
 

 

Internet Application 
Development With Flow Files: 

Reference 

 H
E

L
P

.B
C

F
E

S
IT

S
F

L
O

W
 

Re lease  4 .6C 

 



Internet Application Development With Flow Files: Reference  SAP AG 

 

Copyright 
 
© Copyright 2001 SAP AG. All rights reserved. 
 
No part of this publication may be reproduced or transmitted in any form or for any purpose 
without the express permission of SAP AG. The information contained herein may be changed 
without prior notice. 
 
Some software products marketed by SAP AG and its distributors contain proprietary software 
components of other software vendors. 
 
Microsoft®, WINDOWS®, NT®, EXCEL®, Word®, PowerPoint® and SQL Server® are registered 
trademarks of  
Microsoft Corporation. 
 
IBM®, DB2®, OS/2®, DB2/6000®, Parallel Sysplex®, MVS/ESA®, RS/6000®, AIX®, S/390®, 
AS/400®, OS/390®, and OS/400® are registered trademarks of IBM Corporation. 
 
ORACLE® is a registered trademark of ORACLE Corporation. 
 
INFORMIX®-OnLine for SAP and Informix® Dynamic Server

TM
 are registered trademarks of 

Informix Software Incorporated. 
 
UNIX®, X/Open®, OSF/1®, and Motif® are registered trademarks of the Open Group. 
 
HTML, DHTML, XML, XHTML are trademarks or registered trademarks of W3C®, World Wide 
Web Consortium,  
Massachusetts Institute of Technology.  
 
JAVA® is a registered trademark of Sun Microsystems, Inc.  
 
JAVASCRIPT® is a registered trademark of Sun Microsystems, Inc., used under license for 
technology invented and implemented by Netscape.  
 
SAP, SAP Logo, R/2, RIVA, R/3, ABAP, SAP ArchiveLink, SAP Business Workflow, WebFlow, 
SAP EarlyWatch, BAPI, SAPPHIRE, Management Cockpit, mySAP.com Logo and mySAP.com 
are trademarks or registered trademarks of SAP AG in Germany and in several other countries 
all over the world. All other products mentioned are trademarks or registered trademarks of their 
respective companies. 

2  April 2001 



 SAP AG Internet Application Development With Flow Files: Reference 

   

Icons 
 

Icon Meaning 

 
Caution 

 
Example 

 
Note 

 
Recommendation 

 
Syntax 

 

April 2001  3 



Internet Application Development With Flow Files: Reference  SAP AG 

 

Contents 
 

Internet Application Development With Flow Files: Reference ......................5 
Request/Response Cycle ............................................................................................................. 8 
Module Provider Interface .......................................................................................................... 10 
Flow Logic.................................................................................................................................... 13 
Flow Logic Syntax....................................................................................................................... 16 
FLOW Element............................................................................................................................. 17 
STATE Element............................................................................................................................ 18 
MODULE Element........................................................................................................................ 19 
PERSISTENT Element................................................................................................................. 21 
CONVERTER Element................................................................................................................. 22 
INPUTMAPPING Element............................................................................................................ 23 
OUTPUTMAPPING Element........................................................................................................ 24 
FILEMAPPING Element............................................................................................................... 25 
RESULT Element ......................................................................................................................... 26 
EXPR Element.............................................................................................................................. 27 
EXCEPTION Element................................................................................................................... 28 
DEFAULT Element....................................................................................................................... 30 
EVENT Element ........................................................................................................................... 31 
Module Provider Connection Types.......................................................................................... 33 
Module Call Result Caching....................................................................................................... 36 
Flow File Application Components ........................................................................................... 38 
Flow File Applications: Example Scenarios ............................................................................. 40 
Flow File Example 1: Display Development Classes............................................................... 41 
Flow File Example 2: Online Store ............................................................................................ 43 

 

4  April 2001 



 SAP AG Internet Application Development With Flow Files: Reference 

  Internet Application Development With Flow Files: Reference 

Internet Application Development With Flow Files: 
Reference  
Purpose 
This documentation describes an implementation model for developing Internet applications 
driven by the Internet Transaction Server (ITS).  

This model allows you to develop Internet applications that consist of linked HTML pages, which 
you can populate with data retrieved from the R/3 System (or any other external system). The 
pages can offer a range of application functions, and are generated by following hyperlinks or 
processing HTML forms. The dialog flow is determined on the client side by the user, who can 
navigate freely between pages.  

Since the dialog flow is not fixed in advance, much depends on what the user decides to do. This 
contrasts with the dialog flow in other business scenarios, where the business application can put 
restrictions on how users can navigate.  

The following graphic illustrates the basic concept:  

Link 1

Link 2
Process HTML Form

Fo
llo

w Li
nk

 

 
This documentation describes how to develop applications that use flow files where 
the business logic is implemented in modules called from the R/3 System.  

In future releases, it will be possible to define module calls from any external system.  

April 2001  5 



Internet Application Development With Flow Files: Reference  SAP AG 

Internet Application Development With Flow Files: Reference 

Implementation Considerations 
You should consider using this implementation model for applications that offer many application 
functions on one page, and the dialog flow is not fixed in advance.  

Such applications have simple point-and-click user interfaces, limited manual data input, and 
reduced data formatting requirements. They are often used in e-commerce scenarios.  

Integration 
To develop applications that use flow files where the business logic is implemented in module 
calls from the R/3 System, you need to install the following components:  

• The ITS  

The ITS forms the interface between the R/3 System and the Internet.  

• The SAP@Web Studio  

The SAP@Web Studio is a PC tool for implementing services, which include all the files 
required by the ITS to drive applications.  

• The R/3 System  

Features 
Like all other implementation models for developing Internet applications driven by the ITS, this 
model allows you to develop applications that send documents back to the Web browser client in 
HTML format, since this format can be handled by all major Web browsers.  

Like all other implementation models, there is a clear separation between business logic and 
presentation aspects. In this case, defining the dialog flow is also a separate task.  

• You implement a set of modules that comprise the business logic in the R/3 System (or other 
external system).  

If you are implementing the business logic in the R/3 System, you create Business APIs 
(BAPIs) or standard remote-enabled function modules (RFCs) with the Function Builder 
in the ABAP Workbench.  

• You implement the presentation and the dialog flow in the SAP@Web Studio.  

To do this, you need to create an ITS service, which contains all the files required to 
implement and run the application.  

− The presentation determines the look and feel of each application.  

You design the presentation by creating a set of HTMLBusiness templates.  

− The dialog flow determines which template is displayed when, depending on what the 
user decides to do next.  

You implement the dialog flow by defining flow logic in flow files. Flow logic operates 
like a state machine, because it defines the sequence in which modules are called 
based on events and exceptions.  

There is one flow file for each HTMLBusiness template that requires a dialog flow 
definition.  

