
HTMLBusiness Language
Reference

H
E

L
P

.B
C

F
E

S
IT

S
H

B
L

R

Re lease 4 .6C

HTMLBusiness Language Reference SAP AG

2 April 2001

Copyright

© Copyright 2001 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose
without the express permission of SAP AG. The information contained herein may be changed
without prior notice.

Some software products marketed by SAP AG and its distributors contain proprietary software
components of other software vendors.

Microsoft®, WINDOWS®, NT®, EXCEL®, Word®, PowerPoint® and SQL Server® are registered
trademarks of
Microsoft Corporation.

IBM®, DB2®, OS/2®, DB2/6000®, Parallel Sysplex®, MVS/ESA®, RS/6000®, AIX®, S/390®,
AS/400®, OS/390®, and OS/400® are registered trademarks of IBM Corporation.

ORACLE® is a registered trademark of ORACLE Corporation.

INFORMIX®-OnLine for SAP and Informix® Dynamic Server
TM

 are registered trademarks of
Informix Software Incorporated.

UNIX®, X/Open®, OSF/1®, and Motif® are registered trademarks of the Open Group.

HTML, DHTML, XML, XHTML are trademarks or registered trademarks of W3C®, World Wide
Web Consortium,
Massachusetts Institute of Technology.

JAVA® is a registered trademark of Sun Microsystems, Inc.

JAVASCRIPT® is a registered trademark of Sun Microsystems, Inc., used under license for
technology invented and implemented by Netscape.

SAP, SAP Logo, R/2, RIVA, R/3, ABAP, SAP ArchiveLink, SAP Business Workflow, WebFlow,
SAP EarlyWatch, BAPI, SAPPHIRE, Management Cockpit, mySAP.com Logo and mySAP.com
are trademarks or registered trademarks of SAP AG in Germany and in several other countries
all over the world. All other products mentioned are trademarks or registered trademarks of their
respective companies.

 SAP AG HTMLBusiness Language Reference

April 2001 3

Icons

Icon Meaning

Caution

Example

Note

Recommendation

Syntax

Tip

HTMLBusiness Language Reference SAP AG

4 April 2001

Contents

HTMLBusiness Language Reference... 6
HTMLBusiness General Rules ..7
Embedding HTMLBusiness in Standard HTML.. 8
Using Comments in HTMLBusiness ... 9
Embedding Multiple HTMLBusiness Statements... 10
Referencing R/3 Screen Fields... 11

Syntax Conventions ...14
Referencing R/3 Arrays... 15
Using Pointers to R/3 Fields... 16
Getting R/3 Field Attributes.. 17

.dim..18

.disabled..19

.exists ..20

.label..21

.maxSize..22

.name ..23

.type...24

.value...25

.visSize ..26
HTMLBusiness Language Description ...27
HTMLBusiness Keywords .. 28
HTMLBusiness Expressions.. 29
HTMLBusiness Functions .. 32

archiveURL Function...33
assert Function..34
imageURL Function ..35
includeFrame Function..37
mimeURL Function ...38
printf Function..41
strCat Function..43
strCmp Function..44
strCpy Function ...45
striCmp Function ...46
strLen Function..47
strLwr Function..48
strnCmp Function..49
strniCmp Function ...50
strStr Function...51
strSub Function ...52
strUpr Function..53
toLower Function...54
toUpper Function...55
wgateURL Function...56
write Function..59
writeEnc Function..60

HTMLBusiness Function Specification.. 61

 SAP AG HTMLBusiness Language Reference

April 2001 5

HTMLBusiness Statements ... 68
for Statement...69
if Statement ...70
include Statement ...72
repeat Statement...77

repeat ...78
repeat with <reg> in <field> ...79
repeat with <reg> from <expn> to <expn>...80

HTMLBusiness Grammar Summary.. 81
External Factors ...83
Language Independence .. 84

Getting Texts from the R/3 System...85
Using Language-Specific Templates ..86
Using Language Resource Files ...87

Browser Independence... 89
Requests That Change Only One Frame ...90
Requests That Change Multiple Frames ..91

Clientside Caching .. 92
Using Java Applets ... 94
Mapping Internet Input Onto the R/3 System ..95
Syntax and Semantics .. 96
Passing Multiple Fields From HTML Controls.. 99
Using <textarea> Controls.. 100

HTMLBusiness Language Reference SAP AG

HTMLBusiness Language Reference

6 April 2001

HTMLBusiness Language Reference
Purpose
HTMLBusiness is an SAP-specific macro language used by the Internet Transaction Server (ITS) to
merge data from transaction screens dynamically into the HTML templates of Internet Application
Components (IACs).

When a user starts an IAC from a Web browser, this triggers an ITS service, which corresponds
to an R/3 transaction. For each R/3 transaction screen, there an HTML template, which contains
standard HTML code and HTMLBusiness statements. At runtime, the R/3 screen data is passed
to the ITS. Then, the HTMLBusiness interpreter evaluates the HTMLBusiness statements and the
screen data is merged into the HTML templates, which are them displayed in the user‘s Web
browser.

Features
To integrate HTMLBusiness with standard HTML, the ITS employs tags such as <server>
</server> or the equivalent back quotes.

These tags enclose HTMLBusiness expressions and thus avoid the need to implement multiple tags
or to mark methods in HTML pages. It also means you can use any authoring tool when writing
HTML code to design Web pages.

This document assumes that you have a basic knowledge and understanding of
standard HTML, R/3 screen processing, and ITS architecture.

 SAP AG HTMLBusiness Language Reference

HTMLBusiness General Rules

April 2001 7

HTMLBusiness General Rules
The following topics describe general syntax and how to reference variables:

General Syntax
Embedding HTMLBusiness in Standard HTML [Page 8]

Using Comments in HTMLBusiness [Page 9]

Embedding Multiple HTMLBusiness Statements [Page 10]

Referencing Variables
Referencing R/3 Fields [Page 11]

Referencing R/3 Arrays [Page 15]

Using Pointers to R/3 Fields [Page 16]

Getting R/3 Field Attributes [Page 17]

HTMLBusiness Language Reference SAP AG

Embedding HTMLBusiness in Standard HTML

8 April 2001

Embedding HTMLBusiness in Standard HTML
To embed HTMLBusiness expressions in standard HTML code, you use the <server> …
</server> tag or the equivalent back quotes.

The following code includes the vbcom-kunde screen field in the HTML page:

<h1> Order Status </h1>
<p> Customer Number: <server> VBCOM-KUNDE </server>
...

Embedding HTMLBusiness Tags in Standard HTML Tags
Since HTML does not allow tags within tags, you cannot embed HTMLBusiness tags in standard
HTML tags.

The following code is not possible:
<a href="<server> screenURL </server>"> Link

To handle this, HTMLBusiness provides the back quote (`) as an additional way of marking
statements.

You can use back quotes in the same way as the <server> … </server> tag, and also inside
HTML tags.

The hyperlink in the previous example could be written as:
 Link

Leaving Back Quotes Uninterpreted
If you want to leave back quotes in your HTML page uninterpreted, insert the equivalent code
“`”.

In the code
<p> This is an HTML Business expression: `VBCOM-KUNDE`
</p>

the vbcom-kunde field is left uninterpreted, so the browser output is:

The following is an HTML Business expression: ‘VBCOM-KUNDE‘

 SAP AG HTMLBusiness Language Reference

Using Comments in HTMLBusiness

April 2001 9

Using Comments in HTMLBusiness

You can use standard HTML comments to comment on HTMLBusiness expressions:

� HTML comments start with <!-- and end with -->

� HTMLBusiness expressions that occur within HTML comments appear as uninterpreted output
on the HTML page:

For example, the line
<!-- ‘VBCOM-KUNDE‘ -->

is ignored.

� You can also add comments to parts of HTMLBusiness expressions:

The following line contains a valid HTMLBusiness expression:
‘repeat with j from 1 to <!--stepLoop.dim --> 10‘

HTML comments always end with -->.

The character > alone is insufficient to indicate the end of a comment.

HTMLBusiness Language Reference SAP AG

Embedding Multiple HTMLBusiness Statements

10 April 2001

Embedding Multiple HTMLBusiness Statements
When using multiple HTMLBusiness statements, you can:

� Enclose them in separate <server>...</server> blocks or sets of back quotes.

� Enclose them in a single server command or between a single pair of back quotes.

In this case (just like in C or JavaScript), you separate the HTMLBusiness statements with
semi-colons, as in the following statement:
<p> ‘for (j=0; j <= array.dim; j++)
 j; write("="); array[j]; write (", ")
 end‘
</p>

Delimiters Between Statements in Back Quotes
In ITS versions earlier than 2.2, you had to insert at least one separator between multiple
HTMLBusiness statements enclosed in back quotes:

`if (1)` `write("Hello world!"` `end` (be aware of the blanks!)

This also applied to statements enclosed between the </server> and <server> tags.)

ITS 2.2 does not require a separator between each statement, so you can now write:
`if (1)``write("Hello world")``end`.

Delimiters Between Successive HTMLBusiness Statements
In ITS versions earlier than 2.2, you had to insert a semicolon or at least a single separator
between successive HTMLBusiness statements.

ITS 2.2 does requires neither semi-colons nor other separators. Therefore, you do not have to
include a semicolon:

� Before the keywords end, else, elsif and elseif

� After statements that introduce a block.

Examples are for (…), if (…), elsif (…), elseif (…) and repeat ()

 SAP AG HTMLBusiness Language Reference

Referencing R/3 Screen Fields

April 2001 11

Referencing R/3 Screen Fields
The main task of HTMLBusiness is to tell the Internet Transaction Server (ITS) how to transfer data
between R/3 screens and the HTML templates.

At runtime, there are two types of R/3 field known to the ITS:

� Fields passed from an R/3 screen

Only screen fields are visible to the ITS. Fields known to the module pool but not present
in a screen are not visible.

� Fields passed via the RFC channel

These are fields transferred by the ABAP program using the ITS macros FIELD_SET
[Ext.] or FIELD_TRANSPORT [Ext.].

Referencing Fields
Field replacement is the simplest form of HTMLBusiness statement. With the exception of reserved
keywords, every HTMLBusiness expression is treated as the name of an R/3 field.

To display R/3 screen field data in your HTML page, simply enclose the R/3 field name in
<server>...</server> tags or back quotes.

There is normally a 1:1 relationship between screen fields and HTML fields. This applies both
when reading from and writing to the screen. Large text areas are an exception to this rule.

� If the ITS finds a match for a field name, it copies the contents of the R/3 field to the HTML
page.

� If the ITS finds no match for a field name, it replaces the variable with an empty string.

You can also use field contents in simple expressions.

Field Identifier Syntax
The following table shows the syntax for referencing R/3 screen fields in HTMLBusiness. The
attributes provide additional information about the field.

Name Syntax

Field { ^ } identifier [[expression]] [. attribute]

label |

visSize |

maxSize |

dim |

disabled |

name |

Attribute

value

HTMLBusiness Language Reference SAP AG

Referencing R/3 Screen Fields

12 April 2001

In HTMLBusiness, field identifiers should conform to the same conventions as in other programming
languages such as C or JavaScript.

The conventions are summarized in the following table:

Field Identifier Component Possible Characters Values

A letter a…z, A…Z

An underscore _

First character

A tilde �

Letters a…z, A…Z

An underscore _

A tilde �

A digit 0…9

Subequent characters

A hyphen -

The following are valid field identifiers:
nCustomers
_foo_bar
~frame
date1
ordered_items
vbcom-kunde

In the following cases, you must enclose the entire field identifier in single quotation marks:

� If you use other characters.

� If you use the same name as a keyword.

