

ALE Programming Guide

 H
E

L
P

.B
C

M
ID

A
L

E
P

R
O

Re lease 4 .6C

ALE Programming Guide SAP AG

Copyright

© Copyright 2001 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose
without the express permission of SAP AG. The information contained herein may be changed
without prior notice.

Some software products marketed by SAP AG and its distributors contain proprietary software
components of other software vendors.

Microsoft®, WINDOWS®, NT®, EXCEL®, Word®, PowerPoint® and SQL Server® are registered
trademarks of
Microsoft Corporation.

IBM®, DB2®, OS/2®, DB2/6000®, Parallel Sysplex®, MVS/ESA®, RS/6000®, AIX®, S/390®,
AS/400®, OS/390®, and OS/400® are registered trademarks of IBM Corporation.

ORACLE® is a registered trademark of ORACLE Corporation.

INFORMIX®-OnLine for SAP and Informix® Dynamic Server

TM
 are registered trademarks of

Informix Software Incorporated.

UNIX®, X/Open®, OSF/1®, and Motif® are registered trademarks of the Open Group.

HTML, DHTML, XML, XHTML are trademarks or registered trademarks of W3C®, World Wide
Web Consortium,
Massachusetts Institute of Technology.

JAVA® is a registered trademark of Sun Microsystems, Inc.

JAVASCRIPT® is a registered trademark of Sun Microsystems, Inc., used under license for
technology invented and implemented by Netscape.

SAP, SAP Logo, R/2, RIVA, R/3, ABAP, SAP ArchiveLink, SAP Business Workflow, WebFlow,
SAP EarlyWatch, BAPI, SAPPHIRE, Management Cockpit, mySAP.com Logo and mySAP.com
are trademarks or registered trademarks of SAP AG in Germany and in several other countries all
over the world. All other products mentioned are trademarks or registered trademarks of their
respective companies.

2 April 2001

 SAP AG ALE Programming Guide

Icons

Icon Meaning

Caution

Example

Note

Recommendation

Syntax

April 2001 3

ALE Programming Guide SAP AG

Inhalt

ALE Programming Guide ..7
Implementing Distribution Using BAPIs ...8
Distribution Using BAPIs..10
Implementing Your Own BAPIs..16
Filtering Data..18

Reducing Interfaces..21
Defining and Assigning Filter Object Types ...23
Filtering BAPI Parameters..25
Defining Hierarchies Between BAPI Parameters ...27

Maintaining BAPI-ALE Interfaces...30
Determining the Receiver of a BAPI ..35

Determining Filter Objects of a BAPIs..37
Determining Receivers of Asynchronous BAPIs ..38

Determining Filter Objects Using Business Add-Ins ...39
Example Programs with Asynchronous BAPI Calls ..42

Determining Receivers of Synchronous BAPIs..47
Example Programs with Synchronous BAPI Calls..49

Determining Unique Receivers of Synchronous BAPIs ...52
Developing BAPIs for Interactive Processing ..53
Enhancing IDocs of BAPI-ALE Interfaces...54
Distribution Using Message Types..55
Distribution Using Message Types..56
Implementing Outbound Processing...60

Developing a Function Module for ALE Outbound Processing..61
Basics..62
Interrogating the Distribution Model ..63
Structure of Control Records...64
Structure of the Data Records...65

Converting Currency Amounts...66
Replacing SAP Codes With ISO Codes...67
Left-justified Filling of IDoc Fields ..68

Calling MASTER_IDOC_DISTRIBUTE...69
Exceptions and Export Parameters of MASTER_IDOC_DISTRIBUTE...........................70

Example of Generating an IDoc ..71
Example Program to Generate an IDoc...72
Using the Example Coding ..79

Customizing ALE Outbound Processing ..80
Defining ALE Object Types ...81
Assigning the Object Type for the Outbound Link to the Message Type..............................82
Assigning the Application Object Type for the Outbound Link to the Message Type...........83

Outbound Processing Using Message Control ..84
Implementing Inbound Processing..85

Inbound Function Module...86
Embedding a Function Module in ALE Inbound Processing...87
Data Consistency ..88

Ensuring Data Consistency..89

4 April 2001

 SAP AG ALE Programming Guide

Serialization ...90
Processing IDocs Individually ...91

Naming Convention ...92
The Function Module’s Interface ...93
Import Parameters ...94
IDoc Processing...95
Export Parameters...96

The Inbound Function Module’s Export Parameters..97
Export Parameters When IDoc was Successfully Processed....................................98
Export Parameters When an Error Occurred in IDoc Processing..............................99

Example of Processing an IDoc ..100
Example Program to Process an IDoc ...101

Serialization Using Message Types..118
Example Program for Serialization ..119

Customer Exits..125
Example Program for a Customer Exit ..126

Mass Processing...132
Import Parameters ...133
Export Parameters...134

All Inbound IDocs Processed Successfully ..135
Error in One Inbound IDoc ...137

Example Program for Mass Processing IDocs..139
Using Call Transaction..144

ALE-Enabled Transactions..145
Call Transaction Succeeds..147
Call Transaction Fails ..149
Import Parameters in CALL TRANSACTION ..150
Export Parameters in CALL TRANSACTION..151

Inbound Processing Successful ...152
Error During Inbound Processing ...153

ALE Settings ..154
Declaring the Function Module’s Attributes ..155
Registering the Function Modules in Inbound Processing ...156
Creating an Inbound Processing Code...157

Inbound Processing Using SAP Workflow ...158
Work Items..159
Workflow ...160

IDOCXAMPLE as a Reference for IDOC_PACKET..161
IDPKXAMPLE as a Reference for IDOC_PACKET ..162

Advanced Workflow Programming...163
Setting the Parameter RESULT in the Event Container...164

Event inputErrorOccurred..165
Event inputFinished ...167

Triggering an Application Event After Successful IDoc Processing168
Using the Parameter NO_OF_RETRIES..170

Master Data Distribution...171
Defining the Message ...172
Processing Outbound Master Data ...173

April 2001 5

ALE Programming Guide SAP AG

Distributing Master Data Using the SMD Tool ...174
Sending Master Data Directly...178

Processing Inbound Master Data...179
Connections to Non-SAP Systems ..180
Translator Programs for Communication ...182
Technical Implementation ..183

TCP / IP Settings ..184
Sending IDocs to an External System..185
Sending IDocs: External System to SAP System ..187
Transaction Identification Management (TID) ..189

Integrating Dialog Interfaces ..191
Calls With References to the Logical System ..193
Calls Without References to the Logical System...195
Serialization of Messages...197
Serialization by Object Type...198
Serialization By Message Type ..200
Serialization at IDoc Level ..201
Automatic Tests...202
Example Scenario for Distributing Master Data ...203
Preparing the Test ...204
Developing the Test Procedure..205
Error Handling..207
Objects, Events and Tasks to be Created...209
Object Types and Events..211

Creating IDoc Object Type: IDOCXAMPLE ...212
Creating IDoc Packet Object Type: IDPKXAMPLE..214

Creating a Standard Task ...215
Maintaining Inbound Methods..217
Checking Consistency of Inbound Error Handling ..218

6 April 2001

 SAP AG ALE Programming Guide
 ALE Programming Guide

ALE Programming Guide
Purpose
You can add your own scenarios to the ALE business processes provided in the standard system.
You can use one of two programming models to do this. Each dispatches a different type of
message:
• Distribution Using BAPIs [Seite 8]: This process has been supported since R/3 Release 4.0A

and is the basis for future developments.
• Distribution Using Message Types [Seite 55]. ALE developments in R/3 Release 3.x are

based on this programming model.

Developers of desktop applications can also implement ALE business processes
using the IDoc Class Library [Extern] for C++.
Client copy: logical system name in document header data.
When you are copying clients and logical systems have been defined for a client,
logical systems must be converted in the header data of the copied documents, so
that these documents can be found again in the new client.
When you are evaluating the statistics of documents, you have to check whether this
field contains the logical system of the current client or the value SAPCE.
Only when these two conditions have been met, are documents from the current
client included in the statistical evaluation.

April 2001 7

ALE Programming Guide SAP AG
Implementing Distribution Using BAPIs

Implementing Distribution Using BAPIs
Now that BAPIs and ALE can be integrated you can implement your ALE business processes
using BAPIs.
BAPIs are methods of SAP business objects. They are defined in the Business Object Repository
(BOR) and are subject to strict design guidelines. BAPIs are implemented as RFC-enabled
function modules.
For further information on BAPIs see the BAPI User Guide [Extern] and BAPI Programming.
As of Release 4.5A BAPIs can also be defined that are implemented outside the R/3 System, but
can be called from the R/3 System. For further information see BAPIs Used for Outbound
Processing [Extern] in the BAPI Programming guide and BAPIs of SAP Interface Types [Extern] in
the BAPI User Guide.
ALE provides a complete programming model for implementing BAPIs. ALE supports these
method calls:
• Synchronous method calls

Synchronous method calls can also be used in ALE distribution scenarios. These method
calls are either BAPIs or Dialog Methods [Seite 191].
In ALE Customizing you can assign the RFC destinations to be used for a synchronous
method call.

• Asynchronous method calls
If BAPIs are called asynchronously, ALE error handling and ALE audit can be used.
If an asynchronous BAPI call is to be used for the distribution, the BAPI-ALE interface
required for inbound and outbound processing can be automatically generated.
Developing an ALE business process in ABAP is restricted to the programming of the
BAPI.
An object-oriented approach has the following advantages:

- The application only has to maintain one interface
- The automatic generation of the BAPI-ALE interface avoids programming errors.

Process Flow
If you are not enhancing an SAP BAPI and you are not creating your own BAPI when you are
implementing an ALE business process, you can simply follow the steps below:

• Filtering Data [Seite 18]
• Determining the BAPI Receivers [Seite 35]

If, on the other hand, you want to enhance a BAPI or create your own, you have to follow these
steps:

• Implementing Your Own BAPIs [Seite 16]
• Maintaining the BAPI-ALE Interface [Seite 30]
• Determining the BAPI Receivers [Seite 35]

Application programs must call a function module for the receiver determination and a
generated application function module in the BAPI-ALE interface.

You can verify the quality of the ALE layer and ALE business processes using Automatic Tests
[Seite 202].
See also:
BAPIs for Interactive Processing [Seite 53]

8 April 2001

 SAP AG ALE Programming Guide
 Implementing Distribution Using BAPIs

Enhancing IDocs of BAPI-IDoc Interfaces [Seite 54]

April 2001 9

ALE Programming Guide SAP AG
Distribution Using BAPIs

Distribution Using BAPIs
BAPIs can be called by applications synchronously or asynchronously. ALE functions such as
BAPI maintenance in the distribution model and receiver determination can be used for both types
of call.
Note that synchronously-called BAPIs are only used for reading external data to avoid database
inconsistencies arising from communication errors.

The application synchronously calls a BAPI in the external system to create an FI
document. The document is correctly created but the network crashes whilst the BAPI
is being executed. An error message is returned to the application and the FI
document is created again. The document has been duplicated in the system called.

An application program can implement a two-phase commit by thoroughly checking the data in the
external system. An easier solution is to call the BAPI asynchronously, as Error Handling [Seite
207] assures that the data remains consistent.
A BAPI should be implemented as an asynchronous interface, if one of the criteria below applies:
• Consistent database changes in both systems

Data must be updated in the local system as well as on a remote system
• Loose coupling

An asynchronous interface would represent too narrow a coupling between the client and
the server systems. If the connection fails the client system can no longer function
correctly.

• Performance load
The interface is used often or it handles large volumes of data. A synchronous interface
cannot be used in this situation because performance would be too low.

If you want to implement a BAPI as an asynchronous interface, you have to generate a BAPI-ALE
interface for an existing BAPI. For more information see Generating BAPI-ALE Interfaces [Seite
30].
Data distribution using BAPIs is illustrated in the graphic below:

10 April 2001

 SAP AG ALE Programming Guide
 Distribution Using BAPIs

- Determine receiver
- Call generated
function module

Segment filtering

Generated function
module on the
inbound side

Communication
 layer

Application ALE layer ApplicationALE layer

 Database

Distribution
 model

IDoc

Serialization

Transfer
control

Field conversion

IDoc

 Database

IDoc → BAPI
conversion

Determine
IDoc statusDispatch

control

IDoc

Version management

Segment filtering

Field conversion Call BAPI
function
module

Generated
function module
on outbound side

Data filtering

BAPI → IDoc
conversion

Connection

Update data and
IDoc status

tRFC
or

EDI

The processes in the application layer and the ALE layer are completed on both the inbound and
outbound processing sides. The communication layer transfers the data by transactional Remote
Function Call (tRFC) or by EDI file interface.
The process can be divided into the following sub-processes:
1. Outbound Processing
• Receiver determination
• Calling the generated outbound function module
• Conversion of BAPI call into IDoc
• Segment filtering
• Field conversion
• IDoc version change
• Dispatch control
2. IDoc dispatch

IDocs are sent in the communication layer by transactional Remote Function Call (tRFC) or by
other file interfaces (for example, EDI).
tRFC guarantees that the data is transferred once only.

3. Inbound Processing
• Segment filtering
• Field conversion
• Transfer control
• Conversion of IDoc into BAPI call
• BAPI function module call
• Determination of IDoc status

April 2001 11

ALE Programming Guide SAP AG
Distribution Using BAPIs

• Posting of application data and IDoc status
• Error handling

The sub-processes in inbound and outbound processing are described below:

Outbound Processing
On the outbound side first of all the receiver is determined from the distribution model.
Then the outbound function module that has been generated from a BAPI as part of the
BAPI-ALE interface is called in the application layer (see also Example Programs with
Asynchronous BAPI Calls [Seite 42]). In the ALE layer the associated IDoc is filled with
the filtered data from the BAPI call.
The volume of data and time of the data transfer is controlled by the dispatch control.
The outbound processing consists of the following steps:

Receiver determination
The receivers of a BAPI call are defined in the distribution model in same way as with
synchronous BAPI calls.
Before the BAPI or generated BAPI-ALE interface can be called, the receiver must be
determined. When the receiver is determined, the filter objects are checked against the
specified conditions and the valid receivers are reported back.
If the distribution of the data is also dependent on conditions, these dependencies
between BAPIs or between BAPIs and message types are defined as receiver filters.
For each of these receiver filters, before the distribution model is defined, a filter object is
created whose value at runtimes determines whether the condition is satisfied or not.
For more information see Determining Receivers of BAPIs [Seite 35].

Calling the generated outbound function module
If the receivers have been determined, you have to differentiate between local and
remote receivers. The BAPI can be called directly for local receivers. For remote calls
the generated ALE outbound function module must be executed so that processing is
passed to the ALE layer. The data for the BAPI call and the list of allowed logical
receiver systems are passed to this function module.
Programming Notes:
After calling the generated function module the application program must contain the
command COMMIT WORK. The standard database COMMIT at the end of the
transaction is not sufficient. The COMMIT WORK must not be executed immediately
after the call, it can be executed at higher call levels after the function module has
been called several times.
The IDocs created are locked until the transaction has been completed. To unlock
them earlier, you can call the following function modules:
DEQUEUE_ALL releases all locked
objects
EDI_DOCUMENT_DEQUEUE_LATER releases individual IDocs whose
numbers are transferred to the function module as parameter values.

Data Filtering
Two filtering services can be used - parameter filtering with conditions and unconditional
interface reduction.

12 April 2001

 SAP AG ALE Programming Guide
 Distribution Using BAPIs

• f entire parameters have been deactivated for the interface reduction, they are not included in
the IDoc. If, on the other hand, only individual fields are not to be included for structured
parameters, the entire parameters are still included in the IDoc.

• With parameter filtering, table rows that have been filtered out are not included in the IDoc.
For more information see Filtering Data [Extern].

Conversion of BAPI call into IDoc
Once the data has been filtered, an IDoc containing the data to be transferred, is created
from the BAPI call by the outbound function module

Segment filtering
Once the IDoc has been created, IDoc segments can be filtered again. This filtering is
rarely used for BAPIs.
For more information see the R/3 Implementation Guide under:

Basis
 Application Link Enabling
 Modeling and Implementing Business Processes
 Master Data Distribution
 Scope of Data for Distribution
 Message Reduction

Field conversion
You can define field conversions for specific receivers in the R/3 Implementation Guide:

Basis
 Application Link Enabling
 Modeling and Implementing Business Processes
 Converting Data Between Sender and Receiver

Standard rules can be specified for field conversions. These are important for converting
data fields to exchange information between R/2 and R/3 Systems. For example, the field
plant can be converted from a two character field to a four character field.
Standard Executive Information System (EIS) tools are used to convert fields.

IDoc version change
To guarantee that ALE works correctly between different releases of the R/3 System,
IDoc formats can be converted to modify message types to suit different release statuses.
If version change has been completed, the IDocs are stored in the database and the
dispatch control is started which decides which of these IDocs are sent immediately.
SAP uses the following rules to convert existing message types:

• Fields can be appended to a segment type
• New segments can be added

ALE Customizing records the version of each message type used in each receiver. The
IDoc is created in the correct version in outbound processing.

Dispatch control
Scheduling the dispatch time:

• IDocs can either be sent immediately or in the background. This setting is made in the partner
profile.

• If the IDoc is sent in the background, a job has to be scheduled. You can choose how often
background jobs are scheduled.

April 2001 13

ALE Programming Guide SAP AG
Distribution Using BAPIs

Controlling the amount of data sent:
• IDocs can be dispatched in packets. The packet size is assigned in ALE Customizing in

accordance with the partner profile.
Basis
 Application Link Enabling
 Modeling and Implementing Business Processes
 Partner Profiles and Time of Processing
 Maintain Partner Profile Manually
or: Generate Partner Profiles

This setting is only effective if you process the IDocs in the background.

Inbound Processing
On the receiver side the ALE layer continues with the inbound processing.
On the application side when the generated inbound function module is executed, the
BAPI call is generated from the IDoc, the BAPI function module is called and the IDoc
status is determined.
After the BAPI or the entire packet has been processed, the IDoc status records of all
IDocs and the application data created from successfully completed BAPIs, are posted
together.
The inbound processing consists of the following steps:

Segment filtering
On the inbound side IDoc segments can be filtered the same as they can on the outbound
side. This filtering on the inbound side is also rarely used for BAPIs.

Field conversion
As with outbound processing, fields can be converted if the field format is different in the
receiving and sending systems.
After the fields have been converted, the IDoc is saved on the database and it is passed
to the transfer control for further processing.

Transfer control
The transfer control decides when the application BAPIs are to be called. This may be
either immediately when the IDoc arrives or at a later time in background processing.
If several mutually dependent objects are distributed, serialization can be used during
the transfer control. IDocs can be created, sent and posted in a specified order by
distributing message types serially. Errors can then be avoided when processing inbound
IDocs.
If BAPIs are used object serialization is used exclusively. This assures that the message
sequence of a particular object is always protected.
For more information about used object serialization see ALE Customizing.

Basis
 Application Link Enabling
 Modeling and Implementing Business Processes
 Master Data Distribution
 Converting Data Between Sender and Receiver
 Serialization by Object Type

14 April 2001

 SAP AG ALE Programming Guide
 Distribution Using BAPIs

When the time arrives for processing the BAPI, the generated inbound function module is
called.

Conversion of IDoc into BAPI call
When the BAPI is called, the entire data from the IDoc segments is written to the
associated parameters of the BAPI function module. If an interface reduction has been
defined for the BAPI, the hidden fields are not filled with the IDoc data.

BAPI function module call
Next the BAPI function module with the filled parameters is executed synchronously. As
the BAPI does not execute a COMMIT WORK command, the application data that it has
created, modified or deleted is not yet saved in the database.

IDoc status determination
If the function module has been executed, the IDoc status is determined in the inbound
function module from the result of the call.

Posting of application data and IDoc status
If each IDoc or BAPI is processed individually, the data is written immediately to the
database.
If several IDocs are processed within one packet, the following may happen:

• The application data of the successfully completed BAPI together with all the IDoc status
records is updated, provided that no BAPI call has been terminated within the packet.

• As soon as a BAPI call is terminated within the packet, the status of the associated IDoc will
indicate an error. Application data will not be updated. Then inbound processing is run again
for all the BAPI calls that had been completed successfully. Provided that there is no
termination during this run, the application data of BAPIs and all the IDoc status records are
updated. This process is repeated if there are further terminations.

Note: Packet processing is only carried out if there is no serialization.

Error handling
You can use SAP Workflow for ALE error handling:

• The processing of the IDoc or BAPI data causing the error is terminated.
• An event is triggered. This event starts an error task (work item).
• Once the data of the BAPI or IDoc has been successfully updated, an event is triggered that

terminates the error task. The work task then disappears from the inbound system.
For more information see Error Handling [Seite 207].

April 2001 15

ALE Programming Guide SAP AG
Implementing Your Own BAPIs

Implementing Your Own BAPIs
SAP provides a large number of BAPIs. If you want to implement your own BAPIs, you have to
use your own namespace.

Procedure
You have the following options:
• You can develop your own BAPI in the customer namespace.
• You can modify a BAPI delivered in the standard system.
1. Copy and modify the function module belonging to the original BAPI.
2. In the Business Object Repository create a subobject type for your BAPI object type in the

customer namespace (Tools → Business Framework → BAPI Development → Business
Object Builder).

When you create the subobject type the methods of the business object inherit the
subtype.

3. Set the status of the object type to Implemented (Edit → Change release status → Object
type).

4. You can change and delete the methods of the subtype or enhance them with your own
methods.

For further information about creating new BAPIs and enhancing existing ones refer to
Modifications and Customer Enhancements [Extern] in the BAPI Programming guide.
Notes about Asynchronous BAPIs
If you want to implement an asynchronous ALE business process, you have to Define a BAPI-ALE
Interface [Seite 30] from the BAPI.
If you implement a BAPI as an asynchronous interface, in addition to following the standard
programming BAPI guidelines, keep in mind the following:
• The BAPI must not issue a COMMIT WORK command.
• The method's return parameter must use the reference structure BAPIRET2.
• All BAPI export parameters with the exception of the return parameter are ignored and are not

included in the IDoc that is generated.
• Status records log the BAPI return parameter values.

After the function module which converts the IDoc into the corresponding BAPI in the
receiving system has been called, status records are written for the IDoc in which
messages sent in the return parameter are logged.
If, in at least one of the entries of return parameter, the field Type in the return parameter
is filled with A (abort) or E (error), this means:

• Type A:
Status 51 (error, application document not posted) is written for all status records,
after a ROLLBACK WORK has been executed.

• Type E:
Status 51 (error, application document not posted) is written for all status records
and a ROLLBACK WORK is executed.

Otherwise status 53 (application document posted) is written and a COMMIT WORK
executed.

16 April 2001

 SAP AG ALE Programming Guide
 Implementing Your Own BAPIs

April 2001 17

ALE Programming Guide SAP AG
Filtering Data

Filtering Data
There are two filtering services provided for asynchronous BAPI calls using the BAPI-ALE
interface.
• Interface Reduction:

If you want to reduce the BAPI interface, you do not have to define any filter object types.
The BAPI reduction does not have any conditions - it is a projection of the BAPI interface.
The developer of the BAPI whose interface is to be reduced must create the BAPI as a
reducible using appropriate parameter types.
The optional BAPI parameters and/or BAPI fields are deactivated in the distribution model
for the data transfer.
You can reduce an interface in two ways, see Reducing Interfaces [Seite 21]
• By fields (using checkbox lists)
• Fully

• Parameter Filtering
Filter Object Types [Extern] are assigned to the business object method. The valid filter
object values must be defined in the distribution model.
The BAPI parameter filtering is linked to conditions, it is therefore content-dependent: The
lines in table parameters of asynchronous BAPIs are determined depending on the values
in the lines (or dependent lines) for the receiver.
Filters are used to define conditions in the form of parameter values that must be satisfied
by BAPIs before they can be distributed in ALE outbound processing.
The table dataset of a BAPI is determined when the parameters are filtered.
Hierarchy relationships between table parameters of the BAPI can also be defined.
Distribution by Classes [Extern] is also supported.
For more information see Filtering BAPI Parameters [Seite 25]

BAPI filtering is the term used for the shared use of both the filter services of the BAPI interface.
BAPI filtering is implemented as a service in ALE outbound processing.

Prerequisites for Using Filter Services
The table below lists the prerequisites that the BAPI interface must satisfy, so that ALE filter
services can be used.

The BAPI can have the following parameter types:

 Field
Reduction

Full Filtering Parameter
Filtering

1. Unstructured without checkbox

2. Unstructured with checkbox X

3. Single-line structured without checkbox

4. Single-line structured with checkbox X

18 April 2001

 SAP AG ALE Programming Guide
 Filtering Data

5. Multiple-line structured without checkbox X X

6. Multiple-line structured with checkbox X X X

7. Multiple-line unstructured without checkbox X

8. Multiple-line unstructured with checkbox

Note: The fields filled with X satisfy the prerequisites.

Explanation of above table:

1. An unstructured parameter without a checkbox is, for example, a BAPI key field (e.g. the
parameter Material in methods of the business object Material).
This parameter type cannot be reduced.

2. If there is an unstructured checkbox parameter with the name PX and the data element
BAPIUPDATE for an unstructured parameter with the name P, the parameter P is reducible.
The parameter is reduced by setting the value of P and of the checkbox parameter PX to
EMPTY.

3. A single-line, structured parameter without a checkbox is not reducible.
4. A single-line, structured parameter P with structure S and associated checkbox PX with

structure SX can be reduced by fields, provided that:
• S and SX have the same number of fields, which are identical in name and sequence.
• The FUNCTION field and the key fields in S and SX each have the same data element.
• All other fields in SX have the data element BAPIUPDATE.

The FUNCTION field in P and the key fields must be marked as mandatory fields. All the other
fields you can chose whether to label them as mandatory. Mandatory fields cannot be
reduced. Non-mandatory fields are reduced by setting the field values and the corresponding
checkbox to EMPTY.

5. Multiple-line structured parameters (table parameters) without a checkbox cannot be reduced
by fields. Parameter filtering and full filtering are possible.
If the hierarchy is maintained and, if dependent tables exist in the hierarchy, records of the
dependent tables will also be filtered.

6. A multiple-line structured parameter P with checkbox PX can be reduced by fields, fully
filtered or filtered by parameters.

• For field reduction the prerequisites under 4 must be met.
• The checkbox PX must lie directly under P in the hierarchy, with identical key fields, so that

the corresponding lines from P and PX are filled, when the parameters are filtered.
• If the hierarchy is maintained and, if dependent tables exist in the hierarchy, records of the

dependent tables will also be filtered.
7. A multiple-line, unstructured parameter can only be fully filtered and cannot be used in a

hierarchy.
Parameter filtering is not allowed.

8. Multiple-line, unstructured parameters with a checkbox cannot be filtered.

April 2001 19

ALE Programming Guide SAP AG
Filtering Data

20 April 2001

 SAP AG ALE Programming Guide
 Reducing Interfaces

Reducing Interfaces
Use
The purpose of BAPI and ALE integration is to be able to use ALE business process BAPIs as
interfaces.
BAPI reductions are particularly necessary in ALE business processes in which master data is
replicated asynchronously:
• Part of the BAPI parameter is not required for the receiving system, even though it is declared

when the BAPI is called.
• Monitor data transferred into non-SAP systems (non R/3 and/or between business partners)

(for example, hide fields).
• Certain data cannot be overwritten in the receiving system.
BAPI reductions can however be used everywhere where asynchronous BAPI calls can be used.
For asynchronous BAPI calls via the BAPI-ALE interface, only the parameters of the BAPI
interface relevant for the receiver should be transferred. You can set up BAPI reductions in
receiver-dependent filtering in the ALE distribution model. You can create templates for making
reductions.

Material master data is replicated from a reference system to a sales and distribution
system. As only some of the data on the material is required in the sales and
distribution system, a reduction of the BAPI interface, Material.SaveReplica, that
contains parameters relevant only to sales and distribution, is specified. You can then
specify in the distribution model that with Material.SaveReplica only data
relevant to sales and distribution is transferred to the sales and distribution system.

You can filters BAPIs (parameter filtering and reduction), when you maintain the distribution
model. Reduction and filter information are part of ALE Customizing data in the distribution model.
BAPI filtering must be explicitly activated, when the BAPI-ALE interface is generated.
The reduction of the actual (asynchronous) BAPI call is carried out as a service in the ALE layer.
The reduction service retrieves the details of the filter settings from the distribution model at
runtime.
For a receiver or a list of receivers the application development can query the list of parameters to
be filled before the BAPI-ALE interface is called. This keeps the read-access to the database as
low as possible. (Alternatively the call can take place and it does not affect the result of the
filtering.)
You can only set up one BAPI reduction for each sender and receiver pair.

Prerequisites
The basic data of the BAPI reduction is maintained by the BAPI developer after the BAPI has
been released and before the BAPI-ALE interface is generated. If a parameter hierarchy is to be
used, this has to be specified beforehand.
The BAPI developer must create the BAPI as reducible using relevant parameter types.
Mandatory parameters and fields must be specified.
The section Filtering Data [Extern] has a table listing the prerequisites for using filter services.

April 2001 21

ALE Programming Guide SAP AG
Prerequisites

Fully Reducible Parameters
Only table parameters of BAPIs can be fully reduced. A fully reduced table is an empty table in
the receiving system.
To fully reduce a table parameter T1 with a checkbox, the following prerequisites apply:

Table Parameter Structure

T1 Q1

T1X Q1X

T1X is a checkbox parameter.

Reducing Parameter Fields
Fields are reduced by converting the obligatory check fields of a BAPI and initializing the relevant
fields in the data parameter. The checkboxes must be assigned to the data parameters following
the naming and structure conventions.
The following prerequisites apply for reducing fields of parameter P1:

Table Parameter Structure

P1 S1

P1X S1X

Structures S1 and S1X must have the same number of fields, whereby the names of the fields in
both parameters must be identical and in the same order.
If P1 has a FUNCTION field or key fields, the FUNCTION field in S1 and S1X and each of the key
fields have the same data element. All other fields of the checkbox use the data element
BAPIUPDATE.

Procedure
To reduce BAPIs:
1. Create a reducible BAPI that satisfies the above prerequisites.
2. Before generating the BAPI-ALE interface, you have to activate data filtering (option Data

filtering allowed).
You can set up the filtering in the distribution model in Customizing by choosing Distribution (ALE)
→ Modeling and Implementing Business Processes → Maintain Distribution Model.

Result
The generated BAPI-ALE interface enables BAPIs to be filtered as a service in outbound
processing.

To avoid unncessary accesses to the database, the BAPI parameters required for
the receivers can be determined before the BAPI-ALE interface is called. This is
optional and will not affect the results of the filtering.

22 April 2001

 SAP AG ALE Programming Guide
 Defining and Assigning Filter Object Types

Defining and Assigning Filter Object Types
Filter object types [Extern] are already assigned to some BAPIs in your applications for the
receiver and data filtering.
You can also define your own filter object types and assign them to a BAPI or to a parameter of a
BAPI.

Process Flow
To define filter object types for BAPIs, follow the steps below:
• Define filter object types

From the SAP menu choose Tools → ALE → ALE Development → BAPIs.
You can create filter object types in Data filtering or Receiver Determination.
Then choose Define filter object type (Transaction BD95, table TBD11).
Give the filter object type a name and specify a reference to a table field. The reference to
a table field is needed to retrieve the documentation from the data element so that
customers can get input help when maintaining the distribution model. For this reason a
foreign key must be maintained for the table field.
Use the following conventions to name filter object types:

- Release 3.0/3.1: Domain name (example: KOKRS for the controlling area)
- Release 4.0: Default field name for the data element (example: COMP_CODE for the

company code)
For the required data object check whether a name has already been entered in the
domain and default field names of the data element. If the fields are empty, a new
filter object must be created. Usually the filter object will also appear in the BAPI
interface as a field in the transfer structure, for example, bapiachead-comp_code.
If this is the case create the filter object as follows:
ALE object type: Field name in BAPI structure, for example,
comp_code
table name: Name of BAPI structure, for example, bapiachead
field name: Field name in the BAPI structure, for example,
comp_code.

• Defining filter object types to a BAPI
From the SAP menu choose Tools → ALE → ALE Development → BAPI Interface.
You can assign filter object types to a BAPI in Data filtering or Receiver Determination.
The filter object types allowed for an object method are maintained in each view of Table
TBD16.

− Receiver Determination.
Choose Assign filter object type to BAPI.
You can maintain the entries:

Object type (from table TOJTB),
Method,
Filter object type (from table TBD11)

Keep in mind that for receiver determination you have to implement a business add-in
f to determine values for the filter object type you have defined (see Determining Filter
Objects Using Business Add-Ins [Seite 39]).

− Data filtering

April 2001 23

ALE Programming Guide SAP AG
Defining and Assigning Filter Object Types

Choose Assign filter object type to parameter.
You can maintain the entries:

Object type (from Table TOJTB),
Method,
Filter object type (from Table TBD11)
Parameter
Field name

Enter the required data to assign a filter object to an object method for the receiver
determination or parameter filtering.

24 April 2001

 SAP AG ALE Programming Guide
 Filtering BAPI Parameters

Filtering BAPI Parameters
Use
Parameter filtering enables you to manage the number of datasets to be replicated in the BAPI
interface using filter objects in the ALE distribution model.
The parameters filtered are BAPI table parameters. The lines in the BAPI parameter, that do not
match the distribution specifications are filtered out. The filtered table lines are not replicated.

Example: The logical system Q4VCLNT800 is the BAPI server for the BAPI
RetailMaterial.Clone. Through the parameter filtering only the plant data of the
material plant 001 is to be replicated in this system.

Prerequisites
The prerequisite for this filtering is that a Filter Object Type [Extern] is assigned to the relevant
BAPI in your SAP applications. For some BAPIs SAP has already defined and assigned filter
object types. You can also define your own filter object types and assign them to a BAPI (Defining
Filter Object Types and Assigning Them to a BAPI [Seite 23].)
You have to define the valid filter object values in the distribution model. For more information see
the R/3 Implementation Guide under Distribution (ALE) → Modelling and Implementing Business
Processes → Maintain Distribution Model.
Presently, BAPI parameters can only be filtered for distributing master data via BAPIs called
asynchronously. For this reason the required ALE Customizing for parameter filtering is only
allowed for asynchronous BAPIs with an ALE IDoc interface.
Parameter filtering is allowed for distributing transaction data via asynchronous BAPIs but for the
most cases, it has no purpose.
BAPI parameter filtering for asynchronous parameters is always optional. To generate the BAPI-
IDoc Interface [Seite 30] you must select the Activate checkbox. Otherwise no coding can be
generated in the BAPI-IDoc interface.
If a BAPI-IDoc interface has been generated without parameter filtering, you can specify no
parameter filtering in ALE Customizing afterwards.