Using flow files gives you more flexibility when developing Internet applications, because you can 
define both the presentation and the dialog flow independently of the business logic.  

6  April 2001 



 SAP AG Internet Application Development With Flow Files: Reference 

  Internet Application Development With Flow Files: Reference 

The flow file implementation model is suitable for developing applications that offer at least some 
of the following features:  

• Several application functions on one page  

• Point-and-click interfaces  

• Limited data entry checking and formatting  

• User-defined dialog flow  

This documentation is a reference manual, which includes a list of flow logic syntax elements and 
their usage.  

For a step-by-step introduction to developing Internet applications with flow files, with the help of 
an example application, see Internet Application Development With Flow Files: Tutorial [Ext.].  

Constraints 
To implement Internet applications with flow files, you should have:  

• ITS Release 4.6C  

• SAP@Web Studio Release 4.6C  

• R/3 Release 4.6A or higher  

 
Some Business APIs (BAPIs) are not available in R/3 releases prior to 4.6B. For this 
reason, SAP recommends that you use R/3 Release 4.6B or higher, if you intend to 
develop flow file applications that use BAPIs to define the business logic.  

In future, it will be possible to develop applications that use flow files in earlier R/3 
releases.  

 

April 2001  7 



Internet Application Development With Flow Files: Reference  SAP AG 

Request/Response Cycle 

Request/Response Cycle  
The process used by the Internet Transaction Server (ITS) to drive applications is similar in all 
implementation models.  

The graphic below shows a single request/response cycle from the Web browser client to the R/3 
application server for an application that is driven by the ITS and uses flow files.  

Applications Using Flow Files: Single Request/Response Cycle  

Web server WGate AGate

 

2.
Pass request

to WGate

1.
Pass request
to Web server

10.
Pass HTML page
to Web browser

5.
Pass prepared 
request to R/3

6.
Send screen 

output to AGate
9.

Pass HTML page
 to Web server

7.
Load HTMLBusiness

templates and
flow files

4.
Load 

service file

3.
Pass request

 to AGate

8.
Pass formatted 
HTML page to

 WGate

When the user starts an application that uses flow files and performs an action in the Web 
browser by clicking on a hyperlink or entering data in an HTML form for processing, a single 
request/response cycle includes the following steps:  

1. The Web browser passes the request as a set of name/value pairs, either specified in the 
hyperlink or entered in the HTML form, to the Web server via HTTP.  

This set of name/value pairs is known as the request context.  

2. The Web server passes the request to WGate (the Web gateway).  

WGate is the Web server extension that links the Web server to the ITS.  

3. WGate passes the request to AGate (the application gateway) via TCP/IP.  

AGate is the core processing component of the ITS, and contains configuration data 
about how a request can be fulfilled.  

4. AGate loads the appropriate service file for the application and uses the information stored 
there to establish a connection to the R/3 System.  

The AGate itself does not execute any business logic - this is done in the R/3 System.  

8  April 2001 



 SAP AG Internet Application Development With Flow Files: Reference 

  Request/Response Cycle 

5. AGate passes the request as a set of parameters to one or more modules in the R/3 System 
via the Module Provider Interface. Parameters are passed to the modules by finding fields in 
the request context with identical names.  

The modules used can be Business APIs (BAPIs) or standard remote-enabled function 
modules.  

6. The R/3 System executes the called modules and returns the results to AGate.  

7. AGate merges the set of name/value pairs into the request context and passes this to an 
HTMLBusiness template, which is the HTML page that displays the result of the request in the 
user’s Web browser.  

An HTMLBusiness template is an HTML page that allows you to merge data retrieved from 
the R/3 System.  

HTMLBusiness templates allow you to design the presentation separately from the business 
logic and the dialog flow.  

− The business logic is implemented in the R/3 System with BAPIs or standard remote-
enabled function modules.  

− The presentation is implemented in the SAP@Web Studio as an HTMLBusiness template, 
with the dialog flow defined as flow logic in attached flow files.  

8. AGate passes the formatted HTML page to WGate.  

9. WGate passes the HTML page to the Web server.  

10. The Web server passes the HTML page to the Web browser, which displays it to the user.  

 
After each request/response cycle, the ITS does not retain any data.  

AGate communicates with the backend systems via a pluggable interface called the XGateway, 
which is implemented as a DLL.  

The above graphic shows how the AGate component of the ITS interacts with the R/3 System to 
satisfy a user request from a Web browser, but the XGateway also supports modules called from 
systems other than R/3. This means that you can process Web browser requests by calling 
modules from R/3, any other external system, or a combination of modules from more than one 
system.  

 

April 2001  9 



Internet Application Development With Flow Files: Reference  SAP AG 

Module Provider Interface 

Module Provider Interface 
To support new types of module calls, a module provider has to be implemented for each type of 
module. In the case of the R/3 System, supported module types include Business APIs (BAPIs) 
and standard remote-enabled function modules.  

Architecture

Flow Files

HTMLBusiness

Templates

HTMLBusiness Interpreter

Flow Interpreter
Module

 Provider
Interface

Dynamic
BAPI Call

External 
Interface

BOR
metadata

BAPI result
 cache

External Data
 Sources

 

Example Application  
A simple application that searches a database of employees in the company could consist of the 
following components:  

• An HTMLBusiness template for the presentation.  

• A flow file to define the dialog flow, depending on what action the user takes.  

• A remote-enabled function module to execute the business logic.  

HTMLBusiness Template  
The HTMLBusiness template SearchEmployee.html defines the application’s look and feel:  

<HTML>  
<HEAD>  
 <TITLE> Employee Search </TITLE>  
</HEAD>  
<BODY>  
<FORM method=post action=`wgateURL()`>  
<TABLE>  
 <td>Name <input type=text name="empname "value="`empname`"></td>  
</TABLE>  

10  April 2001 



 SAP AG Internet Application Development With Flow Files: Reference 

  Module Provider Interface 

<TABLE>  
 `if ( results-name.dim > 0 )`  
 `repeat with j from 1 to results-name.dim`  
  <tr>  
   <td> `results-name[j]` </td>  
   <td> `results-address[j]` </td>  
   <td> `results-phonenum[j]` </td>  
  </tr>  
 `end`  
 </TABLE>  
<input type = "submit" name = "~event" value = "search">  
 </FORM>  
</BODY>  
</HTML> 

Flow File  
The flow file SearchEmployee.flow contains the flow logic that defines the dialog flow:  

<FLOW>  
 <STATE NAME="present" >  
  <MODULE NAME="EMPLOYEE_GET"  type= "RFC"  STATEFUL="0" >  
   <EXCEPTION next_template=“add_record“ 
name="NO_RECORDS_FOUND">  
   </EXCEPTION>  
  </MODULE>  
 </STATE>  
 <EVENT name = "search" next_state = "present">  
 </EVENT>  
</FLOW>  

Remote-Enabled Function Module  
The remote-enabled function module EMPLOYEE_GET in R/3 defines the business logic and has 
the following interface:  

Parameter Parameter Name 

Import empname 

Export - 

Tables results 

results-name 

results-address 

results-phonenumber 

Exceptions NO_RECORDS_FOUND 

 

Processing Steps  
When the user starts this application in a Web browser, enters an employee name, and clicks 
Search on the SearchEmployee.html form, the following sequence of events occurs:  

1. The WGate component of the Web server sends the request to AGate.  

April 2001  11 



Internet Application Development With Flow Files: Reference  SAP AG 

Module Provider Interface 

2. AGate processes the request and stores it as a set of name/value pairs in the request 
context data structure.  

The request context data structure is the main interface between the AGate and the 
module provider. The context object provides methods for retrieving and merging values 
into the context.  