'*vbcom-kunde'
'$@#identifier()***'
'from'

Identifiers such as vbcom-kunde do not need single quotes, because the hyphen is legal.
Simply write `vbcom-kunde` instead of `'vbcom-kunde'`.

However, if you want to use arithmetic expressions that contain minus signs, there must be at
least one space before and after the minus sign:

`vbcom - kunde`

 SAP AG HTMLBusiness Language Reference

Referencing R/3 Screen Fields

April 2001 13

Limiting the Number of Characters Transferred
You can limit the number of characters per field that are transferred from the HTML page to the
screen. To do this, enter a colon after the field name and then specify the number of characters
desired. You must specify the length between the field name and the index.

If you limit the number of characters in this way, extra characters are lost. This does not apply
when the field is an array and you have not specified an explicit index with []. In this case,
characters beyond your specified limit are included in a new line of the step loop. This is
necessary when processing large text areas.

HTMLBusiness Language Reference SAP AG

Syntax Conventions

14 April 2001

Syntax Conventions
The following syntax conventions are observed in tables:

� Optional derivations are enclosed in angle brackets ([]).

� Curly brackets ({}) indicate zero or repetitions of the expression within the brackets.

� A vertical line (|) links alternative derivatives (“OR”).

� Parentheses (()) logically combine components in cases where uniqueness cannot be
guaranteed.

 SAP AG HTMLBusiness Language Reference

Referencing R/3 Arrays

April 2001 15

Referencing R/3 Arrays
In addition to simple fields, the Internet Transaction Server (ITS) also processes arrays.

On the R/3 side, arrays are either constructed as step loops in the screen or sent from the screen
to the ITS via RFC. You can access the individual elements in an array by specifying an index in
angle brackets after the field name. This assignment is valid for step loop fields in either
direction.

If the angle brackets following the field name do not contain a value, the data transferred from the
HTML document to the R/3 System is appended to the existing fields. The array cannot be longer
than the associated step loop on the screen. If it is, a runtime error results.

HTMLBusiness Language Reference SAP AG

Using Pointers to R/3 Fields

16 April 2001

Using Pointers to R/3 Fields
To define identifiers as pointers to R/3 fields, you can use the caret character ^.

If, for example, Field_Name has the value vbcom-kunde, the following statement reports on
the value in the field vbcom-kunde.

<p> The value of the field ‘Field_Name` is ‘^Field_Name` </p>

This statement generates the following in the HTML page:
<p> The value of the field VBCOM-KUNDE is 3100 </p>

Multiple indirections such as
^^^scarcely_practical[j]

are also possible

 SAP AG HTMLBusiness Language Reference

Getting R/3 Field Attributes

April 2001 17

Getting R/3 Field Attributes
HTMLBusiness provides several attributes for determining the attributes of screen fields in R/3.

The currently available attributes are listed in the following table:

Screen Field Attributes

Attribute Determines

.dim [Page 18] Dimension of an array or muptiple value field.

.disabled [Page 19] Whether a field is ready for input or read-only.

.exists [Page 20] Whether or not a field exists on the screen.

.label [Page 21] Text description of an input field.

.maxSize [Page 22] Maximum input length of a field.

.name [Page 23] Name and index of a field.

.type [Page 24] Type of a field.

.value [Page 25] Current value of a field.

.visSize [Page 26] Maximum visible length of a field.

HTMLBusiness Language Reference SAP AG

.dim

18 April 2001

.dim
You use the .dim attribute to determine the dimension of arrays or multiple value fields. This is
important for step loops, which are represented as multiple-value fields.

Suppose a step loop consists of a column based on the field vbcom-kunde:

� If the column has 20 rows, vbcom-kunde.dim returns the value 20.

� If the column has only one row, vbcom-kunde.dim returns the value 1.

� If no field is defined, the value returned is 0.

You can access specific values of such an array by specifying an index in angle brackets. The
value range of the index is from 1 to .dim.

The following code processes an array based on the vbcom-kunde field:

`repeat with I from 0 to vbcom-kunde.dim`
 <input type=text name="`vbcom-kunde[I].name`" value="`vbcom-
kunde[I].value`">
`end`

To access the second value of the field vbcom-kunde, you can use the expression:

Customer no. 2: `vbcom-kunde[2]`

The value of .dim must be within the defined dimension of the array:

� If you supply a negative index, a runtime error occurs.

� If you supply an index greater than the value defined by .dim, the result is an empty string.

 SAP AG HTMLBusiness Language Reference

.disabled

April 2001 19

.disabled
You use the .disabled attribute to determine whether a screen field is ready for input or read-
only.

The following code determines whether the vbcom-kunde field exists on the screen
and whether it is ready for input:
`if (vbcom-kunde.exists)`
 `if (vbcom-kunde.disabled)`
 <! Value only -->
 `vbcom-kunde`
 `else`
 <! ready for input -->
 <input type=”text” name="vbcom-kunde" value “`vbcom-
kunde`”>
 `endif`
`endif`

HTMLBusiness Language Reference SAP AG

.exists

20 April 2001

.exists
You use the .exists attribute to determine whether or not a screen field exists on the current
screen.

The following code determines whether the vbcom-kunde field exists on the screen
and whether it is ready for input:
`if (vbcom-kunde.exists)`
 `if (vbcom-kunde.disabled)`
 <! Value only -->
 `vbcom-kunde`
 `else`
 <! ready for input -->
 <input type=”text” name="vbcom-kunde" value “`vbcom-
kunde`”>
 `endif`
`endif`

 SAP AG HTMLBusiness Language Reference

.label

April 2001 21

.label
You use the .label attribute to determine the text description of an input field:

The following code determines the text description of the vbcom-kunde field:

`vbcom-kunde.label`: <input type=text name="vbcom-kunde">

Like language resource files, this attribute allows language independence in HTML pages. When
you use the .label attribute, the R/3 logon language determines the texts that are displayed on
the HTML page.

For further information, see Using Language Resource Files [Page 87].

HTMLBusiness Language Reference SAP AG

.maxSize

22 April 2001

.maxSize
You use the .maxSize attribute to determine the maximum input length of a screen field:

The following code determines the maximum input length of the vbcom-kunde field:

<p> Please enter your customer number
 <input type=text name="vbcom-kunde"
 maxSize=`vbcom-kunde.maxSize` </p>

 SAP AG HTMLBusiness Language Reference

.name

April 2001 23

.name
You use the .name attribute together with the .value attribute to construct valid field names.

The .name attribute outputs the name and index of a field.

To create an input tag for the multiple value field vbcom-kunde, you could write

`repeat with I from 0 to vbcom-kunde.dim`
 <input type=text name="vbcom-kunde[`I`]" value="`vbcom-
kunde[I]`">
`end`

This results in the following output:
<input type=text name="vbcom-kunde[1]" value="4711">
<input type=text name="vbcom-kunde[2]" value="8523">
<input type=text name="vbcom-kunde[3]" value="1234">

The sequence of back quotes and quotes can be confusing. Instead, you can use the
.name and .value attributes to write:

`repeat with I from 0 to vbcom-kunde.dim`
 <input type=text name="`vbcom-kunde[I].name`" value="`vbcom-
kunde[I].value`">
`end`

The output is identical to above:
<input type=text name="vbcom-kunde[1]" value="4711">
<input type=text name="vbcom-kunde[2]" value="8523">
<input type=text name="vbcom-kunde[3]" value="1234">

HTMLBusiness Language Reference SAP AG

.type

24 April 2001

.type
You use the .type attribute to determine the type of a screen field.

To determine whether a particular field is a combo box, use the following syntax:
`if <field>.type==ComboBox`
 (action)
`endif`

The possible values for the .type attribute are listed in the following table:

Field Attribute Possible Values
TableView

TableColumn

TableSelector

TableColTitle

Label

Frame

PushButton

RadioButton

CheckButton

Password

ComboBox

Edit

.type

Unknown

 SAP AG HTMLBusiness Language Reference

.value

April 2001 25

.value
You use the .value attribute together with the .name attribute to construct valid field names.

The .value attribute outputs the value of a field.

To create an input tag for the multiple value field vbcom-kunde, you could write

`repeat with I from 0 to vbcom-kunde.dim`
 <input type=text name="vbcom-kunde[`I`]" value="`vbcom-
kunde[I]`">
`end`

This results in the following output:
<input type=text name="vbcom-kunde[1]" value="4711">
<input type=text name="vbcom-kunde[2]" value="8523">
<input type=text name="vbcom-kunde[3]" value="1234">

The sequence of back quotes and quotes can be confusing. Instead, you can use the
.name and .value attributes to write:

`repeat with I from 0 to vbcom-kunde.dim`
 <input type=text name="`vbcom-kunde[I].name`" value="`vbcom-
kunde[I].value`">
`end`

The output is identical to above:
<input type=text name="vbcom-kunde[1]" value="4711">
<input type=text name="vbcom-kunde[2]" value="8523">
<input type=text name="vbcom-kunde[3]" value="1234">

HTMLBusiness Language Reference SAP AG

.visSize

26 April 2001

.visSize
You use the .visSize attribute to determine the maximum visible length of a screen field:

The following code determines the maximum visible length of the vbcom-kunde
field:
<p> Please enter your customer number
 <input type=text name="vbcom-kunde"
 size=`vbcom-kunde.visSize` </p>

 SAP AG HTMLBusiness Language Reference

HTMLBusiness Language Description

April 2001 27

HTMLBusiness Language Description
The following topics describe individual HTMLBusiness language components.

HTMLBusiness Keywords [Page 28]

HTMLBusiness Expressions [Page 29]

HTMLBusiness Functions [Page 32]

HTMLBusiness Statements [Page 68]

Summary of HTMLBusiness Grammar [Page 81]

HTMLBusiness Language Reference SAP AG

HTMLBusiness Keywords

28 April 2001

HTMLBusiness Keywords
The following tokens are reserved keywords in HTMLBusiness.

HTMLBusiness Keywords

archiveURL assert by declare

define else elseif elsif

end for from if

imageURL in include mimeURL

repeat secure times to

wgateURL with write writeEnc

You cannot use HTMLBusiness keywords as identifiers. If you want to use an identifier that has the
same name as a keyword, you must enclose the identifier in single quotation marks.

For example: `repeat with i from 'from' to 'to'`.

 SAP AG HTMLBusiness Language Reference

HTMLBusiness Expressions

April 2001 29

HTMLBusiness Expressions
HTMLBusiness expressions are similar to those used in C, C++ or Java.

From ITS 2.2, there are new rules for

� Operator priority

� Operator associativity

Operator Priority
In ITS versions earlier than 2.2, operator priority rules in HTMLBusiness were not always intuitive,
and differed from C, C++, or Java.

For instance, the || operator had priority over the == operator, so ITS developers had to use
parentheses unnecessarily to clarify priority.

Instead of writing
`if (a==1 && b==2)`,

it was necessary to write
`if ((a==1) && (b==2))`.

Otherwise, the HTMLBusiness interpreter would interpret the expression as
`if (a==(1 && b)== 2)`

To overcome this problem in ITS 2.2, operator priority has been redefined to match that used by
the programming languages C, C++, and Java:

Currently, HTMLBusiness provides the following operators, listed in decreasing order of priority:

Operator Priority

Operator Priority
++, -- 1
*, /, % 2
+, -, & 3
==, !=, >, <, >=, <= 4
&&, || 5

If you need a different evaluation sequence, you must use parentheses. Operators with the same
priority are evaluated from left to right.

Operator Associativity
In ITS versions earlier than 2.2, operator associativity also differed from C, C++, or Java in some
(but not all) cases, since terms were evaluated from right to left (rather than from left to right).

In ITS 2.2, operator associativity has been changed to evaluate from left to right, in order to
achieve consistency with other programming languages.

