Try to connect to the R/3 System

if oConnection.Logon (Form.hWnd, FALSE) = FALSE then

 MsgBox "R/3 connection failed"

 exit subif

end sub

Rem ***Now the connection is established: you can call your functions

April 2001 499

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Logging on Silently

Logging on Silently
This example shows how to use the Connection object properties so that the Connection object
can connect to R/3 without displaying any dialog:
Dim g_oConnection as Object

Private Sub SAPLogonControl1_Click()

Rem ***Save Connection object to your global variable

Set g_oConnection = SAPLogonControl.NewConnection

Rem ***Either all parameters are set by the design environment (except
the password) or they are hardcoded, as in the following lines

Rem ***The following lines depend on your R/3 environment

Rem ***These are the system parameters

g_oConnection.System ="R30" 'Name of your R/3 System

g_oConnection.ApplicationServer = "hs2001" 'Applic.Server of R/3
System

g_oConnection.SystemNumber = 0 'SystemNumber of your R/3 System

rem ***User specific data

g_oConnection.User = "MyUserName"

g_oConnection.Password = "secret"

g_oConnection.Client = "000"

g_oConnection.Language = "E"

Rem ***Try to connect to the R/3 System

if g_oConnection.Logon (Form.hWnd, TRUE) = FALSE then

 MsgBox "R/3 connection failed"

 exit sub

end if

end sub

Rem ***Now the connection is established: you can call your functions

500 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Glossary

Glossary
Connection [Page 502]

Password [Page 503]

Nothing [Page 504]

CreateObject [Page 505]

April 2001 501

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Connection

Connection
The Connection object holds all information about the actual status of a remote connection to an
R/3 System and is used to establish one.

502 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Password

Password
Each R/3 user must use the password to logon to an R/3 System. The SAP Logon control never
saves the password: it must either be provided by the client application (in a silent logon) or the
user will be prompted during logon. All password access is write-only.

April 2001 503

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Nothing

Nothing
VBA key word for an empty object. This value is the same as NULL in C++ or nil in Pascal.

504 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 CreateObject

CreateObject
VBA function to create an OLE object. See VBA help for more information.

April 2001 505

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

DCOM Connector-compatible Components

DCOM Connector-compatible Components

506 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 The SAPBrowser Control

The SAPBrowser Control
The SAPBrowser control provides a window consisting of three panes for displaying SAP R/3
BAPI and RFC metadata information (metadata is information about data).

The SAP Assistant product [Page 16] uses the SAP Browser control for displaying BAPI and
RFC metadata to its users. See the discussion of the SAP Assistant screen [Page 25] for a
description of the Browser parts. Also see related topics in the SAP for an example of the
implementation of the SAP Browser control in an application.

The SAPBrowser control also allows you to export properly formatted metadata information to
MS Excel (any version), a search feature, and documentation. The SAPBrowser control exposes
several methods to enable the container application to control and automate metadata browsing.

Properties [Page 508]

Methods [Page 509]

Example [Page 539]

April 2001 507

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Properties

Properties
This control supports all standard window properties.

508 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Methods

Methods
AddBAPIAppObject [Page 510]

AddBAPIObject [Page 511]

AddBAPISearchObject [Page 512]

AddRFCFunctions [Page 514]

AddRFCFunctionGroups [Page 513]

AddSearchRFCFunctions [Page 516]

AddSearchRFCFunctionGroups [Page 515]

CallFunction [Page 517]

ClearAll [Page 518]

ClearBAPITab [Page 519]

ClearRFCTab [Page 520]

ClearSearchTab [Page 521]

DeleteObject [Page 522]

EnableBAPITab [Page 523]

EnableRFCTab [Page 524]

EnableSearchTab [Page 525]

GetSelectedObject [Page 526]

HidePropertyWindow [Page 527]

IsApplicationArea [Page 528]

IsBAPI [Page 529]

IsBusinessObject [Page 530]

IsFunction [Page 531]

IsMethod [Page 532]

IsRFC [Page 533]

IsSearch [Page 534]

Refresh [Page 535]

ShowPropertyWindow [Page 536]

StartPrint [Page 537]

Undo [Page 538]

April 2001 509

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

AddBAPIAppObject

AddBAPIAppObject
Use this method to add a BAPI application object to the BAPI pane.