Features
Parameters are filtered dynamically at runtime using the current data in the BAPI table parameters
and the distribution conditions specified in the ALE distribution model.
• Reads the specified parameter filter objects in the distribution model
• Reads the interface definition of the BAPI
• Reads the table field values of a table entry for the associated filter objects
• Compares the distribution conditions with the filter objects read out and determines the value

of the logical expression
• Deletes table entry
• Examines hierarchy-dependent BAPI parameters and, if applicable, deletes dependent table

entries
• For synchronous BAPIs: Calls associated function module and forwards the filtered

parameters
• For asynchronous BAPIs: Calls the generated BAPI-ALE interface and forwards the filtered

parameters

April 2001 25

ALE Programming Guide SAP AG
Filtering BAPI Parameters

The BAPI parameter filtering can also take into account a hierarchical dependency between BAPI
table parameters (see Defining Hierarchies Between BAPI Parameters [Seite 27]). You must
specify any hierarchical dependencies before you generate the BAPI-ALE interface of the BAPI.
The specified hierarchy is evaluated when the interface is generated and incorporated in the
interface coding. The BAPI-ALE interface must be regenerated following all subsequent changes
made to the hierarchy.
Once the generated IDoc type has been released, the specified hierarchy of the asynchronous
BAPI cannot subsequently be changed because of compatibility problems.

26 April 2001

 SAP AG ALE Programming Guide
 Defining Hierarchies Between BAPI Parameters

Defining Hierarchies Between BAPI Parameters
Use
If you are developing your own ALE business processes, you may have to define dependencies
between BAPI table parameters with regard to filtering parameters for data selection.
These dependencies are defined by the field references between the table parameters of BAPIs.
You can filter parameters to determine the dataset and to define dependencies only for the
distribution of master data via BAPIs that are called synchronously.

A BAPI for material master data contains the tables for plant data and associated
storage data. The table containing plant data has a reference to the table containing
storage data via the key field PLANTS. There is a hierarchical dependency between
the plant and storage data. If plant 001 of a material is not to be replicated due to
parameter filtering, then none of the storage data for plant 001 will be replicated.

Prerequisites
You use BAPI parameter filtering to manage the size of the dataset in the BAPI interface.

Procedure
You can define these hierarchical dependencies in ALE Development under BAPI → Maintain
hierarchy of table parameters.
Enter the object type and the method of the BAPI. You can display existing BOR object types and
their associated methods using the input help (F4).
The following processing options are available under the menu Hierarchy :
• Create
• Change
• Display
• Delete

Create Hierarchy
This checks whether a hierarchy for the BAPI already exists. Then it checks whether an ALE IDoc
interface has already been generated and whether the associated IDoc has been released.
If the IDoc has already been released, then the generated interface has already been delivered to
customers and no hierarchy can be created or changed for an existing BAPI because of
compatibility problems. In this case you have to create a new BAPI. A corresponding error
message is displayed. If the ALE interface already exists, but the IDoc has not yet been released,
then the system will inform you that it needs to be regenerated.
A hierarchy tree is displayed on the next screen. For details see Editing the Hierarchy Display
further below.

Change Hierarchy
The same checks are made as when you create a hierarchy. On the next screen the same
processing options are provided as when you create a hierarchy.

Display Hierarchy
The same checks are made as when you create a hierarchy. On the next screen you cannot make
any changes to the hierarchy.

April 2001 27

ALE Programming Guide SAP AG
Defining Hierarchies Between BAPI Parameters

To display the field references between the tables, double-click on the parent table. The parent
table is automatically copied to the next dialog box. Select one of the child tables from the input
help.
Select Field references to display the field references.

Delete Hierarchy
The same checks are made as when you create a hierarchy. Once you have confirmed you want
to delete the BAPI hierarchy, it is deleted.

Editing the Hierarchy Display
The root node in the hierarchy display corresponds to the function module of the BAPI. The root
node is used only for display and is not saved. Also, it cannot be changed.
You can edit the hierarchy display as follows:
• Insert table parameters
• Delete table parameters
• Define field references between parent and child tables
• Save hierarchy
Parent tables inserted directly under the root node that do not have child tables are not saved. If
only this type of table is created, there is no hierarchy and therefore a hierarchy cannot be saved.

Insert table parameters
Place the cursor on a hierarchy node and choose Edit → Insert table parameters.
If you place the cursor on a root node, you can select a parent table of the highest level via the
input help.
If a table exists above the marked node, this is copied to the next dialog box and you can add a
child table to this table.
In principle a table can only exist once in the hierarchy. You can display the available tables via
the input help.
In the dialog box you can display the common fields of the parent and child of the table in which
the field references can be defined by selecting Field references. You can mark the fields for
which a field reference is to be defined. If no field references between the two tables exist, an
error message is displayed.

Delete table parameters
To delete a table, place the cursor on the relevant node of the hierarchy with the table names of
the child table. Confirm the deletion. All other child tables of the deleted table will also be deleted.

Define field references between parent and child tables
Place the cursor on the node of a child table and choose Edit → Table parameters → Change
field references or select the pushbutton Field reference with the change icon.
The next dialog box contains the parent parameters and provided that a reference exists, the child
parameters too.
When you create table parameter, you can select the associated child table via the input help.
You can display common fields by selecting Field references. Only field references are displayed
that have the same names in the parent and child tables.
You can define the references between the fields by marking the appropriate references. Field
references already defined are marked already.

28 April 2001

 SAP AG ALE Programming Guide
 Defining Hierarchies Between BAPI Parameters

Save hierarchy
To save a hierarchy, choose Hierarchy → Save.
A transport request is generated to send the associated Customizing table to the correction and
transport system.
The hierarchy is not saved if an error occurs when accessing the database. A corresponding error
message is displayed.

April 2001 29

ALE Programming Guide SAP AG
Maintaining BAPI-ALE Interfaces

Maintaining BAPI-ALE Interfaces
The standard R/3 System contains a large quantity of business objects and BAPIs. These include
BAPI-ALE interfaces that are generated from BAPIs and enable asynchronous BAPI calls in ALE
business processes.
You can develop your own BAPIs in the customer namespace and generate the associated BAPI-
ALE interface.
The following objects are generated for a BAPI:

• Message type
• IDoc type including segments
• Function module called in the outbound processing side. (It creates and sends the IDoc

from the BAPI data).
• Function module that calls the BAPI with the IDoc data on the inbound processing side

The difference to manually maintained message types is that the function module that processes
the change pointers does not create an IDoc. Instead it fills the corresponding BAPI structures,
determines the receivers and calls the generated ALE function module.
The message types, IDoc types and function modules that have been generated can also be used
to distribute master data using the SMD tool.

Prerequisites
The essential prerequisite is that a BAPI exists:

• You have developed your own BAPI in the customer namespace.
• You have modified a BAPI from the standard system.
The BAPI-ALE interface is then created in the customer namespace for the new sub-type and
a method assigned to it.

For more information see Implementing Your Own BAPIs [Seite 16]

Regardless of whether SAP delivers a BAPI-ALE interface for a BAPI with the new
Release, any interface you have generated will continue to function in the same as in
the earlier Release. You can regenerate the old interface to adapt newly added
parameters, provided that SAP has not delivered a new interface in the new Release.
If SAP delivers a BAPI-ALE interface for a BAPI for which you have already
generated an interface, you should use the new interface and delete the interface you
generated. You can still use the old interface in the earlier Release. If you regenerate
the old interface, some generated objects, such as segments of SAP objects could be
overwritten, if the interface in your BAPI function module references BAPI structures
but belongs to SAP.

If you want to take into account hierarchical dependencies between BAPI table parameters, then
another prerequisite is that you define the hierarchy before generating the BAPI-ALE interface
(see Defining Hierarchies Between BAPI Parameters [Seite 27]). The specified hierarchy is
evaluated when the interface is generated and incorporated in the interface coding. The BAPI-
ALE interface must be regenerated following all subsequent changes made to the hierarchy.
Once the generated IDoc type has been released, the specified hierarchy of the asynchronous
BAPI cannot subsequently be changed because of compatibility problems.
Refer also to the notes on related ALE topics at the end of this section. Here you will find
information on data filtering and serialization of message types.

30 April 2001

 SAP AG ALE Programming Guide
 Maintaining BAPI-ALE Interfaces

Procedure
From the ALE Development screen choose BAPIs → Define ALE interface.
In customer systems all object names must begin with Y or Z or with their own prefix.
Proceed as follows:
1. Enter the business object (object type) and the method underlying the interface.
2. In the menu path Interface choose one of the options - Create, Change, Display, Check or

delete.
• Create interface

Prerequisites An interface has not yet been generated for this BAPI or one already
generated has been deleted using the option Delete.
Names for the objects to be generated are suggested. You can change these as required.
1. Enter a name for the message type.

A dialog box appears.
The default names have the following naming convention:
Message type: Business name

Example: MYTEST
Confirm your entry.

2. In the next dialog box you can enter the following:
IDoc type: <Message type>01
Example: MYTEST01
Inbound function module: ALE_<OBJECT>_<METHOD>
 Example:
 ALE_EXAMPLE_TEST
Inbound Function Module: IDOC_INPUT_<Message type>
 Example:
 IDOC_INPUT_MYTEST
The default development classes and function groups are those that the BAPI
function module belongs to. You should use your own development classes and
function groups when you generate your own interface.
You have the following options:

• Data filtering allowed
If you have filtered the data, you have to select the option Data filtering allowed in
the dialog box when you are creating or changing the filters. With BAPI-ALE
interfaces generated by SAP, this option is usually selected. Keep in mind the
following notes:

• Call in update task
If the database changes are carried out by methods using the update task, this
indicator must be selected.

• Packet processing allowed
If you want to allow packet processing, you have to select this option. The
associated BAPI must be able to process packets. You can set the packet size in
ALE Customizing.

You can only generate the message type (mandatory field) and the IDoc type
(mandatory field) by leaving the field blank for which no object is to be generated.

3. Confirm your entries.

April 2001 31

ALE Programming Guide SAP AG
Maintaining BAPI-ALE Interfaces

The dialog box Enter segment name appears.
4. Enter a segment name.

The suggested segment type is derived from the message type or from the BAPI
structure:

- E1<Message type> for individual fields as header segments
 Example: E1MYTEST or

- E1BP_XX... for parameters of the structure BAPI_XX.
 Example: E1BP_HUGO for BAPI_HUGO

If a segment contains more than 1000 bytes of data, child segments are automatically
generated from it. Child segment names are extended with the digits 1, 2,...appended
to the original segment provided that the length of the name is less than 27 digits.

• Change interface
Prerequisites Objects have already been created for this BAPI.
To regenerate the objects of an existing ALE interface after an object method has been
changed, choose Change. The IDoc type and the IDoc segments are regenerated, if the
interface structures of the object method have changed. The function modules can only
be regenerated, if the IDoc type or one of the segments has changed.
As when you create an object, a dialog box is displayed here also. The objects that
already exist in the system are displayed in this dialog box. They are not input fields.
If a field is empty you can generate the associated object.

• Display interface
Prerequisites Objects already exist for this BAPI.
All existing objects for this BAPI are displayed. This gives you an overview of the
relationship between the BAPI method and the IDoc message type.

• Delete interface
Prerequisites Objects have already been created for this BAPI.
The function modules can be deleted provided that they exist in the system.
The IDoc structure is deleted, provided it has not already been released.
The IDoc segments can only be deleted if they have not been released and are not used
in other IDocs.
Finally, the message type is deleted, if it is no longer assigned to the IDoc type.

• Check interface
Prerequisites Objects have already been created for this BAPI.
The system checks whether all the objects related to this BAPI are available in the
system. The system also checks whether objects (IDoc type and segments) have been
released.
The release status of objects can be changed (see set release and cancel release in the
Notes below.

5. You can release the interface.
Developers can change the release status of IDoc types and segments (Edit → Set
release or Cancel release.
The authorizations required are S_IDCDFT_AL+ and S_IDCDFT_ALL of the authorization
object S_IDOCDEFT.
Before an object can be released, the BAPI must have already been released. If the
object is released, the system first verifies that the generated interface in the BAPI

32 April 2001

 SAP AG ALE Programming Guide
 Maintaining BAPI-ALE Interfaces

method has the current status. If the object is not released, you are asked if you want to
regenerate the interface. You are notified of the segments and IDoc type relevant for the
release. The new status is assigned to objects not yet released.
The release can be reset at any time. This action is linked to the transport system.
The generated function modules are not released.

Result
The generated objects and their statuses are displayed on the screen. All changes are recorded in
transport requests.

Notes
Keep in mind the following notes:

• Namespace enhancement
As of 4.5A customers and partners can also enhance namespaces.

• Filtering the Data Selection
The distribution of data can be linked to conditions that are defined as filters in the
distribution model.
If you have filtered the data, you have to select the option Data filtering allowed in the
dialog box when you are creating or changing the filters.
For more information see Data Filters [Extern].
The prerequisite for useful filtering at the functional and business levels is the existence of
hierarchical dependencies between BAPI table parameters. The dependencies must be
defined before the interface is generated. Choose BAPIs → Data filtering → Maintain
hierarchy of table parameters. Note that changes made to dependencies must be
compatible, otherwise the filtering will have a different outcome. For further information
see Defining Hierarchies Between BAPI Parameters [Seite 27]

• Serialization
The function module on the outbound processing side has an optional parameter
SERIAL_ID (reference to the channel number). This input parameter manages the
assignment of messages to object channels. In an object channel all messages are
processed in the target system in the same sequence they were created in the source
system. An object channel is identified by a key from the object type of the BAPI and from
the channel number.
For further information see Serialization Using Object Types [Extern]

• Links
The links to ALE answers the following questions:
- Outbound processing:

Which application object has the IDoc been created from?
The prerequisite is that the application has correctly filled the parameter
APPLICATION_OBJECTS in the function module used for outbound processing.

- Inbound processing:
From which outbound IDoc was the inbound IDoc created from and which application
object was created from the inbound IDoc?
The prerequisite is that a key has been defined in the Business Object Repository
(BOR) for the BAPI method and that this key is contained in the BAPI function module

April 2001 33

ALE Programming Guide SAP AG
Maintaining BAPI-ALE Interfaces

in the export and import parameters. This key may consist of several key fields. If
there are no key fields in the BOR, a link to another object can be specified.

• Documentation on Generated Function Modules
Documentation has been written on function modules generated for inbound and
outbound processing. You can retrieve this documentation from within the interface. It
describes the purpose of the parameters and their values.

• BAPI Return Parameters and IDoc Status
Provided that the return parameter is filled by the application, the IDoc status and the
associated information from the parameter is included in the IDoc. Message types
determine the IDoc status.
If the return parameter is an EXPORTING parameter, only one IDoc status record is
written:

Message type A: Status 51 (Application log not posted, with DB
rollback)
Message type E: Status 51 (Application log not posted, no DB
rollback)
Message type W, I or S: Status 53 (application document posted).

If the return parameter is a TABLE parameter, several IDoc status records can be written,
according to the message types in the table:

Message type A: Status 51 (Application log not posted, with DB
rollback)

(There is no status for message type S).
Message type E: Status 51 (Application log not posted, no DB
rollback)

(There is no status for message type S).
No message type A or E: Status 53 (application document posted).

The IDoc status records are written to the database in the same sequence as the
messages in the return parameter.
If the return parameter has not been filled, it means that the BAPI has been successfully
called by the IDoc. In this case, an IDoc status record with status 53 (application
document posted) is written from the ALE layer.
If there is an error, only the first message from the return parameter is copied to the text in
the associated error task (work item).

• Restrictions on Generating Interfaces
- If the reference structure of parameters in the BAPI function module (IMPORT and/or

TABLES) is the same, you should not use the generation function. In this situation the
IDoc segment is not uniquely mapped to the parameter. For this reason you cannot
identify the parameters when the inbound IDoc is processed.

- If the dataset has more than 1000 bytes in the reference structure of a parameter or in
a field in the reference structure, you cannot set the generation function because only
one segment can be loaded with a dataset of maximum size 1000 bytes.

34 April 2001

 SAP AG ALE Programming Guide
 Determining the Receiver of a BAPI

Determining the Receiver of a BAPI
Use
How data is distributed by an object method can depend on the requirements specified in the
distribution model (in the R/3 Implementation Guide). Basis → Application Link Enabling (ALE) →
Modelling and Implementing Business Processes → Maintain Distribution Mode).
The prerequisite for this filtering is that a filter object type has been assigned to the relevant BAPI
in your SAP applications. For some BAPIs SAP has already defined and assigned filter object
types. You can also define your own filter object types and assign them to a BAPI (Defining Filter
Object Types and Assigning Them to a BAPI [Seite 23].)
The receiver must be determined before the BAPI of a generated BAPI-ALE interface is called.
The receiver determination checks whether the filter objects satisfy the specified requirements
and verifies the receivers.
In the ALE distribution model the following dependencies can be mapped:
• Between a BAPI and a message type
• Between BAPIs
These dependencies must be implemented by a function module on the application side. In ALE
Development the function module must be assigned to the relevant object type (via Dependencies
→ Define function module for dependent business object).
If a dependency is defined as a condition in the ALE distribution model, the receiver of the
referenced BAPI or message type is determined.

Example of a BAPI dependency on a message type:
The distribution of organization addresses has been integrated in the object
maintenance of the vendor. This address data is then distributed together with the
object data using ALE. The address data is dependent on the object data and is
distributed using BAPIs. The object data is distributed using the message type
CREMAS.
So there is a dependency between a BAPI and a message type.
In the distribution model an active receiver filter is assigned to the BAPI to distribute
organization addresses (AddressOrg.SaveReplica). The dependency has been
activated using the attribute dependent distribution in the filter display.
Based on the receiver determination the object data with the BAPI address data is
only distributed, if the filter conditions for CREMAS are fulfilled

ALE provides a range of function modules for receiver determination with the function group
BDAPI.

Features
The function modules of the function group BDAPI are used for:

Function module Features

ALE_BAPI_GET_FILTEROBJECTS Determining Filter Objects of a BAPI [Seite 37]

ALE_ASYNC_BAPI_GET_RECEIVER Determining Receivers of Asynchronous BAPIs [Seite
38]

April 2001 35

ALE Programming Guide SAP AG
Determining the Receiver of a BAPI

ALE_SYNCH_BAPI_GET_RECEIVER Determining Receivers of Synchronous BAPIs [Seite
47]

ALE_BAPI_GET_UNIQUE_RECEIVER Determining Unique Receivers of Synchronous BAPIs
[Seite 52]

The following examples programs for receiver determination are provided:

• Example Programs with Asynchronous BAPI Calls [Seite 42]
• Example Programs with Synchronous BAPI Calls [Seite 49]

36 April 2001

 SAP AG ALE Programming Guide
 Determining Filter Objects of a BAPIs

Determining Filter Objects of a BAPIs
Use
To determine the receivers of a BAPI, the relevant filter objects for this BAPI must be specified. If
the filter objects maintained in the distribution model are not known at the time of determining the
receiver, they can be retrieved using the function module ALE_BAPI_GET_FILTEROBJECTS.
When ALE_BAPI_GET_FILTEROBJECTS is called, the business object, method and a table
containing the names of the logical receiver systems are returned. If the BAPI cannot be found in
the ALE distribution model or the filter objects have not been maintained in the ALE distribution
model, an empty table (FILTEROBJECTS) is returned.
You can only determine the values of filter objects you have defined using defined business add-
ins that you have to implement yourself.
For dependencies, the object type through which the dependent ALE distribution object links to
the referenced ALE distribution object is always returned. The application must know the object ID
of the current object characteristics for this object type.

Input Parameters:

Parameter Reference Field/Structure Description

OBJECT BDI_BAPI-OBJECT BOR object of the BAPI

METHOD BDI_BAPI-METHOD BOR method of the BAPI

RECEIVER_INPUT BDI_LOGSYS Default logical receiving system

Output Parameters:

Parameter Reference Field/Structure Description

FILTEROBJECTS BDI_FLTTYP Filter objects and values

Exceptions

Parameter Description

ERROR_IN_ALE_CUSTOMIZING Error in ALE Customizing

April 2001 37

ALE Programming Guide SAP AG
Determining Receivers of Asynchronous BAPIs

Determining Receivers of Asynchronous BAPIs
Use
To determine the receivers of an asynchronous BAPI, the application program calls the function
module ALE_ASYNC_BAPI_GET_RECEIVER.
The following mechanisms are effective:
• If a dependency for a BAPI is defined as a condition in the ALE distribution model, the

receiver of the referenced BAPI or message type is determined. The application program has
to pass the object ID (for example, 01815) as the value of the filter object to the receiver
determination.
From the object ID the function module ALE_ASYNC_BAPI_GET_RECEIVER determines the
current filter object values of the object through which the dependent BAPI references to
another BAPI or message type. The application must provide a function module that enables
the object data to be read. The name of the function module must be stored in an ALE
Customizing table, which the receiver determination can access at runtime (Table TBD18).

• If no receivers are determined or the BAPI cannot be found in the distribution model, an
empty table for the receivers is returned.

• If the forwarded filter object types and filter object values are unable to determine the receiver
correctly, an error message and an exception are returned (ERROR_IN_FILTEROBJECTS).

• If any inconsistencies have arisen in the distribution model due to Customizing errors, an error
message and an exception are returned (ERROR_IN_ALE_CUSTOMIZING).

Input Parameters:

Parameter Reference Field/Structure Description

OBJECT BDI_BAPI-OBJECT BOR object of the BAPI

METHOD BDI_BAPI-METHOD BOR method of the BAPI

RECEIVER_INPUT, optional BDI_LOGSYS Default logical receiving system

FILTEROBJECT_VALUES BDI_FOBJ Filter objects and values

Output Parameters:

Parameter Reference Field/Structure Description

RECEIVERS BDI_LOGSYS Receiving systems of the BAPI

Exceptions

Parameter Description

ERROR_IN_FILTEROBJECTS Filter objects are incorrect or incomplete

ERROR_IN_ALE_CUSTOMIZING Error in ALE Customizing

38 April 2001

 SAP AG ALE Programming Guide
 Determining Filter Objects Using Business Add-Ins

Determining Filter Objects Using Business Add-Ins
You will find out how SAP defines business add-ins and how you implement a business add-in to
query filter objects you have defined when determining receivers.

Use
This description only applies to receiver determination using business add-ins .
It is only relevant to BAPIs that exist for ALE interfaces and that are to be implemented for the
business add-ins.
In the standard system the SAP application provides a range of filter object types for receiver
determination. These filter object types are evaluated witth the values assigned by you at runtime
(for example, filter object plant 0001, 0002). You can add more values to the default values
provided.
If you do however want to use different filter object types for mapping your own business
processes to execute the asynchronous BAPI call under enhanced conditions, you have to
implement and activate the business add-ins defined by SAP. Business add-ins are places in the
source code defined by SAP programmers where you can insert code without having to modify
the original object.
To find out which of your SAP applications contain business add-ins refer to the application
documentation.

Prerequisites
The following prerequisites must be fulfilled:
• Your SAP applications contain business add-ins defined by SAP (Tools → ABAP Workbench

→ Utilities → Business Add-Ins → Definition, see also the example below, Creating a
Business Add-In in a Form Routine).

• In the ALE development environment you have defined a filter object type for the receiver
determination, for example, filter and assigned it to the appropriate BAPI (from the SAP menu.
Tools → ALE → ALE Development → BAPIs → Receiver Determination).

• You have implemented and activated the Business Add-In (from the SAP menu: Tools →
ABAP Workbench → Utilities → Business Add-Ins → Implementation).

• You have defined a filter object with specified conditions in the distribution model under the
sender and receiver settings (from the R/3 Implementation Guide: Basis → Application Link
Enabling (ALE)).
Example:

Sender
 Receiver
 BUSOBJECT.METHOD
Receiver Determination
 Filter Group
 FILTER
 1010

Structuring a Business Add-In in a Form Routine
Receiver determination for a BAPI (BUSOBJECT.METHOD) can be structured by SAP
developers in SAP applications using a form routine (for example,
BUSOBJECT_METHOD_RECEIVERS):
Interface:

April 2001 39

ALE Programming Guide SAP AG
Determining Filter Objects Using Business Add-Ins

TABLES receivers STRUCTURE bdi_logsys
USING object TYPE swo_objtyp

 method TYPE swo_method
 parameters LIKE ...
 return_info LIKE syst.

In this example the parameters parameters contain all the filter object values of the application
required for receiver determination. They are application-dependent.
The parameter receivers contains the required receivers (or initial value) as the default value and
the determined receivers as the return value.

Definition of variables:
 t_filter_object_type TYPE bdi_flttyp_tab

t_filter_object_value TYPE bdi_fobj_tab
receivers_output LIKE bdi_logsys OCCURS 0 WITH
HEADER LINE

 The following steps are carried out in the code of an SAP application: It involves the same steps
as when determining the filter object types defined by SAP, with the additional step (step 3) for
determining the filter objects you have defined.

1) Query filter object type for the BAPI with the function module

ALE_BAPI_GET_FILTEROBJECTS:
EXPORTING

object = busobject
method = method

TABLES
receiver_input = receivers
filterobjects = t_filter_object_type

EXCEPTIONS
error_in_ale_customizing

2) Assign the current values of the application in parameters parameters to the filter object type
provided by SAP in the structure t_filter_object_type.

3) Call the defined Business Add-In to evaluate the filter object types defined by the customer in
the flow logic of the application.

EXPORTING
 object = busobject
 method = method
 parameters = ...
 filterobjtype = t_filter_object_type

 CHANGING
 filterobjvalue = t_filter_object_value

4) Determine the receivers of the asynchronous BAPI call using the function module
ALE_ASYNC_BAPI_GET_RECEIVER.

 EXPORTING
 object = busobject
 method = method

 TABLES
 receiver_input = receivers

40 April 2001

 SAP AG ALE Programming Guide
 Determining Filter Objects Using Business Add-Ins

 receivers_output = receivers_output
 filterobject_values = t_filter_object_value

 EXCEPTIONS
 error_in_filterobjects
 error_in_ale_customizing

receivers[] = receivers_output[]

(You can find the program code of this example under Example Programs with Asynchronous
BAPI Calls [Seite 42], Receiver Determination with Business Add-In)

Procedure
Implement the object method for the business add-in under the filter object type you have defined.

Result
The receivers of the asynchronous BAPI call have been determined using the defined filter
objects.

April 2001 41

ALE Programming Guide SAP AG
Example Programs with Asynchronous BAPI Calls

Example Programs with Asynchronous BAPI Calls
The following example programs show how receivers are determined with asynchronous BAPI
calls.
• Filter Object Types Are Not Known at Runtime
• Receiver determination with business add-in
• Filter object types are known at runtime

The function ALE_BAPI_GET_FILTEROBJECTS must be used if the application's
filter object types are not known at runtime.

A COMMIT WORK must be executed in the program after the outbound function
module of the generated BAPI-ALE interface has been called. The database commit
at the end of the transaction is not sufficient. If a COMMIT WORK is not executed, the
IDoc is created with the correct status but it will not be dispatched.
The IDocs created are locked until the called transaction has been completed. If you
want to unlock them earlier, you can call the function module:
DEQUEUE_ALL releases all locked objects
EDI_DOCUMENT_DEQUEUE_LATER releases individual IDocs whose numbers have
been transferred to the function module as parameter values.

Filter Object Types Are Not Known at Runtime
* data declaration

data: filterobj_values like bdi_fobj occurs 0,
 filterobj_types like bdi_fobjtype occurs 0,
 bapi_logsys like bdi_logsys occurs 0.

constants:
 c_objtype_plant type c value ‘WERKS’,
 c_objtype_langu type c value ‘SPRAS’.

* get filterobjects from ALE distribution model

call function ‘ALE_BAPI_GET_FILTEROBJECTS’
 exporting
 object = ‘BUS1001’
 method = ‘REPLICATEDATA’
 tables
 filterobjects = filterobj_types
 exceptions
 error_in_ale_customizing = 1.

* fill filterobject values into table

loop at filterobj_types.
 case filterobj_values-objtype.
 when c_objtype_plant.

42 April 2001

 SAP AG ALE Programming Guide
 Example Programs with Asynchronous BAPI Calls

filterobj_values-objtype = c_objtype_plant.
filterobj_values-objvalue = ‘0002’.
 when c_objtype_langu.
filterobj_values-objtype = c_objtype_langu.
filterobj_values-objvalue = ‘D’.
 when others.
 endcase.
append filterobj_values.
endloop.

* get receiver from ALE distribution model

call function ‘ALE_ASYNC_BAPI_GET_RECEIVER’
 exporting
 object = ‘BUS1001’
 method = ‘REPLICATEDATA’
 tables
 receivers = bapi_logsys
 filterobject_values = filterobj_values
 exceptions
 error_in_filterobjects = 1
 error_in_ale_customizing = 2.

* call generated ALE interface function module

if sy-subrc <> 0.
if not bapi_logsys[] is initial.
 call function ‘ALE_MATERIAL_REPLICATE_DATA’
 tables
 receivers = bapi_logsys
 ...
 commit work.
 endif.
endif.

Receiver determination with business add-in
Form routine implemented by SAP

*---
* FORM ALE_BFA_TEST_RECEIVERS
*---
FORM ale_bfa_test_receivers TABLES receivers STRUCTURE bdi_logsys
 USING object TYPE swo_objtyp
 method TYPE swo_method
 key1 LIKE tbbfatest-key1
 key2 LIKE tbbfatest-key2
 return_info LIKE syst.

* key1 and key2 are parameters regarding receiver determination
* 2 filter object types were defined by SAP:
* TEST_KEY1
* TEST_KEY2

April 2001 43

ALE Programming Guide SAP AG
Example Programs with Asynchronous BAPI Calls

* variables definition
 DATA: w_filter_object_type TYPE bdi_flttyp,
 t_filter_object_type TYPE bdi_flttyp_tab,
 w_filter_object_value TYPE bdi_fobj,
 t_filter_object_value TYPE bdi_fobj_tab,
 receivers_output LIKE bdi_logsys OCCURS 0 WITH HEADER LINE.

 CLASS: cl_ex_customer_filter DEFINITION LOAD.
 DATA: my_exit TYPE REF TO if_ex_customer_filter.

*> Step 1) get filter object types for a BAPI
 CALL FUNCTION 'ALE_BAPI_GET_FILTEROBJECTS'
 EXPORTING
 object = object
 method = method
 TABLES
 receiver_input = receivers
 filterobjects = t_filter_object_type
 EXCEPTIONS
 error_in_ale_customizing = 1
 OTHERS = 2.

 IF sy-subrc <> 0.
 return_info = syst.
 EXIT.
 ENDIF.

*> Step 2) evaluate SAP filter objects
 LOOP AT t_filter_object_type INTO w_filter_object_type.
 CASE w_filter_object_type-objtype.
* evaluate delivered filter objects
 WHEN 'TEST_KEY1'.
 MOVE-CORRESPONDING w_filter_object_type
 TO w_filter_object_value.
 w_filter_object_value-objvalue = key1.
 APPEND w_filter_object_value TO t_filter_object_value.
 WHEN 'TEST_KEY2'.
 MOVE-CORRESPONDING w_filter_object_type
 TO w_filter_object_value.
 w_filter_object_value-objvalue = key2.
 APPEND w_filter_object_value TO t_filter_object_value.
* customers defined filter objects
 WHEN OTHERS.
 ENDCASE.
 ENDLOOP.

*> Step 3) evaluate customer-defined filter objects
 CREATE OBJECT my_exit TYPE cl_ex_customer_filter.

44 April 2001

 SAP AG ALE Programming Guide
 Example Programs with Asynchronous BAPI Calls

 CALL METHOD my_exit->filtering
 EXPORTING
 object = object
 method = method
 key1 = key1
 key2 = key2
 filterobjtype = t_filter_object_type
 CHANGING
 filterobjvalue = t_filter_object_value.

*> Step 4) determine receivers for all filter objects
 CALL FUNCTION 'ALE_ASYNC_BAPI_GET_RECEIVER'
 EXPORTING
 object = object
 method = method
 TABLES
 receiver_input = receivers
 receivers = receivers_output
 filterobject_values = t_filter_object_value
 EXCEPTIONS
 error_in_filterobjects = 1
 error_in_ale_customizing = 2
 OTHERS = 3.

 IF sy-subrc <> 0.
 return_info = syst.
 EXIT.
 ENDIF.

 receivers[] = receivers_output[].

ENDFORM.

Methods Implemented by Customers
* The following method was implemented by a customer with
* Business Add-In
* 1 filter object type was defined by customer:
* ZTEST_KEYS

METHOD if_ex_customer_filter~filtering.
* ...
 DATA: w_filterobjtype TYPE bdi_flttyp,
 w_filterobjvalue TYPE bdi_fobj.

 LOOP AT filterobjtype INTO w_filterobjtype.
 CASE w_filterobjtype-objtype.
 WHEN 'ZTEST_KEYS'.
 MOVE-CORRESPONDING w_filterobjtype TO w_filterobjvalue.
 w_filterobjvalue-objvalue+0(3) = key1.

April 2001 45

ALE Programming Guide SAP AG
Example Programs with Asynchronous BAPI Calls

 w_filterobjvalue-objvalue+3(3) = key2.
 APPEND w_filterobjvalue TO filterobjvalue.
 WHEN OTHERS.
 ENDCASE.
 ENDLOOP.

ENDMETHOD.

Filter Object Types are Known at Runtime
* data declaration

data: filterobj_values like bdi_fobj occurs 0,
 filterobj_types like bdi_fobjtype occurs 0,
 bapi_logsys like bdi_logsys occurs 0.

filterobj_values-objtype = ‘KKBER’.
filterobj_values-objvalue = ‘0002’.
append filterobj_values.

* get receiver from ALE distribution model

call function ‘ALE_ASYNC_BAPI_GET_RECEIVER’
 exporting
 object = ‘BUS1010’
 method = ‘REPLICATESTATUS’
 tables
 receivers = bapi_logsys
 filterobject_values = filterobj_values
 exceptions
 error_in_filterobjects = 1
 error_in_ale_customizing = 2.

* call generated ALE interface function module

if sy-subrc <> 0.
if not bapi_logsys[] is initial.
 call function ‘ALE_DEBITOR_CREDITACC_REPLICATESTATUS’
 tables
 receivers = bapi_logsys
 ...
 commit work.
 endif.
endif.

46 April 2001

 SAP AG ALE Programming Guide
 Determining Receivers of Synchronous BAPIs

Determining Receivers of Synchronous BAPIs
Use
The application program calls the function ALE_SYNCH_BAPI_GET_RECEIVER to determine the
receiver of a synchronous BAPI.
The following mechanisms are effective:
• If no receivers are determined or the BAPI cannot be found in the ALE distribution model, an

empty table for the receivers is returned.
• If a dependency for a BAPI is defined as a condition in the ALE distribution model, the

receiver of the referenced BAPI or message type is determined. The application has to pass
the object ID (for example, 01815) as the value of the filter object to the receiver
determination.

The receiver determination can then read the current filter object values for the object that
the dependent BAPI references to another BAPI or message type. The application
provides a function module that enables the object data to be read. The name of the
function module is stored in an ALE Customizing table, which the receiver determination
can access at runtime (Table TBD18).
As well as the logical system the RFC destination is also returned.