HTMLBusiness Language Reference SAP AG

HTMLBusiness Expressions

30 April 2001

Therefore, the expression
`8/2*4`

is now evaluated as
`(8/2)*4` (==16)

instead of
`8/(2*4)` (==1).

Expression Syntax
The syntax summarized in the table below specifies the currently allowed forms of expression:

� Operators with identical priority are grouped and evaluated from left to right.

� If you want to enforce a different evaluation sequence, you must use parentheses.

Nonterminal Derivation
expression simpleexpr [compop simpleexpr]

simpleexpr term { addopr simpleexpr}

term factor { mulopr factor}

factor (! | ++ | --) factor

(expression) |

function call |

assignment |

lvalue [++ | --] |

constant

function call internalfn (argument {, argument}) |

externalfn (expression {, expression})

internalfn write | writeEnc | wgateURL | archiveURL | imageURL |
mimeURL | assert

mulopr * / % &&

addopr + - & ||

compop == | != | > | < | >= | <=

For information on the notation used in the table, see Syntax Conventions [Page 14].

The following are examples of correct expressions:
vbcom-kunde
nCustomers % 10
!fExists
a > b*2+1

 SAP AG HTMLBusiness Language Reference

HTMLBusiness Expressions

April 2001 31

name != "Walt"&" "&"Whitman"
(x -y) * (a+b) & " US$"
cond1 && (cond2 || cond3) && cond4

HTMLBusiness Language Reference SAP AG

HTMLBusiness Functions

32 April 2001

HTMLBusiness Functions
HTMLBusiness provides a set of standard functions that generate HTML fragments. These functions
can only be developed within the HTMLBusiness interpreter itself, so the set of HTML generation
macros cannot be extended.

To increase flexibility, HTMLBusiness also allows you to write your own functions, but this does
require some knowledge of the underlying concepts behind procedural languages.

The standard functions provided are:

archiveURL Function [Page 33]

assert Function [Page 34]

imageURL Function [Page 35]

mimeURL Function [Page 38]

printf Function [Page 41]

strCat Function [Page 43]

strCmp Function [Page 44]

strCpy Function [Page 45]

striCmp Function [Page 46]

strLen Function [Page 47]

strLwr Function [Page 48]

strnCmp Function [Page 49]

strniCmp Function [Page 50]

strStr Function [Page 51]

strSub Function [Page 52]

strUpr Function [Page 53]

toLower Function [Page 54]

toUpper Function [Page 55]

wgateURL Function [Page 56]

write Function [Page 59]

writeEnc Function [Page 60]

HTMLBusiness Functions [Page 61]

For further information about writing your own HTMLBusiness functions, see:

HTMLBusiness Function Specification [Page 61]

 SAP AG HTMLBusiness Language Reference

archiveURL Function

April 2001 33

archiveURL Function
Purpose
Accesses functions in the iXOS archive.

Syntax
archiveURL(command, archiveID=<expression>, docID=expression)

Description
Use the archiveURL function in the same way as wgateURL to access the iXOS archive system.
You specify the appropriate iXOS function using the command, archiveID and docID
parameters. Further information about the iXOS archive is available in the appropriate product
documentation.

The individual parameters for the function you are calling should be taken from the product
description of the accompanying Archive Web DLL. The relevant Archive Web DLL must be
installed correctly on the Web server.

The URL used by archiveURL is specified in the global service description global.srvc
under the ~URLarchive parameter.

HTMLBusiness Language Reference SAP AG

assert Function

34 April 2001

assert Function
Purpose
Generates a standard message when an HTML field value is in error.

Syntax
assert(<field name>)

Description
Use the assert function to generate field-specific error messages in an HTML page.

In an R/3 transaction, a screen field generates an error, if the field contents are found to be
invalid. In this case, R/3 uses the cursor position to determine the field responsible for the error.
On the ITS side, a standard error message is placed in the system field ~MessageLine.

In an HTML template, if you use the assert function for a field, and that field generates an error
in R/3, the ITS replaces your assert statement with the standard error message. With the
assert function, you can have a message (or graphic) displayed next to a field whenever it
contains error data.

Normally, the Internet Transaction Server (ITS) replaces the assert with the ~ErrorMarker
value from the global.srvc service description. This parameter may contain any HTML
statement (for example, a hyperlink to a graphic). If you don’t set ~ErrorMarker, the default is:
"@@ Error @@".

<form …>
…
Material no <input type="text" name="matnr">`assert(matnr)`
Quantity <input type="text"
 name="quantity">`assert(quantity)`
 <p>`~MessageLine`</p>
</form>

Please note that since only a straight replacement occurs, HTMLBusiness statements in this
parameter are not analyzed.

 SAP AG HTMLBusiness Language Reference

imageURL Function

April 2001 35

imageURL Function
Purpose
Generates dynamic links to graphics files, based on language and theme.

Syntax
imageURL(~type=<expression>, ~name=<expression> {,~theme=<expression>,}
{,~language=<expression>})

Parameters
Parameter Meaning
~name Graphic file name.
~type Graphic file type.
~language Current logon language.
~theme Theme.

Description

As of Internet Transaction Server (ITS) version 1.1 (R/3 Release 3.1H), the
imageURL function is obsolete. For later versions, use the mimeURL Function [Page
38] function instead. Currently, the imageURL function is supported only to ensure
compatibility with existing HTML templates.

The imageURL function specifies links to graphics files. These files are not stored in the ITS
directory but in the directory of the HTTP server.

When specifying links to graphics files, you cannot specify a simple relative URL. The URL must
contain parameters that tell the type of graphic file and as well as the service and theme to which
it belongs. imageURL also lets you access images according to their language. This allows the
management of multi-lingual images.

Except for the name, specify all parameters relative to the sub-directory within the ITS directory
system. The URL generated depends on these values and the ~URLimage parameter defined in
the global service file global.srvc. The imageURL function creates the basic URL as follows:
<~URLimage>/<~type>/<~language>/<~theme>/<~name>

or specifically:
/<HTTP server root directory>/SAP/ITS/GRAPHICS/<type>/<language>/<theme>/<name>

If the ~Language and ~Theme parameters are not specified, the values from the service
description or the current logon language are used. The values assigned to the parameters are
taken without checks from the ITS to make up the URL. In this way, you can create further sub-
directories (linked to the graphics directory) and they can be addressed via the imageURL
function.

Values that are not defined or are empty are removed from the directory structure.

HTMLBusiness Language Reference SAP AG

imageURL Function

36 April 2001

Some examples (where ~language is EN and ~theme is not defined):
1.

results in:

2.

results in:

3.

results in:

4. <img src="`imageURL(~type="backgrounds", ~theme="ides",
~language="DE", ~name="marmor.gif")`">

results in:

 SAP AG HTMLBusiness Language Reference

includeFrame Function

April 2001 37

includeFrame Function
Purpose
Converts multi-frame applications to single pages.

Syntax
includeFrame(~framename=<frame name>)

Parameters
Parameter Meaning
~framename Name of frame to be included.

Description
If you have a multi-frame application, you can use this function to convert the multiple frames to a
single page

For example, you could implement a simple two-frame application with the <frameset> …
</frameset> tag as follows:

<frameset rows=80,* FRAMEBORDER=0 BORDER=0 FRAMESPACING=0>
<frame name="FRAME_1" SRC="`wgateURL(~FrameName="FRAME_1")`"
scrolling="no">
<frame name="FRAME_2" SRC="`wgateURL(~FrameName="FRAME_2")`">
</frameset>

To convert this multiple frame application to a single frame HTML page, you remove the
<frameset> … </frameset> structure and use the includeFrame function with the
<table> … </table> tag instead:

<table>
 <TR><TD>`includeFrame(~framename="FRAME_1")`</TD></TR>
 <TR><TD>`includeFrame(~framename="FRAME_2")`</TD></TR>
</table>

When you execute this code, FRAME_1 and FRAME_2 are still displayed in 2 rows, but as a single
page rather than two separate frames.

HTMLBusiness Language Reference SAP AG

mimeURL Function

38 April 2001

mimeURL Function
Purpose
Generates dynamic links to graphics files, based on ITS language and theme.

Syntax
mimeURL ([[~service=] expression,] [[~theme=] expression,] [[~language=]
expression,] [~secure=]expression,] [~name=] expression)

Parameters
Parameter Meaning
~service Service.

If omitted, the name of the current service is used.

Special service names are global (which covers all files that used by several
servers) and system (which is used for system messages).

~theme Theme.

If omitted, the current theme (defined in the relevant service file) is used. To omit
the whole theme part of the URL path, specify ~theme=””.

~language Language.

If omitted, the current language (defined in the relevant service file or using the
logon page) is used. To omit the language part of the URL path, specify
~language=””.

~secure Specifies whether a relative or absolute URL should be used.
� ~secure not used at all:

mimeURL() creates a relative URL, as in ITS versions prior to 2.2.
� ~secure=“on“:

mimeURL() creates an absolute URL and uses the protocol type HTTPS. Use
this value to switch from an HTTP (unsecure) communication to an HTTPS
(secure) communication within a running session.

� ~secure=“off“:

mimeURL() creates an absolute URL and uses the protocol type HTTP. Use
this value to switch from an HTTPS (secure) communication to an HTTP
(unsecure) communication within a running session.

For examples of using this parameter, see the wgateURL [Page 56] function.
~name Name (and optional subdirectories) of the file to be referenced.

Examples are ok.gif or buttons/roundones/cancel.gif.

 SAP AG HTMLBusiness Language Reference

mimeURL Function

April 2001 39

You can omit parameter names. This results in shorter but less comprehensible function calls. If
you omit the parameter names, the default order is ~service, ~theme, ~language, ~secure,
~name.

All parameters except ~name are optional and are derived from the current session context if not
already defined as an argument. Apart from the file name, specify all other parameters relative to
the subdirectory within the ITS directory system. mimeURL forms the path name according to the
following pattern:
/<HTTP server root directory>/SAP/ITS/MIMES/<service>/<theme>/<language>/<name>

If the ~service, ~theme and ~language parameters are not specified, the corresponding
values from the service description are used. If you specify the ~language parameter without a
value (that is, ~language=""), mimeURL uses the files in the parent Theme directory. This allows
you to access language independent files.

Description
Use the mimeURL function to specify links to static files, for example graphics and help files that
are to be incorporated into the HTML templates at runtime. These files are stored in the directory
of the HTTP server, not in the ITS directory.

You cannot use a simple relative URL for this purpose. You must use a URL containing
parameters that assign the static file to a specific service, theme and language.

The mimeURL function is intended to replace the imageURL function. mimeURL provides more
flexible and easier access to service-, language-, and theme-dependent files like images, sounds
and other multimedia data (hence the name mimeURL).

Apart from addressing specific service files, you can use the mimeURL function to address global
service files using the ~service="global" parameter.

The values assigned to the parameters are taken without checks from the ITS to make up the
URL. You can thus create further subdirectories linked to the MIMES directory which are
addressed via the mimeURL function.

The following example illustrates the use of mimeURL.

If ~URLmime is set to /sap/its/mimes, the current service is vw01, the current
language is EN and the current theme is 99, calling mimeURL() will result in the
following output:

1.

results in:

2.

results in:

3.

results in:

HTMLBusiness Language Reference SAP AG

mimeURL Function

40 April 2001

4.

results in:

5.

results in:

6. <img src="`mimeURL("global", 1, "DE",
"buttons/roundones/ok.gif")`">

results in:

7.

results in:

 SAP AG HTMLBusiness Language Reference

printf Function

April 2001 41

printf Function
Purpose
Returns a string using the specified formatting.

Syntax
string printf (in string format,...)

Parameters
Format Format string (template) from which to create the final string. The format string

contains "%" format specifiers that are replaced by parameters passed as the...-
arguments.