Syntax
AddBAPIAppObject(ApplicationHierarchy As Object)

Part
ApplicationHierarchy

Description
Required. Repository Service Application Hierarchy Object

510 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 AddBAPIObject

AddBAPIObject
Use this method to add a BusinessObject to the BAPI pane.

Syntax
AddBAPIObject(ByVal BusinessObject As Object)

Part
BusinessObject

Description
Required. Repository Service Business Object

April 2001 511

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

AddBAPISearchObject

AddBAPISearchObject
Use this method to populate the search pane with the searched for BusinessObject, if available.

Syntax
AddBAPISearchObject(ByVal BusinessObject As Object)

Part
BusinessObject

Description
Required. Repository Service Business Object

512 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 AddRFCFunctionGroups

AddRFCFunctionGroups
Use this method to populate the RFC tab window with function groups.

Syntax
AddRFCFunctionGroups(ByVal FunctionGroup As Object)

Part
FunctionGroup

Description
Required. Repository Service Function Group object

April 2001 513

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

AddRFCFunctions

AddRFCFunctions
Use this method to populate the RFC pane with function objects.

Syntax
AddRFCFunctions(ByVal Functions As Object)

Part
Functions

Description
Required. Repository Service Functions object (collection of Function object)

514 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 AddSearchRFCFunctionGroups

AddSearchRFCFunctionGroups
Use this function to populate the search pane with the searched for function groups, if
available.

Syntax
AddSearchRFCFunctionGroups(ByVal FunctionGroup As Object)

Part
FunctionGroup

Description
Required. Repository Service Function Group object

April 2001 515

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

AddSearchRFCFunctions

AddSearchRFCFunctions
Use this method to populate the search pane with the search for function, if available.

Syntax
AddSearchRFCFunctions(ByVal Functions As Object)

Part
Functions

Description
Required. Repository Service Functions object (collection of function objects)

516 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 CallFunction

CallFunction
Use this method to call the selected RFC function in the RFC tab window. It invokes a screen
for entering import RFC function data.

Syntax
CallFunction()

April 2001 517

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

ClearAll

ClearAll
Use this method to clear the BAPI, RFC, and search panes and the property window.

Syntax
ClearAll()

518 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 ClearBAPITab

ClearBAPITab
Use this method to clear the BAPI tab window.

Syntax
ClearBAPITab()

April 2001 519

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

ClearRFCTab

ClearRFCTab
Use this method to clear the RFC tab window.

Syntax
ClearRFCTab()

520 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 ClearSearchTab

ClearSearchTab
Use this method to clear the Search pane.

Syntax
ClearSearchTab()

April 2001 521

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

DeleteObject

DeleteObject
Use this method to delete an object. Methods and the root object cannot be deleted. Returns 0 if
successful or non-zero.

Syntax
DeleteObject (ByVal hobj As Long) as Long

Part
hobj

Description
Required. Unique index of object to be deleted.

522 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 EnableBAPITab

EnableBAPITab
Use this method to enable or disable the BAPI tab.

Syntax
EnableBAPITab(ByVal Enable As Boolean)

Part
Enable

Description
Required. True to enable, false to disable.

April 2001 523

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

EnableRFCTab

EnableRFCTab
Use this method to enable or disable the RFC tab.

Syntax
EnableRFCTab(ByVal Enable As Boolean)

Part
Enable

Description
Required. True to enable, false to disable.

524 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 EnableSearchTab

EnableSearchTab
Use this method to enable or disable the Search tab.

Syntax
EnableSearchTab (ByVal Enable As Boolean)

Part
Enable

Description
Required. True to enable, false to disable.

April 2001 525

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

GetSelectedObject

GetSelectedObject
Use this method to return the IDespatch pointer for the selected object.

Syntax
GetSelectedObject (hobj As Long) As Object

Part
hobj

Description
Required. Long variable by ref. Function populates it with unique index. Later, this index may
be used in the function DeleteObject to delete the object from view.

526 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 HidePropertyWindow

HidePropertyWindow
Use this method to hide the property window.