In this example, the request context contains the following name/value pairs:  

− empname “John“  

− ~event  “search“  

3. The flow interpreter executes the flow file SearchEmloyee.flow.  

Since the parameter ~event is set to “search“, it calls the Module Provider Interface, 
and passes the name of the module, the module type, and the request context.  

4. The Module Provider Interface determines which module provider to call based on the 
module type.  

At present, the module provider is implemented for the types “RFC“ and “BAPI“ in the 
R/3 System. Depending on the module type, the appropriate module provider DLL is 
loaded. Execution of the module and other related operations are performed through the 
Module Provider Interface. In the above example, the module type is “RFC“.  

5. Before calling the module, the module provider determines the module‘s interface and 
populates the necessary parameters.  

In the above example, the module provider retrieves the value of empname from the 
request context to populate the import parameter empname.  

6. The results of the call (that is, the export parameters and the tables) are merged into the 
request context.  

If the employee is found and the result is merged into the request context, the 
name/value pairs may look like these:  

Parameter Name Example Value 
empname “John“ 
~event “search“ 
results-name “John“ 
results-address “San Francisco“ 
results-phonenumber “415-111-9111“ 

In the above example, only one module is called, but you can call several modules one 
after the other. These modules can also be of different types. The output from one 
module call then becomes the input for the next module call.  

7. If an exception is raised, the exception NO_RECORDS_FOUND has to be merged into the 
request context under the name ~ModuleException. 

8. The request context values are merged into the HTMLBusiness template and sent to the Web 
browser.  

12  April 2001 



 SAP AG Internet Application Development With Flow Files: Reference 

  Flow Logic 

Flow Logic  
Flow logic defines the dialog flow of an application by specifying logical transitions between 
application states in flow files, which are associated with HTMLBusiness templates.  

An HTMLBusiness template may or may not have an associated flow file. This depends whether a 
dialog flow definition is required to react to different actions taken by the user. If a flow file exists, 
the naming convention is:  

<template name>.flow  

where template name is the name of the HTMLBusiness template and .flow is the file 
extension.  

 
The flow file MyTemplate.flow is associated with the HTMLBusiness template 
MyTemplate.html.  

A typical flow file consists of a set of events and states. Events define the entry points to different 
logical state(s), or how to load a different template directly.  

• States  

A state can contain one or more operations (module calls). Depending on the result(s) of 
the operation(s), a transition to another state or template occurs. Transitions are ways to 
leave a current state. A flow file can consist of one or more states.  

A state is defined by the STATE element. The STATE element contains one or more 
MODULE declarations, and one or more PERSISTENT elements:  

− MODULE  

The MODULE element describes a module. Each module must have a name and a 
type that corresponds to the name of an API associated with the Module Provider 
Interface.  

In the case of the Module Provider Interface to the Business Object Repository 
(BOR) in the R/3 System, the module name is the name of a Business API (BAPI).  

− PERSISTENT  

The PERSISTENT element describes a parameter whose value has to be persistent 
(retained) throughout a user session.  

Due to the nature of remote-enabled function modules, parameter values are 
refreshed during every request/response cycle, but this element helps keep track of 
certain key variables and retains their values during an entire user session. The ITS 
server allocates a small (35K) session context to hold these persistent variables.  

• Events  

An event triggers state processing. You raise an event by specifying the parameter 
~event either in the URL of an hypertext link or as part of the HTML form data.  

An event is defined by the EVENT element.  

For full details, see Flow Logic Syntax [Page 16].  

April 2001  13 



Internet Application Development With Flow Files: Reference  SAP AG 

Flow Logic 

The modules called in the flow logic operate like a state machine with several nodes. Each node 
can contain one or more modules that are called sequentially. After each module call, the results 
are merged into the request context. This means that module calls can be chained in the sense 
that the result of one module can serve as an input parameter for the next module call.  

Calling several modules sequentially allows for complex chaining, but it makes sense to keep the 
flow logic of flow file applications simple. If, for example, you are implementing business logic 
with Business APIs (BAPIs) or remote-enabled function modules in the R/3 System, you should 
implement chains that are more complex than a simple transfer of values there, because ABAP is 
more suitable for implementing complex chaining logic.  

The start of a state machine – the flow logic – is determined by an event, which is raised by 
specifying a parameter ~event in the URL of a hypertext link or as part of an HTML form.  

After each module call, you can apply a set of tests. For example, you can test whether a module 
raises an exception or returns a particular value. If the test is positive, either a state transition 
occurs, or you can load a different template. In the latter case, the flow logic of the target 
template starts either with an onload or ontouch event type, which specifies the initial state.  

The following graphic illustrates the concept:  

Flow Logic: HTMLBusiness Template Flow 

State A

HTMLBusiness

Template B

HTMLBusiness Template A

Initial
State

State C

State B

 

Event

This graphic shows the basic dialog flow for HTMLBusiness template A, which has three states: A, 
B, and C. State A is the initial state.  

When template A is loaded, execution of the dialog flow logic always starts at state A. When all 
the module calls associated with this state have been executed, template A is populated with the 
data in the request context, and the resulting HTML page is displayed in the user’s Web browser.  

When the user clicks on a hyperlink, this raises an event. In this case, the flow logic determines 
that execution should start at state B. However, due to an exception in one of the modules, the 

14  April 2001 



 SAP AG Internet Application Development With Flow Files: Reference 

  Flow Logic 

flow logic actually transitions to state C where the next template B is finally loaded. The ITS then 
loads the flow logic of template B and starts the execution at the initial state of template B.  

 

April 2001  15 



Internet Application Development With Flow Files: Reference  SAP AG 

Flow Logic Syntax 

Flow Logic Syntax  
The flow logic that defines the dialog flow of flow file applications uses a subset of Extensible 
Markup Language (XML) elements.  

This subset includes the following elements:  

XML Element Description 

FLOW [Page 17] Defines the start of the flow logic. 