• If the forwarded filter object types and filter object values are unable to determine the receiver
correctly, an error message and an exception are returned (ERROR_IN_FILTEROBJECTS).

• If the RFC destination for a logical receiving system has not been maintained, an error
message and an exception are returned (NO_RFC_DESTINATION_MAINTAINED).

• If any inconsistencies have arisen in the distribution model due to Customizing errors, an error
message and an exception are returned (ERROR_IN_ALE_CUSTOMIZING).

Input Parameters:

Parameter Reference Field/Structure Description

OBJECT BDI_BAPI-OBJECT BOR object of the BAPI

METHOD BDI_BAPI-METHOD BOR method of the BAPI

RECEIVER_INPUT BDI_LOGSYS Default logical receiving system

FILTEROBJECT_VALUES BDI_FOBJ Filter objects and values

Output Parameters:

Parameter Reference Field/Structure Description

RECEIVERS BDI_LOGSYS Receiver systems of the BAPI and the RFC
destination

Exceptions

Parameter Description

ERROR_IN_FILTEROBJECTS Filter objects are incorrect or incomplete

ERROR_IN_ALE_CUSTOMIZING Error in ALE Customizing

NO_RFC_DESTINATION_MAINTAINED There is no RFC destination for the logical system

April 2001 47

ALE Programming Guide SAP AG
Determining Receivers of Synchronous BAPIs

48 April 2001

 SAP AG ALE Programming Guide
 Example Programs with Synchronous BAPI Calls

Example Programs with Synchronous BAPI Calls
The following example programs show how receivers are determined with Synchronous BAPI
calls.

The function ALE_BAPI_GET_FILTEROBJECTS must be used if the application's
filter object types are not known at runtime. Otherwise its use is optional.

A database commit is executed by the synchronous RFC, this means that database
changes carried out before the RFC cannot be undone.

Filter Object Types Are Not Known at Runtime
* data declaration

data: filterobj_values like bdi_fobj occurs 0,
 filterobj_types like bdi_fobjtype occurs 0,
 bapi_server like bdbapidest occurs 0.

constants:
 c_objtype_plant type c value ‘WERKS’,
 c_objtype_langu type c value ‘SPRAS’.

* get filterobjects from ALE distribution model

call function ‘ALE_BAPI_GET_FILTEROBJECTS’
 exporting
 object = ‘BUS1001’
 method = ‘GETDETAIL’
 tables
 filterobjects = filterobj_types
 exceptions
 error_in_ale_customizing = 1.

* fill filterobject values into table

loop at filterobj_types.
 case filterobj_values-objtype.
 when c_objtype_plant.
filterobj_values-objtype = c_objtype_plant.
filterobj_values-objvalue = ‘0002’.
 when c_objtype_langu.
filterobj_values-objtype = c_objtype_langu.
filterobj_values-objvalue = ‘D’.
 when others.
 endcase.
append filterobj_values.
endloop.

* get receiver from ALE distribution model

April 2001 49

ALE Programming Guide SAP AG
Example Programs with Synchronous BAPI Calls

call function ‘ALE_SYNC_BAPI_GET_RECEIVER’
 exporting
 object = ‘BUS1001’
 method = ‘GETDETAIL’
 tables
 receivers = bapi_server
 filterobjects_values = filterobj_values
 exceptions
 error_in_filterobjects = 1
 error_in_ale_customizing = 2.

* call synchronous BAPI locally/remotely

if sy-subrc = 0.
if not bapi_server[] is initial.
loop at bapi_server.
call function ‘BAPI_MATERIAL_GET_DETAIL’
 destination bapi_server-rfc_dest
 ...
endloop.
 else.
call function ‘BAPI_MATERIAL_GET_DETAIL’
 ...
 endif.
endif.

Filter Object Types are Known at Runtime
* data declaration

data: filterobj_values like bdi_fobj occurs 0,
 filterobj_types like bdi_fobjtype occurs 0,
 bapi_server like bdibapidest occurs 0.

* fill filterobject values into table

filterobj_values-objtype = ‘KKBER’.
filterobj_values-objvalue = ‘0002’.
append filterobj_values.

* get receiver from ALE distribution model

call function ‘ALE_SYNC_BAPI_GET_RECEIVER’
 exporting
 object = ‘BUS1010’
 method = ‘GETSTATUS’
 tables
 receivers = bapi_server
 filterobjects_values = filterobj_values
 exceptions
 error_in_filterobjects = 1
 error_in_ale_customizing = 2.

50 April 2001

 SAP AG ALE Programming Guide
 Example Programs with Synchronous BAPI Calls

* call synchronous BAPI locally/remotely

if sy-subrc <> 0.
if not bapi_server[] is initial.
loop at bapi_server.
call function ‘BAPI_DEBITOR_CREDITACC_GETSTATUS’
 destination bapi_server-rfc_dest
 ...
endloop.
 else.
call function ‘BAPI_DEBITOR_CREDITACC_GETSTATUS’
 ...
 endif.
endif.

April 2001 51

ALE Programming Guide SAP AG
Determining Unique Receivers of Synchronous BAPIs

Determining Unique Receivers of Synchronous BAPIs
To determine a unique receiver of a synchronous BAPI, the application program calls the function
ALE_BAPI_GET_UNIQUE_RECEIVER.
The following mechanisms are effective:
• If no receiver is determined or if the BAPI is not found in the ALE distribution model an empty

table for the receiver is returned.
• If the forwarded filter object types and filter object values are unable to determine the receiver

correctly, an error message and an exception are returned (ERROR_IN_FILTEROBJECTS).
• If more than one receiver for the BAPI is determined an error message and an exception are

returned.
• If the RFC destination for a logical receiving system has not been maintained, an error

message and an exception are returned (NO_RFC_DESTINATION_MAINTAINED).
• If any inconsistencies have arisen in the distribution model due to Customizing errors, an error

message and an exception are returned (ERROR_IN_ALE_CUSTOMIZING).

Input Parameters:

Parameter Reference Field Description

OBJECT BDI_BAPI-OBJECT BOR object of the BAPI

METHOD BDI_BAPI-METHOD BOR method of the BAPI

FILTEROBJECT_VALUES BDI_FOBJ Filter objects and values

Output Parameters:

Parameter Reference Field Description

RECEIVERS BDBAPIDEST Receiving systems of the BAPI

Exceptions

Parameter Description

ERROR_IN_FILTEROBJECTS Filter objects are incorrect or incomplete

ERROR_IN_ALE_CUSTOMIZING Error in ALE Customizing

NOT_UNIQUE_RECEIVER There is more than one receiver system for the BAPI

NO_RFC_DESTINATION_MAINTAINED There is no RFC destination for the logical system

52 April 2001

 SAP AG ALE Programming Guide
 Developing BAPIs for Interactive Processing

Developing BAPIs for Interactive Processing
Prerequisites
Inbound IDoc processing in ALE supports IDoc function modules that execute a CALL
TRANSACTION. This enables an IDoc to be posted interactively whereby you work through the
transaction screens displayed.
This is not possible with BAPI-ALE interfaces generated from standard BAPIs because the BAPIs
do not have a dialog interface. If you require an BAPI-ALE interface with a CALL TRANSACTION
to a dialog transaction, you can develop your own BAPI that displays the transaction screens for
ALE error handling.
For further information see Customer Enhancements [Extern] in the BAPI Programming guide.

Procedure
The ALE layer puts a parameter in the global memory that can be requested in the BAPI source
code as follows:

Data: pi_input_method like bdwfap_par-inputmethod.
...
Import pi_input_method from memory id 'ALE_INPUT_METHOD'.
...

The parameter pi_input_method can have the following values:

Value Description

" " (initial) Request without dialog screens

"E" Only display screen if an error has occurred on it.

"A" Display all screens

April 2001 53

ALE Programming Guide SAP AG
Enhancing IDocs of BAPI-ALE Interfaces

Enhancing IDocs of BAPI-ALE Interfaces
Prerequisites
The IDoc enhancement concept assumes that there are customer exits in the ABAP code where
the BAPI is created or read. If the BAPI-ALE interface has been generated this code does not
contain any customer exits.
For further information see Customer Enhancements [Extern] in the BAPI Programming guide.

Procedure
To implement customer enhancements of IDocs of generated BAPI-ALE interfaces you must:
1. Copy and modify the function module belonging to the original BAPI.
2. Create your own BAPI in the BOR by creating a sub-object type in the customer namespace.

When you create the subobject type the methods of the business object inherits the
subtype. You can change and delete the methods of the subtype or enhance them with
your own methods.

3. Generate a user-defined BAPI-ALE interface from this new BAPI.
To create the enhanced IDoc for outbound processing the application must provide a customer
exit.

54 April 2001

 SAP AG ALE Programming Guide
 Distribution Using Message Types

Distribution Using Message Types
Purpose
In Release 3.x business functions and processes are distributed using message types. A
message type represents a business function. The technical structure of the message type is the
IDoc type.
The programming model "Distribution using message types" contains the definitions of message
types and IDoc types and the ABAP code for processing inbound and outbound IDocs.

Process Flow
Defining message types and IDoc types:
• Defining New IDoc Types [Extern]

If you want to create message type enhancements for master data distribution, you also
have to create a new message type for each enhancement.
The ALE interface does not allow you to create different segment data for different IDoc types
for the same message type.

Writing ABAP code:
• Outbound Processing [Seite 60]
• Inbound Processing [Seite 85]

• Master Data Distribution [Seite 171]
• Communicating with Non-R/3 Systems [Extern]

April 2001 55

ALE Programming Guide SAP AG
Distribution Using Message Types

Distribution Using Message Types
When message types are used to transfer data asynchronously in ALE:

Communication
 layer

Application ALE layer ApplicationALE layer

Create
master IDoc

Create
message?

Database

Distribution
 model

Receiver
determination

Segment
 filtering

 Field
conversion

Version
management

Master
 IDoc

IDoc

Dispatch
control

IDoc

Update IDoc
 status
simultaneously

Process IDoc

Database

IDoc

IDoc

 Field
conversion

Serialization

Transfer
control

Segment
 filtering

Post application
document

tRFC
or

EDI

Connection

Outbound Processing
An application function module creates a master IDoc in outbound processing, the so-called
master IDoc.
The following steps are carried out in the ALE layer:
• Receiver determination, if this has not already been done by the application.
• Data selection
• Segment filtering
• Field conversion
• Version change
• Dispatch control
The formatted IDoc is passed to the communication layer and from here sent to the system that
was called (server) via a transactional remote function call (RFC) or via file interfaces (for
example, EDI).
If an error occurs in the ALE layer, the IDoc containing the error is saved and a workflow task is
created. The ALE administrator can use this workflow to correct the error.
For information on programming see the Implementing Outbound Processing [Seite 60].
The individual steps are explained below.

56 April 2001

 SAP AG ALE Programming Guide
 Distribution Using Message Types

Receiver Determination
Like a normal letter, an IDoc has a sender and a receiver. If the application does not
explicitly specified the receiver, the ALE layer uses the distribution model to help
determine the receivers of the message.
The ALE layer can find out from the model whether any distributed systems should
receive the message and, if so, then how many. The result may be that one, several or no
receivers at all are found.
For each of the distributed systems identified as receiver systems, the data specified by
the filter objects in the distribution model is selected from the master IDoc. This data is
then entered into an IDoc, and the appropriate system is specified as the receiver.

Segment Filtering
Individual segments can be removed from the IDoc before it is dispatched. If you want to
remove IDoc segments, in Customizing for ALE choose:
Modelling and Implementing ALE Business Processes
 Master Data Distribution
 Scope of Data for Distribution
 Filter IDoc Segments
The appropriate setting depends on the sending and receiving logical R/3 System.

Field Conversion
You can define field conversions for specific receivers in ALE Customizing:
Modelling and Implementing ALE Business Processes
 Converting Data Between Sender and Receiver
Standard rules can be specified for field conversions. One set of rules is created for each
IDoc segment and rules are defined for each segment field. These are important for
converting data fields to exchange information between R/2 and R/3 Systems. For
example, the field plant can be converted from a two character field to a four character
field.
Standard Executive Information System (EIS) tools are used to convert fields.

IDoc Version Change
SAP guarantees that ALE works correctly between different releases of the R/3 System.
By changing the IDoc format you can convert message types from different R/3 releases.
SAP uses the following rules to convert existing message types:

• Fields can be appended to a segment type
• New segments can be added

ALE Customizing records the version of each message type used in each receiver. The
communication IDoc is created in the correct version in outbound processing.

Dispatch Control
Time and quantity are the factors that control the dispatch of IDocs in the dispatch control.
Scheduling the dispatch time:

IDocs can either be sent immediately or in the background. This setting is made in the
partner profile.
If the IDoc is sent in the background, a job has to be scheduled. You can choose how
often background jobs are scheduled.

Controlling the amount of data sent:

April 2001 57

ALE Programming Guide SAP AG
Distribution Using Message Types

IDocs can be dispatched in packets. The packet size is assigned in ALE Customizing
in accordance with the partner profile.
Modeling and Implementing ALE Business Processes
 → Partner Profiles and Time of Processing
 → Maintain Partner Profiles

This setting only affects IDocs that are processed in the background.

Inbound Processing
The following processes are carried out on inbound IDocs in the ALE layer:
• Segment filtering
• Field conversion
• Transfer control
• Serialization
For information on programming see the Implementing Inbound Processing [Seite 85].
The individual steps are explained below.

Segment Filtering
You can filter IDoc segments in inbound processing.
In inbound processing this function is principally the same as in outbound processing.

Field Conversion
You can define field conversions for specific receivers in ALE Customizing:
Modelling and Implementing ALE Business Processes
 Converting Data Between Sender and Receiver
Standard rules can be specified for field conversions. One set of rules is created for each
IDoc segment and rules are defined for each segment field. These are important for
converting data fields to exchange information between R/2 and R/3 Systems. For
example, the field plant can be converted from a two character field to a four character
field.
Standard Executive Information System (EIS) tools are used to convert fields.

For reduced message types field values are not overwritten in the receiving R/3
System, if the corresponding IDoc field contains the character "/".

Transfer control
Once the IDocs have been written to the database, they can be posted by the application.
IDocs can be passed to the application either immediately on arrival or at a later time in
background processing.
Inbound IDocs can be posted in three ways:

• By calling a function module directly:
The inbound IDocs are posted directly. An error workflow is started, if an error
occurs.

• By starting an SAP Business Workflow. A workflow is the sequence of steps required to post
an IDoc.

Workflows for ALE are not provided.

58 April 2001

 SAP AG ALE Programming Guide
 Distribution Using Message Types

• By starting a work item
A single step performs the IDoc posting.

The standard inbound processing setting is for ALE to call a function module directly. For
information about the options in SAP Business Workflow see the Inbound Processing Using SAP
Workflow [Seite 158].
You can specify the people to be notified for handling IDoc processing errors in SAP Business
Workflow. Different people can be responsible for each message type.

April 2001 59

ALE Programming Guide SAP AG
Implementing Outbound Processing

Implementing Outbound Processing
This section describes the development steps required to send IDocs. The IDoc structure and the
message type must have already been created and must be linked together.

See also:
• Developing a Function Module for ALE Outbound Processing [Seite 61]
• Customizing ALE Outbound Processing [Seite 80]
• Outbound Processing Using Message Control [Seite 84]

60 April 2001

 SAP AG ALE Programming Guide
 Developing a Function Module for ALE Outbound Processing

Developing a Function Module for ALE Outbound
Processing
This sections describes how to program a function module that creates an IDoc from an
application object and calls ALE outbound processing.
See also:
Basics [Seite 62]
Interrogating the Distribution Model [Seite 63]
Structure of Control Record [Seite 64]s
Structure of Data Records [Seite 65]
Call of MASTER_IDOC_DISTRIBUTE [Seite 69]
Coding Example [Seite 71]

April 2001 61

ALE Programming Guide SAP AG
Basics

Basics
An IDoc consists of a control record with the structure edidc and one or more data records with
the structure edidd. The control record is similar to a letter envelope. It contains the sender and
receiver of the IDoc, as well as information on the type of message. The data that is being used
by the IDoc is contained in the data records as unformatted character strings.
To be able to pass an IDoc to the ALE layer, you must set up a field string with the structure edidc
and an internal table with the structure edidd. With these the function module
master_idoc_distribute is then called. The module saves the data to the database and if
necessary triggers despatch.
All ALE message flows are stored in the ALE distribution model. The distribution model is the
central controlling instance for ALE. The application can interrogate the distribution model before
the IDoc is created. This makes sense if the actual creation of an IDoc influences the application.
As you are not required to set up the internal table for the IDoc if no message flow is maintained in
the distribution model, it can also improve performance.
The ALE layer always interrogates the distribution model. If the application does not specify a
receiver, all receivers are determined and an IDoc is created for each one. If the application does
specify a receiver, a check is made against the distribution model to see whether the receiver has
the necessary authorization. In ALE you can use the filter settings in the distribution model to
remove parts of the IDoc.

62 April 2001

 SAP AG ALE Programming Guide
 Interrogating the Distribution Model

Interrogating the Distribution Model
You do not have to interrogate the distribution model, it is optional.
There are two function modules that can interrogate the ALE distribution model:
ale_model_determine_if_to_send and ale_model_info_get. ale_model_determine_if_to_send is
called with the message type and possibly with the logical receiving system if it is already known
in the application. A check is made in the ALE distribution model that a message flow has been
maintained for the input parameters. If this is not so, the export parameter idoc_must_be_send is
set to initial; otherwise, an "X" is returned. If there are filter objects in the distribution model that
control this message flow, they are not evaluated. An IDoc must only be created if
ale_determine_if_to_send returns an "X".
Module ale_model_info_get is used for more complex queries made to the ALE distribution model.
It is called with the message type to be dispatched. In return, you get a table containing all the
potential recipients of this message type, as well as the associated filter objects. Note that there
may be several entries for one receiver in the table returned. If there are no entries in the
distribution model, the exception no_model_info_found is issued. If an exception is issued, an
IDoc does not have to be created. Otherwise an IDoc does have to be created. You will find the
receiving logical system in the rcvsystem field in a table entry.
The end result, that is, whether the receivers receives an IDoc and what the IDoc looks like, is
only determined after all the filter objects for a message flow in the distribution model have been
evaluated. This is carried out in the ALE layer.

April 2001 63

ALE Programming Guide SAP AG
Structure of Control Records

Structure of Control Records
The control record consists of a field string for the structure edidc. The relevant fields are listed
below; all other fields should be left with their initial values.

List of fields for the control record

Field Description Comment

mestyp Logical message type. Conveys the business
meaning of the message.

Mandatory field

idoctp Basic structure of the IDoc. Identifies the
layout set that uses this message.

Mandatory field

cimtyp Structure of customer extension. If the
customer extends an SAP basic structure, he
must give a name to the structure of his
extension.

Mandatory field if customer has
made an enhancement.
Otherwise initial.

rcvprt Partner type of the receiver; “LS” (i.e. logical
system) for ALE.

Optional field. See below.

rcvprn Partner number of the receiver; the logical
system for ALE.

Optional field. See below.

rcvpfc Partner function of the receiver; normally
initial for ALE.

Optional field. See below.

When the receiving system has been determined from the distribution model, it can be written to
field rcvprn. Then field RCVPFC must be filled with "LS" (for logical system). If necessary, the
partner function can be written into the field RCVPFC. However, the partner function is not
normally used in ALE. What is important, is that either both rcvprt and rcvprn are left empty or that
both are filled. If rcvprt and rcvprn are passed with their initial values, the receivers are determined
entirely in the ALE layer.

64 April 2001

 SAP AG ALE Programming Guide
 Structure of the Data Records

Structure of the Data Records
Replacing SAP Codes with ISO Codes [Seite 67]
The data records of an IDoc are created in an internal table with structure EDIDD. The relevant
fields are shown below.

Important Table Fields for Creating IDoc Data Records

Field Description

SEGNAM Segment type of the IDoc data record

SDATA 1000 byte-long character field for the data used by the IDoc

The remaining fields in EDIDD should be left initial.
All the segment types and their sequence are specified in the IDoc structure. The data records are
structured according to this sequence and included in the internal table.
For each segment type of the IDoc structure, there is a DDIC structure with the same name. A
field string with this structure is used for creating a data record. The application data is mapped to
the field string. The segment type is written to the field SEGNAM, and the field string is written to
the field SDATA. This data record is then included in the internal table with the structure edidd.
When creating IDoc data records, note the following design guidelines:
• Converting Currency Amounts [Seite 66]
• Replacing SAP Codes With ISO Codes [Seite 67]
• Left-justified Filling of IDoc Fields [Seite 68]

April 2001 65

ALE Programming Guide SAP AG
Converting Currency Amounts

Converting Currency Amounts
Currency amounts have to be converted from an SAP system format to a format that can be
understood externally. In the SAP system, all currency amounts are stored with two decimal
places. If a currency has a different number of decimal places, the currency amount has to be
converted. You can use function module CURRENCY_AMOUNT_SAP_TO_IDOC for this
conversion; it performs a suitable currency amount conversion for IDocs.
We recommend that you encapsulate the code in a subroutine <SEGMENT-
TYP>_CURRENCY_SAP_TO_IDOC.

66 April 2001

 SAP AG ALE Programming Guide
 Replacing SAP Codes With ISO Codes

Replacing SAP Codes With ISO Codes
There are ISO codes for country keys, currency keys, units of measure and shipping instructions.
According to SAP design guidelines, you should use ISO codes for an IDoc if they are available.
When you set up the IDoc, the SAP codes have to be replaced by ISO codes. To do this, you can
use these function modules:

Function modules for converting SAP codes

Domain Function module

Currency keys CURRENCY_CODE_SAP_TO_ISO

Country keys COUNTRY_CODE_SAP-TO_ISO

Units of measure UNIT_OF_MEASURE_SAP_TO_ISO

Shipping instructions SAP_TO_ISO_PACKAGE_TYPE_CODE

We recommend that you encapsulate the code in a SUBROUTINE <SEGMENT-
TYP>_CODES_SAP_TO_ISO.

April 2001 67

ALE Programming Guide SAP AG
Left-justified Filling of IDoc Fields

Left-justified Filling of IDoc Fields
All fields must be filled left-justified. This happens automatically for character fields. If the original
field of the application is a non-character field, you must execute a condense on the
corresponding field in the IDoc segment. To find out which fields require a condense, see the
documentation structure for a segment type. The name of the documentation structure begins with
"E3" or "Z3" (instead of “E1” or “Z1”); otherwise it is the same. This structure contains the same
fields as the "E1" or "Z1" structure. But here you will find the original data elements and domains
of the application. All fields with a data type unequal to char, cuky, clnt, accp, numc, dats, tims or
unit require a condense.
We recommend that you encapsulate the code in a subroutine <SEGMENT-TYP>_CONDENSE.
You should set left-justification after converting the currency amounts and ISO codes.

68 April 2001

 SAP AG ALE Programming Guide
 Calling master_idoc_distribute

Calling MASTER_IDOC_DISTRIBUTE
After the MASTER_IDOC_DISTRIBUTE has been called, you must specify a COMMIT WORK;
the standard Database Commit at the end of the transaction is not sufficient. The COMMIT WORK
does not have to directly follow the call; it can be specified at higher call levels or after multiple
calls of MASTER_IDOC_DISTRIBUTE.
Note that the IDocs created remain locked until the called transaction has been completed. If you
want to unlock them earlier, you can call one of the following function modules:
• DEQUEUE_ALL releases all locked objects
• EDI_DOCUMENT_DEQUEUE_LATER as a parameter releases the transferred IDocs
If the application document is created via the update program, the call of
MASTER_IDOC_DISTRIBUTE must also be performed in update task (if an update call has not
already been performed at a higher level).
See also:
Exceptions and Export Parameters of MASTER_IDOC_DISTRIBUTE [Seite 70]

April 2001 69

ALE Programming Guide SAP AG
Exceptions and Export Parameters of MASTER_IDOC_DISTRIBUTE

Exceptions and Export Parameters of
MASTER_IDOC_DISTRIBUTE
The module uses the table parameter COMMUNICATION_IDOC_CONTROL to return the control
records of the IDocs that were created in the database. To find out the IDoc number and the
current status for example, see fields DOCNUM AND STATUS. In general, this table is not
relevant to the calling application.
If the IDoc recipient was passed in the control record when MASTER_IDOC_DISTRIBUTE was
called, but the distribution model does not allow the recipient to receive this IDoc, exception
ERROR_IN_IDOC_CONTROL is output with an appropriate error message.
If a receiver was not given in the control record and ALE does not find a recipient in the
distribution model, an exception is not issued. If you want to react to this case, you must query
the return table COMMUNICATION_IDOC_CONTROL. If this table is empty, no IDoc was
created.
This different behavior for the initial and non-initial receiver has historical reasons. The initial
recipient is the standard case for master data replication: here it is of no further interest whether
an IDoc was actually created. Presetting the receiver is the standard for dispatching transaction
data: if an IDoc is not created, this is interpreted as an error.

List of Exceptions and Their Occurrences

Exception Occurrence

error_in_idoc_control Incorrect or no message type specified.
Incorrect or no IDoc type specified.
No IDoc created, although recipient was preset by
application.

error_in_idoc_data No data records passed.

error_writing_idoc_status Technical problems when writing status records.

sending_logical_system_unknown Own logical system could not be determined.

70 April 2001

 SAP AG ALE Programming Guide
 Example of Generating an IDoc

Example of Generating an IDoc
In the Example Program of Generating an IDoc [Seite 72] Parameters APPL_HEADER and
APPL_ITEM are used as the source of the application data.

See also:
• Coding Example [Seite 100] of inbound processing
• Using the Example Coding [Seite 79]

April 2001 71

ALE Programming Guide SAP AG
Example Program to Generate an IDoc

Example Program to Generate an IDoc

FUNCTION·MASTER_IDOC_CREATE_XAMPLE.
*"--

*"
*"Local·interface:
*"·······IMPORTING
*"·············VALUE(APPL_HEADER)·LIKE·XHEAD·STRUCTURE··XHEA
D
*"·······TABLES
*"··············APPL_ITEM·STRUCTURE··XITEM
*"--

*·variables·of·general·interest
··DATA:
*·······control·record·for·the·IDoc
········IDOC_CONTROL·LIKE·EDIDC,
*·······data·records·for·the·IDoc
········T_IDOC_DATA·LIKE·EDIDD·OCCURS·0·WITH·HEADER·LINE,
*·······table·for·the·IDocs·created·by·MASTER_IDOC_CONTROL
········T_COMM_CONTROL·LIKE·EDIDC·OCCURS·0·WITH·HEADER·LINE,
*·······partner·type·for·logical·system
········C_PARTNER_TYPE_LOGICAL_SYSTEM·LIKE·EDIDC-RCVPRT,
*·······help·variable·for·the·check·if·an·IDoc·has·to·be·cre
ated
········H_CREATE_IDOC.

*·variables·specific·for·this·example
··DATA:
*·······field·strings·with·IDoc·segment·structure
········E1XHEAD·LIKE·E1XHEAD,
········E1XITEM·LIKE·E1XITEM,
*·······data·to·be·put·to·the·control·record
········C_MESSAGE_TYPE·LIKE·EDIDC-MESTYP·VALUE·'XAMPLE',
········C_BASE_IDOC_TYPE·LIKE·EDIDC-IDOCTP·VALUE·'XAMPLE01',
*·······segment·types·to·be·put·to·the·data·record·table
········C_HEADER_SEGTYP·LIKE·EDIDD-SEGNAM·VALUE·'E1XHEAD',
········C_ITEM_SEGTYP·LIKE·EDIDD-SEGNAM·VALUE·'E1XITEM'.

*·check·if·an·IDoc·has·to·be·created,·read·the·distribution·
model

72 April 2001

 SAP AG ALE Programming Guide
 Example Program to Generate an IDoc

··CALL·FUNCTION·'ALE_MODEL_DETERMINE_IF_TO_SEND'
·······EXPORTING
············MESSAGE_TYPE···········=·C_MESSAGE_TYPE
*·········SENDING_SYSTEM·········=·'·'
*·········RECEIVING_SYSTEM·······=·'·'
*·········VALIDDATE··············=·SY-DATUM
·······IMPORTING
············IDOC_MUST_BE_SENT······=·H_CREATE_IDOC.
*····exceptions
*·········own_system_not_defined·=·1
*·········others·················=·2.

··IF·H_CREATE_IDOC·IS·INITIAL.
*···no·message·flow·maintained·in·the·model,·nothing·to·do
····EXIT.
··ENDIF.

*·put·the·application·header·record·to·the·IDoc
··MOVE-CORRESPONDING·APPL_HEADER·TO·E1XHEAD.

*·convert·SAP·codes·to·ISO·codes
··PERFORM·E1XHEAD_CODES_SAP_TO_ISO
····USING
······APPL_HEADER
····CHANGING
······E1XHEAD.

*·append·record·to·IDoc·data·table
··T_IDOC_DATA-SEGNAM·=·C_HEADER_SEGTYP.
··T_IDOC_DATA-SDATA·=·E1XHEAD.
··APPEND·T_IDOC_DATA.

··LOOP·AT·APPL_ITEM.
*···put·the·application·item·record·to·the·IDoc·segment
····MOVE-CORRESPONDING·APPL_ITEM·TO·E1XITEM.

*···convert·currency·amounts·from·SAP·internal·to·neutral·fo
rmat
····PERFORM·E1XITEM_CURRENCY_SAP_TO_IDOC
······USING
········APPL_HEADER-CURRENCY
······CHANGING
········E1XITEM.

April 2001 73

ALE Programming Guide SAP AG
Example Program to Generate an IDoc

*···convert·SAP·codes·to·ISO·codes
····PERFORM·E1XITEM_CODES_SAP_TO_ISO
······USING
········APPL_ITEM
······CHANGING
········E1XITEM.

*···left·justify·all·non·character·fields
····PERFORM·E1XITEM_CONDENSE
······CHANGING
········E1XITEM.

*···append·record·to·IDoc·data·table
····T_IDOC_DATA-SEGNAM·=·C_ITEM_SEGTYP.
····T_IDOC_DATA-SDATA·=·E1XITEM.
····APPEND·T_IDOC_DATA.
··ENDLOOP.

··CALL·FUNCTION·'MASTER_IDOC_DISTRIBUTE'
*·in·update·task···"if·application·document·is·posted·in·upd
ate·task
·······EXPORTING
············MASTER_IDOC_CONTROL············=·IDOC_CONTROL
·······TABLES
············COMMUNICATION_IDOC_CONTROL·····=·T_COMM_CONTROL
············MASTER_IDOC_DATA···············=·T_IDOC_DATA.
*······exceptions
*···········error_in_idoc_control··········=·1
*···········error_writing_idoc_status······=·2
*···········error_in_idoc_data·············=·3
*···········sending_logical_system_unknown·=·4
*···········others·························=·5.

*·A·commit·work·has·to·be·done.·It·could·also·be·done·in·the
·calling
*·application.
··COMMIT·WORK.

··READ·TABLE·T_COMM_CONTROL·INDEX·1.
··IF·SY-SUBRC·<>·0.
*·no·IDoc·was·created,·you·can·react·here,·if·neccessary
··ENDIF.

ENDFUNCTION.

74 April 2001

 SAP AG ALE Programming Guide
 Example Program to Generate an IDoc

*&--
-----------*
*&······Form··E1XITEM_CONDENSE
*&--
-----------*
*·······text··
···········*
*---
-----------*
*··-->··p1········text
*··<--··p2········text
*---
-----------*
FORM·E1XITEM_CONDENSE
··CHANGING
····IDOC_SEGMENT·LIKE·E1XITEM.

*·left·justify·all·non·character·fields
··CONDENSE:·IDOC_SEGMENT-QUANTITY,
············IDOC_SEGMENT-VALUE.

ENDFORM.·······························"·E1XITEM_CONDENSE
*&--
-----------*
*&······Form··E1XITEM_CURRENCY_SAP_TO_IDOC
*&--
-----------*
*·······text··
···········*
*---
-----------*
*··-->··p1········text
*··<--··p2········text
*---
-----------*
FORM·E1XITEM_CURRENCY_SAP_TO_IDOC
··USING
····CURRENCY_CODE·LIKE·TCURC-WAERS
··CHANGING
····IDOC_SEGMENT·LIKE·E1XITEM.

··CALL·FUNCTION·'CURRENCY_AMOUNT_SAP_TO_IDOC'
·······EXPORTING

April 2001 75

ALE Programming Guide SAP AG
Example Program to Generate an IDoc

············CURRENCY····=·CURRENCY_CODE
············SAP_AMOUNT··=·IDOC_SEGMENT-VALUE
·······IMPORTING
············IDOC_AMOUNT·=·IDOC_SEGMENT-VALUE.
*······exceptions
*···········others······=·1.

ENDFORM.·······························"·E1XITEM_CURRENCY_SA
P_TO_IDOC
*&--
-----------*
*&······Form··E1XHEAD_CODES_SAP_TO_ISO
*&--
-----------*
*·······text··
···········*
*---
-----------*
*··-->··p1········text
*··<--··p2········text
*---
-----------*
FORM·E1XHEAD_CODES_SAP_TO_ISO
··USING
····APPL_DATA·LIKE·XHEAD
··CHANGING
····IDOC_SEGMENT·LIKE·E1XHEAD.

*·convert·a·currency·code·from·SAP·code·to·ISO·code
··IF·NOT·APPL_DATA-CURRENCY·IS·INITIAL.
····CALL·FUNCTION·'CURRENCY_CODE_SAP_TO_ISO'
·········EXPORTING
··············SAP_CODE·=·APPL_DATA-CURRENCY
·········IMPORTING
··············ISO_CODE·=·IDOC_SEGMENT-CURRENCY.
*······exceptions
*···········not_found·=·1
*···········others····=·2.
··ELSE.
····IDOC_SEGMENT-CURRENCY·=·APPL_DATA-CURRENCY.
··ENDIF.

*·convert·a·country·from·SAP·code·to·ISO·code
··IF·NOT·APPL_DATA-COUNTRY·IS·INITIAL.

76 April 2001

 SAP AG ALE Programming Guide
 Example Program to Generate an IDoc

····CALL·FUNCTION·'COUNTRY_CODE_SAP_TO_ISO'
·········EXPORTING
··············SAP_CODE·=·APPL_DATA-COUNTRY
·········IMPORTING
··············ISO_CODE·=·IDOC_SEGMENT-COUNTRY.
*······exceptions
*···········not_found·=·1
*···········others····=·2.
··ELSE.
····IDOC_SEGMENT-COUNTRY·=·APPL_DATA-COUNTRY.
··ENDIF.