Syntax
HidePropertyWindow()

April 2001 527

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

IsApplicationArea

IsApplicationArea
Use this method to return a boolean value indicating whether or not the selected object is an
application area.

Syntax
IsApplicationArea()

528 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 IsBAPI

IsBAPI
Use this method to return a boolean value indicating whether the active tab window pane
contains a business application programming interface (BAPI).

Syntax
IsBAPI()

April 2001 529

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

IsBusinessObject

IsBusinessObject
Use this method to return a boolean value indicating whether or not the selected object is a
business object.

Syntax
IsBusinessObject()

530 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 IsFunction

IsFunction
Use this method to return a boolean value indicating whether or not the selected object is a
function.

Syntax
IsFunction ()

April 2001 531

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

IsMethod

IsMethod
Use this method to return a boolean value indicating whether or not the selected object is a
method.

Syntax
IsMethod ()

532 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 IsRFC

IsRFC
Use this method to returns a boolean value indicating whether or not the active tab window
pane contains a remote function call (RFC).

Syntax
IsRFC()

April 2001 533

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

IsSearch

IsSearch
Use this method to return a boolean value indicating whether or not the active tab window is
a search pane.

Syntax
IsSearch()

534 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Refresh

Refresh
Use this method to refresh the control window.

Syntax
Refresh()

April 2001 535

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

ShowPropertyWindow

ShowPropertyWindow
Use this method to show the property details of the selected object, such as whether or not
the object is a BAPI, RFC, parameter, etc. This function invokes a screen with details
including documentation about the object.

Syntax
ShowPropertyWindow(ByVal hwnd as long)

Part
hwnd

Description
Required. Parent Window Handle

536 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 StartPrint

StartPrint
Use this method to export the metadata (pertaining to the selected object) to Excel. Excel
must be installed to use this method. Returns “true“ if successful.

Syntax
StartPrint(nPrintmode As Long)

Part
nPrintMode

Description
Default; always 1. Reserved for future use.

April 2001 537

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Undo

Undo
Use this method to return to the previous operation in the BAPI and RFC panes.

Syntax
Undo()

538 April 2001

 SAP AG SAP Automation RFC and BAPI Interfaces (BC-FES-AIT)

 Example

Example
Procedure
To run the following example, create a new Visual Basic project by following these steps:

1. Right-click on tool box and choose Components. The Components dialog box appears.

2. In the Control tab, search for SAPBrowser in the list.

3. Select the SAPBrowser check box and choose OK.

4. Drag (or double click) the SAPBrowser icon in the tool box to Form1.

5. Resize the control properly on Form1.

6. Create two command buttons and name them cmdBrowse and cmdProperty.

7. Double click anywhere on Form1 to see the Visual Basic code window.

8. Copy the code below and paste it into the code window.

9. Save and run the project. If all the required components are installed on your machine,
you should see the R/3 logon screen when you run the project.

Code
Option Explicit

Private moRepObj As Object

Private moLogonObj As Object

Dim moConn As Object

Private Sub cmdBrowse_Click()

Dim oAppHiers As Object

Dim oAppHier As Object

Set moRepObj = CreateObject("SAP.RepositoryServicesonline.1")

If moRepObj Is Nothing Then

MsgBox "Could not create Repository object", vbInformation

Exit Sub

End If

Set moLogonObj = CreateObject("SAP.LogonControl.1")

If Not moLogonObj Is Nothing Then

Set moConn = moLogonObj.NewConnection

If Not moConn Is Nothing Then moConn.Logon

Else

MsgBox "Could not create logon object", vbInformation

Exit Sub

April 2001 539

SAP Automation RFC and BAPI Interfaces (BC-FES-AIT) SAP AG

Example

End If

moRepObj.Connection = moConn

SAPBrowse1.EnableBAPITab True

Set oAppHiers = moRepObj.ApplicationHierarchies()

If SAPBrowse1.Connect(moRepObj) Then

For Each oAppHier In oAppHiers

SAPBrowse1.AddBAPIAppObject oAppHier

Next

End If

End Sub

Private Sub cmdProperty()

SAPBrowse1.ShowPropertyWindow Me.Hwnd

End Sub

Private Sub Form_Unload(Cancel As Integer)

moConn.Logoff

End Sub

540 April 2001