… A variable number of arguments.

Description
Returns a string built from the given format string by resolving format specifiers from a given
variable argument list (like the C printf() function). Format specifiers have the following form:

%<flags><width><.pre><conversion> where:

- Left justify within field.

+ Display leading sign.

<space> Prefix space to result instead of sign.

<flags> can contain zero or
more of:

0 Leading zeros.
<width> Number of characters to expand to (optional).
<pre> Precision to use for (optional after.).

diouxX Minimum number of digits.

s Maximum number of chars.

% "%" character

d Signed decimal integer

I Signed integer

u Unsigned decimal integer

x, X Unsigned hexadecimal integer

o Unsigned octal character

I
c
o
n
s

Icon
Meaning

c Display as character

<conversion> contains one of:

s String

Return Value
Returns a string constructed from the format string by replacing all "%" format specifiers.

HTMLBusiness Language Reference SAP AG

printf Function

42 April 2001

Example
`printf ("Lawrence Smith", format="%-20s will be opening %s in %s on %s

%02d, %04d.",
"a menswear store", "Billingsley", "January", 1, 1999)`

 SAP AG HTMLBusiness Language Reference

strCat Function

April 2001 43

strCat Function
Purpose
Appends one string onto another.

Syntax
string strCat (inout string destString,
 in string sourceString)

Parameters
destString Variable specifying destination for append operation.
source String Expression specifying source for append operation.

Description
This function concatenates strings and places the result in the destination string.

Writing `a = a & b` is equivalent to calling `strCat (a, b)`.

Return Value
Returns the content of destString.

Example
`if (toLower(strCat(~language, "glish")) == "english")`
English Version:
`end`

HTMLBusiness Language Reference SAP AG

strCmp Function

44 April 2001

strCmp Function
Purpose
Compares two strings for equality.

Syntax
int strCmp (in string string1,
 in string string2)

Parameters
string1 Expression evaluating to a string.
string2 Expression evaluating to a string.

Description
This function compares two strings.

Writing `a == b` is equivalent to calling `strCmp (a, b)`.

Return Value
This function returns:

� 0, if string1 is equal to string2

� <0, if string1 is less than string2

� >0, if string2 is less than string1

Example
`if (strCmp(toLower(~language), "en") == 0)`
English Version:
`end`

 SAP AG HTMLBusiness Language Reference

strCpy Function

April 2001 45

strCpy Function
Purpose
Creates a copy of a given string.

Syntax
string strCpy (inout string destString,
 in string sourceString)

Parameters
destString Variable specifying the destination for the copy operation.
sourceString Expression used as the source for the copy operation.

Description
This function copies a string value into a second location.

Writing `a = b` is equivalent to calling `strCpy (a, b)` .

Return Value
Returns the content of destString.

Example
`if (toLower(strCpy(l, ~language)) == "en")`
English Version:
`end`

HTMLBusiness Language Reference SAP AG

striCmp Function

46 April 2001

striCmp Function
Purpose
Compares two strings for equality in a case-insensitive manner.

Syntax
int striCmp (in string string1,
 in string string2)

Parameters
string1 Expression evaluating to a string.
string2 Expression evaluating to a string.

Description
Writing `toLower(a) == toLower(b)` is equivalent to calling `striCmp (a, b)`.

Return Value
This function returns:

� 0, if string1 is equal to string2 disregarding case

� <0, if string1 is less than string2 disregarding case

� >0, if string2 is less than string1 disregarding case

Example
`if (striCmp(~language, "en") == 0)`
English Version:
`end`

 SAP AG HTMLBusiness Language Reference

strLen Function

April 2001 47

strLen Function
Purpose
Returns the number of characters in a given string.

Syntax
int strLen (in string string)

Parameters
string String whose characters are to be counted.

Return Value
Returns the number of characters in the string.

Example
`if (strniCmp(~language, "en", strLen("en")) == 0)`
English Version:
`end`

HTMLBusiness Language Reference SAP AG

strLwr Function

48 April 2001

strLwr Function
Purpose
Returns a lowercase copy of the given string.

Syntax
string strLwr (in string string)

Parameters
string String for which a lowercase copy is desired.

Return Value
Returns a lowercase copy of the given string

Example
`if (strnCmp(strLwr(~language), "en", 1) == 0)`
English Version:
`end`

 SAP AG HTMLBusiness Language Reference

strnCmp Function

April 2001 49

strnCmp Function
Purpose
Compares the first n characters of two strings for equality.

Syntax
int strnCmp (in string string1,
 in string string2,
 in int numberOfChars)

Parameters
string1 Expression evaluating to a string.
string2 Expression evaluating to a string.
numberOfChars Number of characters to compare.

Return Value
This function returns:

� 0, if the first numberOfChars characters of string1 are equal to the first numberOfChars
characters of string2.

� <0, if the first numberOfChars characters of string1 are less to the first numberOfChars
characters of string2.

� >0, if the first numberOfChars characters of string2 are less to the first numberOfChars
characters of string1.

Example
`if (strnCmp(toLower(~language), "en", 1) == 0)`
English Version:
`end`

HTMLBusiness Language Reference SAP AG

strniCmp Function

50 April 2001

strniCmp Function
Purpose
Compares the first n characters of two strings for equality in a case-insensitive manner.

Syntax
int strniCmp (in string string1,
 in string string2,
 in int numberOfChars)

Parameters
string1 Expression evaluating to a string.

string2 Expression evaluating to a string.

numberOfChars Number of characters to compare.

Return Value
This function returns:

� 0, if the first numberOfChars characters of string1 and string2 are equal, regardless of
case.

� <0, if the first numberOfChars characters of string1 are less than those of string2,
regardless of case.

� >0, if the first numberOfChars characters of string2 are less than those of string1,
regardless of case.

Example
`if (strniCmp(~language, "en", 1) == 0)`
English Version:
`end`

 SAP AG HTMLBusiness Language Reference

strStr Function

April 2001 51

strStr Function
Purpose
Searches for a given substring within a string.

Syntax
int strStr (in string string,
 in string stringPattern)

Parameters
string The string in which to search.
stringPattern The string to search for.

Return Value
This function returns:

� 0, if string does not contain stringPattern.

� >0, if string contains stringPattern. In this case, the non-zero value tells the starting
position where the substring was found.

Example
The expression `strStr("Hello world", "world")` returns the position (position 7) at
which "world" occurs in "Hello world".

HTMLBusiness Language Reference SAP AG

strSub Function

52 April 2001

strSub Function
Purpose
Returns a substring from the given string.

Syntax
string strSub (in string string,
 in int position,
 in int length)

Parameters
string Expression evaluating to a string.
position Starting position of the substring within string [1..n].
length Number of characters to put into the substring starting at position.

Description
This function returns a substring of a given string. You can specify the starting position and
length, and strSub will return length characters, starting at the position you request.

If you specify a length of 0, this function returns all characters from the starting position to the
end of the string. If length is larger than the available characters in the source string, all
characters up to the end of the string are taken.

Return Value
Returns a substring (a copy) of the given string.

Example
`name = "Walt Whitman"`
The last name of `name` is
`if (0 != (j = strstr (name, " "))`

 `strSub (name, j + 1, 0)`
`else`
 undefined.
`end`

 SAP AG HTMLBusiness Language Reference

strUpr Function

April 2001 53

strUpr Function
Purpose
Returns an uppercase copy of the given string.

Syntax
string strUpr (in string string)

Parameters
string String for which an uppercase copy is desired.

Return Value
Returns an uppercase copy of the given string

Example
`if (strnCmp(strUpr(~language), "EN", 1) == 0)`
English Version:
`end`

HTMLBusiness Language Reference SAP AG

toLower Function

54 April 2001

toLower Function
Purpose
Returns an all lowercase copy of the given string.

Syntax
string toLower (in string theString)

Parameters
theString Expression evaluating to a string.

Description
This function returns a lowercase copy of the input string. toLower does not change the input
string itself.

Return Value
Returns a lowercase copy of the string passed as theString.

Example
`if (toLower(~language) == "en")`
English Version:
`end`

 SAP AG HTMLBusiness Language Reference

toUpper Function

April 2001 55

toUpper Function
Purpose
Returns an uppercase copy of a string.

Syntax
string toUpper (in string theString)

Parameters
theString Expression evaluating to a string.

Description
This function creates an al uppercase version of the input string and returns. toUpper does not
change the original string.

Return Value
Returns an all uppercase copy of the string passed as theString.

Example
`if (toUpper(~language) == "EN")`
English Version:
`end`

HTMLBusiness Language Reference SAP AG

wgateURL Function

56 April 2001

wgateURL Function
Purpose
Generates URLs dynamically that are compatible with the current Web server.

Syntax
wgateURL(parameter = expression {, parameter = expression})

Parameters
The following table shows the possible parameters of the wgateURL function.

Parameter Meaning
~OkCode Function code to be triggered in R/3 transaction.
~target Name of target frame for a <form> command.

The response to this request will appear in the target frame. For full
details on using ~target, see Browser Independence [Page 89].

(From ITS version 2.2, ~target replaces ~forceTarget.)

~forceTarget No longer supported

From ITS version 2.2, use ~target for all browsers.
~FrameName Determines URL of a frame in a frame set document.
~secure Specifies whether a relative or absolute URL should be used:

� ~secure not used at all:

wgateURL() creates a relative URL as in pre-2.2 versions of ITS.
� ~secure=“on“:

wgateURL() creates an absolute URL and uses the protocol type
HTTPS. Use this value to switch from HTTP (unsecure)
communication to HTTPS (secure) communication within a session.

� ~secure=“off“:

wgateURL() creates an absolute URL and uses the protocol type
HTTP. Use this value to switch from an HTTPS (secure)
communication to an HTTP (unsecure) communication within a
running session.

Screen field name Fills screen fields in target frame.

 SAP AG HTMLBusiness Language Reference

wgateURL Function

April 2001 57

Description
This function generates URLs dynamically that agree with the system information for the current
HTTP server.

In order to let you communicate with the ITS software safely and simply, HTMLBusiness provides
the wgateURL function. Use this function to produce templates that are easily portable between
servers. At runtime, wgateURL dynamically generates URLs that agree with the system
information for the current HTTP server. In this way, you can avoid hard-coding URLs in a
template.

In addition to including system information (such as the ~State field), the wgateURL function also
encodes all parameters according to URL requirements. (For details, see writeEnc Function
[Page 60]).

Use wgateURL in the following three cases:

� In <form> commands, you need to specify the URL of the program that will process the
contents of the form. This path depends on your ITS installation type and therefore
needs to be determined dynamically.

� When you are using a transaction with several frames, this function gives the target
frame. In this case, the URL of the ITS needs to be generated and additional parameters
merged with it.

� Within a frame set document, this function gives the URL for a frame.

Creating Anchors in the URL
Use the ~anchor parameter to generate an HTML anchor in the wgate URL:

<form method="POST" action="`wgateURL(~anchor="footer")`">

This is expanded to:
<form method="POST" action="/scripts/wgate.dll/vw01#footer">

The following example shows how wgateURL works:

 `repeat with j from 1 to xlist-matnr.dim`

 <a href="`wgateURL(matnr=xlist-matnr[j], quantity=xlist-
 kwmeng[j])`">
 `xlist-matbez[j]`
 `end`

This HTML template would be expanded as follows:

 <a
href="http://pn0208/scripts/wgate.dll/vw01?~State=4711&matnr=9
132&quantity=2">
 Microsoft Word Update

HTMLBusiness Language Reference SAP AG

wgateURL Function

58 April 2001

 <a
href="http://pn0208/scripts/wgate.dll/vw01?~State=4711&matnr=9
133&quantity=1">
 Microsoft Excel Update

Always make sure that the value of the attribute href is enclosed in double quotes
(").