ENDFORM.·······························"·E1XHEAD_CODES_SAP_T
O_ISO
*&--
-----------*
*&······Form··E1XITEM_CODES_SAP_TO_ISO
*&--
-----------*
*·······text··
···········*
*---
-----------*
*··-->··p1········text
*··<--··p2········text
*---
-----------*
FORM·E1XITEM_CODES_SAP_TO_ISO
··USING
····APPL_DATA·LIKE·XITEM
··CHANGING
····IDOC_SEGMENT·LIKE·E1XITEM.

*·convert·a·unit·of·measure·from·SAP·code·to·ISO·code
··IF·NOT·APPL_DATA-UNIT·IS·INITIAL.
····CALL·FUNCTION·'UNIT_OF_MEASURE_SAP_TO_ISO'
·········EXPORTING
··············SAP_CODE·=·APPL_DATA-UNIT
·········IMPORTING
··············ISO_CODE·=·IDOC_SEGMENT-UNIT.
*······exceptions
*···········not_found···=·1
*···········no_iso_code·=·2
*···········others······=·3.

April 2001 77

ALE Programming Guide SAP AG
Example Program to Generate an IDoc

··ELSE.
····IDOC_SEGMENT-UNIT·=·APPL_DATA-UNIT.
··ENDIF.

*·convert·a·package·type·from·SAP·code·to·ISO·code
··IF·NOT·APPL_DATA-SHIP_INST·IS·INITIAL.
····CALL·FUNCTION·'SAP_TO_ISO_PACKAGE_TYPE_CODE'
·········EXPORTING
··············SAP_CODE·=·APPL_DATA-SHIP_INST
·········IMPORTING
··············ISO_CODE·=·IDOC_SEGMENT-SHIP_INST.
*······exceptions
*···········not_found·=·1
*···········others····=·2.
··ELSE.
····IDOC_SEGMENT-SHIP_INST·=·APPL_DATA-SHIP_INST.
··ENDIF.

ENDFORM.·······························"·E1XITEM_CODES_SAP_T
O_ISO

78 April 2001

 SAP AG ALE Programming Guide
 Using the Example Coding

Using the Example Coding
• Create your own function module. Suggestion: MASTER_IDOC_CREATE_<MESSAGE

TYPE>. In the interface, you substitute the example parameters APPL_HEAD and
APPL_ITEM with the application data you are using to create the IDoc.

• Variable definition: The first data statement can be transferred. The second data statement
must be adapted to the individual IDoc.

• You can use (or even enhance) the block in which the distribution model is read. In this
example, we used module ALE_MODEL_DETERMINE_IF_TO_SEND

• For all IDoc segment types with currency amounts, you can use form routine
E1XITEM_CURRENCY_SAP_TO_IDOC as a model for writing your own conversion routine.
We suggest the name: <SEGMENT TYPE>_CURRENCY_SAP_TO_IDOC.

• For all IDoc segment types with fields for which ISO codes exist, you can use form routine
E1XITEM_CODES_SAP_TO_ISO as a model for writing your own conversion routine. We
suggest the name: <SEGMENTTYP>_CODES_SAP_TO_ISO.

• For all IDoc segment types with fields to be left-justified, you can use form routine
E1XHEAD_CONDENSE as a model for writing your own routine. We suggest the name:
<SEGMENT TYPE>_CONDENSE. You should set left-justification after the conversions.

• You must adapt the program parts which set up the IDoc from the application data to you own
application structures and the IDoc segments.

• If the update program is performed on the application, MASTER_IDOC_DISTRIBUTE may
also have to be called IN UPDATE TASK.

• Do not forget COMMIT WORK if one is not performed at a higher level. The Database Commit
at the end of the transaction is not sufficient.

April 2001 79

ALE Programming Guide SAP AG
Customizing ALE Outbound Processing

Customizing ALE Outbound Processing
ALE can note the application object contained for every outbound IDoc. Example: for a material
master IDoc, the ALE layer creates a link between the material number and the IDoc number. For
this, Customizing steps are necessary; see reference below.
In ALE receiver determination, you can define the cases in which a receiver receives or does not
receive an IDoc; you can do this for each receiver individually. Example: for the material master
record, you can define that a receiver only receives materials of a certain material type.
You have to define the distribution criteria - the Filter Objects [Extern], as described below:
• Defining ALE Object Types [Seite 81]
• Assigning the Object Type for the Outbound Link to the Message Type [Seite 82]
• Assigning the Application Object Type for the Outbound Link to the Message Type [Seite 83]

The ALE outbound processing functions are under ALE Development: To get to them
choose Tools → ALE → ALE Development.

80 April 2001

 SAP AG ALE Programming Guide
 Defining ALE Object Types

Defining ALE Object Types
Both linking to an application object and filtering in receiver determination assume that the
relevant ALE objects exist.
If, as in the above example, you want to link the outbound IDoc with the material number, the
material number has to be read from the IDoc data part. However the ALE layer takes the IDoc
data as unformatted character strings. ALE therefore needs to know from which message type,
segment and fields the ALE object “material number” can be read. The same applies to the ALE
object "material type", which is used to determine the receiver.
To define ALE objects, choose ALE Development → IDocs → Data Filtering → Define Filter
Object Type.

April 2001 81

ALE Programming Guide SAP AG
Assigning the Object Type for the Outbound Link to the Message Type

Assigning the Object Type for the Outbound Link to the
Message Type
To assign the ALE object type that you want to link to each outbound IDoc to your message type,
choose IDoc → ALE objects → Link and serialization objects from the ALE Development screen.

82 April 2001

 SAP AG ALE Programming Guide
 Assigning the Application Object Type for the Outbound Link to the Message Type

Assigning the Application Object Type for the Outbound
Link to the Message Type
The link between the application object and the outbound IDoc is created using the BOR. For this,
the BOR object type must be specified for the message type. Example: BUS1001 for the material
number.
To carry out these functions choose IDoc → ALE objects → Assign to message type.

Part of the ALE Customizing for outbound processing is partner-independent. It
applies to all the message flows relating to one message type.

April 2001 83

ALE Programming Guide SAP AG
Outbound Processing Using Message Control

Outbound Processing Using Message Control
IDoc dispatch is triggered in Message Control and not in the application.
If you want to use Message Control, note the following points when developing and customizing
the program.

Customizing
• In addition to making the settings above, you must create an outbound process code. The

process code determines the function module of the application that creates the IDoc.
• For the combination application / message type, you can use the following transmission

media: "6" (without ALE model, no conversion of NAST recipient on corresponding logical
system) and "A" (with ALE model).

• Transmission medium 6: you should call form routine edi_processing(rsnasted) from Message
Control. Transmission medium A: you can use form routine ale_processing(rsnasted) or write
your own form routine for transmitting a call of master_idoc_distribute.

Programming
• The interface of the function module that creates the IDoc is preset. For an example, see

idoc_output_orders.
• You do not need to call master_idoc_distribute.
• Do not send a COMMIT WORK.

84 April 2001

 SAP AG ALE Programming Guide
 Implementing Inbound Processing

Implementing Inbound Processing
This section describes the implementation of an ALE-enabling interface for inbound IDocs. The
prerequisite is that message types and IDoc types have already been defined.

Components of an ALE interface for processing inbound IDocs
A complete ALE interface for the processing of inbound IDocs consists of:
1. A function module to process inbound IDocs. The ALE layer calls the function module.
2. An SAP Business Workflow task with objects and events for error handling.
3. ALE table entries (‘settings’).

Processing an inbound IDoc
1. ALE reads the inbound IDoc customizing settings to determine which function module to call.
2. The function module is called and given the IDoc(s) to be processed.
3. The function module returns status information about whether the IDoc was successfully

processed.
4. If it was successfully processed, it returns the ID of the application document that was created

or changed.
5. If an error occurred while processing the IDoc, the ALE layer triggers the SAP Business

Workflow event assigned to the IDoc.

See also:
Inbound Function Module [Seite 86]
ALE Settings
Objects, Events and Tasks To Be Created [Seite 209]
Inbound Processing Using SAP Workflow [Seite 158]
Advanced Workflow Programming [Seite 163]

April 2001 85

ALE Programming Guide SAP AG
Inbound Function Module

Inbound Function Module
This section shows how to implement the function module called to process the inbound IDoc(s).
It starts with an explanation of what needs to be considered to ensure consistent data.
The simplest case is outlined, where the inbound function module only processes one IDoc at a
time.The implementation of the serialization function and the addition of customer exits is
described.Then, the implementation of an inbound function module that can process more than
one IDoc at a time ("mass processing") is outlined.The section ends with an explanation of how to
ensure data consistency when using a Call Transaction.

See also:
• Embedding a Function Module in ALE Inbound Processing [Seite 87]
• Data Consistency [Seite 88]
• Processing IDocs Individually [Seite 91]
• Serialization [Seite 118]
• Customer Exits [Seite 125]
• Mass Processing [Seite 132]
• Using Call Transaction [Seite 144]

86 April 2001

 SAP AG ALE Programming Guide
 Embedding a Function Module in ALE Inbound Processing

Embedding a Function Module in ALE Inbound
Processing
The following diagram shows how the inbound function module is embedded in ALE’s inbound
processing. It applies to all cases, except when an IDoc has been successfully processed using a
Call Transaction on an ALE-enabled transaction.

ALE Layer Application
function module

Read IDoc(s)

Commit Work

Unlock IDoc(s) and
application objects

Lock IDoc(s)

Write IDoc(s) status
Write links
Optional:

Write serialization data
Trigger event(s)

Lock application objects
Optional: Serialization check
Process IDoc data
Write application data to DB

Inbound processing details

April 2001 87

ALE Programming Guide SAP AG
Data Consistency

Data Consistency
See also:
Ensuring Data Consistency [Seite 89]
Serialization [Seite 90]

88 April 2001

 SAP AG ALE Programming Guide
 Ensuring Data Consistency

Ensuring Data Consistency
In order to ensure data consistency when a database error occurs, the application tables must be
posted in the same logical unit of work as the IDoc status table. Otherwise a database error, such
as "no tablespace", could lead to the following:
• Application tables update correctly, IDoc status update fails: the IDoc has the status "ready to

be passed to application" and would be processed a second time, although the data has
already been processed.

Example: the IDoc contains financial postings; processing the IDoc twice would result
in two FI documents being created for the same data.

• IDoc status update succeeds, application update fails: the IDoc has the status "successfully

processed" although the application tables were not updated. The IDoc cannot be processed
again, so the data never gets to the application.

To ensure that only one logical unit of work is used, the application function module must not
commit the data to the database. The data is committed by the ALE layer after the function has
been called and the IDoc’s status records have been updated.
This is not possible when the application data is updated via a Call Transaction, since a Commit
Work is automatically set at the end of every Call Transaction. In this case the transaction itself
needs to be modified, as shown later.
A Call Dialog instead of a Call Transaction avoids the Commit Work, but can only be used if the
dialog step contains no PERFORM ON COMMIT statements - since the commit is set via ALE
after the dialog has ended, all global variables set during the dialog are lost. Hence a Call dialog
should be used with extreme caution!
When the IDocs contain master data (e.g. customer data) the problem is not so acute, since
missing data can always be sent again if need be, and processing an IDoc twice does not lead to
duplicate documents being created.

April 2001 89

ALE Programming Guide SAP AG
Serialization

Serialization
If it is important for the inbound IDocs to be processed in the correct order, you can make use of
the ALE serialization function to check whether an IDoc has been overtaken or not. This is
explained in more detail later.

90 April 2001

 SAP AG ALE Programming Guide
 Processing IDocs Individually

Processing IDocs Individually
This section describes how individual IDocs are processed. First the steps involved in processing
one IDoc at a time are described, starting with the function module’s import parameters, then
processing the IDoc and filling the function’s export parameters. Finally, an example of some
coding is shown.
See also:
Naming Convention [Seite 92]
The Function Module’s Interface [Seite 93]
Import Parameters [Seite 94]
IDoc Processing [Seite 95]
Export Parameters [Seite 96]
Coding Example [Seite 100]

April 2001 91

ALE Programming Guide SAP AG
Naming Convention

Naming Convention
We suggest naming the function module used to process incoming IDocs with message type
"MSGTYP" "IDOC_INPUT_MSGTYP"; customers could use "Z_IDOC_INPUT_MSGTYP".

92 April 2001

 SAP AG ALE Programming Guide
 The Function Module’s Interface

The Function Module’s Interface

Type Direction Parameter Reference field /
structure

Import --> INPUT_METHOD

 --> BDWFAP_PAR-INPUTMETHOD
MASS_PROCESSING

Export <-- IN_UPDATE_TASK

 <-- CALL_TRANSACTION_DONE

 <-- WORKFLOW_RESULT

 <-- APPLICATION_VARIABLE

Tables --> IDOC_CONTRL EDIDC

 --> IDOC_DATA EDIDD

 <-- IDOC_STATUS BDIDOCSTAT

 <-- RETURN_VARIABLES BDWFRETVAR

 <-- SERIALIZATION_INFO BDI_SER

Exception WRONG_FUNCTION_CALLED

April 2001 93

ALE Programming Guide SAP AG
Import Parameters

Import Parameters
Parameter Description

IDoc_Contrl This table contains one entry for each IDoc’s control
record, and is only used by the function module for
importing data. Typically the only fields used by the
inbound function module are Docnum (the IDoc number)
and either Mestyp (Message type) or Idoctp (Basic IDoc
type).

Idoc_Data This table contains one entry for each IDoc data
segment. The following fields are relevant to the
inbound function module:
Docnum the IDoc number
Segnam the segment’s name;
Sdata the segment’s data.

Input_Method Indicates whether the IDoc should be processed in
dialog (i.e. via Call Transaction), or not. Possible values
are:
" " Βackground (no dialog)
"A" Show all screens
"E" Start the dialog on the screen where the error
 occurred
Note: the parameter can only take on the values "A" or
"E" if the ALE setting for the function module says that it
supports dialog processing.

bdwfap_par-inputmethod
Mass_Processing

Not used any more (except for advanced workflow
programming). It is initial when the methods
InputForeground or InputBackground are invoked;
otherwise it contains "X".

94 April 2001

 SAP AG ALE Programming Guide
 IDoc Processing

IDoc Processing
The function module should carry out the following steps:
• Check that the IDoc contains the correct message type (field Idoc_Contrl-Mestyp). If it does

not, raise the exception Wrong_Function_Called with an appropriate message.
− When implementing an inbound function module for master data that can be "reduced" by

customers, don’t check the message type; check the basic IDoc type instead (field
Idoc_Contrl-Idoctp) Initialize/refresh any global variables and/or tables.

• Initialize/refresh any global variables and/or tables. The inbound function module can be
called a number of times by the same process, so the global variables will not be empty the
second time around.

• Convert the character data in table Idoc_Data to internal format in internal tables. See the
example coding below to see how to do this. Special attention must be paid to fields
containing:
− Units of measure (ISO code in IDoc)
− Currency codes (ISO code in IDoc)
− Country codes (ISO code in IDoc)
− Shipping instructions (ISO code in IDoc)
− Monetary amounts (conversion factor needed)
− Dates and times (see below)

Fields containing dates and times can lead to errors during inbound processing when the field in
the IDoc is empty (i.e. blank): In ABAP, moving a blank character field into a date field leaves the
date field blank, rather than initial (all zeros) i.e. the date field ends up containing an invalid value.
Errors will occur in subsequent processing whenever the field is checked for an initial value "if
DateField is initial..." To avoid this, clear the date field if the IDoc field is empty, as shown in the
example code.

Remember: the function module should not do a Commit Work.
If you have the choice, don’t update the database using Call Function "xxx" In Update
Task - it is unnecessary for ALE inbound processing, and only increases database
load.

April 2001 95

ALE Programming Guide SAP AG
Export Parameters

Export Parameters
See also:
The Inbound Function Module’s Export Parameters [Seite 97]
Export Parameters When IDoc was Successfully Processed [Seite 98]
Export Parameters When an Error Occurred in IDoc Processing [Seite 99]

96 April 2001

 SAP AG ALE Programming Guide
 The Inbound Function Module’s Export Parameters

The Inbound Function Module’s Export Parameters

Parameter Description

In_Update_Task Flag: Is the Update Task being used to update the database?
Is the Update Task being used to update the database? i.e.
does your function module update the database using Call
Function "xxx" In Update Task?

Call_Transaction_Done Flag: was a Call Transaction used that has updated the IDoc’s
status?

Workflow_Result A parameter that controls whether any events are triggered.

Application_Variable An optional parameter passed on to workflow.

Idoc_Status A table that should contain one record for each IDoc
processed. Valid values for the field Status are:
"51" Error occurred
"53" IDoc successfully processed

Return_Variables A table containing the document numbers of the IDoc and the
application object processed. These numbers are used for
workflow (e.g. error handling) and for linking the IDoc to the
corresponding application object.

Serialization_Info Not relevant yet - see the section on serialization.

April 2001 97

ALE Programming Guide SAP AG
Export Parameters When IDoc was Successfully Processed

Export Parameters When IDoc was Successfully
Processed
This example assumes IDoc number 4711 is being processed and that application document
number 1234 was created.

Parameter Value Description

IN_UPDATE_TASK " "
"X"

Update task not
used
Update task used

CALL_TRANSACTIO
N_DONE

" " (e.g. initial value)

WORKFLOW_RESU
LT

"0"

APPLICATION_VARI
ABLE

" " (e.g. initial value)

IDOC_STATUS The table must contain one record with
fields containing:
Docnum: 4711
Status: 53
Optionally the fields Msgid etc. can be filled
containing the application’s success
message.

RETURN_VARIABLE
S

The table must contain the following two
entries:

 WF_PARAM Doc_Number

 PROCESSED_IDOCS 4711

 APPL_OBJECTS 1234

 If processing the inbound IDoc does not
create
or change an application object, the
 APPL_OBJECTS entry can be omitted. It
makes no sense without a document
number.

SERIALIZATION_INF
O

Empty

98 April 2001

 SAP AG ALE Programming Guide
 Export Parameters When an Error Occurred in IDoc Processing

Export Parameters When an Error Occurred in IDoc
Processing
This example assumes that IDoc number 4711 is being processed.

Parameter Value

IN_UPDATE_TASK " " (i.e. initial value) - Update task
not used

CALL_TRANSACTI
ON_DONE

" " (e.g. initial value)

WORKFLOW_RESU
LT

"99999"

APPLICATION_VAR
IABLE

" " (i.e. initial value)

IDOC_STATUS The table must contain one record
with fields containing:
Docnum: 4711
Status: 51
Msgid, Msgno etc. must be filled
with the error message’s ID,
number etc.

RETURN_VARIABL
ES

The table must contain the
following entry:

 WF_PARAM Doc_Number

 "RROR_IDOCS 4711

SERIALIZATION_IN
FO

Empty

April 2001 99

ALE Programming Guide SAP AG
Example of Processing an IDoc

Example of Processing an IDoc
The Example Program to Process an IDoc [Seite 101] shows how the fictitious message type
XAMPLE, communicated with IDocs of type XAMPLE01, is processed using the inbound function
module Idoc_Input_Xample. The IDoc type has a header segment, E1xhead, and any number of
item segments E1xitem. The data from the IDoc is written to two database tables, XHEAD and
XITEM respectively. XHEAD and XITEM contain the same field names as E1xhead and E1xitem
respectively. The fields names and data types are shown in the following two tables:

Field Name in XHEAD Description Type in E1XHEAD Type in XHEAD

DOCMNT_NO Document number CHAR NUMC

DATE Date CHAR DATS

CURRENCY Currency CHAR CUKY

COUNTRY Country CHAR CHAR

Field Name in XITEM Description Type in E1XITEM Type in XITEM

ITEM_NO Item number CHAR NUMC

MATERIALID Material number CHAR CHAR

DESCRIPT Material description CHAR CHAR

UNIT Unit of measure CHAR UNIT

QUANTITY Quantity CHAR QUAN

VALUE Value CHAR CURR

SHIP_INST Shipping instructions CHAR UNIT

The data on the database is assigned a new document number (field DOCMNT_NO) using
number assignment. The field DOCMNT_NO is not stored in the newly created table XHEAD.

100 April 2001

 SAP AG ALE Programming Guide
 Example Program to Process an IDoc

Example Program to Process an IDoc

FUNCTION·IDOC_INPUT_XAMPLE.
*"---

*"
*"Local·interface:
*"·······IMPORTING
*"·············VALUE(INPUT_METHOD)·LIKE··BDWFAP_PAR-INPUTMETHD
*"·············VALUE(MASS_PROCESSING)·LIKE··BDWFAP_PAR-MASS_PROC
*"·······EXPORTING
*"·············VALUE(WORKFLOW_RESULT)·LIKE··BDWF_PARAM-RESULT
*"·············VALUE(APPLICATION_VARIABLE)·LIKE··BDWF_PARAM-
APPL_VAR
*"·············VALUE(IN_UPDATE_TASK)·LIKE··BDWFAP_PAR-UPDATETASK
*"·············VALUE(CALL_TRANSACTION_DONE)·LIKE··BDWFAP_PAR-
CALLTRANS
*"·······TABLES
*"··············IDOC_CONTRL·STRUCTURE··EDIDC
*"··············IDOC_DATA·STRUCTURE··EDIDD
*"··············IDOC_STATUS·STRUCTURE··BDIDOCSTAT
*"··············RETURN_VARIABLES·STRUCTURE··BDWFRETVAR
*"··············SERIALIZATION_INFO·STRUCTURE··BDI_SER
*"·······EXCEPTIONS
*"··············WRONG_FUNCTION_CALLED
*"---

*·---

*·----------------------·05·July·1996·---------------------------

*·---

*·Example·function·module·for·processing·inbound·IDocs·for·ALE·or
·EDI.
*·This·example·applies·for·processing
*
*···with····-··one·IDoc·at·a·time
*
*···without·-··serialization
*···········-··customer-exits
*···········-··calling·an·ALE-enabled·transaction
*···········-··mass·processing·(more·than·one·IDoc·at·a·time)

*·--------------------·Naming·conventions·-----------------------

April 2001 101

ALE Programming Guide SAP AG
Example Program to Process an IDoc

*·Internal·tables·start·with·'t_'
*·Internal·field·strings·start·with·'f_'
*·---

*·>>·The·following·line·must·appear·in·the·global·part·of·your
*·>>·function·group:
*····include·mbdconwf.············"Report·containing·the·ALE·cons
tants.
*·The·ALE·constants·start·with·'c_'.

··DATA:·SUBRC·LIKE·SY-SUBRC,
········OBJECT_NUMBER·LIKE·XHEAD-DOCMNT_NO.

*·Initialize·variables
··SUBRC·=·0.

*·Read·the·IDoc's·control·record
··READ·TABLE·IDOC_CONTRL·INDEX·1.

*·Process·the·IDoc·and·post·the·data·to·the·database
··PERFORM·IDOC_PROCESS_XAMPLE·TABLES···IDOC_DATA
·······································IDOC_STATUS
······························USING····IDOC_CONTRL
······························CHANGING·OBJECT_NUMBER
·······································SUBRC.

*·Fill·the·ALE·export·parameters
··CLEAR·IN_UPDATE_TASK.
··CLEAR·CALL_TRANSACTION_DONE.·········"Call·Transaction·is·not·u
sed.

··IF·SUBRC·<>·0.·······················"Error·occurred

····WORKFLOW_RESULT·=·C_WF_RESULT_ERROR.
····RETURN_VARIABLES-WF_PARAM·=·C_WF_PAR_ERROR_IDOCS.
····RETURN_VARIABLES-DOC_NUMBER·=·IDOC_CONTRL-DOCNUM.
····APPEND·RETURN_VARIABLES.

··ELSE.································"IDoc·processed·successful
ly

····WORKFLOW_RESULT·=·C_WF_RESULT_OK.
····RETURN_VARIABLES-WF_PARAM·=·C_WF_PAR_PROCESSED_IDOCS.
····RETURN_VARIABLES-DOC_NUMBER·=·IDOC_CONTRL-DOCNUM.
····APPEND·RETURN_VARIABLES.
····RETURN_VARIABLES-WF_PARAM·=·C_WF_PAR_APPL_OBJECTS.

102 April 2001

 SAP AG ALE Programming Guide
 Example Program to Process an IDoc

····RETURN_VARIABLES-DOC_NUMBER·=·OBJECT_NUMBER.
····APPEND·RETURN_VARIABLES.

··ELSE.

ENDFUNCTION.

*--
-----*
*·······FORM·IDOC_PROCESS_XAMPLE·································
·····*
*--
-----*
*··This·routine·creates·an·application·document·based·on·the·IDoc
's···*
*··contents.·Object_Number·contains·the·new·document's·number.···
·····*··If·an·error·occurs,·subrc·is·non-
zero,·t_idoc_status·is·filled.····*···Note:·if·more·than·one·erro
r·is·detected,·t_idoc_status·contains···*
*········more·than·one·status·record.····························
·····*
*--
-----*
*··--
>··F_IDOC_CONTRL····IDoc·control·record··························
*
*··--
>··T_IDOC_DATA······IDoc·data·records····························
*
*··<--
··T_IDOC_STATUS····IDoc·status·records··························*
*··<--
··OBJECT_NUMBER····Created·document's·number····················*
*··<--
··SUBRC············Return·code··································*
*--
-----*
FORM·IDOC_PROCESS_XAMPLE
·······TABLES···T_IDOC_DATA····STRUCTURE·EDIDD
················T_IDOC_STATUS··STRUCTURE·BDIDOCSTAT
·······USING····F_IDOC_CONTRL··STRUCTURE·EDIDC
·······CHANGING·OBJECT_NUMBER··LIKE·XHEAD-DOCMNT_NO
················SUBRC··········LIKE·SY-SUBRC.

*·Internal·field·string·for·the·document·header.
··DATA:·F_XHEAD·LIKE·XHEAD.

*·Internal·table·for·the·document·items.

April 2001 103

ALE Programming Guide SAP AG
Example Program to Process an IDoc

··DATA:·T_XITEM·LIKE·XITEM·OCCURS·0·WITH·HEADER·LINE.

*·Number·given·to·the·created·document·DOCUMENT_NUMBER·LIKE·F_XHE
AD-DOCMNT_NO.

*·Move·the·data·in·the·IDoc·to·the·internal·structures/tables
*·f_xhead·and·t_xitem.
··PERFORM·IDOC_INTERPRET·TABLES···T_IDOC_DATA
··································T_XITEM
··································T_IDOC_STATUS
·························USING····F_IDOC_CONTRL
·························CHANGING·F_XHEAD
··································SUBRC.

*·Create·the·application·object·if·no·error·occurred·so·far.
··IF·SUBRC·=·0.
*···This·fictitious·function·module·creates·a·new·object·based·on
·the
*···data·that·was·read·from·the·IDoc.·The·new·object's·ID·is·retu
rned
*···in·the·parameter·'document_number'.
*···The·function·module·checks·that·the·data·is·correct,·and·rais
es
*···an·exception·if·an·error·is·detected.
····CALL·FUNCTION·'XAMPLE_OBJECT_CREATE'
·········EXPORTING
··············XHEAD···········=·F_XHEAD
·········IMPORTING
··············DOCUMENT_NUMBER·=·DOCUMENT_NUMBER
·········TABLES
··············XITEM···········=·T_XITEM
·········EXCEPTIONS
··············OTHERS··········=·1.

····IF·SY-SUBRC·<>·0.
······SUBRC·=·1.
*·····Put·the·error·message·into·'t_idoc_status'
······PERFORM·STATUS_FILL_SY_ERROR
················TABLES···T_IDOC_STATUS
················USING····T_IDOC_DATA
·························SY
·························''············"Field·name
·························'idoc_process_xample'.·········"Form·rou
tine

····ELSE.
*·····Fill·the·remaining·export·parameters
······OBJECT_NUMBER·=·DOCUMENT_NUMBER.··········"New·document's·n

104 April 2001

 SAP AG ALE Programming Guide
 Example Program to Process an IDoc

umber

······t_idoc_status-docnum·=·f_idoc_contrl-docnum.
······t_idoc_status-status·=·c_idoc_status_ok.
······t_idoc_status-msgty··=·'S'.
······t_idoc_status-msgid··=·your_msgid.·"Global·variable.
······t_idoc_status-msgno··=·msgno_success."Global·variable.
······t_idoc_status-msgv1··=·object_number.
······APPEND·T_IDOC_STATUS.
····ENDIF.·····························"if·sy-subrc·<>·0.
··ENDIF.·····························"if·subrc·=·0.

ENDFORM.

*--
-----*
*·······FORM·IDOC_INTERPRET······································
·····*
*--
-----*
*··This·routine·checks·that·the·correct·message·type·is·being·use
d,···*
*··and·then·converts·and·moves·the·data·from·the·IDoc·segments·to
·the·*
*··internal·structure·f_xhead·and·internal·table·t_xitem.········
·····*
*··If·an·error·occurs,·t_idoc_status·is·filled·an·subrc·<>·0.····
·····*
*--
-----*
*··--
>··T_IDOC_STATUS···
*
*··--
>··T_XITEM···
*
*··--
>··F_IDOC_DATA···
*
*··--
>··F_XHEAD···
*
*··--
>··SUBRC···
*
*--
-----*
FORM·IDOC_INTERPRET·TABLES···T_IDOC_DATA····STRUCTURE·EDIDD

April 2001 105

ALE Programming Guide SAP AG
Example Program to Process an IDoc

·····························T_XITEM········STRUCTURE·XITEM
·····························T_IDOC_STATUS··STRUCTURE·BDIDOCSTAT
····················USING····F_IDOC_CONTRL··STRUCTURE·EDIDC
····················CHANGING·F_XHEAD········STRUCTURE·XHEAD
·····························SUBRC··········LIKE·SY-SUBRC.

*·Check·that·the·IDoc·contains·the·correct·message·type.
*··Note:·if·your·message·type·is·reducible,·check·field·'idoctp'
*·······(IDoc·type)·instead·of·'mestyp'.
··IF·F_IDOC_CONTRL-MESTYP·<>·'XAMPLE'.

····MESSAGE·ID······YOUR_MSGID···············"Global·variable
············TYPE····'E'
············NUMBER··MSGNO_WRONG_FUNCTION·····"Global·variable
············WITH····F_IDOC_CONTRL-MESTYP·····"message·type
····················'IDOC_INPUT_XAMPLE'······"Your·function·modul
e.
····················F_IDOC_CONTRL-SNDPRT·····"Sender·partner·type
····················F_IDOC_CONTRL-SNDPRN·····"Sender·number.
············RAISING·WRONG_FUNCTION_CALLED.

··ENDIF.

*·Loop·through·the·IDoc's·segments·and·convert·the·data·from·the·
IDoc
*·format·to·the·internal·format.
··LOOP·AT·T_IDOC_DATA·WHERE·DOCNUM·=·F_IDOC_CONTRL-DOCNUM.

····CASE·T_IDOC_DATA-SEGNAM.

······WHEN·'E1XHEAD'.
········PERFORM·E1XHEAD_PROCESS·TABLES···T_IDOC_STATUS
································USING····T_IDOC_DATA
································CHANGING·F_XHEAD
···SUBRC.
······WHEN·'E1XITEM'.
········PERFORM·E1XITEM_PROCESS·TABLES···T_XITEM
···T_IDOC_STATUS
································USING····F_XHEAD-CURRENCY
···T_IDOC_DATA
································CHANGING·SUBRC.

····ENDCASE.

··ENDLOOP.

ENDFORM.

106 April 2001

 SAP AG ALE Programming Guide
 Example Program to Process an IDoc

*--
-----*
*·······FORM·E1XHEAD_PROCESS·····································
·····*
*--
-----*
*··This·routine·fills·'f_xhead'·out·of·segment·e1xhead.··········
·····*··If·an·error·occurs,·subrc·is·non-
zero,·t_idoc_status·is·filled.····*
*--
-----*
*··--
>··F_IDOC_DATA·······IDoc·segment·containing·e1xhead·fields······
*
*··<--
··F_XHEAD···········Internal·structure·containing·doc.·header···*
*··<--
··T_IDOC_STATUS·····Status·fields·for·error·handling············*
*··<--··SUBRC·············Return·code:·non-
zero·if·an·error·occurred··*
*--
-----*
FORM·E1XHEAD_PROCESS·TABLES···T_IDOC_STATUS··STRUCTURE·BDIDOCSTAT
·····················USING····F_IDOC_DATA····STRUCTURE·EDIDD
·····················CHANGING·F_XHEAD········STRUCTURE·XHEAD
······························SUBRC··········LIKE·SY-SUBRC.

··DATA:·F_E1XHEAD·LIKE·E1XHEAD.

··F_E1XHEAD·=·F_IDOC_DATA-SDATA.

*·Process·fields·that·need·conversion·from·ISO-codes·to·SAP-codes
··PERFORM·E1XHEAD_CODES_ISO_TO_SAP
·········TABLES···T_IDOC_STATUS
·········USING····F_E1XHEAD
··················F_IDOC_DATA
·········CHANGING·F_XHEAD
··················SUBRC.

*·Process·fields·containing·dates·or·times
··PERFORM·E1XHEAD_DATE_TIME·USING····F_E1XHEAD
····························CHANGING·F_XHEAD.

ENDFORM.·······························"e1xhead_process

*--

April 2001 107

ALE Programming Guide SAP AG
Example Program to Process an IDoc

-----*
*·······FORM·E1XITEM_PROCESS·····································
·····*
*--
-----*
*··This·routine·converts·the·data·in·the·segment·'e1xitem'·for···
·····*
*··to·the·format·of·table·'t_xitem'·and·appends·it·to·the·table.·
·····*··If·an·error·occurs,·subrc·is·non-
zero,·t_idoc_status·is·filled.····*
*--
-----*
*··--
>··F_IDOC_DATA······IDoc·segment·································
*
*··<--
··T_XITEM··········Document·items·to·be·updated·to·database·····*
*··<--
··T_IDOC_STATUS····Status·fields·filled·if·an·error·occurred····*
*··<--
··SUBRC············Return·code:·0·if·all·OK·····················*
*--
-----*
FORM·E1XITEM_PROCESS·TABLES···T_XITEM·······STRUCTURE·XITEM
······························T_IDOC_STATUS·STRUCTURE·BDIDOCSTAT
·····················USING····CURRENCY······LIKE·XHEAD-CURRENCY
······························F_IDOC_DATA···STRUCTURE·EDIDD
·····················CHANGING·SUBRC·········LIKE·SY-SUBRC.

··DATA:·F_E1XITEM·LIKE·E1XITEM.

··F_E1XITEM·=·F_IDOC_DATA-SDATA.

*·Fields·of·type·CHAR,·NUMC,·QUAN·need·no·conversion.
··T_XITEM-ITEM_NO····=·F_E1XITEM-ITEM_NO.
··T_XITEM-MATERIALID·=·F_E1XITEM-MATERIALID.
··T_XITEM-DESCRIPT···=·F_E1XITEM-DESCRIPT.
··T_XITEM-QUANTITY···=·F_E1XITEM-QUANTITY.

*·Process·fields·that·need·conversion·from·ISO-codes·to·SAP-codes
··PERFORM·E1XHEAD_CODES_ISO_TO_SAP
·········TABLES···T_IDOC_STATUS
·········USING····F_E1XHEAD
··················F_IDOC_DATA
·········CHANGING·F_XHEAD
··················SUBRC.