STATE [Page 18] Defines a state. 

MODULE [Page 19] Defines a module. 

PERSISTENT [Page 21] Defines a persistent parameter. 

CONVERTER [Page 22] Defines a data download from the R/3 System (or other external 
system) and a conversion to a specified format. 

INPUTMAPPING [Page 
23] 

Defines the mapping of input parameters from the application to the 
R/3 System (or other external system). 

OUTPUTMAPPING 
[Page 24] 

Defines the mapping of output parameters from the R/3 System (or 
other external system) to the application. 

FILEMAPPING [Page 25] Defines a data upload from the application to the R/3 System (or 
other external system). 

RESULT [Page 26] Defines a module test result. 

EXPR [Page 27] Defines a valid HTMLBusiness expression. 

EXCEPTION [Page 28] Defines a module test exception. 

DEFAULT [Page 30] Defines the default behavior. 

EVENT [Page 31] Defines a test for a specified event. 

 

 
The number of XML elements used in flow logic is intentionally restricted, because 
complex flow logic should be implemented elsewhere. The Internet Transaction 
Server (ITS) merely triggers the modules called.  

In the case of applications that call modules from the R/3 System, complex chaining 
logic should be implemented in ABAP.  

 

16  April 2001 



 SAP AG Internet Application Development With Flow Files: Reference 

  FLOW Element 

FLOW Element 
Description  
The FLOW element defines the start of the flow logic.  

The FLOW element can contain one or more STATE declarations followed by one or more EVENT 
declarations. 

The FLOW element is a required element.  

Syntax  
 
<!ELEMENT  FLOW ( STATE+ , EVENT+ )> 
 

 

 
<flow>  
…  
</flow>  

 

April 2001  17 



Internet Application Development With Flow Files: Reference  SAP AG 

STATE Element 

STATE Element 
Description  
The STATE element defines a logical state.  

A flow file can consist of one or more states, but each state must have a unique name.  

A state can contain one or more MODULE declarations, and one or more PERSISTENT elements.  

The result(s) of the operation(s) is a transition to another state or template.  

Syntax  
 
<!ELEMENT STATE ( PERSISTENT?, MODULE+ )> 
<!ATTLIST STATE 
    NAME  CDATA  #REQUIRED> 
 

 

 
<state name="mystate">  
 <module name= "mymodule1" type="RFC">  
 </module>  
 <module name= "mymodule2" type="RFC">  
 </module>  
</state>  

Attributes of the STATE element:  

Attribute Description Required 
NAME State name. Yes 

 

18  April 2001 



 SAP AG Internet Application Development With Flow Files: Reference 

  MODULE Element 

MODULE Element 
Description  
The MODULE element defines a module.  

Each module must have a name and a type that corresponds to the name of an API associated 
with the Module Provider Interface.  

In the case of the Module Provider Interface to the Business Object Repository (BOR) in the R/3 
System, the module name is the name of a Business API (BAPI).  

A MODULE element can contain:  

• One or more RESULT or EXCEPTION elements  

• Zero or one DEFAULT elements  

• Zero or more INPUTMAPPING and/or OUTPUTMAPPING elements  

• Zero or more CONVERTER elements  

• Zero or more PERSISTENT elements  

Syntax  
 
<!ATTLIST  MODULE ( (RESULT|EXCEPTION)*,DEFAULT? 

 INPUTMAPPING?, OUTPUTMAPPING?, 
PERSISTENT?)> 

<!ATTLIST  MODULE 
    NAME  CDATA  #REQUIRED 
    STATEFUL (1|0) “0” #IMPLIED> 
 

 

 
<module name= "mymodule" type="RFC">  
</module>  
 

Attributes of the MODULE element:  

Attribute Description Required 
NAME Module name. Yes 
TYPE Module type. Yes 

April 2001  19 



Internet Application Development With Flow Files: Reference  SAP AG 

MODULE Element 

STATEFUL Specifies whether a module call is stateful or stateless.  

• If the value of STATEFUL is 1, the call is stateful.  

RFC connection is maintained throughout the entire user 
session.  

• If the value of STATEFUL is 0 (default), the call is stateless.  

RFC connection is closed after each module call. 

No 

POOLED Specifies a pooled connection.  No 
CACHE Specifies a cached connection.  No 

 

20  April 2001 



 SAP AG Internet Application Development With Flow Files: Reference 

  PERSISTENT Element 

PERSISTENT Element 
Description  
The PERSISTENT element defines a parameter value that needs to be retained during an entire 
user session.  

Due to the nature of remote function calls (RFCs), parameter values are refreshed during each 
request/response cycle, so the PERSISTENT element helps keep track of the values of certain 
key variables during a user session. A small session context is allocated to hold persistent 
variables.  

Syntax  
 
<!ELEMENT PERSISTENT  EMPTY> 
<!ATTLIST PERSISTENT 
   NAME  CDATA  #REQUIRED> 

 

 

 
<module name="mymodule" type="RFC"> 
… 
<persistent name = "bk_full"/> 
… 
</module> 
> 

The syntax of the PERSISTENT element defined within a MODULE element is similar to its 
description within a STATE. In this example, the persistent parameters have module level scope.  

Attributes of the PERSISTENT element:  

Attribute Description Required 
NAME Persistent name Yes 

 

 
Do not use the PERSISTENT as a convenient way to retain all parameter values.  

 

April 2001  21 



Internet Application Development With Flow Files: Reference  SAP AG 

CONVERTER Element 

CONVERTER Element 
Description 
The CONVERTER element defines a data download from the R/3 System (or other external 
system) and a conversion to a specified format. 

The CONVERTER element requires a type attribute and a list of attribute/value pairs that provide 
additional information for the conversion.  

Syntax 

 
<converter type ="load" input = "data-rawdata" format = "GIF">  

Here, the input type data-rawdata specifies an R/3 table called data, which has a 
column called rawdata containing the data to be converted to GIF format.  

At present, support for the conversion type is confined to LOAD, which specifies a direct 
download of data from the R/3 System for display in the Web browser, without conversion to 
another format.  

The second parameter of the element is a list of attribute pairs that provides additional 
information for the CONVERTER element.  

For type LOAD, the required attribute-value pairs are: INPUT and FORMAT.  

• The INPUT attribute specifies a table of data to be retrieved from the R/3 System.  

This attribute value may or may not include a suffix appended after a hyphen.  

− If a suffix is provided, the CONVERTER element traverses the specified table column(s).  

− If no suffix is provided, the CONVERTER element traverses all table columns.  

• The FORMAT attribute specifies the MIME type of the data contents.  

The FORMAT attribute supports the formats .ppt, .gif and .jpeg.  

 
In future releases, the formats .xls and .doc will also be supported.  