Using the ~secure Parameter
You can use the system variable ~http_https to query whether the current request is using
HTTP or HTTPS. (For HTTP, ~http_https = "off", and for HTTPS, ~http_https = "on"). The
following are examples of how to use the ~secure parameter:

� expands to

� expands to

� expands to

� expands to either the
HTTP or the HTTPS variant, depending on the protocol type of the current request.

The ~secure parameter requires additional information in the service file (<service>.srvc),
usually the global service file (global.srvc):

System Parameter Description
~hostSecure Host name and domain of the Web server to be used for secure

requests (HTTPS).

If not specified, this parameter defaults to ~hostUnsecure.

~portSecure Port number to be used for secure requests (HTTPS).

If not specified, this parameter defaults to 443 (standard HTTPS port).
~hostUnsecure Host name and domain of the Web server to be used for unsecure

requests (HTTP).

If not specified, this parameter defaults to ~http_host from the current
request HTTP header.

~portUnsecure Port number to be used for unsecure requests (HTTPS).

If not specified, this parameter defaults to 80 (standard HTTP port).

As of ITS version 2.2, these system parameters are added to the global service file.

 SAP AG HTMLBusiness Language Reference

write Function

April 2001 59

write Function
Purpose
Writes output to the HTML page without inserting spaces or other separators.

Syntax
write (<expression> {, <expression>})

Description
The write function in HTMLBusiness is similar to the same function in JavaScript. Both functions
write field contents and other information to the HTML document.The only difference between
write and simple replacement is that write outputs individual arguments without inserting
spaces or other separators between the values.

Examples:
<p> `write (i, ". ", xlist-matnr)` </p>

<p> `write (j * 2, 123, j > 3)` </p>

HTMLBusiness Language Reference SAP AG

writeEnc Function

60 April 2001

writeEnc Function
Purpose
Writes output to the HTML page, converting all non-alphanumeric characters to hexadecimal.

Syntax
writeEnc (<expression> {, <expression>})

Description
The writeENC function works like write, except that the output is encoded according to URL
requirements. All non-alphanumeric characters (spaces and special characters) are converted
into their hexadecimal equivalents. This function lets you construct URLs correctly from fields that
contain spaces and special characters.

The difference between write and writeEnc can be illustrated using the following
example:
<a href="http://pn0208/scripts/any.dll?matbez=`write
(matbez[j])`&quantity=1">

The least favorable expansion of the above code example is:
<a href="http://pn0208/scripts/any.dll?matbez=Large
Chairs&quantity=1">

Spaces like the one in Large Chairs are not permitted in URLs. However, if
writeEnc is used:

<a
href="http://pn0208/scripts/any.dll?matbez=`writeEnc(matbez[j]
)`&quantity=1">

the following is completely correct. (The string “Large” and the string “Chairs” have
been separated by the code for a space.)
<a
href="http://pn0208/scripts/any.dll?matbez=Large%20Chairs&quan
tity=1">

 SAP AG HTMLBusiness Language Reference

HTMLBusiness Function Specification

April 2001 61

HTMLBusiness Function Specification
General Principles
To support the design of HTML templates when implementing Internet Application Components
(IACs), you can write your own HTMLBusiness functions, which are syntactically similar to those
used in programming languages like ABAP or C.

For example, a simple HTMLBusiness function concatenate_string that concatenates two
strings could have the following form:
`function concatenate_string (string1,string2)
 result = string1 & string2;
 return (result);
 end;`

You pass the two strings to be concatenated in the parameters string1 and string2, and
then return the result.

You could call the function concatenate_string as follows:

…
`write (concatenate_string(“A“,“B“));`
…

This would produce the output AB.

The advantage of defining HTMLBusiness functions is that you can reuse them as required in as
many templates as you like. This saves you from having to redefine the code every time.

SAP does not deliver a standard library of reusable HTMLBusiness functions. Rather, it is up to your
development team to define functions that meet your specific application’s requirements.

Defining HTMLBusiness Functions
The function definition specifies:

� The name of the function

� The number and the names of the parameters the function can expect to receive

� A function body containing the statements that determine what the function does

� A return value

HTMLBusiness functions must be defined before they can be used. You can place a function
definition anywhere in the code, but not within any other HTMLBusiness statement. For example,
you cannot embed a function definition in an if statement.

HTMLBusiness Function Syntax
The basic syntax of an HTMLBusiness function definition is:
function <function name> (<parameter list>)
 <function body>
 return (<return value>);
end;

The syntax components are summarized in the following table:

HTMLBusiness Language Reference SAP AG

HTMLBusiness Function Specification

62 April 2001

Component Description
<function name> Unique identifier, which consists of an unbroken sequence of

alphanumeric characters and permitted special characters.

HTMLBusiness function names must begin with a letter. After this letter,
you can use any combination of upper case letters from A to Z, lower
case letters from a to z, and digits from 0 to 9.

Blanks are not allowed, but you can use the underscore character _ to
join separate words that make up the function name.

<parameter list> The names of the parameters you want to pass.

The default expression is used whenever the caller does not provide a
parameter.

<function body> Any valid HTMLBusiness statement.

<return value> Any valid HTMLBusiness statement.

Calling HTMLBusiness Functions
You can call HTMLBusiness functions as part of any valid HTMLBusiness statement. The syntax is:
`
…
<function name> (<parameter expression>)
…
`

The <parameter expression> consists of a list of parameter names, each separated by a
comma. For each parameter name, the syntax is:
<parameter name>=<any valid HTMLBusiness expression>

When an HTMLBusiness function is called, each parameter expression is evaluated and the
resulting value is assigned to the matching parameter identifier.

� If parameters are identified with parameter names, a matching parameter name is looked up
in the function definition. If no matching name is found, a runtime error occurs.

� If parameters are not identified with parameter names, they are regarded as positional
parameters and are copied one by one into the matching parameter identifier by copying the
value of the nth parameter expression into the nth parameter identifier.

This means that you can call the function concatenate_string in two ways:

� With parameter names, as in:
concatenate_string(string1=”prefix”,string2=”suffix”) ;

� With positional parameters, as in:
concatenate_string(”prefix”,”suffix”) ;

A function can call another function, provided the other function has been declared. In the
following example, a function func_1 calls a function func_2, but this would result in a compile
time error, because the function func_2 has not been declared when it is called.

 SAP AG HTMLBusiness Language Reference

HTMLBusiness Function Specification

April 2001 63

`
function func_1 (x)
 write(func_2(2*x)); <!—compile error -->
end;

function func_2 (y)
 write(y);
end;

func_1(10);
`

Calling HTMLBusiness Functions Recursively
An HTMLBusiness function can call itself. The following example function calculates factorials:
`
function factorial(f,x=1)
 if (x==f)
 return (x);
 else
 return (x*factorial(f,x+1));
 end;
end;

repeat with i from 1 to 10;
 factorial(i);
end;
`

Return Values in HTMLBusiness Functions
HTMLBusiness functions can return values to the caller.

If an HTMLBusiness function returns a string value, which is then used in an expression that results
in a numerical value, automatic type conversion is performed.

In the following function dup_string, which duplicates strings, all the statements specified
below are possible:
`
function dup_string (s)
 return (s&s);
end;

dup_string(„a“); <-- outputs “aa“ -->

write(dup_string(„b“)); <-- outputs “bb“ -->

dup_string(dup _string(“c”)); <-- outputs “cccc“ -->

2*dup_string(“1”); <-- outputs “22“ -->

`

Variable Scope in HTMLBusiness Functions
If a parameter of an HTMLBusiness function has the same name as a global variable, that
parameter contains the value supplied by the caller within the function, but the value of the global

HTMLBusiness Language Reference SAP AG

HTMLBusiness Function Specification

64 April 2001

variable is restored when processing returns from the function to caller, as shown in the following
example:
`
…
function write_numbers (x1,x2,x3)
 global_variable = x1;
 write(„global_variable is „,global_variable,“\n“);
 write(„x1 is „,x1,“\n“);
 write(„x2 is „,x2,“\n“);
 write(„x3 is „,x3,“\n“);
end;

global_variable = 1000;
x1 = 100;
x2 = 200;
x3 = 300;
write(„Before the call\n“);
write("global_variable is ",global_variable,"\n");
write("x1 is ",x1,"\n");
write("x2 is ",x2,"\n");
write("x3 is ",x3,"\n");
write(“Calling the function . . .\n”);
write_numbers(10,20,30);
write(“After the call\n”);
write("global_variable is ",global_variable,"\n");
write("x1 is ",x1,"\n");
write("x2 is ",x2,"\n");
write("x3 is ",x3,"\n");
…
`

This produces the following output:
Before the call
global_variable is 1000
x1 is 100
x2 is 200
x3 is 300
Calling the function . . .
global_variable is 10
x1 is 10
x2 is 20
x3 is 30
After the call
global_variable is 10
x1 is 100
x2 is 200
x3 is 300

Standard HTML in HTMLBusiness Functions
HTMLBusiness functions can contain standard HTML code.

In the following example, an HTMLBusiness function called write_html_text outputs the HTML
text <H1> This is standard HTML </H1> ten times in the Web browser.

 SAP AG HTMLBusiness Language Reference

HTMLBusiness Function Specification

April 2001 65

`
function write_html_text()
` <!--Now entering HTML mode -->
 <H1> This is standard HTML </H1>
`end;`

`repeat with I from 1 to 10;
 write_html_text();
end;
`

Field References
You cannot pass parameters to fields by reference. Consider the following example:
`
…
function dump_table(t)
 `<TABLE>`
 repeat with i from 1 to t.dim;
 `<TR><TD>`t[i]`</TD></TR>`
 end;
 `</TABLE>`
end;

mytable[1] = „Line 1“;
mytable[2] = „Line 2“;
mytable[3] = „Line 3“;
dump_table(mytable);
…
`

In this case, HTMLBusiness outputs only the first line of the table because mytable, passed as a
parameter to the function dump_table, is evaluated as the value of the first line of the multi-
value field mytable which is Line 1.

To resolve the name at runtime, you must pass the name of the variable as a string instead and
use the HTMLBusiness ^ operator, as shown below:

`
…
function dump_table(t)
 `<TABLE>`
 repeat with i from 1 to ^t.dim;
 `<TR><TD>`^t[I]`</TD></TR>`
 end;
 `</TABLE>`
end;

mytable[1] = „Line 1“;
mytable[2] = „Line 2“;
mytable[3] = „Line 3“;
dump_table(mytable);
…
`

HTMLBusiness Language Reference SAP AG

HTMLBusiness Function Specification

66 April 2001

Application Example
One useful application is to write HTMLBusiness functions that generate HTML code. For example,
you could define a function screenfield as follows:

`
function (~screenfield)
 if (^~screenfield.disabled)
 <!--- Screenfield is not ready for input -->
 write(^screenfield.label);
 else
 write(“<INPUT TYPE=\””);
 if (^screenfield.type==”RadioButton”)
 write(“RADIO\””);
 write(“ NAME=\””,^screenfield.group,”\””);
 write(“ VALUE=\””,^screenfield.name,”\””);
 else
 if (^screenfield.type==”CheckButton”)
 html_type = “CHECKBOX”;
 else
 html_type = “TEXT”;
 end;
 write(html_type,”\””);
 write(“ NAME=\””,^screenfield.name,”\””);
 write(“ VALUE=\””,^screenfield.value,”\””);
 end;
 end;
end;
`

You could call the function screenfield in two ways:

� With parameter names, as in:
screenfield (~screenfield=“VBAK-VBELN“);

� With positional parameters, as in:
screenfield (“VBAK-VBELN“);

Function calls can evaluate expressions, so you can also say:
this_field = „VBAK-VBELN“;
dnprofield (this_field);

Including HTMLBusiness Functions
You can define HTMLBusiness functions in one template, and then include them in any other
template where you want to use them.