*·Process·fields·that·contain·monetary·values

108 April 2001

 SAP AG ALE Programming Guide
 Example Program to Process an IDoc

··PERFORM·E1XITEM_VALUE_IDOC_TO_SAP·TABLES···T_IDOC_STATUS
····································USING····F_E1XITEM
···CURRENCY
···F_IDOC_DATA
····································CHANGING·T_XITEM
···SUBRC.

··APPEND·T_XITEM.

ENDFORM.

*--
-----*
*·······FORM·E1XHEAD_CODES_ISO_TO_SAP····························
·····*
*--
-----*
*··Converts·ISO-Codes·in·f_e1xhead·to·SAP-
codes·in·f_xhead.···········*··f_idoc_data,·t_idoc_status·and·sub
rc·are·used·for·error·handling.··*
*--
-----*
FORM·E1XHEAD_CODES_ISO_TO_SAP
·······TABLES···T_IDOC_STATUS·STRUCTURE·BDIDOCSTAT
·······USING····F_E1XHEAD·····STRUCTURE·E1XHEAD
················F_IDOC_DATA···STRUCTURE·EDIDD
·······CHANGING·F_XHEAD·······STRUCTURE·XHEAD
················SUBRC.

*·f_xhead-currency···Type·CUKY·=>·convert·ISO-Code·to·SAP-Code.
··PERFORM·CURRENCY_CODE_ISO_TO_SAP
·········TABLES···T_IDOC_STATUS
·········USING····F_E1XHEAD-CURRENCY
··················F_IDOC_DATA
··················'CURRENCY'
·········CHANGING·F_XHEAD-CURRENCY
··················SUBRC.

··CHECK·SUBRC·=·0.

*·f_xhead-
country···Contains·a·country·=>·convert·from·ISO·to·SAP·code.
··PERFORM·COUNTRY_CODE_ISO_TO_SAP
·········TABLES···T_IDOC_STATUS
·········USING····F_E1XHEAD-COUNTRY
··················F_IDOC_DATA
··················'COUNTRY'
·········CHANGING·F_XHEAD-COUNTRY
··················SUBRC.

April 2001 109

ALE Programming Guide SAP AG
Example Program to Process an IDoc

ENDFORM.

*--
-----*
*·······FORM·E1XITEM_CODES_ISO_TO_SAP····························
·····*
*--
-----*
*··Converts·ISO-Codes·in·f_e1xitem·to·SAP-
codes·in·f_xitem············*
*··f_idoc_data,·t_idoc_status·and·subrc·are·used·for·error·handli
ng.··*
*--
-----*
FORM·E1XITEM_CODES_ISO_TO_SAP
·······TABLES···T_IDOC_STATUS·STRUCTURE·BDIDOCSTAT
·······USING····F_E1XITEM·····STRUCTURE·E1XITEM
················F_IDOC_DATA···STRUCTURE·EDIDD
·······CHANGING·F_XITEM·······STRUCTURE·XITEM
················SUBRC·········LIKE·SY-SUBRC.

*·f_xitem-unit·······Type·UNIT·=>·convert·ISO-Code·to·SAP-Code.
··PERFORM·UNIT_OF_MEASURE_ISO_TO_SAP
·········TABLES···T_IDOC_STATUS
·········USING····F_E1XITEM-UNIT
··················F_IDOC_DATA
··················'unit'
·········CHANGING·F_XITEM-UNIT
··················SUBRC.

*·f_xitem-
ship_inst··Contains·shipping·instructions·=>·ISO·to·SAP·code.
··PERFORM·SHIPPING_INSTRUCT_ISO_TO_SAP
·········TABLES···T_IDOC_STATUS
·········USING····F_E1XITEM-SHIP_INST
··················F_IDOC_DATA
··················'ship_inst'
·········CHANGING·F_XITEM-SHIP_INST
··················SUBRC.

ENDFORM.

*--
-----*
*·······FORM·E1XITEM_VALUE_IDOC_TO_SAP···························
·····*
*--

110 April 2001

 SAP AG ALE Programming Guide
 Example Program to Process an IDoc

-----*
*··Converts·fields·containing·monetary·values·in·f_e1xitem·to····
·····*
*··the·internal·representation·in·f_xitem.·······················
·····*··f_idoc_data,·t_idoc_status·and·subrc·are·used·for·error·h
andling.··*
*--
-----*
FORM·E1XITEM_VALUE_IDOC_TO_SAP
·······TABLES···T_IDOC_STATUS·STRUCTURE·BDIDOCSTAT
·······USING····F_E1XITEM·····STRUCTURE·E1XITEM
················CURRENCY······LIKE·XHEAD-CURRENCY
················F_IDOC_DATA···STRUCTURE·EDIDD
·······CHANGING·F_XITEM·······STRUCTURE·XITEM
················SUBRC·········LIKE·SY-SUBRC.

*·f_xitem-
value····Type·CURR·=>·convert·IDoc·amount·to·internal·amount.
*·N.B.·the·currency·code·used·here·must·be·the·SAP-
internal·one,·not
*······the·one·contained·in·the·IDoc!
··CALL·FUNCTION·'CURRENCY_AMOUNT_IDOC_TO_SAP'
·······EXPORTING
············CURRENCY····=·CURRENCY
············IDOC_AMOUNT·=·F_E1XITEM-VALUE
·······IMPORTING
············SAP_AMOUNT··=·F_XITEM-VALUE
·······EXCEPTIONS
············OTHERS······=·1.

··IF·SY-SUBRC·<>·0.
····SUBRC·=·1.
*···Put·the·error·message·into·'t_idoc_status'
····PERFORM·STATUS_FILL_SY_ERROR
··············TABLES···T_IDOC_STATUS
··············USING····F_IDOC_DATA
·······················SY
·······················'value'·········"Field·name
·······················'e1xitem_value_idoc_to_sap'.······"Form·ro
utine
··ENDIF.·······························"if·sy-subrc·<>·0.

ENDFORM.

*--
-----*
*·······FORM·E1XHEAD_DATE_TIME···································
·····*

April 2001 111

ALE Programming Guide SAP AG
Example Program to Process an IDoc

*--
-----*
*··Moves·date·and·time·fields·in·f_e1xhead·to·the·fields·in·f_xhe
ad.··*
*--
-----*
FORM·E1XHEAD_DATE_TIME·USING····F_E1XHEAD·STRUCTURE·E1XHEAD
·······················CHANGING·F_XHEAD·STRUCTURE·XHEAD.

*·f_xhead-date····Type·DATS·=>·initial·value·is·not·'blank'.
··IF·E1XHEAD-DATE·IS·INITIAL.
····CLEAR·F_XHEAD-DATE.
····F_XHEAD-DATE·=·F_E1XHEAD-DATE.
··ENDIF.

ENDFORM.

*--
-----*
*·······FORM·CURRENCY_CODE_ISO_TO_SAP····························
·····*
*--
-----*
*··Converts·ISO·currency·code·'iso_currency_code'·to·SAP·code·in·
·····*
*··'sap_currency_code'···
·····*
*··f_idoc_data,·field_name,·t_idoc_status·and·subrc·are·used·for·
·····*
*··for·error·handling.···
·····*
*--
-----*
FORM·CURRENCY_CODE_ISO_TO_SAP
·······TABLES···T_IDOC_STATUS·····STRUCTURE·BDIDOCSTAT
·······USING····ISO_CURRENCY_CODE·LIKE·TCURC-ISOCD
················F_IDOC_DATA·······STRUCTURE·EDIDD
················FIELD_NAME········LIKE·BDIDOCSTAT-SEGFLD
·······CHANGING·SAP_CURRENCY_CODE·LIKE·TCURC-WAERS
················SUBRC·············LIKE·SY-SUBRC.

··IF·ISO_CURRENCY_CODE·IS·INITIAL.
····CLEAR·SAP_CURRENCY_CODE.
··ELSE.
····CALL·FUNCTION·'CURRENCY_CODE_ISO_TO_SAP'
·········EXPORTING
··············ISO_CODE·=·ISO_CURRENCY_CODE
·········IMPORTING

112 April 2001

 SAP AG ALE Programming Guide
 Example Program to Process an IDoc

··············SAP_CODE·=·SAP_CURRENCY_CODE
·········EXCEPTIONS
··············OTHERS···=·1.

····IF·SY-SUBRC·<>·0.
······SUBRC·=·1.
*·····Put·the·error·message·into·'t_idoc_status'
······PERFORM·STATUS_FILL_SY_ERROR
················TABLES···T_IDOC_STATUS
················USING····F_IDOC_DATA
·························SY
·························FIELD_NAME
·························'currency_code_iso_to_sap'.·····"Form·ro
utine
··ENDIF.·····························"if·sy-subrc·<>·0.

··ENDIF.·······························"if·iso_currency_code·is·i
nitial.

ENDFORM.

*--
-----*
*·······FORM·CURRENCY_CODE_ISO_TO_SAP····························
·····*
*--
-----*
*··Converts·ISO·currency·code·'iso_currency_code'·to·SAP·code·in·
·····*
*··'sap_currency_code'···
·····*
*··f_idoc_data,·field_name,·t_idoc_status·and·subrc·are·used·for·
·····*
*··for·error·handling.···
·····*
*--
-----*
FORM·COUNTRY_CODE_ISO_TO_SAP
·······TABLES···T_IDOC_STATUS····STRUCTURE·BDIDOCSTAT
·······USING····ISO_COUNTRY_CODE·LIKE·T005-INTCA
················F_IDOC_DATA······STRUCTURE·EDIDD
················FIELD_NAME·······LIKE·BDIDOCSTAT-SEGFLD
·······CHANGING·SAP_COUNTRY_CODE·LIKE·T005-LAND1
················SUBRC············LIKE·SY-SUBRC.

*·Only·convert·if·the·field·is·not·initial.
··IF·ISO_COUNTRY_CODE·IS·INITIAL.
····CLEAR·SAP_COUNTRY_CODE.

April 2001 113

ALE Programming Guide SAP AG
Example Program to Process an IDoc

··ELSE.
····CALL·FUNCTION·'COUNTRY_CODE_ISO_TO_SAP'
·········EXPORTING
··············ISO_CODE·=·ISO_COUNTRY_CODE
·········IMPORTING
··············SAP_CODE·=·SAP_COUNTRY_CODE
·········EXCEPTIONS
··············OTHERS···=·1.

····IF·SY-SUBRC·<>·0.
······SUBRC·=·1.
*·····Put·the·error·message·into·'t_idoc_status'
······PERFORM·STATUS_FILL_SY_ERROR
················TABLES···T_IDOC_STATUS
················USING····F_IDOC_DATA
·························SY
·························FIELD_NAME
·························'country_code_iso_to_sap'.······"Form·ro
utine
··ENDIF.·····························"if·sy-subrc·<>·0.

··ENDIF.·······························"if·iso_country_code·is·in
itial.

ENDFORM.

*--
-----*
*·······FORM·UNIT_OF_MEASURE_ISO_TO_SAP··························
·····*
*--
-----*
*··Converts·ISO·unit·of·measure·code·'iso_unit_of_measure'·to·SAP
·····*
*··code·in·'sap_unit_of_measure'.································
·····*
*··f_idoc_data,·field_name,·t_idoc_status·and·subrc·are·used·for·
·····*
*··for·error·handling.···
·····*
*--
-----*
FORM·UNIT_OF_MEASURE_ISO_TO_SAP
·······TABLES···T_IDOC_STATUS·······STRUCTURE·BDIDOCSTAT
·······USING····ISO_UNIT_OF_MEASURE·LIKE·T006-ISOCODE
················F_IDOC_DATA·········STRUCTURE·EDIDD
················FIELD_NAME··········LIKE·BDIDOCSTAT-SEGFLD
·······CHANGING·SAP_UNIT_OF_MEASURE·LIKE·T006-MSEHI
················SUBRC···············LIKE·SY-SUBRC.

114 April 2001

 SAP AG ALE Programming Guide
 Example Program to Process an IDoc

*·Only·convert·the·field·if·it·is·not·empty.
··IF·ISO_UNIT_OF_MEASURE·IS·INITIAL.
····CLEAR·SAP_UNIT_OF_MEASURE.
··ELSE.
····CALL·FUNCTION·'UNIT_OF_MEASURE_ISO_TO_SAP'
·········EXPORTING
··············ISO_CODE·=·ISO_UNIT_OF_MEASURE
·········IMPORTING
··············SAP_CODE·=·SAP_UNIT_OF_MEASURE
·········EXCEPTIONS
··············OTHERS···=·1.

····IF·SY-SUBRC·<>·0.
······SUBRC·=·1.
*·····Put·the·error·message·into·'t_idoc_status'
······PERFORM·STATUS_FILL_SY_ERROR
················TABLES···T_IDOC_STATUS
················USING····F_IDOC_DATA
·························SY
·························FIELD_NAME
·························'unit_of_measure_iso_to_sap'.··"Form·rou
tine
··ENDIF.·····························"if·sy-subrc·<>·0.

··ENDIF.··················"if·iso_unit_of_measure_code·is·initial
.

ENDFORM.

*--
-----*
*·······FORM·SHIPPING_INSTRUCT_ISO_TO_SAP························
·····*
*--
-----*
*··Converts·ISO·package·code·'iso_package_type'·to·SAP·code·for··
·····*
*··purchasing·shipping·instructions·in·'sap_shipping_instructions
'.···*
*··f_idoc_data,·field_name,·t_idoc_status·and·subrc·are·used·for·
·····*
*··for·error·handling.···
·····*
*--
-----*
FORM·SHIPPING_INSTRUCT_ISO_TO_SAP
·······TABLES···T_IDOC_STATUS·············STRUCTURE·BDIDOCSTAT
·······USING····ISO_PACKAGE_TYPE··········LIKE·T027A-IVERS

April 2001 115

ALE Programming Guide SAP AG
Example Program to Process an IDoc

················F_IDOC_DATA···············STRUCTURE·EDIDD
················FIELD_NAME················LIKE·BDIDOCSTAT-SEGFLD
·······CHANGING·SAP_SHIPPING_INSTRUCTIONS·LIKE·T027A-EVERS
················SUBRC·····················LIKE·SY-SUBRC.

*·Only·convert·the·field·if·it·is·not·empty.
··IF·ISO_PACKAGE_TYPE·IS·INITIAL.
····CLEAR·SAP_SHIPPING_INSTRUCTIONS.
··ELSE.
····CALL·FUNCTION·'ISO_TO_SAP_PACKAGE_TYPE_CODE'
·········EXPORTING
··············ISO_CODE·=·ISO_PACKAGE_TYPE
·········IMPORTING
··············SAP_CODE·=·SAP_SHIPPING_INSTRUCTIONS
·········EXCEPTIONS
··············OTHERS···=·1.

····IF·SY-SUBRC·<>·0.
······SUBRC·=·1.
*·····Put·the·error·message·into·'t_idoc_status'
······PERFORM·STATUS_FILL_SY_ERROR
················TABLES···T_IDOC_STATUS
················USING····F_IDOC_DATA
·························SY
·························FIELD_NAME
·························'shipping_instruct_iso_to_sap'.·"Form·ro
ut.
··ENDIF.·····························"if·sy-subrc·<>·0.

··ENDIF.··················"if·iso_unit_of_measure_code·is·initial
.

ENDFORM.

*--
-----*
*·······FORM·STATUS_FILL_SY_ERROR································
·····*
*--
-----*
*··Fills·the·structure·t_idoc_status·with·the·import·parameters··
·····*
*··plus·the·relevant·sy·fields.··································
·····*
*--
-----*
*··--
>··IDOC_NUMBER···········IDoc·number·····························

116 April 2001

 SAP AG ALE Programming Guide
 Example Program to Process an IDoc

*
*··--
>··SEGNUM················Segment·number··························
*
*··--
>··SEGFLD················Field·in·segment························
*
*··--
>··ROUTID················Name·of·routine·························
*
*··<--
··T_IDOC_STATUS·········Status·fields···························*
*--
-----*
FORM·STATUS_FILL_SY_ERROR·TABLES···T_IDOC_STATUS·STRUCTURE·BDIDOC
STAT
··························USING····F_IDOC_DATA···STRUCTURE·EDIDD
···································VALUE(F_SY)···STRUCTURE·SY
···································SEGFLD········LIKE·BDIDOCSTAT-
SEGFLD
···································ROUTID········LIKE·BDIDOCSTAT-
ROUTID.

··t_idoc_status-docnum·=·f_idoc_data-docnum.
··t_idoc_status-status·=·c_idoc_status_error.
··t_idoc_status-msgty··=·f_sy-msgty.
··t_idoc_status-msgid··=·f_sy-msgid.
··T_IDOC_STATUS-MSGNO··=·F_SY-MSGNO.
··t_idoc_status-msgv1··=·f_sy-msgv1.
··t_idoc_status-msgv2··=·f_sy-msgv2.
··t_idoc_status-msgv3··=·f_sy-msgv3.
··t_idoc_status-msgv4··=·f_sy-msgv4.
··t_idoc_status-segnum·=·f_idoc_data-segnum.
··t_idoc_status-segfld·=·segfld.
··t_idoc_status-repid··=·f_sy-repid.
··t_idoc_status-routid·=·routid.
··APPEND·T_IDOC_STATUS.

ENDFORM.

April 2001 117

ALE Programming Guide SAP AG
Serialization Using Message Types

Serialization Using Message Types
The ALE serialization function module SERIALIZATION_CHECK flags each IDoc that has been
overtaken. An overtaken IDoc is defined as follows: assuming IDocs A and B contain information
about object/document X (e.g. order number 4711). If A is created by the R3 sending system
before B, but B has already been successfully processed by the R3 receiving system, A is said to
have been overtaken.
To use serialization you need to:
• Define the serialization object for your message type - ALE extracts the object/document

number from the IDoc’s data segments, and hence needs to know which field to use.
• Call the function module SERIALIZATION_CHECK at the beginning of your inbound function

module.
• Handle overtaken IDocs according to your needs.
• Ensure that the inbound function module’s export table SERIALIZATION_INFO contains the

serialization table from the function module SERIALIZATION_CHECK (see the example
below).

The Example Program for Serialization [Seite 119] shows the additional coding
necessary in the function module Idoc_Input_Xample to recognize overtaken IDocs
and to return an appropriate error message. The example assumes that overtaken
IDocs need to be manually dealt with, i.e. they cannot be automatically processed.

118 April 2001

 SAP AG ALE Programming Guide
 Example Program for Serialization

Example Program for Serialization

FUNCTION·IDOC_INPUT_XAMPLE2.
*"--
*"
*"Local·interface:
*"·······IMPORTING
*"·············VALUE(INPUT_METHOD)·LIKE··BDWFAP_PAR-INPUTMETHD
*"·············VALUE(MASS_PROCESSING)·LIKE··BDWFAP_PAR-MASS_PROC
*"·······EXPORTING
*"·············VALUE(WORKFLOW_RESULT)·LIKE··BDWF_PARAM-RESULT
*"·············VALUE(APPLICATION_VARIABLE)·LIKE··BDWF_PARAM-APPL_VAR
*"·············VALUE(IN_UPDATE_TASK)·LIKE··BDWFAP_PAR-UPDATETASK
*"·············VALUE(CALL_TRANSACTION_DONE)·LIKE··BDWFAP_PAR-CALLTRANS
*"·······TABLES
*"··············IDOC_CONTRL·STRUCTURE··EDIDC
*"··············IDOC_DATA·STRUCTURE··EDIDD
*"··············IDOC_STATUS·STRUCTURE··BDIDOCSTAT
*"··············RETURN_VARIABLES·STRUCTURE··BDWFRETVAR
*"··············SERIALIZATION_INFO·STRUCTURE··BDI_SER
*"·······EXCEPTIONS
*"··············WRONG_FUNCTION_CALLED
*"--

*·--
*·----------------------·05·July·1996·----------------------------------
*·--

*·Example·function·module·for·processing·inbound·IDocs·for·ALE·or·EDI.
*·This·example·applies·for·processing
*
*···with····-··one·IDoc·at·a·time
*···········-··serialization
*
*···without·-··customer-exits
*···········-··calling·an·ALE-enabled·transaction
*···········-··mass·processing·(more·than·one·IDoc·at·a·time)

*·--------------------·Naming·conventions·------------------------------
*·Internal·tables·start·with·'t_'
*·Internal·field·strings·start·with·'f_'
*·--

*·>>·The·following·line·must·appear·in·the·global·part·of·your
*·>>·function·group:
*····include·mbdconwf.············"Report·containing·the·ALE·constants.
*·The·ALE·constants·start·with·'c_'.

··DATA:·SUBRC·LIKE·SY-SUBRC,
········OBJECT_NUMBER·LIKE·XHEAD-DOCMNT_NO.

April 2001 119

ALE Programming Guide SAP AG
Example Program for Serialization

*·Initialize·variables
··SUBRC·=·0.

*·Read·the·IDoc's·control·record
··READ·TABLE·IDOC_CONTRL·INDEX·1.

··PERFORM·IDOC_PROCESS_XAMPLE2·TABLES···IDOC_DATA
··SERIALIZATION_INFO
··IDOC_STATUS
·······························USING····IDOC_CONTRL
·······························CHANGING·OBJECT_NUMBER
··SUBRC.

*·Fill·the·ALE·export·parameters

*·In·this·example·we·assume·that·'call·function·'xxx'·in·update·task'·is
*·not·used·to·update·the·database.
··CLEAR·IN_UPDATE_TASK.
··CLEAR·CALL_TRANSACTION_DONE.·········"Call·Transaction·is·not·used.

··IF·SUBRC·<>·0.·······················"Error·occurred

····WORKFLOW_RESULT·=·C_WF_RESULT_ERROR.
····RETURN_VARIABLES-WF_PARAM·=·C_WF_PAR_ERROR_IDOCS.
····RETURN_VARIABLES-DOC_NUMBER·=·IDOC_CONTRL-DOCNUM.
····APPEND·RETURN_VARIABLES.

··ELSE.································"IDoc·processed·successfully

····WORKFLOW_RESULT·=·C_WF_RESULT_OK.
····RETURN_VARIABLES-WF_PARAM·=·C_WF_PAR_PROCESSED_IDOCS.
····RETURN_VARIABLES-DOC_NUMBER·=·IDOC_CONTRL-DOCNUM.
····APPEND·RETURN_VARIABLES.
····RETURN_VARIABLES-WF_PARAM·=·C_WF_PAR_APPL_OBJECTS.
····RETURN_VARIABLES-DOC_NUMBER·=·OBJECT_NUMBER.
····APPEND·RETURN_VARIABLES.

··ENDIF.

ENDFUNCTION.

·······FORM·IDOC_PROCESS_XAMPLE2·····································

··This·routine·creates·an·application·document·based·on·the·IDoc's···
··contents.·Object_Number·contains·the·new·document's·number.·········
·If·an·error·occurs,·subrc·is·non-zero,·t_idoc_status·is·filled.····*
··Note:·if·more·than·one·error·is·detected,·t_idoc_status·contains···
········more·than·one·status·record.·································

··-->··F_IDOC_CONTRL····IDoc·control·record··························

120 April 2001

 SAP AG ALE Programming Guide
 Example Program for Serialization

··-->··T_IDOC_DATA······IDoc·data·records····························
··<--··T_IDOC_STATUS····IDoc·status·records··························
··<--··OBJECT_NUMBER····Created·document's·number····················
··<--··SUBRC············Return·code··································

FORM·IDOC_PROCESS_XAMPLE2
·······TABLES···T_IDOC_DATA··········STRUCTURE·EDIDD
················T_SERIALIZATION_INFO·STRUCTURE·BDI_SER
················T_IDOC_STATUS········STRUCTURE·BDIDOCSTAT
·······USING····F_IDOC_CONTRL········STRUCTURE·EDIDC
·······CHANGING·OBJECT_NUMBER········LIKE·XHEAD-DOCMNT_NO
················SUBRC················LIKE·SY-SUBRC.

*·Internal·field·string·for·the·document·header.
··DATA:·F_XHEAD·LIKE·XHEAD.

*·Internal·table·for·the·document·items.
··DATA:·T_XITEM·LIKE·XITEM·OCCURS·0·WITH·HEADER·LINE.

*·Number·given·to·the·created·document
··DATA:·DOCUMENT_NUMBER·LIKE·F_XHEAD-DOCMNT_NO.

*·Move·the·data·in·the·IDoc·to·the·internal·structures/tables
*·f_xhead·and·t_xitem.
··PERFORM·IDOC_INTERPRET2·TABLES···T_IDOC_DATA
···································T_SERIALIZATION_INFO
···································T_XITEM
···································T_IDOC_STATUS
··························USING····F_IDOC_CONTRL
··························CHANGING·F_XHEAD
···································SUBRC.

*·Create·the·application·object·if·no·error·occurred·so·far.
··IF·SUBRC·=·0.
*···This·fictitious·function·module·creates·a·new·object·based·on·the
*···data·that·was·read·from·the·IDoc.·The·new·object's·ID·is·returned
*···in·the·parameter·'document_number'.
*···The·function·module·checks·that·the·data·is·correct,·and·raises
*···an·exception·if·an·error·is·detected.
····CALL·FUNCTION·'XAMPLE_OBJECT_CREATE'
·········EXPORTING
··············XHEAD···········=·F_XHEAD
·········IMPORTING
··············DOCUMENT_NUMBER·=·DOCUMENT_NUMBER
·········TABLES
··············XITEM···········=·T_XITEM
·········EXCEPTIONS
··············OTHERS··········=·1.

····IF·SY-SUBRC·<>·0.
······SUBRC·=·1.

April 2001 121

ALE Programming Guide SAP AG
Example Program for Serialization

*·····Put·the·error·message·into·'t_idoc_status'
······PERFORM·STATUS_FILL_SY_ERROR
················TABLES···T_IDOC_STATUS
················USING····T_IDOC_DATA
·························SY
·························''············"Field·name
·························'idoc_process_xample'.·········"Form·routine

····ELSE.
*·····Fill·the·remaining·export·parameters
······OBJECT_NUMBER·=·DOCUMENT_NUMBER.··········"New·document's·number

······t_idoc_status-docnum·=·f_idoc_contrl-docnum.
······t_idoc_status-status·=·c_idoc_status_ok.
······t_idoc_status-msgty··=·'S'.
······t_idoc_status-msgid··=·your_msgid.·"Global·variable.
······t_idoc_status-msgno··=·msgno_success."Global·variable.
······t_idoc_status-msgv1··=·object_number.
······APPEND·T_IDOC_STATUS.
····ENDIF.·····························"if·sy-subrc·<>·0.
··ENDIF.·····························"if·subrc·=·0.

ENDFORM.

·······FORM·IDOC_INTERPRET2··

··This·routine·checks·that·the·correct·message·type·is·being·used,···
··then·checks·that·the·IDoc·has·not·been·overtaken·(serialization),··
··and·then·converts·and·moves·the·data·from·the·IDoc·segments·to·the·
··internal·structure·f_xhead·and·internal·table·t_xitem.·············
··If·an·error·occurs,·t_idoc_status·is·filled·an·subrc·<>·0.·········

··-->··T_IDOC_STATUS···
··-->··T_XITEM···
··-->··F_IDOC_DATA···
··-->··F_XHEAD···
··-->··SUBRC···

FORM·IDOC_INTERPRET2·TABLES···T_IDOC_DATA····STRUCTURE·EDIDD
······························T_SERIALIZATION_INFO·STRUCTURE·BDI_SER
······························T_XITEM········STRUCTURE·XITEM
······························T_IDOC_STATUS··STRUCTURE·BDIDOCSTAT
·····················USING····F_IDOC_CONTRL··STRUCTURE·EDIDC
·····················CHANGING·F_XHEAD········STRUCTURE·XHEAD
······························SUBRC··········LIKE·SY-SUBRC.

DATA:·BEGIN·OF·T_IDOC_CONTRL·OCCURS·1.
········INCLUDE·STRUCTURE·EDIDC.
DATA:·END·OF·T_IDOC_CONTRL.

122 April 2001

 SAP AG ALE Programming Guide
 Example Program for Serialization

APPEND·F_IDOC_CONTRL·TO·T_IDOC_CONTRL.

*·Check·that·the·IDoc·contains·the·correct·message·type.
*·Note:·if·your·message·type·is·reducible,·check·field·'idoctp'
*·······(IDoc·type)·instead·of·'mestyp'.
··IF·F_IDOC_CONTRL-MESTYP·<>·'XAMPLE'.

····MESSAGE·ID······YOUR_MSGID···············"Global·variable
············TYPE····'E'
············NUMBER··MSGNO_WRONG_FUNCTION·····"Global·variable
············WITH····F_IDOC_CONTRL-MESTYP·····"message·type
····················'IDOC_INPUT_XAMPLE'······"Your·function·module.
····················F_IDOC_CONTRL-SNDPRT·····"Sender·partner·type
····················F_IDOC_CONTRL-SNDPRN·····"Sender·number.
············RAISING·WRONG_FUNCTION_CALLED.

··ENDIF.

*·>>>>>>>>>>>>>·Serialization·check·(Start)·<<<<<<<<<<<<<<<<<<<<<<<<<<<<
··APPEND·F_IDOC_CONTRL·TO·T_IDOC_CONTRL.

··CALL·FUNCTION·'IDOC_SERIALIZATION_CHECK'
·······TABLES
············IDOC_SERIAL··=·T_SERIALIZATION_INFO
············IDOC_DATA····=·T_IDOC_DATA
············IDOC_CONTROL·=·T_IDOC_CONTRL
·······EXCEPTIONS
············OTHERS·······=·1.

··IF·SY-SUBRC·<>·0.
····SUBRC·=·1.
*···Put·the·error·message·into·'idoc_status'
····PERFORM·STATUS_FILL_SY_ERROR
··············TABLES···T_IDOC_STATUS
··············USING····T_IDOC_DATA
·······················SY
·······················'materialid'····"Field·name
·······················'e1xitem_process'.·········"Form·routine
····EXIT.·····································"Leave·the·routine.
··ENDIF.·······························"if·sy-subrc·<>·0.

*·Get·the·serialization·info·for·your·IDoc.
··READ·TABLE·T_SERIALIZATION_INFO
·······WITH·KEY·DOCNUM·=·F_IDOC_CONTRL-DOCNUM.

*·Check·whether·the·IDoc·has·been·flagged·as·having·been·overtaken.
··IF·NOT·T_SERIALIZATION_INFO-SERFLAG·IS·INITIAL.
*···IDoc·has·been·overtaken:·in·this·example,·flag·as·an·error·and·quit.
····SUBRC·=·1.
*···Put·the·error·message·into·'t_idoc_status'
····t_idoc_status-docnum·=·f_idoc_contrl-docnum.
····t_idoc_status-status·=·c_idoc_status_error.

April 2001 123

ALE Programming Guide SAP AG
Example Program for Serialization

····t_idoc_status-msgty··=·'E'.
····T_IDOC_STATUS-MSGID··=·YOUR_MSGID.·"Global·variable
····T_IDOC_STATUS-MSGNO··=·MSGNO_IDOC_OVERTAKEN.··"Global·variable
····APPEND·T_IDOC_STATUS.
····EXIT.······························"Leave·the·routine.
··ENDIF.····"if·not·t_serialization_info-serflag·is·initial.
*·>>>>>>>>>>>>>·Serialization·check·(End)·<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

*·Loop·through·the·IDoc's·segments·and·convert·the·data·from·the·IDoc
*·format·to·the·internal·format.
··LOOP·AT·T_IDOC_DATA·WHERE·DOCNUM·=·F_IDOC_CONTRL-DOCNUM.

····CASE·T_IDOC_DATA-SEGNAM.

······WHEN·'E1XHEAD'.
········PERFORM·E1XHEAD_PROCESS·TABLES···T_IDOC_STATUS
································USING····T_IDOC_DATA
································CHANGING·F_XHEAD
···SUBRC.
······WHEN·'E1XITEM'.
········PERFORM·E1XITEM_PROCESS·TABLES···T_XITEM
···T_IDOC_STATUS
································USING····F_XHEAD-CURRENCY
···T_IDOC_DATA
································CHANGING·SUBRC.

····ENDCASE.
··ENDLOOP.
ENDFORM.

124 April 2001

 SAP AG ALE Programming Guide
 Customer Exits

Customer Exits
Customer exits in the inbound function module allow customers to:
• Change the way SAP segments are processed, e.g. by changing the value of some of the

fields
• Access the customer segments they added to the SAP IDoc using the IDoc definition tool

The following points should be fulfilled by the customer exits:
• Can all the data in SAP segments in the IDoc be read via customer exits?
• Can all the customer segments in the IDoc be read via customer exits?
• Is a customer exit called every time a segment has been processed?
• Does the customer exit support error handling?
• Can the exit fill the parameters Workflow_Result, Idoc_Status and Return_Variables?
• Is there a customer exit for serialization?
• This makes sense if the inbound function module does not support serialization.
• If the customer has appended fields to an SAP table, are these fields easily accessible in the

exit?
• Are the exits long-lived? Customers expect exits to be called with the same meaning in future

releases.
• Is it easy for the customer to navigate through the data in the exit? For example, to determine

which item is being processed now, etc.
• If the same coding is used for different message types: Can the customer tell which message

type is being used?

The Example Program for a Customer Exit [Seite 126] shows the implementation of a
customer exit.

April 2001 125

ALE Programming Guide SAP AG
Example Program for a Customer Exit

Example Program for a Customer Exit

FUNCTION·IDOC_INPUT_XAMPLE3.
*"--
*"
*"Local·interface:
*"·······IMPORTING
*"·············VALUE(INPUT_METHOD)·LIKE··BDWFAP_PAR-INPUTMETHD
*"·············VALUE(MASS_PROCESSING)·LIKE··BDWFAP_PAR-MASS_PROC
*"·······EXPORTING
*"·············VALUE(WORKFLOW_RESULT)·LIKE··BDWF_PARAM-RESULT
*"·············VALUE(APPLICATION_VARIABLE)·LIKE··BDWF_PARAM-APPL_VAR
*"·············VALUE(IN_UPDATE_TASK)·LIKE··BDWFAP_PAR-UPDATETASK
*"·············VALUE(CALL_TRANSACTION_DONE)·LIKE··BDWFAP_PAR-CALLTRANS
*"·······TABLES
*"··············IDOC_CONTRL·STRUCTURE··EDIDC
*"··············IDOC_DATA·STRUCTURE··EDIDD
*"··············IDOC_STATUS·STRUCTURE··BDIDOCSTAT
*"··············RETURN_VARIABLES·STRUCTURE··BDWFRETVAR
*"··············SERIALIZATION_INFO·STRUCTURE··BDI_SER
*"·······EXCEPTIONS
*"··············WRONG_FUNCTION_CALLED
*"--

*·--
*·---------------------------·05·July·1996·-----------------------------
*·--

*·Example·function·module·for·processing·inbound·IDocs·for·ALE·or·EDI.
*·This·example·applies·for·processing
*
*···with····-··one·IDoc·at·a·time
*···········-··serialization
*···········-··customer-exits
*
*···without·-··calling·an·ALE-enabled·transaction
*···········-··mass·processing·(more·than·one·IDoc·at·a·time)

*·--------------------·Naming·conventions·------------------------------
*·Internal·tables·start·with·'t_'
*·Internal·field·strings·start·with·'f_'
*·--

*·>>·The·following·line·must·appear·in·the·global·part·of·your
*·>>·function·group:
*····include·mbdconwf.············"Report·containing·the·ALE·constants.
*·The·ALE·constants·start·with·'c_'.