 

22  April 2001 



 SAP AG Internet Application Development With Flow Files: Reference 

  INPUTMAPPING Element 

INPUTMAPPING Element 
Description  
The INPUTMAPPING element defines the mapping of input parameters from the application to the 
R/3 System (or other external system).  

Syntax  
 
<!ELEMENT  INPUTMAPPING EMPTY > 
<!ATTLIST  INPUTMAPPING 
    SOURCE  CDATA 

 #REQUIRED 
    TARGET  CDATA 

 #REQUIRED> 
 

 

 
<module name="mymodule" type="RFC">  
…  
<inputmapping source="sourceID” target="targetID">  
</inputmapping>  
…  
</module> 

 

Attributes of the INPUTMAPPING element:  

Attribute Description Required 
SOURCE Parameter name defined in the application. Yes 
TARGET Parameter name of the called module. Yes 

The value in the SOURCE parameter is copied to the TARGET parameter.  

 

April 2001  23 



Internet Application Development With Flow Files: Reference  SAP AG 

OUTPUTMAPPING Element 

OUTPUTMAPPING Element 
Description  
The OUTPUTMAPPING element defines the mapping of output parameters from the R/3 System 
(or other external system) to the application.  

Syntax  
 
<!ELEMENT  OUTPUTMAPPING EMPTY > 
<!ATTLIST  OUTPUTMAPPING 
    SOURCE  CDATA 

 #REQUIRED 
    TARGET  CDATA 

 #REQUIRED> 
 

 

 
<module name="mymodule" type="RFC">  
…  
<outputmapping source="sourceID” target="targetID">  
</outputmapping>  
…  
</module> 

 

Attributes of the OUTPUTMAPPING element:  

Attribute Description Required 
SOURCE Parameter name of the called module. Yes 
TARGET Parameter name defined in the application. Yes 

The value in the SOURCE parameter is copied to the TARGET parameter.  

 

24  April 2001 



 SAP AG Internet Application Development With Flow Files: Reference 

  FILEMAPPING Element 

FILEMAPPING Element 
Description 
The FILEMAPPING element defines a data upload from the application to the R/3 System (or 
other external system).  

Syntax 

 
<module name="mymodule" type="RFC">  
…  
<filemapping source="myfile” target="table1">  
</filemapping>  
…  
</module> 

 

Attributes of the FILEMAPPING element:  

Attribute Description Required 
SOURCE Name of file to be loaded. Yes 
TARGET Name of R/3 internal table where file data is to be placed. 

It is important that this internal table has only one column 
representing the raw data. 

Yes 

The value in the SOURCE parameter is copied to the TARGET parameter.  

 

April 2001  25 



Internet Application Development With Flow Files: Reference  SAP AG 

RESULT Element 

RESULT Element 
Description  
The RESULT element defines a module test result.  

Syntax  
 
<!ELEMENT RESULT ( EXPR ) > 
<!ATTLIST RESULT 
    NEXT_STATE  CDATA 

 #IMPLIED 
    NEXT_TEMPLATE  CDATA 

 #IMPLIED> 
 

 

 
<module name="mymodule" type="RFC">  
...  
<result next_state ="read">  
<expr> item-no == "1" </expr>  
<exception name = "InputDataFormatError"  
next_template = "checkinput"/>  
...  
</module> 

 

If the test passes, either the next state or the next HTMLBusiness template is processed.  

The EXPR [Page 27] element defines a valid HTMLBusiness expression that evaluates the return 
parameter of a module call.  

The EXCEPTION [Page 28] element defines a module test exception.  

Attributes of the RESULT element:  

Attribute Description Required 
NEXT_STATE Specifies the next state. If NEXT_TEMPLATE 

is not specified. 
NEXT_TEMPLATE Specifies the next HTMLBusiness template without 

the .html extension.  

You can also specify the service and theme. 

For example: 
NEXT_TEMPLATE = 
"<service>/<theme>/<template> 

If NEXT_STATE is 
not specified. 

Either NEXT_STATE or NEXT_TEMPLATE is sufficient.  

26  April 2001 



 SAP AG Internet Application Development With Flow Files: Reference 

  EXPR Element 

EXPR Element 
Description  
The EXPR element defines a valid HTMLBusiness expression that evaluates the return parameter of 
a module. 

Syntax  
 
<!ELEMENT  EXPR EMPTY > 

 

 

<module name="mymodule" type="RFC">  
...  
<result next_state ="read">  
<expr> item-no == "1" </expr>  
<exception name = "InputDataFormatError"  
next_template = "checkinput"/>  
...  
</module> 

 

April 2001  27 



Internet Application Development With Flow Files: Reference  SAP AG 

EXCEPTION Element 

EXCEPTION Element 
Description  
The EXCEPTION element defines a module test exception.  

Syntax  
 
<!ELEMENT EXCEPTION  EMPTY > 
<!ATTLIST EXCEPTION 
    NAME    CDATA

 #REQUIRED 
    NEXT_STATE  CDATA #IMPLIED 
    NEXT_TEMPLATE  CDATA

 #IMPLIED> 
 

 

 
<module name="mymodule" type="RFC">  
...  
<result next_state ="read">  
<expr> item-no == "1" </expr>  
<exception name = "InputDataFormatError"  
next_template = "checkinput"/>  
...  
</module> 

 

If the test passes, either the next state or the next HTMLBusiness template is processed.  

 
If an input data format error occurs, the ITS generates an exception called 
InputdataFormatError instead of stopping the template processing.  

You must catch this exception yourself. You can either generate a pop-up window or 
use a Javascript function to catch the error message in the context borErrorMsg. If 
the exception is not caught, the dialog flow processing terminates and an error 
message is displayed in the Web browser.  

Attributes of the EXCEPTION element:  

Attribute Description Required 
NAME Name of a module test exception. Yes. 
NEXT_STATE Specifies the next state. If NEXT_TEMPLATE 

is not specified. 

28  April 2001 



 SAP AG Internet Application Development With Flow Files: Reference 

  EXCEPTION Element 

NEXT_TEMPLATE Specifies the next HTMLBusiness template without 
the .html extension.  

You can also specify the service and theme. 

For example: 
NEXT_TEMPLATE = 
"<service>/<theme>/<template> 

If NEXT_STATE is 
not specified. 

Either NEXT_STATE or NEXT_TEMPLATE is sufficient.  

 

April 2001  29 



Internet Application Development With Flow Files: Reference  SAP AG 

DEFAULT Element 

DEFAULT Element 
Description  
The DEFAULT element defines the default behavior.  