In the following fragment example, it is assumed that the function screenfield is defined in the
template util.html. In order to use screenfield, another HTMLBusiness template must
therefore include util.html:

`
include(~service=“util“,~theme=““,~name=“util.html“);

screenfield(~screenfield=“VBAK-VBELN“);
screenfield(~screenfield=“VBAK-BELNR“);

 SAP AG HTMLBusiness Language Reference

HTMLBusiness Function Specification

April 2001 67

screenfield(~screenfield=“VBAK-DATUM“);

`

Although the include statement assigns default values to the parameters and does not
generate an error message if parameters are missing, you must list the parameters ~service,
~theme and ~name explicitly, because the HTMLBusiness interpreter differentiates between
compile time includes and runtime includes.

Compile time includes are already included at compile time of the including template. This is
necessary so that the functions defined in the included template are known.

HTMLBusiness Language Reference SAP AG

HTMLBusiness Statements

68 April 2001

HTMLBusiness Statements
HTMLBusiness provides the following statements:

for Statement [Page 69]

if Statement [Page 70]

include Statement [Page 72]

repeat Statement [Page 77]

 SAP AG HTMLBusiness Language Reference

for Statement

April 2001 69

for Statement
Purpose
Repeats a substitution in a for loop.

Syntax
for (expression ; expression ; expression) statement end

Description
You can use the for statement just as in C or JavaScript. However, in contrast to C, you cannot
list several expressions separated by commas.

The use of the for loop can be illustrated by the following examples:

`for (j = 10; j > 0; j--)` <td> `end`
`for (j = 1; j <= array.dim ; j++)`
 Array[`j`]=`array[j]`
`end`
`for (a = "a"; a != "aaaa"; a = a & "a") a end`

For information on how HTMLBusiness evaluates expressions, see Expressions [Page 29].

For information on using for to code repeat loops, see repeat Statement [Page 77].

HTMLBusiness Language Reference SAP AG

if Statement

70 April 2001

if Statement
Purpose
Performs conditional substitutions on an HTMLBusiness expression.

Syntax
if (expression) statement
{ [elsif | elseif] (expression) statement }
[else statement]
end

Description
The if statement allows you to perform conditional substitution in your HTML document. if
forces the ITS to test some condition before performing a substitution.

The if statement in HTMLBusiness is similar to the syntax and semantics of other common
programming languages such as C and JavaScript. Since nesting is possible, if statements can
contain other if statements. The same embedding is also allowed for the repeat statement.

The key words elsif and elseif can be used as alternatives.

In the syntax description, the term expression refers to any expression that evaluates to a truth
value, that is, to 0 (FALSE) for conditions not met, or not equal to 0 (TRUE) for conditions met.

The following are examples of this kind of expression:
VBCOM-KUNDE >= 1000
VBCOM-KUNDE
j % 3 == 0
j / (4 - 1) != a * (b + (c + 2))
s == "Walter" & " " & "Weissmann"
(x > 2 && x <99) || (s > "abc")

The following are examples of if statements:

Example 1
`if (VBCOM-KUNDE) VBCOM-KUNDE else` Undefined Customer Number
`end`

Example 2
`if (j % 3 == 0)` <TR> `else` <TD> `end`

Example 3
`if (1) write("This branch is always true!")
 elsif (0) write("This branch is never true!")
 else write("The impossible occurred!")
end`

Example 4

 SAP AG HTMLBusiness Language Reference

if Statement

April 2001 71

`if (x > 0 && x < 100)`
 x is greater than 0 and smaller than 100
 `if (y > 0 && y < 100)`
 y is greater than 0 and smaller than 100
 `elsif (Y > 100)`
 y is greater than 100
`end
 elsif (x <= 0)`
 x is smaller than 0!
 `else`
 x is greater than 99!
`end`

The operators <, <=, > and >= are not defined for character strings. If you use them
with character strings, the strings are automatically converted into numerical values.

HTMLBusiness Language Reference SAP AG

include Statement

72 April 2001

include Statement
Purpose
Includes code from other HTML templates in the current HTML template.

Syntax
include([[~service=]expression,] [[~theme=]expression,]
[[~language=]expression,] [~name=]expression)

Parameters
Parameter Meaning
~service Service name.

If omitted, the current service is used.

~theme Theme.

If omitted, the current theme (defined in the .srvc file) is used. To omit the
theme part of the URL path, specify ~theme=””.

~language Language.

If omitted, no language is used. If you want to use the current language, specify
~language=~language. This behavior contrasts with the ~language
parameter of the mimeURL statement.

~name File name.

The file to be included is taken from a path constructed as follows:
<itsRootDir>\<virtual ITS>\templates\<~service>\<~theme>\
<filename(~name)>[_<~language>].<extension(~name)>|html)

Description
The include statement allows you to include code from other HTML templates in the current
HTML template.

Advantages
The include statement has the following advantages:

� Consistency of style for Internet Application Components (IACs)

IACs often use a shared set of style elements such as title bars or copyright footers. You
can store these elements in a single file and include it in all the relevant HTML templates.
This approach allows for centralized updating.

� Reuse of common code

You can reuse Java or Visual Basic scripts in multiple templates. This is useful for
implementing commonly used routines such as validity checking of user input.

� Reuse of function declarations

 SAP AG HTMLBusiness Language Reference

include Statement

April 2001 73

Included files can also contain function interface declarations. This is especially useful for
external function libraries, because you can declare all library functions in one file, and
include the file in each template that uses the library.

Named Parameters or Positional Parameters
You can use either named parameters or positional parameters.

If you use positional parameters (for example, omit ~language= before you specify the language
value), the following order is assumed:

� ~name is the first unnamed parameter from the right

� ~service is the first unnamed parameter from the left

� ~theme is the second unnamed parameter from the left

� ~language is the third unnamed parameter from the left

To include code from the same location as the including template:
`include ("purchasing_titlebar")`

To include code from the global template directory (using the same theme):
`include ("global", "purchasing_titlebar")`

To include code used for external function declarations:
`include ("system", "", "sapxjstring.html")`

Compile Time Evaluation and Runtime Evaluation
The Internet Transaction Server (ITS) resolves include statements at compile time or at runtime.

If the parameters evaluate to constants, or are implicitly defined by the current context, the ITS
can resolve them at compile time. Since there are performance advantages to compile time
evaluation, you should prefer this option whenever possible.

Examples of include statements resolved at compile time are:

� `include ("purchasing_titlebar.html")`

Here, the service, theme and language are defined by the including template itself.

� `include ("purchasing"&"_titlebar"&".html")`

Here, the service, theme and language are implicitly defined, and the expression
"purchasing"&"_titlebar"&".html" evaluates to a constant.

� `include ("system", "", "sapxjstring.html")`

Here, all parameters get constant values explicitly assigned.

Examples of include statements that can only be resolved at runtime are:

� `include ("purchasing" & screen_element & ".html")`

Here, screen_element is a non-constant that can only be defined at runtime.

� `include (~service=~service, "purchasing_titlebar.html")`

HTMLBusiness Language Reference SAP AG

include Statement

74 April 2001

When evaluating expressions, the HTMLBusiness interpreter does not differentiate between
variables defined at compile time and variables defined at runtime. For this reason,
~service is not considered a constant expression. However, if you omit the ~service
parameter completely, it is handled as a constant and implicitly defined.

Including Language Resources With Included Templates
If you include a template from a different service in your current service, any language resources
associated with the included template are also taken into account.

� If an included template references a language resource file called <resource
file>_<language>.htrc, the HTMLBusiness interpreter attempts to resolve the name from
within the included template.

� If an included template references a language resource file called <resource
file>_<language>.htrc, and the name cannot be resolved from within the included
template, the HTMLBusiness interpreter must attempt to resolve the name from within the
including template.

Suppose the template templateA_html of service A includes the template
templateB_html of service B:

� If the template templateB_html of service B references a language resource
file called resource1_en.htrc, the HTMLBusiness interpreter should resolve the
name from within the template templateB.html of service B.

� If the name of the language resource file cannot be resolved from within the
included template templateB.html, it must be resolved from within the
including templateA.html of service A.

A compile time include example could be written as:
`include(~service=“paw1“,~theme=“99“,
~name=“sapmpw01_100“)`

Suppose templateA.html of service A includes templateB.html of service
B and templateC.html of service C:

templateA.html contains the following HTMLBusiness code:

`write (#resource1)`
`include(~service=“ServiceB”, ~theme=“99”, ~name= “B”)`
`include (~service=“ServiceC”, ~theme=“99”,~name=“C”)`

templateB.html contains the following HTMLBusiness code:

`write (#resource1)`
`write (#resource2)`

templateC.html contains the following HTMLBusiness code:

`write (#resource1)`
`write (#resource2)`

The contents of the respective language resource files are as follows:

Resource File Variable Value

 SAP AG HTMLBusiness Language Reference

include Statement

April 2001 75

#resource1 A1templateA_en.htrc

#resource2 A2

templateB_en.htrc #resource1 B1

templateC_en.htrc #resource1 C1

If the logon language is English (en), and you execute templateA.html, you
get the following output :
A1
B1
A2
C1
A2

A runtime include example could be written as:
mytheme=99`
`include(~service=“paw1“,~theme=mytheme,~name=“sapmpw01_100
“)`

Suppose templateA.html of service A includes templateB.html of service
B, and templateB.html of service B includes templateC.html of service C:

templateA.html contains the following HTMLBusiness code:

`write (#resource1)`
`mytheme=99`
`include (~service=“ServiceB”, ~theme=mytheme,~name=“B”)`

templateB.html contains the following HTMLBusiness code:

`mytheme=99`
`include (~service=“ServiceC”, ~theme=mytheme, ~name=“C”)`
`write (#resource1)`
`write (#resource2)`

templateC.html contains the following HTMLBusiness code:

`write (#resource1)`
`write (#resource2)`

The contents of the respective language resource files are again as follows:

Resource File Variable Value
#resource1 A1templateA_en.htrc

#resource2 A2

templateB_en.htrc #resource1 B1

templateC_en.htrc #resource1 C1

If the logon language is English (en), and you execute templateA.html, you
get the following output:
A1
C1
A2

HTMLBusiness Language Reference SAP AG

include Statement

76 April 2001

B1
A2

Restrictions
� You cannot use the include statement in a language resource file.

� The file name you include must have the extension .html.

 SAP AG HTMLBusiness Language Reference

repeat Statement

April 2001 77

repeat Statement
The repeat and for statements allow you to perform repeated substitution in HTMLBusiness

expressions. They force the Internet Transaction Server (ITS) to perform a substitution multiple
times. These statements allow you to include R/3 step loops in HTML pages and structure them
as you like.

The following table shows some example uses:

repeat for

`repeat 10 times`
 <p></p>
`end`

`for(i=1;i<=10;i++)`
 <p></p>
`end`

`repeat with i in FIELD_OP`
 <option value="`i`">
`end`

(No equivalent for statement.)

`repeat with i from 1 to FIELD_OP.dim`
 <option value="`FIELD_OP[i]`">
`FIELD_BZ[i]`
`end`

`for(i=1; i<=FIELD_OP.dim; i++)`
 <option value="`FIELD_OP[i]`">
`FIELD_BZ[i]`
`end`

For details on syntax notation in the table, see:

Syntax Conventions [Page 14]

For further information on these statements, see:

repeat [Page 78]

repeat with <reg> in <field> [Page 79]

repeat with <reg> from <expn> to <expn> [Page 80]

For information on the for statement, see:

for Statement [Page 69]

HTMLBusiness Language Reference SAP AG

repeat

78 April 2001

repeat
Purpose
Repeats a substitution a given number of times.