··DATA:·SUBRC·LIKE·SY-SUBRC,
········OBJECT_NUMBER·LIKE·XHEAD-DOCMNT_NO.

126 April 2001

 SAP AG ALE Programming Guide
 Example Program for a Customer Exit

*·Initialize·variables
··SUBRC·=·0.

*·Read·the·IDoc's·control·record
··READ·TABLE·IDOC_CONTRL·INDEX·1.

*·>>>>>>>>>>>>>·Customer·exit·1·(Start)··<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
*·This·exit·gives·the·customer·access·to·the·IDoc's·control·record,
*·the·import·parameters·and·allows·the·customer·to·do·serialization.
··CALL·CUSTOMER-FUNCTION·'001'
·······EXPORTING
············INPUT_METHOD····=·INPUT_METHOD
············MASS_PROCESSING·=·MASS_PROCESSING
·······TABLES
············IDOC_SERIAL·····=·SERIALIZATION_INFO
············IDOC_DATA·······=·IDOC_DATA
············IDOC_CONTROL····=·IDOC_CONTRL
·······EXCEPTIONS
············OTHERS··········=·1.

··IF·SY-SUBRC·<>·0.
····SUBRC·=·1.
····PERFORM·STATUS_FILL_SY_ERROR·TABLES·IDOC_STATUS
·································USING··IDOC_DATA
··SY
··'·'
··'customer-function·001'.
··ENDIF.
*·>>>>>>>>>>>>>·Customer·exit·1·(End)···<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

··PERFORM·IDOC_PROCESS_XAMPLE3·TABLES···IDOC_DATA
··IDOC_STATUS
·······························USING····IDOC_CONTRL
·······························CHANGING·OBJECT_NUMBER
··SUBRC.

*·Fill·the·ALE·export·parameters

*·In·this·example·we·assume·that·'call·function·'xxx'·in·update·task'·is
*·not·used·to·update·the·database.
··CLEAR·IN_UPDATE_TASK.
··CLEAR·CALL_TRANSACTION_DONE.·········"Call·Transaction·is·not·used.

··IF·SUBRC·<>·0.·······················"Error·occurred

····WORKFLOW_RESULT·=·C_WF_RESULT_ERROR.
····RETURN_VARIABLES-WF_PARAM·=·C_WF_PAR_ERROR_IDOCS.
····RETURN_VARIABLES-DOC_NUMBER·=·IDOC_CONTRL-DOCNUM.
····APPEND·RETURN_VARIABLES.

··ELSE.································"IDoc·processed·successfully

April 2001 127

ALE Programming Guide SAP AG
Example Program for a Customer Exit

····WORKFLOW_RESULT·=·C_WF_RESULT_OK.
····RETURN_VARIABLES-WF_PARAM·=·C_WF_PAR_PROCESSED_IDOCS.
····RETURN_VARIABLES-DOC_NUMBER·=·IDOC_CONTRL-DOCNUM.
····APPEND·RETURN_VARIABLES.
····RETURN_VARIABLES-WF_PARAM·=·C_WF_PAR_APPL_OBJECTS.
····RETURN_VARIABLES-DOC_NUMBER·=·OBJECT_NUMBER.
····APPEND·RETURN_VARIABLES.

··ENDIF.

*·>>>>>>>>>>>>>·Customer·exit·3·(Start)··<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
*·This·exit·gives·the·customer·access·to·the·export·parameters.
··CALL·CUSTOMER-FUNCTION·'003'
··········EXPORTING
···············SUBRC·····················=·SUBRC
···············WORKFLOW_RESULT_IN········=·WORKFLOW_RESULT
···············APPLICATION_VARIABLE_IN···=·APPLICATION_VARIABLE
···············IN_UPDATE_TASK_IN·········=·IN_UPDATE_TASK
··········IMPORTING
···············WORKFLOW_RESULT_OUT·······=·WORKFLOW_RESULT
···············APPLICATION_VARIABLE_OUT··=·APPLICATION_VARIABLE
···············IN_UPDATE_TASK_OUT········=·IN_UPDATE_TASK
··········TABLES
···············RETURN_VARIABLES··········=·RETURN_VARIABLES.
*·>>>>>>>>>>>>>·Customer·exit·3·(End)···<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

ENDFUNCTION.

·······FORM·IDOC_PROCESS_XAMPLE3·····································

··This·routine·creates·an·application·document·based·on·the·IDoc's···
··contents.·Object_Number·contains·the·new·document's·number.·········
·If·an·error·occurs,·subrc·is·non-zero,·t_idoc_status·is·filled.····*
··Note:·if·more·than·one·error·is·detected,·t_idoc_status·contains···
········more·than·one·status·record.·································

··-->··F_IDOC_CONTRL····IDoc·control·record··························
··-->··T_IDOC_DATA······IDoc·data·records····························
··<--··T_IDOC_STATUS····IDoc·status·records··························
··<--··OBJECT_NUMBER····Created·document's·number····················
··<--··SUBRC············Return·code··································

FORM·IDOC_PROCESS_XAMPLE3
·······TABLES···T_IDOC_DATA··········STRUCTURE·EDIDD
················T_IDOC_STATUS········STRUCTURE·BDIDOCSTAT
·······USING····F_IDOC_CONTRL········STRUCTURE·EDIDC
·······CHANGING·OBJECT_NUMBER········LIKE·XHEAD-DOCMNT_NO
················SUBRC················LIKE·SY-SUBRC.

*·Internal·field·string·for·the·document·header.
··DATA:·F_XHEAD·LIKE·XHEAD.

128 April 2001

 SAP AG ALE Programming Guide
 Example Program for a Customer Exit

*·Internal·table·for·the·document·items.
··DATA:·T_XITEM·LIKE·XITEM·OCCURS·0·WITH·HEADER·LINE.

*·Number·given·to·the·created·document
··DATA:·DOCUMENT_NUMBER·LIKE·F_XHEAD-DOCMNT_NO.

*·Move·the·data·in·the·IDoc·to·the·internal·structures/tables
*·f_xhead·and·t_xitem.
··PERFORM·IDOC_INTERPRET3·TABLES···T_IDOC_DATA
···································T_XITEM
···································T_IDOC_STATUS
··························USING····F_IDOC_CONTRL
··························CHANGING·F_XHEAD
···································SUBRC.

*·Create·the·application·object·if·no·error·occurred·so·far.
··IF·SUBRC·=·0.
*···This·fictitious·function·module·creates·a·new·object·based·on·the
*···data·that·was·read·from·the·IDoc.·The·new·object's·ID·is·returned
*···in·the·parameter·'document_number'.
*···The·function·module·checks·that·the·data·is·correct,·and·raises
*···an·exception·if·an·error·is·detected.
····CALL·FUNCTION·'XAMPLE_OBJECT_CREATE'
·········EXPORTING
··············XHEAD···········=·F_XHEAD
·········IMPORTING
··············DOCUMENT_NUMBER·=·DOCUMENT_NUMBER
·········TABLES
··············XITEM···········=·T_XITEM
·········EXCEPTIONS
··············OTHERS··········=·1.

····IF·SY-SUBRC·<>·0.
······SUBRC·=·1.
*·····Put·the·error·message·into·'t_idoc_status'
······PERFORM·STATUS_FILL_SY_ERROR
················TABLES···T_IDOC_STATUS
················USING····T_IDOC_DATA
·························SY
·························''············"Field·name
·························'idoc_process_xample'.·········"Form·routine

····ELSE.
*·····Fill·the·remaining·export·parameters
······OBJECT_NUMBER·=·DOCUMENT_NUMBER.·"New·document's·number

······t_idoc_status-docnum·=·f_idoc_contrl-docnum.
······t_idoc_status-status·=·c_idoc_status_ok.
······t_idoc_status-msgty··=·'S'.
······t_idoc_status-msgid··=·your_msgid.·"Global·variable.

April 2001 129

ALE Programming Guide SAP AG
Example Program for a Customer Exit

······t_idoc_status-msgno··=·msgno_success."Global·variable.
······t_idoc_status-msgv1··=·object_number.
······APPEND·T_IDOC_STATUS.
····ENDIF.·····························"if·sy-subrc·<>·0.
··ENDIF.·······························"if·subrc·=·0.

ENDFORM.

·······FORM·IDOC_INTERPRET3··

··This·routine·checks·that·the·correct·message·type·is·being·used,···
··then·checks·that·the·IDoc·has·not·been·overtaken·(serialization),··
··and·then·converts·and·moves·the·data·from·the·IDoc·segments·to·the·
··internal·structure·f_xhead·and·internal·table·t_xitem.·············
··If·an·error·occurs,·t_idoc_status·is·filled·an·subrc·<>·0.·········

··-->··T_IDOC_STATUS···
··-->··T_XITEM···
··-->··F_IDOC_DATA···
··-->··F_XHEAD···
··-->··SUBRC···

FORM·IDOC_INTERPRET3·TABLES···T_IDOC_DATA····STRUCTURE·EDIDD
······························T_XITEM········STRUCTURE·XITEM
······························T_IDOC_STATUS··STRUCTURE·BDIDOCSTAT
·····················USING····F_IDOC_CONTRL··STRUCTURE·EDIDC
·····················CHANGING·F_XHEAD········STRUCTURE·XHEAD
······························SUBRC··········LIKE·SY-SUBRC.

*·Check·that·the·IDoc·contains·the·correct·message·type.
*·Note:·if·your·message·type·is·reducible,·check·field·'idoctp'
*·······(IDoc·type)·instead·of·'mestyp'.
··IF·F_IDOC_CONTRL-MESTYP·<>·'XAMPLE'.

····MESSAGE·ID······YOUR_MSGID···············"Global·variable
············TYPE····'E'
············NUMBER··MSGNO_WRONG_FUNCTION·····"Global·variable
············WITH····F_IDOC_CONTRL-MESTYP·····"message·type
····················'IDOC_INPUT_XAMPLE'······"Your·function·module.
····················F_IDOC_CONTRL-SNDPRT·····"Sender·partner·type
····················F_IDOC_CONTRL-SNDPRN·····"Sender·number.
············RAISING·WRONG_FUNCTION_CALLED.

··ENDIF.

*·Loop·through·the·IDoc's·segments·and·convert·the·data·from·the·IDoc
*·format·to·the·internal·format.
··LOOP·AT·T_IDOC_DATA·WHERE·DOCNUM·=·F_IDOC_CONTRL-DOCNUM.

····CASE·T_IDOC_DATA-SEGNAM.

130 April 2001

 SAP AG ALE Programming Guide
 Example Program for a Customer Exit

······WHEN·'E1XHEAD'.
········PERFORM·E1XHEAD_PROCESS·TABLES···T_IDOC_STATUS
································USING····T_IDOC_DATA
································CHANGING·F_XHEAD
···SUBRC.
······WHEN·'E1XITEM'.
········PERFORM·E1XITEM_PROCESS·TABLES···T_XITEM
···T_IDOC_STATUS
································USING····F_XHEAD-CURRENCY
···T_IDOC_DATA
································CHANGING·SUBRC.

····ENDCASE.

*···>>>>>>>>>>>>>·Customer·exit·2·(Start)··<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
*···This·exit·is·called·after·each·SAP·segment·has·been·processed,·and
*···it·is·called·every·time·a·customer·segment·appears.
····CALL·CUSTOMER-FUNCTION·'002'
······EXPORTING
···········CURRENT_SEGEMENT·=·T_IDOC_DATA
···········XHEAD_IN·········=·F_XHEAD
···········SUBRC_IN·········=·SUBRC
······IMPORTING
···········XHEAD_OUT········=·F_XHEAD
······TABLES
···········XITEM············=·T_XITEM
······EXCEPTIONS
···········OTHERS···········=·1.

····IF·SY-SUBRC·<>·0.
······SUBRC·=·1.
······PERFORM·STATUS_FILL_SY_ERROR·TABLES·T_IDOC_STATUS
···································USING··T_IDOC_DATA
··SY
··'·'
··'customer-function·001'.
····ENDIF.
*···>>>>>>>>>>>>>·Customer·exit·2·(End)···<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

··ENDLOOP.

ENDFORM.

April 2001 131

ALE Programming Guide SAP AG
Mass Processing

Mass Processing
Processing more than one IDoc at a time can improve throughput because:
• More than one IDoc is processed per COMMIT WORK
• The function can be coded to add multiple entries to a table with one update command ("array

insert").

See also:
Import Parameters [Seite 133]
Export Parameters [Seite 134]
Example Program for Mass Processing IDocs [Seite 139]

132 April 2001

 SAP AG ALE Programming Guide
 Import Parameters

Import Parameters
The import parameters have the same meaning as when Idocs are processed one at a time. The
difference is that the table Idoc_Contrl can contain the control records of more than one IDoc, and
Idoc_Data the data records of more than one IDoc.

April 2001 133

ALE Programming Guide SAP AG
Export Parameters

Export Parameters
The export parameters need to be filled in much the same way as when processing one IDoc at a
time. The difference is that some of the IDocs may be processed successfully, and some might
have an error.
The following examples show how to fill the export parameters. In each case three IDocs,
numbers 4711, 4712 and 4713, are passed to the inbound function module. In the first case all
IDocs are processed successfully, and application documents number 1234, 1235 and 1236 are
created respectively. In the second case, the first and third IDoc are processed successfully, but
the second IDoc causes an error.

All Inbound IDocs Processed Successfully [Seite 135]
Error in One Inbound IDoc [Seite 137]

134 April 2001

 SAP AG ALE Programming Guide
 All Inbound IDocs Processed Successfully

All Inbound IDocs Processed Successfully
If all IDocs were processed successfully, the export parameters should be filled as follows:

How to fill the export parameters when processing packets of IDocs, when all the IDocs
were successfully processed. IDoc numbers 4711 - 4713 created application object
numbers 1234 - 1236.

Parameter Value

IN_UPDATE_TA
SK

" " Update task not used
"X" Update task used

CALL_TRANSAC
TION_DONE

" "

WORKFLOW_R
ESULT

"0"

APPLICATION_V
ARIABLE

" " (e.g. initial value)

IDOC_STATUS The table must contain three
records with fields containing:

 Docnum Status

 4711 53

 4712 53

 4713 53

 Optionally the fields Msgid etc. can
be filled containing the application’s
success message.

RETURN_VARIA
BLES

The table must contain the
following six entries:

 WF_PARAM Doc_Number

 PROCESSED_IDOCS 4711

 APPL_OBJECTS 1234

 PROCESSED_IDOCS 4712

 APPL_OBJECTS 1235

 PROCESSED_IDOCS 4713

 APPL_OBJECTS 1236

April 2001 135

ALE Programming Guide SAP AG
All Inbound IDocs Processed Successfully

 If processing the inbound IDoc
does not create or change an
application object, the
"Appl_Objects" entries can be
omitted - they make no sense
without a document number.

SERIALIZATION
_INFO

Empty if not using serialization.

136 April 2001

 SAP AG ALE Programming Guide
 Error in One Inbound IDoc

Error in One Inbound IDoc
If one of the three IDocs causes an error, the export parameters should be filled as follows:

How to fill the export parameters when processing packets of IDocs, when only IDoc no.
4712 contains an error. IDoc numbers 4711 and 4713 created application objects number
1234 and 1235.

Parameter Value

IN_UPDATE_TA
SK

" " (i.e. initial value) - Update task
not used

CALL_TRANSAC
TION_DONE

" " (e.g. initial value)

WORKFLOW_R
ESULT

"99999"

APPLICATION_V
ARIABLE

" " (e.g. initial value)

IDOC_STATUS The table must contain three
records with fields containing:

 Docnum Status

 4711 53

 4712 51

 4713 53

 The Msgid etc. fields of the status
record for IDoc 4712 must contain
the error message.

RETURN_VARIA
BLES

The table must contain the
following five entries:

 WF_PARAM Doc_Number

 PROCESSED_IDOCS 4711

 APPL_OBJECTS 1234

 ERROR_IDOCS 4712

 PROCESSED_IDOCS 4713

 APPL_OBJECTS 1235

 If processing the inbound IDoc
does not create or change an
application object, the
"Appl_Objects" entries can be
omitted - they make no sense
without a document number.

April 2001 137

ALE Programming Guide SAP AG
Error in One Inbound IDoc

SERIALIZATION
_INFO

Empty if not using serialization.

138 April 2001

 SAP AG ALE Programming Guide
 Example Program for Mass Processing IDocs

Example Program for Mass Processing IDocs

FUNCTION·IDOC_INPUT_XAMPLE4.
*"--
*"
*"Local·interface:
*"·······IMPORTING
*"·············VALUE(INPUT_METHOD)·LIKE··BDWFAP_PAR-INPUTMETHD
*"·············VALUE(MASS_PROCESSING)·LIKE··BDWFAP_PAR-MASS_PROC
*"·······EXPORTING
*"·············VALUE(WORKFLOW_RESULT)·LIKE··BDWF_PARAM-RESULT
*"·············VALUE(APPLICATION_VARIABLE)·LIKE··BDWF_PARAM-APPL_VAR
*"·············VALUE(IN_UPDATE_TASK)·LIKE··BDWFAP_PAR-UPDATETASK
*"·············VALUE(CALL_TRANSACTION_DONE)·LIKE··BDWFAP_PAR-CALLTRANS
*"·······TABLES
*"··············IDOC_CONTRL·STRUCTURE··EDIDC
*"··············IDOC_DATA·STRUCTURE··EDIDD
*"··············IDOC_STATUS·STRUCTURE··BDIDOCSTAT
*"··············RETURN_VARIABLES·STRUCTURE··BDWFRETVAR
*"··············SERIALIZATION_INFO·STRUCTURE··BDI_SER
*"·······EXCEPTIONS
*"··············WRONG_FUNCTION_CALLED
*"--

*·--
*·----------------------·05·July·1996·----------------------------------
*·--

*·Example·function·module·for·processing·inbound·IDocs·for·ALE·or·EDI.
*·This·example·applies·for·processing
*
*···with····-··mass·processing·(more·than·one·IDoc·at·a·time)
*
*···without·-··serialization
*···········-··customer-exits
*···········-··calling·an·ALE-enabled·transaction

*·--------------------·Naming·conventions·------------------------------
*·Internal·tables·start·with·'t_'
*·Internal·field·strings·start·with·'f_'
*·--

*·>>·The·following·line·must·appear·in·the·global·part·of·your
*·>>·function·group:
*····include·mbdconwf.············"Report·containing·the·ALE·constants.
*·The·ALE·constants·start·with·'c_'.

*·Internal·table·for·the·document·headers.
··DATA:·T_XHEAD·LIKE·XHEAD·OCCURS·0·WITH·HEADER·LINE.

April 2001 139

ALE Programming Guide SAP AG
Example Program for Mass Processing IDocs

*·Internal·table·for·the·document·items.
··DATA:·T_XITEM·LIKE·XITEM·OCCURS·0·WITH·HEADER·LINE.

··DATA:·SUBRC·LIKE·SY-SUBRC,
········OBJECT_NUMBER·LIKE·XHEAD-DOCMNT_NO.

*·Initialize·variables
··SUBRC·=·0.

*·Fill·the·ALE·export·parameters·prior·to·loop·through·IDocs.
··CLEAR·IN_UPDATE_TASK.
··CLEAR·CALL_TRANSACTION_DONE.·········"Call·Transaction·is·not·used.
··WORKFLOW_RESULT·=·C_WF_RESULT_OK.

*·Loop·through·the·IDocs'·control·records
··LOOP·AT·IDOC_CONTRL.

*···Process·the·IDoc·and·check·the·data;·no·database·updates!
····PERFORM·IDOC_PROCESS_XAMPLE4·TABLES···IDOC_DATA
··IDOC_STATUS
··t_xhead
··t_xitem
·································USING····IDOC_CONTRL
·································CHANGING·OBJECT_NUMBER
··SUBRC.

*···Fill·the·ALE·export·parameters.
····IF·SUBRC·<>·0.·······················"Error·occurred

····WORKFLOW_RESULT·=·C_WF_RESULT_ERROR.
······RETURN_VARIABLES-WF_PARAM·=·C_WF_PAR_ERROR_IDOCS.
······RETURN_VARIABLES-DOC_NUMBER·=·IDOC_CONTRL-DOCNUM.
······APPEND·RETURN_VARIABLES.

··ELSE.······························"IDoc·processed·successfully

······RETURN_VARIABLES-WF_PARAM·=·C_WF_PAR_PROCESSED_IDOCS.
······RETURN_VARIABLES-DOC_NUMBER·=·IDOC_CONTRL-DOCNUM.
······APPEND·RETURN_VARIABLES.
······RETURN_VARIABLES-WF_PARAM·=·C_WF_PAR_APPL_OBJECTS.
······RETURN_VARIABLES-DOC_NUMBER·=·OBJECT_NUMBER.
······APPEND·RETURN_VARIABLES.

··ENDIF.

··ENDLOOP.·····························"loop·at·idoc_contrl.

*·Once·all·IDocs·have·been·processed,·insert·the·application·data·to
*·the·database·(as·long·as·there·is·some·data·to·insert).

··read·table·t_xitem·index·1.
··if·sy-subrc·=·0.·····················"i.e.·at·least·one·entry

140 April 2001

 SAP AG ALE Programming Guide
 Example Program for Mass Processing IDocs

*···This·fictitious·function·module·inserts·the·data·in·tables
*···t_xhead·and·t_xitem·to·the·database·tables·xhead·and·xitem.
*···It·has·no·exceptions,·because·a·failed·insert·leads·to·a·run-time
*···error.
····CALL·FUNCTION·'XAMPLE_OBJECTS_INSERT_TO_DATABASE'
·········TABLES
··············XHEAD·=·T_XHEAD
··············XITEM·=·T_XITEM.

··endif.·······························"if·sy-subrc·=·0.

ENDFUNCTION.

·······FORM·IDOC_PROCESS_XAMPLE4·····································

··This·routine·adds·an·application·document·to·tables·t_xhead·and····
··t_xitem·based·on·the·IDoc'S·contents.······························
··Object_Number·contains·the·new·document's·number.··················
··If·an·error·occurs,·subrc·is·non-zero,·t_idoc_status·is·filled.····
··Note:·if·more·than·one·error·is·detected,·t_idoc_status·contains···
········more·than·one·status·record.·································

··-->··F_IDOC_CONTRL····IDoc·control·record··························
··-->··T_IDOC_DATA······IDoc·data·records····························
··<--··T_XHEAD··········Application·document's·header·records········
··<--··T_XITEM··········Application·document's·line·item·records·····
··<--··T_IDOC_STATUS····IDoc·status·records··························
··<--··OBJECT_NUMBER····Created·document's·number····················
··<--··SUBRC············Return·code··································

FORM·IDOC_PROCESS_XAMPLE4
·······TABLES···T_IDOC_DATA····STRUCTURE·EDIDD
················T_IDOC_STATUS··STRUCTURE·BDIDOCSTAT
················T_XHEAD········STRUCTURE·XHEAD
················T_XITEM········STRUCTURE·XITEM
·······USING····F_IDOC_CONTRL··STRUCTURE·EDIDC
·······CHANGING·OBJECT_NUMBER··LIKE·XHEAD-DOCMNT_NO
················SUBRC··········LIKE·SY-SUBRC.

*·Internal·table·string·for·the·document·headers.
··DATA:·F_XHEAD·LIKE·XHEAD·OCCURS·0·WITH·HEADER·LINE.

*·Internal·table·for·one·document's·items.
··DATA:·T_ONE_XITEM·LIKE·XITEM·OCCURS·0·WITH·HEADER·LINE.

*·Number·given·to·the·created·document
··DATA:·DOCUMENT_NUMBER·LIKE·XHEAD-DOCMNT_NO.

*·Move·the·data·in·the·IDoc·to·the·internal·structures/tables
*·f_xhead·and·t_xitem.

April 2001 141

ALE Programming Guide SAP AG
Example Program for Mass Processing IDocs

··PERFORM·IDOC_INTERPRET·TABLES···T_IDOC_DATA
··································T_ONE_XITEM
··································T_IDOC_STATUS
·························USING····F_IDOC_CONTRL
·························CHANGING·F_XHEAD
··································SUBRC.

*·Create·the·application·object·if·no·error·occurred·so·far.
··IF·SUBRC·=·0.
*···This·fictitious·function·module·checks·the·new·object·based·on·the
*···data·that·was·read·from·the·IDoc.
*···If·the·checks·succeed,·the·new·object's·ID·is·returned·in·the
*···parameter·'document_number'.
*···If·the·checks·fail,·an·exception·is·raised.
*···Note:·this·function·must·not·insert·or·modify·database·records!
····CALL·FUNCTION·'XAMPLE_OBJECT_CHECK'
·········EXPORTING
··············XHEAD···········=·F_XHEAD
·········IMPORTING
··············DOCUMENT_NUMBER·=·DOCUMENT_NUMBER
·········TABLES
··············XITEM···········=·T_ONE_XITEM
·········EXCEPTIONS
··············OTHERS··········=·1.

····IF·SY-SUBRC·<>·0.
······SUBRC·=·1.
*·····Put·the·error·message·into·'t_idoc_status'
······PERFORM·STATUS_FILL_SY_ERROR
················TABLES···T_IDOC_STATUS
················USING····T_IDOC_DATA
·························SY
·························''············"Field·name
·························'idoc_process_xample'.·········"Form·routine

····ELSE.
*·····Fill·the·remaining·export·parameters
······OBJECT_NUMBER·=·DOCUMENT_NUMBER.·"New·document's·number
······append·f_xhead·to·t_xhead.
······APPEND·LINES·OF·T_ONE_XITEM·TO·T_XITEM.

······t_idoc_status-docnum·=·f_idoc_contrl-docnum.
······t_idoc_status-status·=·c_idoc_status_ok.
······t_idoc_status-msgty··=·'S'.
······t_idoc_status-msgid··=·your_msgid.·"Global·variable.
······t_idoc_status-msgno··=·msgno_success."Global·variable.
······t_idoc_status-msgv1··=·object_number.
······APPEND·T_IDOC_STATUS.
····ENDIF.·····························"if·sy-subrc·<>·0.
··ENDIF.·······························"if·subrc·=·0.

ENDFORM.

142 April 2001

 SAP AG ALE Programming Guide
 Example Program for Mass Processing IDocs

April 2001 143

ALE Programming Guide SAP AG
Using Call Transaction

Using Call Transaction
In general, you should try to use function modules to update the database rather than resorting to
a Call Transaction; a Call Transaction has a significant performance overhead. The advantage of
using a Call Transaction is that, if an error occurs, the user can reprocess the IDoc by going
through the transaction’s input screens.
Implementing a ‘one IDoc at a time’ function module as described above, but where the function
module uses a Call Transaction to post the application data to the database, results in the
application data being posted in a different logical unit of work from that in which the IDoc status
data is posted - a Call Transaction does a ‘commit work’ when successfully executed. (See the
above section on ‘Ensuring one logical unit of work’).
The solution to this problem is to modify the transaction so that it updates the IDoc status data
when the application data is updated, i.e. when the IDoc is successfully processed. Note: this only
applies to successfully processed IDocs; errors are handled in the same way as before.
See also:
ALE -Enabled Transactions [Seite 145]
Call Transaction Successful [Seite 147]
Call Transaction Failed [Seite 149]
Import Parameters in CALL TRANSACTION [Seite 150]
Export Parameters in CALL TRANSACTION [Seite 151]

144 April 2001

 SAP AG ALE Programming Guide
 ALE-Enabled Transactions

ALE-Enabled Transactions
A transaction is ‘ALE-enabled’ when the following two prerequisites are met:
• At the beginning of the first screen’s PBO module, it must read the IDoc number from a

memory variable and call the ALE function module Idoc_Input_Open, passing it the IDoc’s
number (Parameter Document_Number).

• Before the data is updated to the database, the transaction must call the ALE function module
Idoc_Input_Close. This function module must not be called from within a function module
that is processed in update task, i. e. "Call Function "xxx" In Update Task". Instead, it should
be called directly before or after the other update function modules "xxx". This is because it
accesses global data written by the function module Idoc_Input_Open.

Idoc_Input_Close will update the IDoc's status in the same update task if the interface
parameter In_Update_Task is set to "X".
Example of coding to update database:
− call function ''UPDATE_APPL_TABLES " in update task tables...
− call function "IDOC_INPUT_CLOSE" exporting...
− commit work.

The parameters of the function module Idoc_Input_Close must be filled as follows:

How to Fill the Import and Table Parameters of the Function Module IDOC_INPUT_CLOSE.

Parameter Value

WORKFLOW_RE
SULT

"0"

APPLICATION_V
ARIABLE

" " " " (i.e. initial value)

IN_UPDATE_TA
SK

" " Update Task not used by the
transaction
‘X’ Update Task used by the
transaction

IDOC_CONTROL The contents of Idoc_Input_Open’s
export parameter Idoc_Control

IDOC_STATUS The table must contain one record
with fields containing:
Docnum: 4711
Status: 53
Optionally the fields Msgid etc. can
be filled containing the application’s
success message.

RETURN_VARIA
BLES

The table must contain the following
two entries:

 WF_PARAM Doc_Number

 PROCESSED_IDOCS 4711

April 2001 145

ALE Programming Guide SAP AG
ALE-Enabled Transactions

 APPL_OBJECTS 1234

 If processing the inbound IDoc does
not create or change an application
object, the "Appl_Objects" entry can
be omitted - it makes no sense
without a document number.

SERIALIZATION
_INFO

The contents of Idoc_Input_Open’s
table parameter
SERIALIZATION_INFO.

146 April 2001

 SAP AG ALE Programming Guide
 Call Transaction Succeeds

Call Transaction Succeeds
The inbound function module that uses an ALE enabled transaction must pass the IDoc number to
the transaction’s IDoc memory variable before calling the transaction.

ALE layer Application
function module

Transaction

Read IDoc

Lock Idoc
Optional: Serialization check

Process IDoc-Data
Fill Call Transaction table
Export IDoc no. to memory

Context1 Context 2

Commit Work

Lock application objects
Process transaction data
Write application data to DB

IDoc and application
objects unlocked automatically

Write IDoc status
Write links
Optional:

Write serialization data
Trigger events

Inbound Processing with ALE-Enabled Transaction: Transaction Successful.

• The transaction’s code is executed in a separate context from that of the ALE

layer and inbound function module;
• The shaded boxes represent the ALE function modules Idoc_Input_Open

(above) and Idoc_Input_Close (below).

April 2001 147

ALE Programming Guide SAP AG
Call Transaction Succeeds

How can you tell whether the Call Transaction has succeeded?
On the face of it, you would think that the Call Transaction has succeeded if "Sy-Subrc = 0" after
the call. In an ALE environment this is only half the story, because when the import parameter
Input_Method takes on the value "A" or "E", the inbound function module must call the transaction
using Imode = "A" or "E" ("show all screens" or "show the screens starting with the one where the
error occurred"). In this case, the user sees the screens and can cancel the transaction using OK-
code "/n"’, which also leads to "Sy-Subrc = 0" after the call! Hence the only reliable way to tell
whether the Call Transaction succeeded or not is to check the message ID (Sy-Msgid) and
number (Sy-Msgno). Beware that some transactions have more than one "success" message.

148 April 2001

 SAP AG ALE Programming Guide
 Call Transaction Fails

Call Transaction Fails
The following graphic shows in detail how the ALE layer, inbound function module and transaction
interact when the Call Transaction fails, i.e. when "Sy-Subrc"’ <> 0 or "Sy-Subrc" = 0 and a non-
success message was returned.

Inbound Processing with ALE-enabled Transaction: Transaction Failed

ALE layer Application
function module

Transaction

Read IDoc(s)

Commit Work

Lock Idoc
Optional: Serialization check

Lock application objects
Error message

Unlock IDoc(s)

Lock IDoc(s)

Write IDoc status
Write links
Optional:

Trigger event(s)

Process IDoc data
Fill Call Transaction table
Export IDoc no. to memory

IDoc andapplication objects
unlocked automatically

Context 1 Context 2

April 2001 149

ALE Programming Guide SAP AG
Import Parameters in CALL TRANSACTION

Import Parameters in CALL TRANSACTION
The import parameters have the same meaning as those used when individual IDocs are
processed.

150 April 2001

 SAP AG ALE Programming Guide
 Export Parameters in CALL TRANSACTION

Export Parameters in CALL TRANSACTION
See also:
Inbound Processing Successful [Seite 152]
Error in Inbound Processing [Seite 153]

April 2001 151

ALE Programming Guide SAP AG
Inbound Processing Successful

Inbound Processing Successful
If the Call Transaction was successful, the inbound function module's export parameters need to
be filled as follows:

How to fill the export parameters when processing one IDoc at a time via an ALE enabled
Call Transaction, when the IDoc was successfully processed.

Parameter Value

IN_UPDATE_TASK " " (e.g. initial value)

CALL_TRANSACTION_DONE "X"

WORKFLOW_RESULT "0"

APPLICATION_VARIABLE " " (e.g. initial value)

IDOC_STATUS Empty

RETURN_VARIABLES Empty

SERIALIZATION_INFO Empty

152 April 2001

 SAP AG ALE Programming Guide
 Error During Inbound Processing

Error During Inbound Processing
If the Call Transaction failed, the export parameters must be filled in exactly the same way as
when processing one IDoc at a time:

How to fill the export parameters when processing one IDoc at a time via an ALE enabled
Call Transaction, when an error occurred during inbound processing.

Parameter Value

IN_UPDATE_TA
SK

" " (i.e. initial value) - Update task
not used

CALL_TRANSAC
TION_DONE

" " (e.g. initial value)

WORKFLOW_RE
SULT

"99999"

APPLICATION_V
ARIABLE

" " (i.e. initial value)

 IDOC_STATUS The table must contain one record
with fields containing:
Docnum: 4711
Status: 51
Msgid, Msgno etc. must be filled
with the error message’s ID, number
etc.