Syntax  
 
<!ELEMENT  DEFAULT EMPTY > 
<!ATTLIST  DEFAULT 
   NEXT_STATE  CDATA  #IMPLIED 
   NEXT_TEMPLATE  CDATA 

 #IMPLIED> 
 

 

 
<module name="mymodule" type="RFC"  
…  
default next state = "<next state>" 
…  
</module>  

 

Attributes of the DEFAULT element:  

Attribute Description Required 
NEXT_STATE Specifies the next state. If NEXT_TEMPLATE 

is not specified. 
NEXT_TEMPLATE Specifies the next HTMLBusiness template without 

the .html extension.  

You can also specify the service and theme. 

For example: 
NEXT_TEMPLATE = 
"<service>/<theme>/<template> 

If NEXT_STATE is 
not specified. 

Either NEXT_STATE or NEXT_TEMPLATE is sufficient.  

If a DEFAULT element is present, either a state transition takes place or another HTMLBusiness 
template is processed.  

If no DEFAULT element is present, and no other method to leave the current state is specified, 
the current template becomes the next template to be processed.  

The DEFAULT element is processed only if no other test using the RESULT or EXCEPTION 
element has passed.  

 

30  April 2001 



 SAP AG Internet Application Development With Flow Files: Reference 

  EVENT Element 

EVENT Element 
Description  
The EVENT element defines a test for a specified event.  

Syntax  
 
<!ELEMENT  EVENT  EMPTY > 
<!ATTLIST  EVENT 
   NAME   CDATA  #REQUIRED 
   NEXT_STATE  CDATA  #IMPLIED 
   NEXT_TEMPLATE  CDATA 

 #IMPLIED> 
 

 

If the event specified in the NAME attribute is raised, either the next state or the next HTMLBusiness 
template is processed.  

You raise an event by specifying the parameter ~event either in the URL of an hypertext link or 
as part of the HTML form data.  

Two event types deserve some attention. Either or both can be present in a flow file.  

Event Type Description 
onload This event type is processed when an HTMLBusiness template is displayed for the 

first time. It is not triggered for subsequent refreshing of the same page. 
ontouch This event type is processed whenever an HTMLBusiness template is loaded or 

refreshed. 

 

You can have multiple event definitions, and you can declare an event called onload, which is 
automatically processed during execution.  

Attributes of the EVENT element:  

Attribute Description Required 
NAME Name of a module test exception. Yes. 
NEXT_STATE Specifies the next state. If NEXT_TEMPLATE 

is not specified. 
NEXT_TEMPLATE Specifies the next HTMLBusiness template without 

the .html extension.  

You can also specify the service and theme. 

For example: 
NEXT_TEMPLATE = 
"<service>/<theme>/<template> 

If NEXT_STATE is 
not specified. 

Either NEXT_STATE or NEXT_TEMPLATE is sufficient.  

April 2001  31 



Internet Application Development With Flow Files: Reference  SAP AG 

EVENT Element 

 

32  April 2001 



 SAP AG Internet Application Development With Flow Files: Reference 

  Module Provider Connection Types 

Module Provider Connection Types  
The Inernet Transaction Server (ITS) recognizes the following connection types in the flow logic:  

• Stateful  

• Stateless  

• Pooled  

• Cached  

Connection Type: Stateful  
This is a dedicated RFC connection established in a specific user context.  

Stateful RFC connections are maintained during the lifetime of a user’s Web browser session 
and closed when the user terminates the session, or when a session expires after session 
timeout.  

Stateful calls use an existing connection with the specific user logon information. In this case, 
subsequent calls depend on the outcome of the previous state, and on the user making the call.  

After the call, the RFC connection to the external system is kept open and used for subsequent 
stateful calls.  

Unless a stateful connection is terminated explicitly (with the event ~logoff), timeout will close 
the connection.  

 
An example of a stateless call would be:  
<module name= "MyModule" type="RFC" stateful=“1“>  

Connection Type: Stateless  
This is a reusable RFC connection established in a non-specific user context.  

Stateless RFC connections are used for a single call (a single request/reponse cycle) and then 
closed.  

Stateless calls are used where subsequent calls do not depend on the outcome of any previous 
state, or which user is making the call. You could use stateless calls for operations such as 
catalog searches.  

 
An example of a stateless call would be:  
<module name= "mymodule" type="RFC">  

Calls are stateless by default, so you do not need to define a stateless call explicitly.  

Connection Type: Pooled  
The ITS maintains a (fixed size) pool of RFC connections. If a connection type is pooled, an 
existing RFC connection can be used. A pooled user must be an anonymous R/3 user.  

Pooled calls are stateless calls by default, but there is a slight difference:  

April 2001  33 



Internet Application Development With Flow Files: Reference  SAP AG 

Module Provider Connection Types 

• With stateless connections, the connection is always closed after a call.  

• With pooled connections, the R/3 context is cleared, but the connection is returned to 
connection pool. This reduces the connection overhead.  

You can use a free connection from the pool of connections where:  
conn.login = user.login  
conn.language = user.language  
conn.client = user.client  

If no connection is available, the least recently used connection is closed and a new one opened 
with appropriate user, language, and client. The anonymous user and password is stored in the 
service file.  

You define pooled connections in the service file with the following parameters 

• ~poollogin  

• ~poolpassword  

• ~poolclient  

If these parameters are not defined in the service file, the ITS uses the value defined for the 
parameters ~login, ~password, and ~client. 

 
An example of a pooled call would be:  
<module name= "MyModule" type="RFC" pooled=“1“>  

Connection Type: Cached  
Cached calls are pooled connections by default, because the user has to be anonymous, so only 
static (read only) results of calls can be cached.  

With this connection type, the ITS looks in the cache for the data. If nothing is found, the results 
of the call are written to the cache. 

 
An example of a cached call would be:  
<module name= "MyModule" type="RFC" cache=“1“>  

Summary of Connection Types  
You can use a combination of stateful, stateless, and pooled connections.  

At present, specification of the connection type in the flow logic is achieved using three 3 boolean 
attributes:  

• stateful  

• pooled  

• cache  

If no stateful attribute is defined, 0 (stateless) is the default.  

Properties of the different connection types:  

34  April 2001 



 SAP AG Internet Application Development With Flow Files: Reference 

  Module Provider Connection Types 

Connection Type Flow Logic Syntax State Logon Cached 

Stateful stateful=“1“ Yes User No 

Stateless Not required (default) - User No 

Pooled pooled=“1“ - Anonymous No 

Cached cache=“1“ - Anonymous Yes 

 

April 2001  35 



Internet Application Development With Flow Files: Reference  SAP AG 

Module Call Result Caching 

Module Call Result Caching 
The Internet Transaction Server (ITS) caching scheme is designed to reduce the load on the R/3 
System (or other external system) when resolving identical requests.  

When a user starts an Internet application, a typical request could involve searching a catalog 
based on search criteria. By caching the result data in the ITS, we can eliminate the overhead of 
accessing R/3 every time, and thus considerably improve system performance.  