Syntax
repeat expression times statement end

Description
If a certain area in the HTML page is to be repeated several times, and the loop index is not
involved, this can be done simply by using this statement.

For information on how HTML Business evaluates expressions, see Expressions [Page 29].

`repeat 10 * c times` <td> `end`

 SAP AG HTMLBusiness Language Reference

repeat with <reg> in <field>

April 2001 79

repeat with <reg> in <field>
Purpose
Repeats a substitution for each value in a array.

Syntax
repeat with <register> in <field statement> end

Description
If all values in a multiple value field (array) are displayed in a list, the loop construction is the
obvious choice. The repeat with <register> in variant places all current values of the
multi-value field in the register in succession.

For information on how HTMLBusiness evaluates expressions, see Expressions [Page 29].

 `repeat with value in array`
 `value`
 `end`

HTMLBusiness Language Reference SAP AG

repeat with <reg> from <expn> to <expn>

80 April 2001

repeat with <reg> from <expn> to <expn>
Purpose
Repeats a substitution using a loop index.

Syntax
repeat with <register> from <expression> to <expression> [by
<expression>] statement end

Description
With repeat with <reg> in <field> [Page 79], iteration is only possible over a single column of a
step loop.

If you want to iterate over several columns in parallel, the individual field values should be
activated using an index. To get this running index, use the repeat with... from variant.
This variant sets the register to the from value and iterates over all values up to the to value.
Using by, you can specify an increment other than 1.

For information on how HTMLBusiness evaluates expressions, see Expressions [Page 29].

<table>
 `repeat with index from 1 to xlist-posnr.dim`
 <tr> <td> `xlist-posnr[i]` </td>
 <td> `xlist-matnr[i]` </td>
 <td> `xlist-arktx[i]` </td>
 <td> `xlist-kwmeng[i]` </td> </tr>
 `end`
</table>

To output the above table in reverse sequence, do the following:
<table>
 `repeat with index from xlist-posnr.dim to 1 by "-1" `
 <tr> <td> `xlist-posnr[i]` </td>
 <td> `xlist-matnr[i]` </td>
 <td> `xlist-arktx[i]` </td>
 <td> `xlist-kwmeng[i]` </td> </tr>
 `end`
</table>

 SAP AG HTMLBusiness Language Reference

HTMLBusiness Grammar Summary

April 2001 81

HTMLBusiness Grammar Summary
The following table summarizes the correct formulation of HTMLBusiness expressions:

Nonterminal Derivation

htmlbusiness ([html | script[;]] htmlbusiness)| eof

html bytestream

script (declaration |

expression |

conditional |

loop)

declaration declare externalfn {, externalfn } in module

externalfn identifier

module constant

function funcname (argument {, argument})

argument [identifier =] expression

expression simpleexpr [compop simpleexpr]

simpleexpr term { addopr simpleexpr}

term factor { mulopr factor}

factor (! | ++ | --) factor

(expression) |

assignment |

lvalue [++ | --] |
constant

function call internalfn (argument {, argument}) |

externalfn (expression {, expression})

internalfn write | writeEnc | wgateURL | archiveURL | imageURL | mimeURL |
assert

mulopr * / % &&

addopr + - & ||

compop == | != | > | < | >= | <=

lvalue field | register

field { ^ } identifier [[expression]] [. attribute]

HTMLBusiness Language Reference SAP AG

HTMLBusiness Grammar Summary

82 April 2001

attribute label |
visSize |

maxSize |

dim |

disabled |

name |
value

assignment lvalue = expression

conditional if (expression) htmlbusiness

{ (elsif | elseif) (expression) htmlbusiness }

[else htmlbusiness]

loop repeat expression times htmlbusiness end |
repeat with register in field htmlbusiness end |
repeat with register from expression to expression by expression
htmlbusiness end |
for (expression ; expression ; expression) htmlbusiness end

register identifier

identifier { ~ | _ | - } char { char | digit | _ | ~ | - } |

constant digit {digit} |
" bytestream "
#identifier

char a..z | A..Z

For information on notation used in the table, see:

Syntax Conventions [Page 14]

 SAP AG HTMLBusiness Language Reference

External Factors

April 2001 83

External Factors
When using HTMLBusiness, there are certain external factors you need to take into account:

Language Independence [Page 84]

Browser Independence [Page 89]

Clientside Caching [Page 92]

Java [Page 94]

HTMLBusiness Language Reference SAP AG

Language Independence

84 April 2001

Language Independence
There are three ways of generating language-independent HTML templates:

Getting Texts from the R/3 System [Page 85]

Using Language-Specific Templates [Page 86]

Using Language Resource Files [Page 87]

 SAP AG HTMLBusiness Language Reference

Getting Texts from the R/3 System

April 2001 85

Getting Texts from the R/3 System
The easiest way to retrieve texts for an HTML page is to take advantage of language information
in the R/3 System. When you log on to the R/3 System, language-specific texts are displayed on
the screens. You can evaluate these texts in an HTML template and include them in the resulting
HTML page by using the.label attribute.

<table>
 <tr> <th> `text-posnr.label` </th>
 <th> `text-matnr.label` </th>
 <th> `text-arktx.label` </th>
 <th> `text-kwmeng.label` </th> </tr>
 `repeat with index from 1 to xlist-posnr.dim`
 <tr> <td> `xlist-posnr[i]` </td>
 <td> `xlist-matnr[i]` </td>
 <td> `xlist-arktx[i]` </td>
 <td> `xlist-kwmeng[i]` </td> </tr>
 `end`
</table>

The above example is adequate only if all the texts fit on the HTML page. If this is not the case,
use one of the methods described in:

Using Language-Specific Templates [Page 86]

Using Language Resource Files [Page 87]

HTMLBusiness Language Reference SAP AG

Using Language-Specific Templates

86 April 2001

Using Language-Specific Templates
With language-specific templates, there is a separate set of templates for each language
supported. The names of these templates have an language indicator that matches the logon
language at runtime.

The naming convention for language-specific HTML templates is:
<module pool>_<screen number>_<language>.html

For example, SAPLEC30_1000_D.html.

The HTML templates for a service are stored in a directory with the same name as the service:
…\2.0\<virtual-ITS>\Templates\Service

For example, C:\Program Files\SAP\ITS\2.0\<virtual-ITS>\Templates\ECS3.

A typical template directory for the languages German and English might contain:
saplec30_1000_d.html
saplec30_1000_e.html
saplec30_2000_d.html
saplec30_2000_e.html

You can store different sets of HTML templates for the same R/3 transaction, and
avoid having to define a separate transaction for each variant. For example, you
could create HTML templates in one design, other templates in a second design, and
so forth.

It is sufficient to define a separate service for each variant, for example, ECS3_SAP
and ECS3_UpToDate. Each service then calls the same transaction
(~transaction statement in the <service>.srvc file). Since each service has its
own template directory, you can store different HTML template variants.

The disadvantage of the variant scheme is that HTML pages are stored several
times. If structural changes are made to the HTML templates, the different language
variants must be adapted one by one.

 SAP AG HTMLBusiness Language Reference

Using Language Resource Files

April 2001 87

Using Language Resource Files
If you want to use a single set of HTML templates for all supported languages, you can use
language resource files.

In this case, you create a separate language resource file for each language. Language resource
files are stored with the HTML templates, and named according to the following convention:

<service>_<language>.htrc

For example, ECS3_EN.htrc

The language resource files for a service must be stored in the same directory as the HTML
templates:

…\2.0\<virtual-ITS>\Templates\Service

For example, C:\Program Files\SAP\ITS\2.0\<virtual-ITS>\Templates\ECS3.

If you use language resource files, the naming conventions for HTML templates are slightly
different. In this case, you must omit the language indicator from the file name, otherwise the
HTML templates are not recognized. The naming convention is thus:

<module pool>_<screen number>.html

Instead of using the language-specific templates
saplec30_1000_d.html

saplec30_1000_e.html

saplec30_2000_d.html

saplec30_2000_e.html

you could implement just two templates and two language resource files:
saplec30_1000.html

saplec30_2000.html

ecs3_d.htrc

ecs3_e.htrc

Language Resource File Structure
A language resource file consists of a number of resource keys, each with a name and value.
The name is a placeholder string, and the value is the translation for the key into the given
language.

You use the resource key as a placeholder in an HTML template to specify where the translated
text (the resource value) should be inserted at runtime.

A language resource file for German could contain a number of keys, as shown in
the following table:

HTMLBusiness Language Reference SAP AG

Using Language Resource Files

88 April 2001

Key Text
Title Statusabfrage fuer Bestellungen

[Ask for order status]

Ok OK

Cancel Abbrechen
[Cancel]

Exit Beenden
[Exit]

4711 Sind Sie sicher?
[Are you sure?]

#4712 Diesen Key gibt es nicht!
[This key does not exist!]

frontcolor 0x000000

backcolor 0xffffff

Using Resource Keys
In an HTML template, you can use resource keys wherever an HTMLBusiness constant can be
used. Each resource key must be preceded by the hash symbol:

<html>
 <head>
 <title>`#title`</title>
 </head>
 <body bgcolor="`#backcolor`" text="`#frontcolor`">
 <form action="`wgateURL()`" method="post">
 …
 <input type=submit name="~OkCode=/00" value=" `#ok` ">
 <input type=submit name="~OkCode=/NEX" value=" `#exit`">
 </form>
 </body>
</html>

 SAP AG HTMLBusiness Language Reference

Browser Independence

April 2001 89

Browser Independence
To be able to use the same HTML templates in different browsers, you need to specify URLs
using the wgateURL function.

For instance, Netscape Communicator and Microsoft Internet Explorer behave in different ways
with respect to the HTTP header "Window-Target":

� When using Netscape Communicator, you can set the destination frame of a request
dynamically from the server.

� Microsoft Internet Explorer ignores this entry. A destination frame can only be defined
statically using the <form> or <a> tag, but this coding is not sufficient in all cases.

To handle these differences, the wgateURL function selects the appropriate variant for the
browser making the request (client sensing).

When implementing browser-independent HTML templates, you must decide which requests are
to be targetted on which frames, and specify the relevant destination frames to wgateURL in the
~target parameter.

This can be explained in the following examples:

Requests That Change Only One Frame [Page 90]

Requests That Change Multiple Frames [Page 91]

HTMLBusiness Language Reference SAP AG

Requests That Change Only One Frame

90 April 2001

Requests That Change Only One Frame
If a request triggered by a hyperlink or a submit button (get or post) changes only one frame, the
~target parameter must be set to the name of this frame.

Two frames are used in service ECS3.

The left frame shows a selection of purchase requisitions, each one in the form of a
hyperlink. When the user selects a hyperlink, the right frame is changed and
becomes Subscreen_210. It then displays the items belonging to the chosen
purchase requisition.

The hyperlink in the left frame should be expressed as follows:

`for (j=1; j <= xorder-vbeln.dim; j++)`
 <a href="`wgateURL(xlist-vbeln=xorder-vbeln[i],
 ~OkCode="SLCT",
 ~target="subscreen_210")`"> `xorder-vbeln[i]`
`end`

This construction is triggered in a way that suits the individual browser.

Use the same procedure for URLs in <form> tags.

The values of the href attribute in the <a> tag and the action attribute in the <form>
tag must be enclosed in double quotation marks.

You cannot specify a target attribute explicitly.

 SAP AG HTMLBusiness Language Reference

Requests That Change Multiple Frames

April 2001 91

Requests That Change Multiple Frames
Although the Internet allows transmission of only one HTML page at a time for a particular
request, a user action on one page often requires the contents of several frames to be refreshed
dynamically at the same time.