RETURN_VARIA
BLES

The table must contain the following
entry:

 WF_PARAM Doc_Number

 "ERROR_IDOCS" 4711

SERIALIZATION
_INFO

Empty

April 2001 153

ALE Programming Guide SAP AG
ALE Settings

ALE Settings
In order to ensure that the inbound functional module is called via ALE, a number of ALE settings
(table entries) need to be made. To get to ALE outbound processing settings choose Tools →
Business Framework → ALE → Development.
The graphic below gives an overview of the relationships between the settings. Each row
represents a field; the row "Error events" represents five fields. Only the relevant fields of each
table are listed. The columns represent the following (bold entries represent primary key fields):
• The fields that are read from an inbound IDoc’s control record
• The six IDoc fields that determine the process code to be used
• The attributes associated with the process code
• The attributes associated with the inbound function module
• The fields used to check that the function module is registered in ALE

The Relationships Between the Fields in IDoc Control Record and the Tables Containing
ALE Inbound Settings

IDoc control
record

IDoc type
Send. partnr type
Sender partner no.
Message type
Message variant
Message function
Test flag

Sender type
Sender no.
Message type
Message var.
Message func.
Fest flag
Process code Process code

Process type
Error events
Appl.obj.type
Inbound func. Inbound func.

Input type
Dialog?

Appl. obj. type
Inbound func.

IDoc type

Message type
Message var.
Message func.

Partner
Profile
inbound

Process code
tables
(inbound)

Function
module's
attributes

ALE function
module
registry

See also:
• Declaring the Function Module’s Attributes [Seite 155]
• Registering the Function Module in Inbound Processing [Seite 156]
• Creating an Inbound Processing Code [Seite 157]

154 April 2001

 SAP AG ALE Programming Guide
 Declaring the Function Module’s Attributes

Declaring the Function Module’s Attributes
The inbound function module has two ALE attributes: "Dialog possible?" and "Input type".

Dialog possible?
If the function module supports a Call Transaction, it can be programmed to show the user the
input screens as described above. This ability must be declared here, otherwise the user will not
be given the option of choosing to display the screens.

Inbound type
There are three types of function module in inbound processing:
1. Those that support mass processing
2. Those that can only process one IDoc at a time and do not use an ALE-enabled transaction
3. Those that can only process one IDoc at a time and that use an ALE-enabled transaction
For the latter two types, the ALE layer splits up an incoming packet of IDocs and calls the function
module once for each IDoc. The latter two need to be distinguished from one another because the
ALE processing before the function is called differs in each case.

For an example, look at the entry for the inbound function module
IDOC_INPUT_MATMAS01 used for material master data.

April 2001 155

ALE Programming Guide SAP AG
Registering the Function Modules in Inbound Processing

Registering the Function Modules in Inbound
Processing
ALE keeps track of which message type, variant and function, IDoc type and application object
types are applicable for a given inbound function module. Before a function module can be used
in inbound processing, it must be registered here.
If the function module is used for processing master data, only the entry for the "reference"
message type is needed here; entries are automatically generated when the "reference" message
type is "reduced".
For an example, look at the entry for the inbound function module IDOC_INPUT_MATMAS01 and
reference message type MATMAS used for material master data.

156 April 2001

 SAP AG ALE Programming Guide
 Creating an Inbound Processing Code

Creating an Inbound Processing Code
The inbound process code can be thought of as the name given to the ways and means of
processing an incoming IDoc, i.e. the process code’s attributes. A process code has the following
attributes:

• Processing type (e.g. should the inbound function module be called immediately, or
should a Workflow or work item be started?);

− Standard: "ALE, function module called directly"
• Name of inbound function module;
• Error processing attributes (objects and events; see the section on objects etc. for error

handling);
• Application object type used for ALE links;
− the object type created or changed by the inbound function module. Example: An inbound

ORDERS IDoc, containing a customer’s purchase order, creates a customer order in the
receiving R/3 System. Here the application object type is BUS2032, the object type for
customer orders in the BOR (Business Object Repository).

• The application event to be triggered (dealt with in the section on advanced techniques) is
not generally used.

For an example, have a look at the process code MATM used for material master
data.

Naming Convention
The naming convention for process codes is to use the first four letters of the message type to
which it applies. Example: MATM for message type MATMAS; if there is a conflict, use the first
three letters and a number, e.g. MAT1.
In our case, the process code would be XAMP.

April 2001 157

ALE Programming Guide SAP AG
Inbound Processing Using SAP Workflow

Inbound Processing Using SAP Workflow
This section shows how to use Workflow to process inbound IDocs, rather than using the direct
input via function call.
We recommend using direct input via function call rather than Workflow for inbound processing
because of the performance overhead of invoking Workflow for each inbound IDoc or IDoc packet.
Using Workflow makes sense when each IDoc of a given message type and/or from a given
sender needs to be manually processed, or the subsequently created application object needs to
be manually processed, but only when created from an IDoc. An example is with the message
type ORDCHG, "sales order change"; whereby a company might decide that sales order changes
from some customers (senders) need to be reviewed by a person before they are posted.

Inbound function modules implemented as described above support inbound
processing via workflow in addition to error handling via workflow. No changes are
required.

The two subsections deal with the two different ways of processing inbound IDocs with workflow:
Work items and Workflow.
See also:
Work Items [Seite 159]
Workflow [Seite 160]

158 April 2001

 SAP AG ALE Programming Guide
 Work Items

Work Items
You can define your inbound process code to start a specified work item, rather than using the
direct function call. The object that is passed to the work item's container is the IDoc object (e.g.
an object of type IDOCMATMAS).
Note: if a packet of IDocs containing more than one IDoc is to be processed, only the first IDoc will
be passed to the work item. The other IDocs will not be processed.

April 2001 159

ALE Programming Guide SAP AG
Workflow

Workflow
You can define your inbound process code to start a specified Workflow, rather than using the
direct function call. The Workflow's container must contain the following two import parameters:

Mandatory Import Parameters in the Workflow Container

Parameter name Type Multi-line Reference (object type/table field)

IDOC_PACKET Object No IDOCXAMPLE or IDPKXAMPLE

UNPROCESSED_IDOCS Variable Yes Edidc-Docnum

IDOC_PACKET is filled with an object of the type as defined in the workflow container (this means
that ALE reads the workflow container definition to determine the type); the object's ID is the
number of the first IDoc in the packet.
Unprocessed_IDOCs is a list of the IDoc numbers in the packet.
See also:
IDOCXAMPLE as a Reference for IDOC_PACKET [Seite 161]
IDPKXAMPLE as a Reference for IDOC_PACKET [Seite 162]

160 April 2001

 SAP AG ALE Programming Guide
 IDOCXAMPLE as a Reference for IDOC_PACKET

IDOCXAMPLE as a Reference for IDOC_PACKET
If you want to use the IDoc object type's methods InputForeground and InputBackground, you
need to use your IDoc object type (IDOCXAMPLE) as a reference for IDOC_PACKET.
Doing this means that you must ensure that only one IDoc at a time is passed to ALE, i.e. packets
of size 1. The reason is simple: the methods InputForeground and InputBackground deal with a
single IDoc object, so you need to define the binding so that it can deal with the object contained
in IDOC_PACKET. The methods do not use the variable Unprocessed_IDOCs, and hence are
unaware of any other IDocs in the packet.

April 2001 161

ALE Programming Guide SAP AG
IDPKXAMPLE as a Reference for IDOC_PACKET

IDPKXAMPLE as a Reference for IDOC_PACKET
If you want to use the IDoc packet object type's (IDPKXAMPLE) methods MassInput or Display,
you need to use IDPKXAMPLE as a reference for IDOC_PACKET.
Both the methods MassInput and Display have an importing variable Unprocessed_IDOCs, which
needs to be bound to the variable Unprocessed_IDOCs in the workflow container. This allows all
the IDocs in the packet to be processed.
Typically it will only make sense to use IDPKXAMPLE if you also define your own methods to
process the IDoc packet.

162 April 2001

 SAP AG ALE Programming Guide
 Advanced Workflow Programming

Advanced Workflow Programming
See also:
Setting the Parameter RESULT in the event container [Seite 164]
Triggering an Application Event After Successful IDoc Processing [Seite 168]
Using the Parameter NO_OF_RETRIES [Seite 170]

April 2001 163

ALE Programming Guide SAP AG
Setting the Parameter RESULT in the Event Container

Setting the Parameter RESULT in the Event Container
Both IDoc-object-events inputErrorOccurred and inputFinished contain the parameter RESULT in
their containers. Its value is affected by:
See also:
Event inputErrorOccurred [Seite 165]
Event inputFinished [Seite 167]

164 April 2001

 SAP AG ALE Programming Guide
 Event inputErrorOccurred

Event inputErrorOccurred
ALE will trigger the event inputErrorOccurred when the inbound function module's import
parameter MASS_PROCESSING is set to "'X". In this case ALE is treating the inbound IDoc(s) as
a packet, even if it only contains one IDoc.
Since some IDocs in a packet could be processed successfully while others fail, the export
parameter WORKFLOW_RESULT cannot be used to set the container parameter RESULT.
Instead, the parameter takes on different values according to the parameters used in the table
Return_Variables:

How to Set the Parameter RESULT when MASS_PROCESSING = "X". Note that for a given
IDoc number (in field Doc_Number), you should only use one of the above three names.
The names are case sensitive.

Wf_param Value of RESULT in event container

ERROR_IDOCS 99999

RETRY_IDOCS 1

CONTINUE_IDOCS 2

You could use these three values as follows: inputErrorOccurred could be used to trigger a
Workflow, which branches according to the value of the parameter RESULT:

Possible Values of RESULT in a Workflow

RESULTValue Action defined in Workflow

1 Retry the IDoc n minutes later, using a new task using the method
InputBackground. This could be used to retry IDocs that failed because
an application was temporarily locked by another user or process.

2 Process the IDoc in some other manner.

99999 Error handling, using the standard/customer task

Export parameter values when processing packets of IDocs, when IDoc 4711 was
successfully processed, creating application object no 1234; IDoc 4712 caused an error for
which the event's parameter RESULT = 99999; IDoc 4713 caused an error for which
RESULT = 2; IDoc 4714 caused an error for which RESULT = 1.

Parameter Value

IN_UPDATE_TASK " " (i.e. initial value) - Update task
not used

CALL_TRANSACTI
ON_DONE

" " (e.g. initial value)

WORKFLOW_RES
ULT

"99999"

April 2001 165

ALE Programming Guide SAP AG
Event inputErrorOccurred

APPLICATION_VA
RIABLE

" " (e.g. initial value)

IDOC_STATUS The table must contain four
records with fields containing:

 Docnum Status

 4711 53

 4712 51

 4713 51

 4714 51

 The Msgid etc. fields of the status
record for IDocs 4712, 4713 and
4714 must contain the error
message.

RETURN_VARIABL
ES

The table must contain the
following five entries:

 Wf_param Doc_Number

 PROCESSED_IDOCS 4711

 APPL_OBJECTS 1234

 ERROR_IDOCS 4712

 CONTINUE_IDOCS 4713

 RETRY_IDOCS 4714

 If processing the inbound IDoc
does not create or change an
application object, the
"Appl_Objects" entry can be
omitted - it makes no sense
without a document number.

SERIALIZATION_IN
FO

Empty if not using serialization

166 April 2001

 SAP AG ALE Programming Guide
 Event inputFinished

Event inputFinished
ALE triggers the event inputFinished when the inbound function module's import parameter
MASS_PROCESSING is set to " ", that is, set to initial.
If the method InputForeground is used, the event will only be triggered if the IDoc passed to the
inbound function module was successfully processed, i.e. ends up with status 53, or it was
marked for deletion or had already been processed and the user marks the work item as being
completed (via the IDoc menu).
If the method InputBackground is used, the event will always be triggered.
The parameter RESULT takes on the value of the inbound function module's export parameter
WORKFLOW_RESULT. By convention the values 0, 1, 2 and 99999 should be used as with the
event inputErrorOccurred.
The following table summarizes the values for which conventions exist. Other values can be used
as needed, starting with 3.

Possible Values of RESULT in the IDoc container for object event inputFinished

RESULT
Value

Description

0 IDoc successfully processed

1 IDoc not successfully processed; retry later

2 IDoc not successfully processed; application-specific workflow action
should be started as next step

99997 Set by ALE: IDoc has already been processed; mark work item as
completed

99998 Set by ALE: IDoc marked for deletion

99999 IDoc not successfully processed

April 2001 167

ALE Programming Guide SAP AG
Triggering an Application Event After Successful IDoc Processing

Triggering an Application Event After Successful IDoc
Processing
Any number of events can be triggered within the inbound function module by calling the Workflow
"create event" function module; doing this gives you full control of the event’s parameters.
If you simply want to have an event triggered for your application object with a single parameter
RESULT in its container, you can let ALE do this for you. An example where this is used is the
message type EDLNOT, process code EDLN.
To let ALE trigger the event you need to
• Fill the field "application event" for your process code’s inbound methods
• Enter a value in the inbound function module’s table Return_Variables, where Wf_Param is

filled as outlined in the following table, and Doc_Number is the same as your application
object ID

• Set the parameter WORKFLOW_RESULT to a value not equal to zero. Customers can use
alphanumeric values beginning with Y or Z. In the example below the value 3 is used.

Triggering your application object event using ALE and Specifying a Value in the RESULT
Parameter.

Wf_Param

Doc_Number Parameter RESULT in event container

CONTINUE_OBJECTS1 1234 1

CONTINUE_OBJECTS2 1234 2

CONTINUE_OBJECTS3 1234 3

CONTINUE_OBJECTS4 1234 4

CONTINUE_OBJECTS5 1234 5

How to let ALE trigger one of your application object’s events, and how to affect the value
of the parameter RESULT in its container. How to fill the export parameters when
processing packets of IDocs, when all the IDocs were successfully processed and an
application object event should be triggered for each successfully processed IDoc. IDoc
numbers 4711 and 4712 created application objects 1234 and 1235. In both cases the
RESULT parameter in the event container is set to 1.

Parameter Value

IN_UPDATE_TA
SK

" " Update task not used
"X" Update task used

CALL_TRANSAC
TION_DONE

" "

WORKFLOW_R
ESULT

"3"

APPLICATION_V
ARIABLE

" " (e.g. initial value)

168 April 2001

 SAP AG ALE Programming Guide
 Triggering an Application Event After Successful IDoc Processing

IDOC_STATUS The table must contain three
records with fields containing:

 Docnum Status

 4711 53

 4712 53

 Optionally the fields Msgid etc. can
be filled containing the application’s
success message.

RETURN_VARIA
BLES

The table must contain the
following six entries:

 Wf_param Doc_Number

 PROCESSED_IDOCS 4711

 APPL_OBJECTS 1234

 CONTINUE_OBJECTS1 1234

 PROCESSED_IDOCS 4712

 CONTINUE_OBJECTS1 1235

SERIALIZATION
_INFO

Empty if not using serialization

April 2001 169

ALE Programming Guide SAP AG
Using the Parameter No_of_retries

Using the Parameter NO_OF_RETRIES
If you want to implement a Workflow that allows you to reprocess an IDoc a fixed number of times
before an error-handling work item is started, for example for those errors that are temporary, for
example, caused by an object being locked, ALE provides a means of keeping track of how often
the IDoc has been processed. ALE allows customers to specify the number of retries individually.
The object IDOCAPPL’s (and hence all child object type’s) method InputBackground has an
import parameter NO_OF_RETRIES which is set to zero by ALE when an IDoc is first processed.
The method processes this parameter as follows:
• If it is larger than the maximum number of retries set in the inbound process code’s input

methods, the parameter RESULT in the event inputFinished’s container is set to "99999".
• Otherwise, it is incremented by one and written to the parameter NO_OF_RETRIES in the

event inputFinished.
To make use of this feature, you need to define your Workflow so that it has a parameter
NO_OF_RETRIES in its container which is bound to the import and to the event parameter
NO_OF_RETRIES, and so that it loops back to the InputBackground step unless the event
parameter RESULT = "99999".

170 April 2001

 SAP AG ALE Programming Guide
 Master Data Distribution

Master Data Distribution
Master data distribution using an asynchronous IDoc interface consists of three steps:
1. Defining the Message [Seite 172] by specifying the message type and IDoc type.
2. Developing the program or function module that creates the IDoc from the application object

and dispatches it via the ALE interface (Outbound Processing [Seite 173])
3. Developing the function module for IDoc processing on the receiver side (Inbound Processing

[Seite 179]).

April 2001 171

ALE Programming Guide SAP AG
Defining the Message

Defining the Message
For general rules on defining a new message (message type, IDoc type), refer to the
documentation "Guidelines for Designing IDoc Types and IDoc Segments". When you define your
new message, note these specific points for master data distribution:
• Define the segment contents and segment hierarchy in the IDoc type according to the logical

hierarchy of the data in the master data object, which normally matches the database table
hierarchy for the master data object in the SAP system.

The material master consists of tables MARA, MAKT, MARC, MARD etc. The
contents of IDoc segments E1MARAM, E1MAKTM, E1MARCM and E1MARDM in
IDoc type MATMAS02 for the material master correspond to the most extent to the
tables listed above. The hierarchy of these segments in IDoc type MATMAS02
corresponds to the database table hierarchy:

E1MARAM: Material master general data (MARA)
E1MAKTM: Material master short texts (MAKT)
E1MARCM: Material master C segment (MARC)
E1MARDM: Material master warehouse/batch segment (MARD)

• In each IDoc segment, define field MSGFN as the first field with data element MSGFN.

Information is transmitted to field MSGFN on whether segment data is to be created,
changed, deleted or updated in the target system.

As an example, refer to the definition of the segments E1MARAM, E1MAKTM,
E1MARCM, and E1MARDM for the IDoc type MATMAS02 (material master).

We recommend that you name the IDoc segments as follows: E1XXXXX, where XXXXX is the
name of the corresponding database table. If the name of the table has less than five places, fill
the remaining places with the letter M (For example, E1MARAM for table MARA).

172 April 2001

 SAP AG ALE Programming Guide
 Processing Outbound Master Data

Processing Outbound Master Data
There are two procedures for distributing master data: In both cases, an IDoc receives data for
only one master data object.
• Master data objects are sent directly.

With this function, the dispatch of master data objects is triggered explicitly. The IDocs are
filled with complete data for master data objects.

• Master data is distributed using the SMD tool (Shared Master Data tool).
In this case, changes to master data objects in the R/3 System are first logged in the form
of “change pointers”. The writing of change pointers is directly connected to the change
document interface. The change pointers can then be evaluated, and the IDocs for the
changed master data objects can be set up and dispatched. Only changed data is set up
in the IDoc, passed to the ALE layer and then dispatched to other systems. The diagram
below shows each individual step for distributing master data using the SMD tool.

Steps for Distributing Master Data Using the SMD Tool

Application
posting

Create/change
master data

SMD
customizing

Change document
service

Master data

ALE layer

Create change
document

Change docs. Change pointers

ALE fields?

Write pointers

Create IDOCs

SMD tool

Batch job / manual

Standard ALE
output

M C

April 2001 173

ALE Programming Guide SAP AG
Distributing Master Data Using the SMD Tool

Distributing Master Data Using the SMD Tool
The Shared Master Data Tool (SMD tool) logs changes to master data objects in change pointers.
It is linked to the change document interface. To distribute master data using the SMD tool,
change documents must be written when the master data object is changed, created and deleted.
The master data object must be linked to the change document interface.
Change pointers are used to determine changes and distribute them to master data objects.
Change pointers are created in the following way:
The application program calls the change document interface for a change document object. To
do this the generated function module xyz_DOCUMENT_WRITE is called. Its interface contains
two parameters - the old records and the new records - for each table and structure for which
change document deltas are to be determined. The change document interface creates a list of
changes (table name, table key, field name, change type, old value, new value).
There are three types of changes:
• Insert

With the insert change type precisely one record is written (table name, table key, field
name = "KEY", change type = insert, old value = empty, new value = empty). The field
values are not documented as they can be found in the database. With this change type it
is important that the special field name KEY is used.

• Update
With the update change type one record is written for each changed field (table name,
table key, field name = <field name>, change type = update, old value = ABC, new value
= DEF).
This change type has one variant:
In the definition of the change document object you can also specify that a delete record
and an insert record are written rather than an update record. This is why the change type
is also a key field in the CDPOS table. Two records for delete and insert can therefore be
written for one table name, table key and field name.

• Delete
With the delete change type precisely one record is written (same as with insert). You
can also specify in the definition of the change document object that all values are saved.
Then there will be one record for each field.

When change documents are written, the interface for writing change pointers is called. Records
which have message types to be sent are determined from table TBD62 for the table name, table
key and field name. TBD62 consists of the table name, table key, field name and message type.
A change pointer is written for each active message type in table TBDA2. A record with the
change information is saved in table BDCP and a status record for each message type is saved in
table BDCPS.
For this reason you have to add to table TBD62 all the changed fields that will cause a message
(IDoc) to be sent.

Procedure
To be able to activate the writing of change pointers via the SMD tool for your master data object,
you must carry out these steps:
• Activate change pointers for each message type
• Maintain change-relevant fields for message type
• Activating Change Pointers Generally

174 April 2001

 SAP AG ALE Programming Guide
 Distributing Master Data Using the SMD Tool

You also have to:
• Implement function module for evaluating change pointers
• Defining the ALE Object Type MSGFN and Maintaining It as a Filter Object Type

If you distribute master data using a asynchronous BAPI, all the settings below
apply to the generated message type of the BAPI-ALE interface.

Activate change pointers for each message type
In table TBDA2 you can activate or deactivate the writing of change pointers for a specific master
data object.
To maintain table TDBA2, in Customizing choose:
Basis Components
 Distribution (ALE)
 Modeling and Implementing Business Processes
 Distribution of Master Data
 Replication of Modified Data
 Activate Change Pointers for Message Type (Transaction BD50).
Enter data in table TBDA2 with the message type for your master data object. For the delivery to
the customer, the "Active" flag for the entry should not be set. If, for test purposes, you want to
activate the writing of change pointers for the master data object, you must set the 'Active' flag for
the TBDA2 entry for your message type.

As an example, look at the TBDA2 entry for the message type MATMAS for the
material master.

Maintain change-relevant fields for message type
Change document fields from the change document object are entered in table TBD62. Change
pointers are written when change document fields are logged via the change document interface.

To maintain table TBD62, from the ALE Development screen choose Master Data →
Activate change pointers for each field (Transaction BD52).

In table TBD62, define for your message type all the change document fields, for which change
pointers are to be written, so that changes to your master data object can be distributed to other
systems.
When you add an entry in a table for your master data object, a change document field with the
imaginary field name KEY is used to log this kind of change (examples: MATERIAL MARA KEY
for the creation of a material, MATERIAL MARC KEY for the addition of a plant data to a plant).
You must also include these entries in table TBD62, and you must do so for all tables from the
change document object for your master data object.
Additions or changes to long text are logged with an entry in the change document item. This
entry has the text object for the table name, and a value comprising the text ID and the language
key for the field name. If changes to long texts for a master data object are to be distributed, these
entries must also be included in table TBD62. You are not required to do this for every possible
language key. It is sufficient to include an entry in table TBD62 for the text ID concerned, which
has a value for the field name comprising the text ID and the character * (e.g. MATERIAL
MATERIAL BEST* for the purchase order text in the material master).

April 2001 175

ALE Programming Guide SAP AG
Distributing Master Data Using the SMD Tool

Take a look at the TBD62 entries for the message type MATMAS for the material
master in the R/3 System.

Activating change pointers generally
To activate master data distribution using change pointers, in Customizing choose:
Basis Components
 Distribution (ALE)
 Modeling and Implementing Business Processes
 Distribution of Master Data
 Replication of Modified Data
 Activate Change Pointers - General (Transaction BD61).

Implement function module for evaluating change pointers
When change pointers are processed, IDocs for the master data objects are generated and
dispatched. Change pointers are processed and IDocs subsequently generated and dispatched
for each message type (for example, MATMAS for the material master). A function module carries
out this process (for example, MASTERIDOC_CREATE_SMD_MATMAS for the material master).
You need to implement the function module for each message type. The naming convention for
the function module is MASTERIDOC_CREATE_SMD_xxxxxx, where xxxxxx is the name of the
message type.
Below is a description of how to implement the function module that processes change pointers
and generates and sends the IDoc. Refer to the function module
MASTERIDOC_CREATE_SMD_MATMAS for the material master as an example. You can also
use function module MASTERIDOC_CREATE_SMD_MATCOR for the core material master as a
model for your function module. The IDoc type MATCOR01 for the core material master consists
of merely the two segments: E1MARAC and E1MAKTC and contains only the core data from the
material master. Function module MASTERIDOC_CREATE_SMD_MATCOR for the core material
master has a more simple structure than the function module
MASTERIDOC_CREATE_SMD_MATMAS for the complete material master.
Now create a function module for your message type. The interface of the function module is
preset and consists of the parameter for the message type.

To call the function module, in ALE Administration choose Services → Change
pointers → Evaluate (Transaction BD21).

Before you can start the transaction for your message type, you must maintain the message type
assignment to the function module in control table TBDME. Define an entry for your message
type in table TBDME, the reference message type being the same as your message type, and
assign the function module. For examples, take a look at the entries for message type MATMAS
(Material Master) and MATCOR (Core Material Master).

To maintain table TBDME, from the ALE Development screen choose Master data →
Additional data for message type .

Implement the following steps in your function module to process change pointers and to generate
and send IDocs:
1. Read all the change pointers that have not yet been processed for your message type using

the function module CHANGE_POINTERS_READ.

176 April 2001

 SAP AG ALE Programming Guide
 Distributing Master Data Using the SMD Tool

2. Create an IDoc for every modified master data object. In the IDoc, only fill the segments that,
according to the change pointers, were changed. In every segment, fill the first field MSGFN
as follows:

009, if the segment was added
004, if segment fields were changed
003, if the segment was deleted
018, if segment fields were not changed, but the segment must be included in the IDoc,
because hierarchically subordinate segments in the IDoc have to be dispatched.

3. Pass the IDoc to the ALE layer by calling function module MASTER_IDOC_DISTRIBUTE.
4. For the master data object that has just been processed, set the change pointers to ‘Finished’.

This is done by calling function module CHANGE_POINTERS_STATUS_WRITE.
5. Execute the COMMIT WORK command and call the DEQUEUE_ALL function module. For

performance reasons, do not perform this step after every IDoc. Wait until you have created,
for example, 50 IDocs.

Defining the ALE object type MSGFN as a filter object type
In the receiver determination for message types that have not been generated by the BAPI-ALE
interface, IDoc segments containing modified data may be filtered off. Sometimes there may still
be IDoc segments that do not contain any modified data at the end of segment chains. These
segments have only been included due to the segment hierarchy in the IDoc.
For ALE outbound processing to be carried out, these attached segments must be suppressed by
assigning the value 018 to them in the field MSGFN when the IDoc is generated.
You must also make the following settings:
• The ALE object type MSGFN must be defined In ALE Development choose IDoc interface →

Data filtering → Maintain filter object type (Transaction BD95). Generally the ALE object type
MSGFN has already been defined and the field MSGFN assigned to the table BDIPARAM.

• MSGFN must be specified as the filter object type for the new message type and for the new
segment types in table TBD21. The entry in table TBD21 consists of the message type name
under MESTYP, the segment type SEGTYP and the field name MSGFN under FLDNAM. From
the ALE Development screen, choose IDoc → ALE objects → Assign to message type
(Transaction BD59).

 When distributing changes with asynchronous BAPIs, for compatibility you
should use the FUNCTION field with the data element BAPIFN and the fixed values
INS, DEL, UPD, REF and IGN. This identifies the type of change to be distributed
with the BAPI.
Copy the FUNCTION field to each structured parameter. Then you can, for example,
distribute the deletion of a data record.

April 2001 177

ALE Programming Guide SAP AG
Sending Master Data Directly

Sending Master Data Directly
In this procedure, master data objects are sent immediately. The entire data in the master data
objects is sent. The function is triggered via a report (e.g. RBDSEMAT for the material master).
In ALE Administration of master data distribution, you will find all the objects for which the "Send
directly" function is already implemented.

Procedure
Now create a program for your master data object. In the program, define parameters to select
objects to be sent and a parameter for the logical system.
Then implement the following steps in the program:
1. Create an IDoc for each master data object to be sent Enter all the data of the master data

object into the IDoc In each segment, the first field MSGFN should contain the value 005.
2. Pass the IDoc to the ALE layer by calling function module MASTER_IDOC_DISTRIBUTE.
3. Execute the COMMIT WORK command and call the DEQUEUE_ALL function module. To

improve performance, this step should only be carried out after several IDocs have been
created.

178 April 2001

 SAP AG ALE Programming Guide
 Processing Inbound Master Data

Processing Inbound Master Data
For a general description of IDoc posting on the receiver side, see Inbound Processing [Seite 85].
When you distribute master data keep in mind the following points:
• When posting the IDoc segments, process the first field (i.e. MSGFN) in each segment to

determine the function to be performed for the segment: 009 for add, 004 for change, 003 for
delete, 018 for unchanged data and 005 for a refresh function.

For functions 009, 004, 018, and 005, the data must be added to the receiving system (if
not already available) or changed (if it already exists in the receiving system).
For function 003, the data must be deleted in the receiving system.

• For master data with reducible message types you must not change the field in the database
if the corresponding IDoc segment field has the contents "/".

• When master data is posted, master data objects can be assigned to a class using the
function module CACL_OBJECT_ALLOCATION_MAINT

April 2001 179

ALE Programming Guide SAP AG
Connections to Non-SAP Systems

Connections to Non-SAP Systems
ALE is not restricted to communication between SAP systems, it can also be used for connecting
R/3 Systems to non-SAP systems.
By using IDocs as universal information containers, ALE can reduce the number of different
application interfaces to one single interface that can either send IDocs from an R/3 System or
receive IDocs in an R/3 System.
SAP certified Translator Programs [Seite 182] can convert IDoc structures into customer-defined
structures.
Alternatively, the RFC interface for sending and receiving IDocs can be used in non-SAP systems.
In both cases you need the RFC Library of the RFC Software Development Kit (RFC-SDK).

Communication from an R/3 System to a Non-SAP System

Application

CALL FUNCTION ‘IDOC_INBOUND_ASYNCHRONOUS’
 IN BACKGROUND TASK DESTINATION ...
 TABLES IDOC_CONTROL_REC_40=...
 IDOC_DATA_REC_40=...

ALE

Comm
IDoc.-Comm-

IDoc

Communication

ALE interface

Non-SAP system

Data

R/3 System

.Receiver determination
Filtering
Conversion

Master
IDoc

RFC
Library

Translator program

Data
Comm

IDoc.-Comm-
IDoc

tRFC
implementation

Communication from a Non-SAP System to an R/3 System

180 April 2001

 SAP AG ALE Programming Guide
 Connections to Non-SAP Systems

RFC Library

Translator program

Non-SAP system

Data

Workflow connection

Application functions

ApplicationApplication
datadata

R/3 System IDOC_INBOUND_
ASYNCHRONOUS

Data Comm.-
IDoc

Comm.-
IDoc

RfcRc = RfcIndirectCall(hRfc,
 "IDOC_INBOUND_ASYNCHRONOUS",
 Exporting, Tables,
 TransID);

 Filtering
Conversion

tRFC
implementation

You can find an example of an IDoc interface to non-R/3 Systems in the
documentation Interfaces to Link Mobile Data Entry and Warehouse Control Unit
[Extern].

• For information on the technical implementation see ALE Programming Guide [Extern].
• You can find the requirements for the certification of interfaces in SAPnet under

http://www.sap.com/csp/scenarios.
Choose Cross Application, CA-ALE and CA-AMS.

April 2001 181

ALE Programming Guide SAP AG
Translator Programs for Communication

Translator Programs for Communication
Definition
Translators programs are used to connect non-SAP systems to ALE. They must be certified by
SAP.

Use
Translators are typically used for:
• Mapping IDocs to any structure required in non-SAP systems
• Controlling communication such as establishing and restarting connections.

Structure
Using A Translator Between R/3 Systems And Non-SAP Systems

Application ALE

Workflow ALE/
EDI
inter-
face

Communi-
cation

Comm
IDoc

Application

Application
function

Master
Doc

Application
data

Non
SAP

system

C
om

m
un

ic
at

io
n

Tr
an

sl
at

or

Comm
IDoc

ALE/
EDI
inter-
face

Integration
Translators are supplied from external vendors. SAP certifies the programs to ensure that
communication between the ALE interface and the translator is functioning correctly.
The following criteria is checked for the certification:
• Can the translator automatically copy the IDoc structures into its own repository?
• Can the translator take an IDoc from an R/3 System and interpret the information based on its

repository data?
• Does the translator have adequate mapping functionality?
• Can the translator pass the IDoc created back to R/3?
The certification itself does not evaluate the functions provided in the program.

182 April 2001

 SAP AG ALE Programming Guide
 Technical Implementation

Technical Implementation
This section provides you with an overview of the technical implementation of an interface.
Communication is executed through the SAP interface Remote Function Call (RFC).
As of Release 3.0, data can be transmitted between R/3 systsems and external programs reliably
and safely using the transaction Remote Function Call (tRFC).
The function module is executed once in the RFC server system. The remote system does not
have to be available at the time when the RFC client program executes a tRFC. The tRFC
component stores the called RFC function together with the respective data in the R/3 database
under a unique transaction ID (TID).
For a detailed description of the RFC interface, refer to the documentation Remote
Communications [Extern].
For details on the required TCP/IP settings, refer to the documentation BC - SAP Communication:
Configuration [Extern].
This section gives you an overview of the program techniques involved. It is not a complete
description.
If you wish to set up a connection yourself, you must refer to the documentation listed above.

April 2001 183

ALE Programming Guide SAP AG
TCP / IP Settings

TCP / IP Settings
The following TCP/IP settings are required to start the communication process:
• So that the R/3 System can find the destination system, these TCP/IP prerequisites must be

fulfilled, in particular the IP addresses in the respective file hosts must be known.
• The name of the gateway and the dispatcher must be entered in the file services, for example,

sapgw00 and sapdp00.
• In the R/3 System, Idocs are transmitted from the actual posting (update). Therefore, the

TCP/IP link must also be created for the posting system.
• The SAP Gateway must have the right to start the external program (RFC server) via Remote

Shell.
As of release 3.0C, you can work in register mode. In this way, the connection between the
external system program and Gateway remains open (see Registering Server Programs with
the SAP Gateway [Extern] in The RFC API).

For details on the TCP/IP settings, refer to the documentation BC - SAP Communication:
Configuration [Extern].

184 April 2001

 SAP AG ALE Programming Guide
 Sending IDocs to an External System

Sending IDocs to an External System
The following diagram illustrates the program logic.