Cache Administration 
There are several variables available for managing the cache. You can:  

• Specify the cache size  

The cache size is defined during ITS setup, but you can specify a different size by 
modifying the variable CacheSize in ITS Administration.  

• Clear the cache  

− You can clear the cache at any time with the relevant utility function in ITS 
Administration.  

− You can clear the cache at a specified time every day by setting the following variables in 
ITS Administration.  

� CacheInvalidateHour  

� CacheInvalidateMinute  

If you do not set these variables, the ITS uses a default time.  

Enabling the Cache in the Flow Logic  
You can enable caching at module call level by setting the parameter cache to 1.  

 
<module name="mymodule" type="RFC" cache = "1">  

By default, the cache parameter is set to 0.  

The cache should be used only if the results of module calls are expected to be static for a 
reasonable amount of time.  

Accessing Cache Statistics  
If you have access to privileged commands, you can display the cache statistics in your Web 
browser by entering the following URL:  
http://<myserver:myport>/scripts/wgate/<service>?~command=CacheStats  

The resulting table displays cache statistics for the current AGate process and specifies values 
for the following:  

Cache Statistic Variable Description 

Free Current amount of unused cache (in bytes). Cache Memory 

Used Current amount of used cache (in bytes). 

36  April 2001 



 SAP AG Internet Application Development With Flow Files: Reference 

  Module Call Result Caching 

 Maximum Maximum cache size allowed (in bytes). 

In memory Amount of context data currently stored in memory. 

On disk Amount of context data currently stored on disk. 

Cache Elements 

Total Total amount of context data currently stored in memory 
and on disk. 

Total hits Total number of cache hits since initialization. 

Total misses Total number of cache misses since initialization. 

Hits (memory) Number of cache hits where data was in memory 

Cache Events 

Hits (disk) Number of cache hits where data was on disk 

 

Cached data is identified by:  

• Module name  

In the case of modules implemented in the R/3 System, this would be the name of the 
Business API (BAPI) or remote-enabled function module.  

• Parameter values  

This includes input field parameters, but not table parameters. Tables as results are 
cached, but they are not used to identify the cached data. Therefore, if function modules 
use tables as input parameters, this would lead to cached results being independent of 
these parameters.  

• Client  

• Language  

If the cache exceeds its maximum size, the contents are written to a cache file. This file is shared 
between AGates and different machines.  

 

April 2001  37 



Internet Application Development With Flow Files: Reference  SAP AG 

Flow File Application Components 

Flow File Application Components  
Each flow file application driven by the Internet Transaction Server (ITS) consists of several 
components:  

• Components created in the R/3 System (or other external system):  

− This is a set of modules to implement the business logic.  

If you define module calls in the R/3 System, you can implement the business logic 
with Business APIs (BAPIs) or standard remote-enabled function modules.  

• Components created in the SAP@Web Studio:  

− Service file (required)  

The service file contains the service description, which is the the set of parameters 
that determines how an application runs.  

Service file names have the format <service>.srvc. 

Each service can be divided into one or more themes. Themes are instances of 
services that differ only in look and feel, but not in functionality.  

− HTMLBusiness templates (required)  

HTMLBusiness templates are the means used by the ITS to display application screens 
in a Web browser when running a service.  

For each screen, there must be one HTMLBusiness template. Each template contains 
standard HTML code, and HTMLBusiness statements.  
HTMLBusiness is an SAP-specific macro language, which allows you to merging R/3 
data dynamically into HTML templates.  

HTMLBusiness template names have the format <template>.html.  

− Flow files (required)  

Flow files contain the flow logic that defines logical transitions between application 
states depending on what the user decides to do when running an application.  

When you are developing applications with flow files, you need to generate one flow 
file for each HTMLBusiness template that requires a dialog flow definition.  

Flow file names have the format <template>.flow.  

− Language resource files (optional)  

Language resources are language-independent texts used by the ITS to run a 
service in a particular language.  

Language resource file names have the format <service>_<language>.htrc.  

− Multipurpose Internet Mail Extension (MIME) files (optional)  

MIME files contain the image, sound, and video elements you may want to include in 
services to enhance the visual appearance and effectiveness of your application.  

All ITS files (except MIME files) are stored on the ITS server under:  
c:\program files\SAP\ITS\2.0\<virtual ITS>\ 

38  April 2001 



 SAP AG Internet Application Development With Flow Files: Reference 

  Flow File Application Components 

MIME files are stored on the Web server under:  
c:\Inetpub\wwwroot-<virtual ITS>\SAP\ITS\mimes\<service>\ 

The following graphic shows the ITS directory structure for a typical flow file application:  

app1.srvc

app2.srvc

product_overview.flow

Theme folder

Service folder

Template folder

Theme folder

HTMLBusiness template

Flow file

HTML template

Flow file

HTMLBusiness template

Flow file

product_overview.html

product_details.html

product_details.flow

purchase_req.html

purchase_req.flow

Templates for service 

Templates for service 

Service file for service

Service file for service

 

Services

Templates

99

app1

app2

99

app1

app2

 app2

 app1

For full details about ITS file types created in the SAP@Web Studio, see ITS File Types [Ext.].  

 

April 2001  39 



Internet Application Development With Flow Files: Reference  SAP AG 

Flow File Applications: Example Scenarios 

Flow File Applications: Example Scenarios  
The following example scenarios demonstrate how to implement two different flow file 
applications:  

• Flow File Example 1: Display Development Classes [Page 41]  

• Flow File Example 2: Online Store [Page 43]  

 

40  April 2001 



 SAP AG Internet Application Development With Flow Files: Reference 

  Flow File Example 1: Display Development Classes 

Flow File Example 1: Display Development Classes  
This example demonstrates how to implement a function that searches for development classes 
matching a certain pattern.  

This application requires two HTMLBusiness templates:  

• devcsearch.html  

• devcdisplay.html  

Each of these templates requires a matching flow file that defines the flow logic.  

devcsearch.html  
Since devcsearch.html does not display any data, it does not require a module call when the 
template is loaded. Therefore, the flow logic simply points to the next template.  

devsearch.flow  
 
<FLOW> 
 
   <EVENT NAME=”Search” NEXT_TEMPLATE=”devcdisplay”> 
   </EVENT> 
 
</FLOW> 
 

 

devsearch.html  
 
<HTML> 
   <BODY> 
   
      <FORM ACTION=”`wgateURL()`” METHOD=”POST”> 
    
         <INPUT TYPE=”TEXT”    NAME=”PATTERN”> 
         <INPUT TYPE=”SUBMIT”  NAME=”~Event” 

VALUE=”Search”> 
 
      </FORM> 
 
   </BODY> 
</HTML> 
 

 

When the user chooses Search on the HTML page, the event Search is raised. This prompts 
the Internet Transaction Server (ITS) to process the HTMLBusiness template devcdisplay.html.  