To achieve this, you send the current frameset document back to the browser. The frameset
document then requests all the relevant frame pages from the server. In this way you can refresh
either one frame, or all frames at once.

If you do not know how many frames need to be refreshed in a transaction as a result of a user
action, or if you definitely need to refresh more than one frame, you must request all frames
again from the server.

To implement this behavior in an HTML page independently from the browser, the ~target
parameter should be set to _parent or _top. The server then resubmits the frameset document
to the frame superior to the one making the request (_parent), or to the topmost frame (_top).

Three frames are used in the service CreateSO - a purchasing application.

One frame shows the product details and has a submit button which allows the
currently displayed product to be added to a basket of goods displayed in another
frame. When the product has been added to the basket of goods, the product
overview is again displayed in the product detail frame. Therefore, more than one
frame must be renewed because of an action/a request.

The HTML code in the product detail page is as follows:
…
<form action="`wgateURL(~target = "_parent")`" method="post">
 …
 …
 <input type=submit name="~OkCode="SLCT" value=" Insert ">
</form>

HTMLBusiness Language Reference SAP AG

Clientside Caching

92 April 2001

Clientside Caching
Depending on the browser settings, you can store Web pages in the browser's cache. To a
limited extent, this caching behavior can be influenced by users, so you must assume that the
user has configured a given behavior.

To handle this, you need to influence the browser's caching behavior from the server side to
ensure that when the user performs an action in the browser, a requested page is not taken from
the browser’s local cache but is displayed after communication with the R/3 System.

Undesired caching causes problems when the request method get is used. This method has the
semantics of a pure read operation and is used with hyperlinks. It is not absolutely necessary to
communicate with the server if the browser can fall back on a result which exists for an earlier
request. The worst case scenario is that the server is not activated by the user action.

Suppose the service ECS3 is to be activated via the hyperlink
"http://pn0208:1080/scripts/wgate.dll?~Service=ECS3"

The first time this hyperlink is selected, the request from the browser is sent to the
server, which returns the relevant page and starts the appropriate service. The
browser stores this page in the local cache. If the configuration is appropriate, the
next time the user selects this hyperlink, the browser will load this page directly from
the cache without communicating with the server. This means that no service is
started on the server side. When the user has finished with the cached page and
sends it to the server, the server responds to the request with the error message

"Session not found!"
This response is correct, since no service was started.

If you use a form (<form> tag) and a request is sent to the server via the post
method, this problem does not arise. The post method has update semantics,
causing the browser to communicate with the server when a request is made.

In Web transactions, you must use post to trigger actions with updates. You cannot
use hyperlinks.

Using an Expiration Date
To be able to use both request methods equally, pages given to the browser by the server should
be allocated an expiration date according to their type. This allows you to control when the
browser should consider a page to be out-of-date and no longer access it in the cache. When
such a page is activated, the browser will re-establish contact with the server.

Use the HTTP header "Expires" to define the expiration date and give it the value "0" to instruct
the browser not to cache this page.

This HTTP header is only used for pages which are addressed using the "get" method, for
example, via a hyperlink. Pages which are read by "post" are not given an expiration date.

To ensure that automatic cache control functions correctly, the caching behavior of HTML
templates must not be influenced by subsequently adding <meta http-equiv…> tags.

 SAP AG HTMLBusiness Language Reference

Clientside Caching

April 2001 93

Frame Set Documents
To start a service indirectly via a frame set document you should assign an expiration date to this
page statically. This guarantees that the service will actually be started.

The following example shows an indirect service start using a static frame set page:
 Service ECS1

Contents of index.html:
<html><head><title> Order Status </TITLE>
 <meta http-equiv="Expires" content="0"> <!--
IMPORTANT!! -->
 </head>
 <frameset rows=90,*>
 <frame name="PRISMA" src="/ecs1/uptodate.html"
scrolling="no" >
 <frame name="R3" src="/scripts/wgate.dll?~Service=ECS1">
 </frameset>
</html>

If the initial pages are static and they are activated using the get method, the tag
<meta http-equiv="Expires" content="0"> must be specified in the
<head> area of the HTML page. Please note the uppercase and lowercase
characters in "Expires".

HTMLBusiness Language Reference SAP AG

Using Java Applets

94 April 2001

Using Java Applets
For display purposes, you can integrate Java applets and ActiveX controls in HTML templates.

The following example shows how to call a Java applet which displays a pie chart:
<applet code="PieChart.class" codebase="/ECS3" width=350 height=90>
 <param name=columns value="3">
 <param name=scale value="1">
 <param name=bgcolor value="white">
 <param name=c1_color value="red">
 <param name=c2_color value="blue">
 <param name=c3_color value="green">
 <param name=c1_label value="Unconfirmed and Undelivered
 `write(100 * (ordered - confirmed) / ordered)`%">
 <param name=c2_label value="Confirmed but Undelivered
 `write(100 * (confirmed - delivered) / ordered)`%">
 <param name=c3_label value="Delivered
 `write(100 * delivered / ordered)`%">
 <param name=c1_value value="`write(100 * (ordered -
confirmed)
 / ordered)`">
 <param name=c2_value value="`write(100 * (confirmed -
 delivered) / ordered)`">
 <param name=c3_value value="`write(100 * delivered /
 ordered)`">
</applet>

In this example, the code base of the applet is set to "/ECS3". In the case of the
Internet Information Server, "PieChart.class" must be located in the
"inetsrv/wwwroot/ECS3" directory.

You can integrate ActiveX controls in the same way.

 SAP AG HTMLBusiness Language Reference

Mapping Internet Input Onto the R/3 System

April 2001 95

Mapping Internet Input Onto the R/3 System
When submitting data from a Web browser to the R/3 System, the concept of name/value pairs
supported by the Internet is insufficient. Therefore, the Internet Transaction Server (ITS) uses
extended complex syntax to map input fields from the Internet to R/3. This involves the use of
angle brackets to allow for step loop or array data input.

The parameters submitted by the Web browser still use the name/value format and they are still
URL-encoded (that is, they have the name=value&name=value&… format. The only difference
is that name can be something like mail-text:80[].

Five main cases of input control must be supported:

� Single-value input

In this case, no changes to the name=value syntax are necessary. The name part is
mapped onto the corresponding R/3 screen field without any changes. A typical example is
the entry field firstName.

� Multi-value input

This allows you to fill step loops on screens with input from the Internet. The number of the
step loop row is specified together with the name.

� Limitations on input length

Sometimes, it is necessary to limit the number of characters submitted to the R/3 screen field
or to wrap input automatically, e.g. for <textarea> input controls.

� Submission of several input elements from a single Internet input control

� Support of image maps

For further information, see:

Syntax and Semantics [Page 96]

Passing Multiple Fields From HTML Controls [Page 99]

Using <textarea> Controls [Page 100]

HTMLBusiness Language Reference SAP AG

Syntax and Semantics

96 April 2001

Syntax and Semantics
The following table summarizes the syntax used to describe all cases of Internet input mapping.

Nonterminal Derivation

name/value Field name [length] [index] “=“ value [“,“ name/value]

field name { “~“ |“ _“ | “-“ } char { char | digit | “_“ | “~“ | “-“ }

length “:“ numconst

Index “[“ numconst “]“

value URL-encoded string

numconst digit { digit }

digit “0“.. “9“

char “A“.. “Z“ | “a“.. “z“

Please note that angle brackets indicate an optional attribute.

The following table contains the corresponding semantics:

length Limits the number of characters taken from the value part and placed in the
corresponding R/3 screen field to numconst characters.

Any additional characters are lost, except if the field is a multi-value field, corresponds
to a step loop, and is filled in append mode (see “index” below). In this case any
additional characters are automatically “word-wrapped” to the next step loop row.

index If specified, this makes the field a multiple value field or a step loop. A numconst
defines the row to which the given value belongs. No numconst (that is, empty angle
brackets) means that the value is added in append mode (that is, appended to the
values already set).

Below are some examples to clarify this:
firstName=Walt

sets the field named “firstName” on the screen to the value “Walt”.

mail-text[12]=Best+regards

sets the step loop row 12 to the value “Best regards”. Note that + is the URL-
encoding for space.
mail-text[]=“Walt+Whitman“

 SAP AG HTMLBusiness Language Reference

Syntax and Semantics

April 2001 97

appends the text “Walt Whitman” to the end of the rows currently defined in the
field “mail-text”.

If this field already contains
 mail-text[1] = “Hello Friend“
 mail-text[2] = “Hope to see you soon“
 mail-text[3] = “Best regards“

the result will be
 mail-text[1] = “Hello Friend“
 mail-text[2] = “Hope to see you soon“
 mail-text[3] = “Best regards“
 mail-text[4] = “Walt Whitman“

lastName:4=Whitman

sets the screen field “lastName” to the value “Whit”

mail-text:10[2]=Hope+to+see+you+soon

sets the step loop row number 2 to the value “Hope to see “ and discards the
“you soon” part.
The line is truncated after the last space if the following word does not fit completely
into the given boundaries. Due to the specified index, the “you soon” part is not
wrapped to the next row as shown in the next example.
mail-text:10[]=Hope+to+see+you+soon

If mail-text currently contains mail-text[1]= “Hello! “, this will result in:

 mail-text[1] = “Hello! “
 mail-text[2] = “Hope to see “
 mail-text[3] = “you soon“

The automatic word wrapping takes places because of the unspecified index (“[]”).
mail-text:10[]

=Hope+to+see+you+soon%d%a%d%aBest+regards%d%aWalt+Whitman

If mail-text currently contains mail-text[1]= “Hello! “, this will result in:

 mail-text[1] = “Hello! “
 mail-text[2] = “Hope to see “
 mail-text[3] = “you soon“
 mail-text[4] = ““
 mail-text[5] = “Best “
 mail-text[6] = “regards“
 mail-text[7] = “Walt “
 mail-text[8] = “Whitman“

The carriage return/new line sequence submitted by <textarea> controls has the
same truncation/word wrap effect as reaching the length limitations on input.
firstName=Walt,LastName=Whitman

sets the field “firstName” to the value “Walt” and the field “lastName” to the
value “Whitman”.

HTMLBusiness Language Reference SAP AG

Syntax and Semantics

98 April 2001

 SAP AG HTMLBusiness Language Reference

Passing Multiple Fields From HTML Controls

April 2001 99

Passing Multiple Fields From HTML Controls
Suppose you have an R/3 screen with two entry fields, one for the unit of measurement and
another one for the amount. On the HTML page, there is just one dropdown list, from which both
values must be selected in one step:
...
<select name="unit=oz,amount=">
 <option value="1">1 ounce
 <option value="5">5 ounces
 <option value="50">50 ounces
</select>
...

You cannot to use the following code to pass two fields at once, because the concatenation of
name/value pairs is valid only if applied in the name part of a control:
...
<select name="productno=4711,amount=">
 <option value="1,unit=oz">1 ounce
 <option value="5,unit=oz">5 ounces
 <option value="50,unit=l">50 ounces
</select>
...

HTMLBusiness Language Reference SAP AG

Using <textarea> Controls

100 April 2001

Using <textarea> Controls
To use a <textarea> control to obtain input for an R/3 step loop, you can include the following
statement in your HTML template:

<textarea name="mail-text:80[]" cols="80"></textarea>

This statement ensures that no more than 80 characters per step loop row are placed on the
screen.

To place the current content of the step loop on the screen as a default for the <textarea>
control, use the following code:

<textarea name="mail-text:80[]" cols="80">`repeat with r in mail-
text;
write (r, "\r\n"); end`</textarea>

Do not include additional line breaks, since this may lead to unintended results in some
browsers.

Make sure that there are sufficient step loop rows on your screen to hold the values
of the multiple value field. Otherwise an error will occur.