April 2001  41 



Internet Application Development With Flow Files: Reference  SAP AG 

Flow File Example 1: Display Development Classes 

devcdisplay.html 
The flow logic of devcdisplay.html triggers the module Devclass.GetList, which retrieves 
a list of development classes that match the entered pattern.  

Suppose the module DevClass.GetList is implemented by the BAPI_GET_DEVCLASSES 
function, which has a parameter PATTERN that is automatically passed from the request context. 
The BAPI returns an internal table T_TDEVC which has the same structure as the database table 
TDEVC.  

Function BAPI_GET_DEVCLASSES 
 
FUNCTION BAPI_GET_DEVCLASSES. 
 
   REFRESH T_TDEVC. 
 
   SELECT * FROM TDEVC WHERE DEVCLASS LIKE PATTERN  
            INTO TABLE T_TDEVC. 
 
ENDFUNCTION.    
 

 

devdisplay.flow 
 
<FLOW>  
 
   <STATE NAME=”GetList”> 
      <MODULE NAME=”Devclass.GetList” type=”BAPI”> 
      </MODULE> 
   </STATE>    
 
   <EVENT NAME=”onLoad” NEXT_STATE=”GetList”> 
   </EVENT> 
 
</FLOW> 

 

devdisplay.html 
 
<HTML> 
 
   <BODY> 
    
      <TABLE> 
         `repeat with i from 1 to T_TDEVC.dim` 
            <TR><TD>`T_TDEVC-DEVCLASS[i]`</TD></TR> 
         `end` 
      </TABLE> 
 
   </BODY> 
         </HTML> 

42  April 2001 



 SAP AG Internet Application Development With Flow Files: Reference 

  Flow File Example 2: Online Store 

Flow File Example 2: Online Store 
This example demonstrates how to implement a function that prompts users to log on in one of 
the following situations:  

• When they place an item in the shopping basket for the first time  

• When they proceed to checkout and place the order  

In both cases, the logon procedure is the same, but the position in the dialog flow is different. For 
this reason, you can implement the logon procedure with an HTMLBusiness template called 
login.html, which allows users to enter a user name and password.  

login.html  
Here is the HTMLBusiness template, followed by the flow file:  

login.html 
 
<!-- login.html --> 
 
<HTML> 
 
   <BODY> 
 
      <FORM ACTION=”`wgateURL()`” METHOD=”POST”> 
         <INPUT TYPE=”TEXT”     NAME=”USERNAME”> 
         <INPUT TYPE=”PASSWORD” NAME=”PASSWORD”> 
         <INPUT TYPE=”SUBMIT”   NAME=”~Event” 

VALUE=”Login”> 
      </FORM> 
 
   </BODY> 
 
</HTML> 
 

 

login.flow 
 
<FLOW>  
 
   <STATE NAME=”Login”> 
      <MODULE NAME=”User.Login” TYPE=”BAPI” 

STATEFUL=”1”> 
          <EXCEPTION NAME=”LOGIN_FAILED”> 
          </EXCEPTION> 
          <DEFAULT NEXT_TEMPLATE=”prodinfo” 
          </DEFAULT> 
      </MODULE> 
   </STATE>    
 
   <EVENT NAME=”Login” NEXT_STATE=”Login”> 

April 2001  43 



Internet Application Development With Flow Files: Reference  SAP AG 

Flow File Example 2: Online Store 

   </EVENT> 
 
</FLOW> 
 

44  April 2001 



 SAP AG Internet Application Development With Flow Files: Reference 

  Flow File Example 2: Online Store 

The module User.Login could be implemented by the function module BAPI_USER_LOGIN:  

Function BAPI_USER_LOGIN 
 
FUNCTION BAPI_USER_LOGIN. 
 
   DATA: UNAME(40). 
   DATA: PASSWORD(40). 
 
*  Some password verification code ... 
 
   IF PASSWORD NE MYPASSWORD. 
      RAISE LOGIN_FAILED. 
   ELSE. 
      CUSTOMER = UNAME.  
   ENDIF. 
 
ENDFUNCTION. 
 

 

BAPI_USER_LOGIN checks the password entered by the user:  

• If the password is not correct, an exception is raised  

• If the password is correct, the customer number is stored in the variable CUSTOMER.  

Since BAPI_USER_LOGIN is stateful (as defined in the flow logic), the customer number is 
retained throughout the user session.  

If the logon procedure is successful, the next template is prodinfo.html. 

prodinfo.html 
The product information HTMLBusiness template prodinfo.html contains an Add button and an 
Order button. Both buttons can call the stateful module BAPI_IS_USER_LOGGED_ON, which 
checks whether the customer is already logged on.  

 
Since BAPI_USER_LOGIN and BAPI_IS_USED_LOGGED_ON belong to the same 
function group, the variable CUSTOMER is shared between them.  

prodinfo.flow 
 
<FLOW>  
 
   <STATE NAME=”CheckLogin”> 
      <MODULE NAME=”User.IsLoggedOn” TYPE=”BAPI” 

STATEFUL=”1”> 
          <EXCEPTION NAME=”LOGIN_REQUIRED”  
                     NEXT_TEMPLATE=”login.html”> 
          </EXCEPTION> 
          <DEFAULT NEXT_TEMPLATE=”shopping_basket” 
          </DEFAULT> 

April 2001  45 



Internet Application Development With Flow Files: Reference  SAP AG 

Flow File Example 2: Online Store 

      </MODULE> 
   </STATE>    
 
   <EVENT NAME=”Add”   NEXT_STATE=”CheckLogin”> 
   </EVENT> 
   <EVENT NAME=”Order” NEXT_STATE=”CheckLogin”> 
   </EVENT> 
 
</FLOW> 
 

46  April 2001 



 SAP AG Internet Application Development With Flow Files: Reference 

  Flow File Example 2: Online Store 

The module User.IsLoggedOn is implemented by the function BAPI_IS_USER_LOGGED_ON:  

Function BAPI_USER_IS_LOGGED_ON 
 
FUNCTION BAPI_USER_IS_LOGGED_ON. 
 
   IF CUSTOMER IS INITIAL. 
      RAISE LOGIN_REQUIRED. 
   ENDIF. 
 
ENDFUNCTION. 
 

Implementing Portal Pages  
You can implement portal pages either as HTMLBusiness templates that are part of an HTML 
frameset or as a single page.  

On the container page, you can use the HTMLBusiness macro include to place an HTMLBusiness 
template on the container page. The flow logic is processed for each included template:  

 
<HTML> 
<BODY> 
   <TABLE>  
      

<TR><TD>`include(~name=”product_overview”)`</TD></TR> 
      

<TR><TD>`include(~name=”recommendations”)`</TD></TR> 
   </TABLE> 
</BODY> 
</HTML> 
 

 

 

 

April 2001  47 