SUB - C program wm testlSUB - C program SUB - C program wm testlwm testl

…
/ *
* function INBOUND-IDOC-PROCESS
* /
static RFC_RC inbound_idoc_process (RFC_HANDLE handle)

 char filenam1� = “/users/d11adm/tmp/output1”;
 …

…

…
/ *
* function INBOUND-IDOC-PROCESS
* /
static RFC_RC inbound_idoc_process (RFC_HANDLE handle)

 char filenam1� = “/users/d11adm/tmp/output1”;
 …

…

RFC - LibraryRFC - LibraryRFC - Library

 saprfc.h
 sapitab.h
 librfc.a / librfc.dll / ntlibrfc.lib …

 saprfc.h
 sapitab.h
 librfc.a / librfc.dll / ntlibrfc.lib …

SAP - ABAPSAP - ABAPSAP - ABAP

…

call function INBOUND-IDOC-PROCESS
 in background task
 destination Subsystem
 tables
 idoc_control = header
 idoc_data = segment
…

…

call function INBOUND-IDOC-PROCESS
 in background task
 destination Subsystem
 tables
 idoc_control = header
 idoc_data = segment
…

Table of TCP/IP connections
(Transaction /nSM59)

Table of TCP/IP connectionsTable of TCP/IP connections
(Transaction /nSM59)(Transaction /nSM59)

 RFC destination Subsystem

 Target system hs1022.wdf.sap-ag.de
 Program /users/d11adm/tmp/wmtestl

 RFC destination Subsystem

 Target system hs1022.wdf.sap-ag.de
 Program /users/d11adm/tmp/wmtestl

You transmit IDocs from the R/3 System by calling one of the two following functions modules with
a destination:
• IDOC_INBOUND_ASYNCHRONOUS

You use this function module from release 4.0 upwards. It processes IDocs in record
types that are valid for 4.x releases. Longer IDoc segment names are thus supported.

• INBOUND_IDOC_PROCESS
You use this function module for releases up to 4.0. It processes Idocs in record types
that ware valid for 3.x releases. For compatibility reasons, it should also be possible to
use this function module in 4.x. External programs, too, should be able to support this
function module.

The additional statement IN BACKGROUND TASK for the function call indicates the transaction
RFC.
As with synchronous calls, the parameter DESTINATION defines the destination system and the
destination program with the path (program context) in the remote system through a table in R/3.
Refer also to the ABAP test program SRFCTEST.
In the remote system, the destination program maintained in SM59 must exist. This program must
also contain a function with the name of the function module call.

April 2001 185

ALE Programming Guide SAP AG
Sending IDocs to an External System

In R/3, the application data in the internal table is transmitted to the structure EDI_DD40 (EDI_DD
before 4.0). For each IDoc, a control record of the structure EDI_DC40 (EDI_DC before 4.0) is
also transmitted with the administrative data of the IDoc. In the example given, this data is
transmitted in the form of internal tables.
For further information on this topic, refer to the documentation RFC Programming in ABAP
[Extern].
For examples of tRFC programs, refer to the documentation RFC Software Development Kit
(RFC-SDK):
• trfctest.c (client program)
• trfcserv.c (server program)
For details on the required functions, refer to the documentation The RFC API [Extern] or to the
documentation of the RFC-SDK.
You can use these programs as examples for your own.
To interpret the useful data in the IDoc, you also need the data structures of the IDoc at the C
program level. If you have an R/3 System available, you can generate a header file of the IDoc
directly from the transaction WE60 (Documentation for IDoc types).

186 April 2001

 SAP AG ALE Programming Guide
 Sending IDocs: External System to SAP System

Sending IDocs: External System to SAP System
The following diagram illustrates the program logic.

…
/ *
* Transaction management (TID)
* /
…
/ *
* Call up function module INBOUND_IDOC_PROCESS
* /
rfc_rc = RfcCallReceive (handle,
 “INBOUND_IDOC_PROCESS”
 EXPORTING; IMPORTING; TABLE; &exceptions);
…

…
/ *
* Transaction management (TID)
* /
…
/ *
* Call up function module INBOUND_IDOC_PROCESS
* /
rfc_rc = RfcCallReceive (handle,
 “INBOUND_IDOC_PROCESS”
 EXPORTING; IMPORTING; TABLE; &exceptions);
…

External - C Program (Client)External - C Program (Client)External - C Program (Client)

 Local Interface :
 TABLES
 IDOC_CONTROL STRUCTURE EDI_DC
 IDOC_DATA STRUCTURE EDI_DD

 Remote Function Call supported

 Output:
 Post IDocs
 Initiate processing

 Local Interface :
 TABLES
 IDOC_CONTROL STRUCTURE EDI_DC
 IDOC_DATA STRUCTURE EDI_DD

 Remote Function Call supported

 Output:
 Post IDocs
 Initiate processing

SAP Function module INBOUND_IDOC_PROCESS:
(Server)

SAP Function moduleSAP Function module INBOUND_ INBOUND_IDOCIDOC_PROCESS_PROCESS:
(Server)(Server)

 saprfc.h
 sapitab.h
 librfc.a / librfc.dll / ntlibrfc.lib …

 saprfc.h
 sapitab.h
 librfc.a / librfc.dll / ntlibrfc.lib …

RFC - LibraryRFC - LibraryRFC - Library

The calling, external program uses the following functions of the RFC Software Development Kit
(RFC-SDK):
• RfcOpen

Using this call, the system sets up an RFC connection to the server system. You can
define the logon to the SAP System, including the server name of the SAP destination
system, SAP logon, user ID, and so on in the C program or in the file saprfc.ini.

As soon as the connection to the server system has been set up, you must call the two following
functions for the tRFC in the client program:
• RfcCreateTransID

The transaction ID that was created in the server system is determined with this call.
• RfcIndirectCall

The RFC data, together with the TID, is transmitted to the server system with this call.
If there is an error, the client program repeats this call.
Here the system must use the old TID with the call RfcCreateTransID. Otherwise, it will not
be guaranteed that the RFC function is executed only once in the R/3 System.
The transaction is completed after successful execution of this call. The calling program can
then update its own TID administration data (for example, delete the TID entry).

April 2001 187

ALE Programming Guide SAP AG
Sending IDocs: External System to SAP System

For more information, refer to the documentation The RFC API [Extern] or to the documentation of
the RFC-SDK.
The useful data must be structured in the same way as the IDoc and placed in the internal table of
the structure EDI_DD40 (EDI_DD before 4.0). The control record must be generated for each
IDoc and placed in the internal table of the structure EDI_DC40 (EDI_DC before 4.0). The form in
which the data is transferred is also described in detail in the documentation.

188 April 2001

 SAP AG ALE Programming Guide
 Transaction Identification Management (TID)

Transaction Identification Management (TID)
A unique code must be used for a communication process in order to guarantee the integrity of
the data to be transferred. The receiving system can then use this code to decide whether this
data has already been received and processed.

For example, communication may break down during data transmission when goods
receipts are entered on mobile data entry devices. The person handling the data
would then have to send it again to make sure that it is posted in the SAP system. If,
however, the data was successfully received and processed the first time it was sent
to the SAP system, the system must be able to recognize this and then not process
the second data record.

This example inevitably results in the following sequence of operations between the sending and
receiving system.

Sender
(Client)

SenderSender
(Client)

Recipient
(Server)

RecipientRecipient
(Server)

Confirmation
o.k.

Update status

Delete TID
and data
immediately
or later

Confirmation
o.k.

Update status

Delete TID
and data
immediately
or later

Check: TID exists already /
processed?

Check: TID exists already /
processed?

Yes
do nothing

Yes
do nothing

No
Process data

No
Process data

Update TID statusUpdate TID status

Confirmation
not o.k.

Send again
with same
TID

Confirmation
not o.k.

Send again
with same
TID

Call to Server:
Transmit data and TID

Call to Server:
Transmit data and TID

Save data
and TID

Save data
and TID

Confirmation:
Receive data

Confirmation:
Receive data

Generate / Get TID
(world-wide unique number)
Generate / Get TID

(world-wide unique number)

Save TID with data records
that are to be saved

Save TID with data records
that are to be saved

April 2001 189

ALE Programming Guide SAP AG
Transaction Identification Management (TID)

190 April 2001

 SAP AG ALE Programming Guide
 Integrating Dialog Interfaces

Integrating Dialog Interfaces
Use
Data exchange in distributed environments is carried out without user interaction.
Sometimes, however, you may need to call dialog interfaces from remote systems. A typical
example is to display the source document of a document held in another system.

HR forwards payroll results to Accounting. Here the appropriate documents are
posted. Each document in Accounting has a reference to the source document in HR.
In the integrated system the document display is programmed in Accounting so that
you can jump to the document display of the source document in HR.
If HR and Accounting are running on different systems, there is no purpose in
Accounting reading the data via a BAPI and reprogramming the HR document display
again. Instead the HR document display is called from the remote system.

Dialog interfaces are not provided in place of BAPIs, they are additional to BAPIs. We recommend
that for each dialog interface you provide a relevant BAPI that returns the data as a background
interface.
Currently dialog interfaces are primarily for display functionality in R/3 to R/3 distribution
scenarios. Dialog methods with change functionality are currently not supported.
Dialog interfaces can also be called from external platforms.

Procedure
RFC is used to call dialog functionality from remote systems. Images can be transferred with RFC.
A dialog method is implemented through an RFC-enabled function module. The dialog is then
called in this function module.
This function module must fulfill the same quality requirements as function modules for BAPIs:
• English names for fields and parameters
• A return parameter and no exceptions
• Documentation must be provided
• The interface must be frozen
The function module is modeled in the BOR. The same rules apply as for BAPIs, with two
exceptions:
• The function module can only be released internally
• The dialog flag must be set for the object method.
A dialog method is created as an API method, the same as a BAPI in the BOR. This ensures that
the required coding in the BOR is generated and the dialog method can also be called via the
BOR runtime environment. If changes are later made to a dialog method ensure that the BOR
coding is also changed appropriately. A dialog method must be able to be called via the BOR
runtime environment.
The internal release indicates that this method is used for R/3 to R/3 scenarios. The API flag
indicates that this method can be called from a remote system. The dialog flag is set because a
dialog interface is used as opposed to a background interface. The dialog flag delimits the dialog
methods from the BAPIs.

April 2001 191

ALE Programming Guide SAP AG
Integrating Dialog Interfaces

• When you implement an object display ensure that users cannot branch into

the change mode.
• Currently, technical problems may arise if you want to call a pop-up from

remote rather than an entire screen.
• If you are working with reports, the command submit... and return

must be used. submit... alone is not possible.

Naming Dialog Methods
Each object type in the BOR can be accessed through the method Display. However, in many
cases the method has not been implemented. If the dialog method to be implemented is to display
the object, Display should be used, if possible,
If Display has already been implemented, and changes have resulted that are incompatible
according the BAPI quality requirements, a different method must be used.
Apart from the Display method, we recommend you use the suffix WithDialog for dialog methods
when you are modeling them in the BOR.

Calling Dialog Methods
Dialog methods are called from an R/3 System in the same way as BAPIs are called through
RFC.
There are two different types of calls:
• Calls with References to the Logical System [Seite 193]
• Calls Without References to the Logical System [Seite 195]

The logical system must be determined from the distribution model.

The examples do not claim to be appropriate for all possible situations where
methods are called. In particular, a standard procedure cannot be recommended for
error handling because it depends on the application involved and the circumstances
the call is made in. Before you incorporate a dialog method call into your coding, you
should carefully consider how errors will be handled.
If, for example, no destination for dialog calls can be determined for a server system it
may be because the server does not have dialog functionality for technical or security
reasons. This situation can also occur in productive systems. You cannot interpret this
as an inconsistently configured system.
You should also keep in mind that the RFC implicitly executes a database commit,
that is the LUW is completed. If you are not familiar with using RFC calls,, you should
first read the on-line help on the ABAP language element call function with the
addition, destination.

192 April 2001

 SAP AG ALE Programming Guide
 Calls With References to the Logical System

Calls With References to the Logical System

HR forwards payroll results to Accounting. Here the appropriate documents are
posted. Each document in Accounting has a reference to the source document in HR.
The logical system in which the HR document was created is included in the
reference.

The method to be called is named, for example, HRDoc.Display. The field BKPF-AWREF contains
the ID of the reference document in HR and the field BKPF-AWSYS contains the name of the
logical system.
The source code below shows how the HR document display is called the from the document
display in Accounting:

...
DATA:
 HEAD LIKE BKPF,
 RETURN LIKE BAPIRET2,
 SERVER_DEST LIKE TBLSYSDEST-RFCDEST,
 MSG_TXT(80) TYPE C.
...

* get RFC destination for remote method call

CALL FUNCTION 'OBJ_METHOD_GET_RFC_DESTINATION'
 EXPORTING
 OBJECT_TYPE = 'HRDOC'
 METHOD = 'DISPLAY'
 LOGICAL_SYSTEM = HEAD-AWSYS
 IMPORTING
 RFC_DESTINATION = SERVER_DEST
 EXCEPTIONS
 NO_RFC_DESTINATION_MAINTAINED = 1
 ERROR_READING_METHOD_PROPS = 2
 OTHERS = 3.

IF SY-SUBRC <> 0.
 IF SY-SUBRC = 1.
* application specific message saying document cannot be displayed
 ...
 ELSE.
* hard error
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
 ENDIF.
ENDIF.

* call display function. If SERVER_DEST is initial, it's a local call.
CALL FUNCTION 'BAPI_HRDOC_DISPLAY'
 DESTINATION SERVER_DEST
 EXPORTING

April 2001 193

ALE Programming Guide SAP AG
Calls With References to the Logical System

 DOCUMENT_ID = HEAD-AWREF
 IMPORTING
 RETURN = RETURN
 EXCEPTIONS
 COMMUNICATION_FAILURE = 1 MESSAGE MSG_TXT
 SYSTEM_FAILURE = 2 MESSAGE MSG_TXT.

IF SY-SUBRC <> 0.
* handle remote exceptions
 MESSAGE E777(B1) WITH
 'HRDoc.Display' HEAD-AWSYS HEADER-AWSYS
 MSG_TXT(50) MSG_TXT+50(30).
ELSEIF NOT RETURN-TYPE IS INITIAL.
* handle return parameter
 ...
ENDIF.

The message B1 777 is a generic message. An application-specific message could be used
instead.

194 April 2001

 SAP AG ALE Programming Guide
 Calls Without References to the Logical System

Calls Without References to the Logical System

HR forwards payroll results to Accounting. Here the appropriate documents are
posted. The HR document does not have a reference to the document created in
Accounting.

The method to be called is named, for example, ACDoc.Display. ACDoc.Display does not have
any filter objects. The field HRKPF-DOCNR contains the ID of the HR document.
As the logical system cannot be identified here, the logical target system has to be determined
from the distribution model.
The source code below shows how the Accounting document display is called from the HR
document display:

...
DATA:
 HEAD LIKE HRKPF,
 SERVER LIKE BDBAPIDEST,
 RETURN LIKE BAPIRET2,
 MSG_TXT(80) TYPE C,
 FILTER_VALUES LIKE BDI_FOBJ OCCURS 0 WITH HEADER LINE.
...

* get logical system and RFC destination for remote method call

* no filter objects are used
REFRESH FILTER_VALUES.

* get server system from ALE distribution model
CALL FUNCTION 'ALE_BAPI_GET_UNIQUE_RECEIVER'
 EXPORTING
 OBJECT = 'ACDOC'
 METHOD = 'DISPLAY'
 IMPORTING
 RECEIVER = SERVER
 TABLES
 FILTEROBJECTS_VALUES = FILTER_VALUES.
 EXCEPTIONS
 ERROR_IN_FILTEROBJECTS = 1
 ERROR_IN_ALE_CUSTOMIZING = 2
 NOT_UNIQUE_RECEIVER = 3
 NO_RFC_DESTINATION_MAINTAINED = 4
 OTHERS = 5.

IF SY-SUBRC <> 0.
 IF SY-SUBRC = 4.
* application specific message saying document cannot be displayed
 ...
 ELSE.
* hard error
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO

April 2001 195

ALE Programming Guide SAP AG
Calls Without References to the Logical System

 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
 ENDIF.
ENDIF.

* call display function. If SERVER_DEST is initial, it's a local call.
CALL FUNCTION 'BAPI_ACDOC_DISPLAY'
 DESTINATION SERVER-RFCDEST
 EXPORTING
 DOCUMENT_ID = HEAD-DOCNR
 IMPORTING
 RETURN = RETURN
 EXCEPTIONS
 COMMUNICATION_FAILURE = 1 MESSAGE MSG_TXT
 SYSTEM_FAILURE = 2 MESSAGE MSG_TXT.

IF SY-SUBRC <> 0.
* handle remote exceptions
 MESSAGE E777(B1) WITH
 'HRDoc.Display' HEADER-AWSYS MSG_TXT(50) MSG_TXT+50(30).
ELSEIF NOT RETURN-TYPE IS INITIAL.
* handle return parameter
 ...
ENDIF.

This example does not use filter objects. If filter objects exist for the object method to
be called, the distribution model must be accordingly interrogated.

196 April 2001

 SAP AG ALE Programming Guide
 Serialization of Messages

Serialization of Messages
Use
Serialization plays an important role in distributing interdependent objects, especially when master
data is being distributed.
IDocs can be created, sent and posted in a specified order by distributing message types serially.
Errors can then be avoided when processing inbound IDocs.

Features
Interdependent messages can be serially distributed in the following ways:
• Serialization by Object Type [Extern]
• Serialization by Message Type [Seite 118]
• Serialization at IDoc Level [Seite 201]

(not for IDocs from generated BAPI-ALE interfaces)

April 2001 197

ALE Programming Guide SAP AG
Serialization by Object Type

Serialization by Object Type
Use
Serialized messages can be of different types (for example, create, change or cancel messages).
All messages here relate to one special application object.
The messages can contain both master data and transaction data.
With object serialization the messages a given object are always processed in the correct order
on the receiver system. The order messages are posted in on the receiver system is the same as
they were created on the sender system.

Prerequisites
You have to activate serialized distribution in both systems in ALE Customizing:
Tools → AcceleratedSAP → Customizing → Project Management
SAP Reference IMG
Basis Components

Distribution (ALE)
 Modeling and Implementing Business Processes
 Master Data Distribution
 Serialization for Sending and Receiving Data
 Serialization by Object Type

Features
Object type serialization is carried out using object channels.
All messages are processed in an object channel in the target system in the same order they were
sent from the source system. An object channel contains a number of ordered IDocs and is
defined by an object type (BOR) and precisely one channel number. A channel number is a
message attribute. It is generated by the function module ALE_SERIAL_KEY2CHANNEL.
All messages with the same channel number and object type are serialized when the messages
are processed.
The current number of each object channel is recorded. This process is takes place in what is
known as the registry. There is an outbound registry and an inbound registry. Serialization must
be activated in both registries (see prerequisites).

Outbound Processing (Source System)
When outbound IDocs are processed, for each object channel (field CHNUM) a unique serial
number is assigned to each IDoc created (field CHCOU). This number and the object channel are
transferred with the IDoc in the SERIAL field.
An unique serial number is assigned to each message for the application object in question.

Inbound Processing (Target System)
When inbound IDocs are processed, a unique serial number is generated for each object channel
(field CHNUM) and communication link. The ALE layer determines whether a given IDoc can now
be posted or whether other IDocs have to be posted first. The serial number for each received
IDoc is exactly one whole number lower. Any gaps in the sequence will mean that IDocs are
missing, either because the transfer did not work, or because earlier IDocs were not posted
successfully.
In this case the IDoc is assigned status 66 and must be posted again with the program
RBDAPP01.

198 April 2001

 SAP AG ALE Programming Guide
 Serialization by Object Type

Objects are assigned to messages and channels by the application.
Transfer errors (IDoc sequence mixed up) and inbound posting errors (IDoc cannot be posted due
to Customizing errors) no longer affect the sequential order, because serialization corrects these
errors.

April 2001 199

ALE Programming Guide SAP AG
Serialization By Message Type

Serialization By Message Type
Use
IDocs can be created, sent and posted in a specified order by distributing message types serially.
Object interdependency is important at the message type level.

Consider a purchasing info record with a vendor and a material. To avoid any
processing errors, the vendor and material must be created in the receiving system
before the purchasing info record.

Prerequisites
You have to activate serialized distribution of message types in both systems in ALE Customizing
(Transaction SALE).
Basis Components

Distribution (ALE)
 Modeling and Implementing Business Processes
 Master Data Distribution
 Serialization for Sending and Receiving Data
 Serialization by Message Type

Features
Serialized distribution is only used to transfer changes to master data. IDoc message types are
assigned to serialization groups according to the order specified for their transfer. Master data is
distributed in exactly the same order. If all the IDocs belonging to the same serialization group are
dispatched successfully, the sending system sends a special control message to the receiving
system. This control message contains the order IDocs are to be processed in and starts inbound
processing in the receiving systems.
Serialized distribution of message types is not a completely new way of distributing master data; it
uses existing ALE distribution mechanisms whilst adhering to a specified order of message type.
This distribution could also be carried out manually using existing ALE programs. However,
serialized distribution automates the single steps and can schedule them in a batch job.
In the serialization menu selection criteria determine how certain parts of the serialized distribution
will be processed, for example, control message dispatch and inbound processing.

200 April 2001

 SAP AG ALE Programming Guide
 Serialization at IDoc Level

Serialization at IDoc Level
Use
Delays in transferring IDocs may result in an IDoc containing data belonging to a specific object
arriving at its destination before an "older" IDoc that contains different data belonging to the same
object. Applications can use the ALE Serialization API to specify the order IDocs of the same
message type are processed in and to prevent old IDocs from being posted if processing is
repeated.
SAP recommends that you regularly schedule program RBDSRCLR to clean up table BDSER (old
time stamp).

Prerequisites
IDocs generated by BAPI interfaces cannot be serialized at IDoc level because the function
module for inbound processing does not use the ALE Serialization API.

Features
ALE provides two function modules to serialize IDocs which the posting function module has to
invoke:
• IDOC_SERIALIZATION_CHECK to check the time stamps in the serialization field of the IDoc

header.
• IDOC_SERIAL_POST updates the serialization table.

April 2001 201

ALE Programming Guide SAP AG
Automatic Tests

Automatic Tests
You can check the quality of the ALE layer and the ALE business processes using automatic
tests.
Although automatic tests cannot replace manual tests, you can still use them to check the basic
functions of ALE business processes. This is especially useful for upgrade tests that should be
regularly carried out without manual intervention. The logical system can also be automatically
customized so that subsequent tests are easier and quicker to perform.
The automatic tests are developed entirely in R/3 using the CATT environment. They comprise
mainly test runs and test modules. For further information see CA - Computer Aided Test Tool
[Extern].
These instructions apply to all applications responsible for one or more ALE business processes.
You need to be familiar with developing CATT modules.
IDES data should be used in the test modules and test runs so that they can be run regularly in
new test systems without requiring manual action.

202 April 2001

 SAP AG ALE Programming Guide
 Example Scenario for Distributing Master Data

Example Scenario for Distributing Master Data
The example scenario for distributing master data via ALE is used to illustrate how a test
procedure is set up. The procedure for transaction data is essentially the same, the test runs may
be more extensive because several messages flow between the different logical systems.

Creating an ALE Scenario
To distribute master data (material, cost center, etc.) a master data is created or changed in a
central R/3 System and then sent in an IDoc to a decentralized system.
This scenario can be divided into four steps:
Application
1. Create/change master data
2. Create IDoc
ALE layer
3. Send IDoc
4. Post IDoc
Application

April 2001 203

ALE Programming Guide SAP AG
Preparing the Test

Preparing the Test
Before you can test run an ALE scenario, the ALE layer must be customized. The customizing is
carried out by a leader CATT procedure based on the existing IDES customizing. The test module
P3013119 is provided for this. This module enhances the distribution model and creates partner
profiles for the message types.
You must also establish connections from the system running the test to the central and
decentralized systems, as both systems are started during the test procedure.

Test module P3017940
The test module P3017940 itself consists of number of test modules and function modules.

Starting the sender system
Finds IDoc number: FB GET_IDOCNR_FROM_OBJECT
Sends IDoc: TB P3015649
Reads IDoc status: FB GET_STATUS_FROM_IDOCNR
Converts IDoc status: TB P3013115

Starting the receiver system
Finds IDoc: FB GET_IDOCNR_FROM_IDOCNR
Posts IDoc: TB P3013464

Examples:
The test procedure P3013121 is an example of a master distribution process, P3017156 an
example of a complex process with transaction data.
The module P3017940 is used in both procedures.

204 April 2001

 SAP AG ALE Programming Guide
 Developing the Test Procedure

Developing the Test Procedure Remote Call to
A test procedure consists of three parts:
1. Creating/changing master data and creating the IDoc
2. Executing the test module P3017940

(Sending and posting the IDoc and checking its status).
3. Checking the master data resulting from the IDoc

Process Schema
The test procedure for an ALE scenario to distribute master data consists of the following test
modules:

Create/change
Master data
Create IDocCATT start system

CATTs
Test Proc ALE scenario

Test module

Test mod. P3017940

Test module

Sender System

Send Idoc
Check IDoc status

Receiver System

Post Idoc
Check IDoc status

Check master data
. . .

IDoc

The test module P3017940 is provided for the ALE layer steps. This module can be used for all
scenarios in which object links are created by the application.
This test procedure can be called from each test procedure on local systems. Appropriate values
need to be entered in the import parameters.
Details of links are held in Table TBD14.
To run a test module in another system, you have to specify an RFC destination in the procedure
with CTRL/F2. The test module must be available in the target system. For further information
refer to the on line help on CATT.

April 2001 205

ALE Programming Guide SAP AG
Remote Call to Test Module

206 April 2001

 SAP AG ALE Programming Guide
 Error Handling

Error Handling
ALE error handling makes use of the SAP Business Workflow technology in the R/3 System. SAP
Business Workflow organizes and manages a work process whereby tasks are assigned to
individual agents. After completing a task, agents are informed of subsequent work items in their
inbox.
SAP Business Workflow is object oriented; ALE error handling objects are IDocs and their
methods and events.

If there is an error, only the first message from the return parameter is copied to the
text in the associated work item.

Error Handling Process

User action R/3 action

Execute Workitem

Fix error and reprocess Idoc
or
Flag IDoc for deletion

Error in inbound function module

ALE triggers error event

Workitem appears in user's Inbox

Display IDoc for user processing
(IDoc method "InputForeground")

ALE triggers end event

Workitem completed

input Error Occurred

input Finished

The example below of an inbound error for a material master message shows the
steps in ALE error handling:

1. The inbound function module passes message to the ALE layer that an error has occurred.
2. ALE triggers the object event "inputErrorOccurred" from the IDCOMATMAS category.
3. This event is linked to standard task number 00007947, long name "MATMAS_inbound error"
4. A work item appears in the user’s inbox, the work item’s short text is the first fifty characters of

the error message contained in the IDoc’s status record.
5. When the user processes the work item, the IDOCMATMAS method "IDOC.InputForeground"

is processed.

April 2001 207

ALE Programming Guide SAP AG
Error Handling

IDoc status record is displayed and the user can display the error
message's long text. If the user was able to remedy the error, the IDoc can
be submitted for updating. If the error cannot be remedied, the user can
flag the IDoc for deletion.

6. If the IDoc was either successfully submitted or flagged for deletion, IDOCMATMAS’s event
"inputFinished" is triggered indicating that the task has been carried out.

208 April 2001

 SAP AG ALE Programming Guide
 Objects, Events and Tasks to be Created

Objects, Events and Tasks to be Created
How to implement error handling for a message type, (XAMPLE):
• Create a new object type IDOCXAMPLE as a child of the object type IDOCAPPL, in the

Business Object Repository (BOR). Customers should use the name ZDOCXAMPLE.
• Create a new standard task, named "XAMPLE_Error".
• Create event-couplings linking IDOCXAMPLE’s event inputErrorOccurred to your standard

task, and event inputFinished to the function module for completing work items.
In each case it is easier to copy an existing object type or standard task.
To provide a fully ALE-compatible interface, you will also need to:
• Create a new object type IDPKXAMPLE, as a child of the object type IDOCPACKET

Customers should use the name ZDKXAMPLE.
• Maintain your inbound process code to refer to the above objects and events
The example of the material master record IDoc MATMAS explains how the above objects are
created.
The attributes of object type IDOCMATMAS are used to define the standard task so that the error
message and the material number appear in the work item text.
The methods and events used are described above.

Object type IDOCMATMAS:
Attributes, methods and events relevant to the inbound function module.

 Name From IDOCAPPL Description

Attribute ShortMessage Yes First 50 characters of IDoc’s status
message

 ApplicationObjectID Yes ID of ALE link object in IDoc

Method InputForeground Yes Processes IDoc starting with status
display

 InputBackground Yes Processes IDoc without any dialog

Event inputErrorOccurred Yes Triggered when direct application
handover failed; not triggered by the
methods InputForeground and
InputBackground

 inputFinished Yes Triggered when IDoc successfully
processed, or user flags IDoc for
deletion

An example of an ALE error handling.
The arrows show the three stages:

1. The event inputErrorOccurred causes a work item to be created.
2. When the user executes the work item, the method InputForeground is invoked.
3. If the IDoc has been successfully processed, or flagged for deletion, the event inputFinished

is triggered, which terminates the work item.

April 2001 209

ALE Programming Guide SAP AG
Objects, Events and Tasks to be Created

Object method

Object:
IDOCMATMAS

InputForeground

Start event

Object:
IDOCMATMAS

Event:
InputErrorOccurred

End event

Standard task

00007946:

'MATMAS_Error'1

2

3

Method:

Object:
IDOCMATMAS

InputFinished
Event:

Before continuing, have a look at the object type IDOCMATMAS in the Business
Object Builder and at the standard task 7946. Both the Business Object Repository
and standard tasks are reached via the menu path:
Tools → Business Workflow → Development → and the menu Definition Tools →.

 → Business Object Builder and
→ Tasks/Task Groups

For further information see the application help.

210 April 2001

 SAP AG ALE Programming Guide
 Object Types and Events

Object Types and Events
The naming convention for the object types for message type XAMPLE is IDOCXAMPLE and
IDPKXAMPLE. These object types are created in the Business Object Repository, under object
type IDOCAPPL and IDOCPACKET respectively. The steps to carry out are described next.
For each object type you create you are asked for the name of a report that will also be created.
This can also be deleted. The standard naming conventions apply, that is they should be within
the customer name range and begin with Y or Z. Make sure you use a different report for each
object type.

The object types IDOCAPPL and IDOCPACKET contain documentation that
describes their methods and events.

See also:
Creating IDoc Object Type IDOCXAMPLE [Seite 212]
Creating IDoc Packet Object Type IDPKXAMPLE [Seite 214]

April 2001 211

ALE Programming Guide SAP AG
Creating IDoc Object Type: IDOCXAMPLE

Creating IDoc Object Type: IDOCXAMPLE
From the initial R/3 screen you can get to the Business Object Repository (BOR) via menu path
via Tools → SAP Business Workflow → Development, then select Object repository.
In the hierarchy, go to object type IDOCMATMAS under Cross-Application Components → IDoc
Interface/Electronic Data Interchange → IDOC → IDOCAPPL.
Copy the object type IDOCMATMAS as follows:
1. Select object type IDOCMATMAS and then select Copy
2. A popup window appears: enter the name of your object type (e.g. IDOCXAMPLE) and your

report (e.g. RXAMPLE1) and select Copy
The naming convention for SAP is IDOC<Message type>, e.g. IDOCXAMPLE
The naming convention for customers is ZDOC<Message type> e.g. ZDOCXAMPLE

3. A popup window appears. Enter your development class

Edit the object type you have created (e.g. IDOCXAMPLE) as follows:
1. Select the object type (e.g. IDOCXAMPLE) and then select Change
2. A popup window appears: do not choose any of the options, just press Enter.
3. Select Basic data and change the object's short text and description to fit your needs

The naming convention for the short text is "IDOC <Message type>", e.g. "IDOC
XAMPLE".
Select Back.

4. Change the description of the event inputFinished as follows: Look at the events by
expanding the hierarchical list under the heading Events; double-click on the event
inputFinished and now change the description and press Enter

5. Change the event’s parameter Appl_Object as follows: Select menu options Goto → Obj. type
components → Parameters, and then select parameter Appl_Object by double-clicking on it.
Change the object type BUS001 to the object type that has been processed by your inbound
function module. Also change the short text and the description.

If a suitable application object type does not exist for your inbound function module,
then delete the parameter Appl_Object rather than changing it. To do this, select the
parameter Appl_Object and then select Delete rather than double-clicking on the
parameter.

• Select Back and save the object type (Object type → Save w/o check).
• Generate the object type by selecting Generate.
• Release the object type as follows: Go back to the BOR hierarchy view and select Object type

→ Release.
As an option, you can add a further parameter Application_Variable to the inputFinished event's
container. This variable is filled with the contents of the inbound function module's export
parameter Application_Variable. To see an example where this parameter is used, look at the
object type IDOCORDERS.

212 April 2001

 SAP AG ALE Programming Guide
 Creating IDoc Object Type: IDOCXAMPLE

April 2001 213

ALE Programming Guide SAP AG
Creating IDoc Packet Object Type: IDPKXAMPLE

Creating IDoc Packet Object Type: IDPKXAMPLE
In the hierarchy, go to the object type IDPKMATMAS under Cross-application components →
IDoc interface/Electronic Data Interchange → IDOCPACKET.
Copy the object type IDPKMATMAS as follows:
1. Click on object type IDPKMATMAS and then select Copy.
2. A dialog box appears: enter the name of your object type (IDPKXAMPLE) and your report

(RXAMPLE2) and then select Copy.
The naming convention for SAP is IDOC<message type>, e.g. IDPKXAMPLE
The naming convention for customers is ZDOC<message type>, for example,
ZDPKXAMPLE

3. A dialog box appears: enter your development class;

Edit the object type you have created (IDPKXAMPLE) as follows:
1. Select the object type (IDPKXAMPLE) and then select Change.
2. A dialog box appears: do not choose any of the options, just select Enter.
3. Select Basic data and change the object's short text and description as required.

– The naming convention for the short text is IDPK<message type>, for example,
IDPKXAMPLE.

4. Select Back and then Object type → Save w/o check.
5. To generate the object type select Generate.
6. Release the object type as follows: Go back to the BOR hierarchy and select Object type →

Release.

214 April 2001

 SAP AG ALE Programming Guide
 Creating a Standard Task

Creating a Standard Task
To create a new standard task copy an existing task. The standard task 7947 "MATMAS_TASK"
is used as an example.
From the R/3 menu choose Tools → SAP Business Workflow → Development.
1. To create a standard task, choose Definition tools → Tasks/Task groups → Copy
2. In the Task type field enter TS and in the Task field enter 7947. Then choose Task → Copy.
3. In the window Task:Copy enter the Abbreviation (XAMPLE_Error) and Name (XAMPLE input

error) of your object and then select Copy.
4. A Create object catalog entry window appears: enter your development class and select

Save.
5. Note the number of the task you have created (99900000).
Edit the new task as follows:

1. Choose Definition tools → Tasks/Task groups → Change
2. Delete the triggering events:

– Select Triggering events
– Select the event inputErrorOccurred and choose Edit → Delete event.
– Select Back.

3. Delete the terminating events:
– Select Terminating events
– Select the event inputFinished and choose Edit → Delete event.
– Select Back.

4. Replace the application component HLA0006031 with the application component
applicable for your inbound processing.

This is used for documentation and for finding the tasks appropriate to a given
application component.

5. Replace the object type IDOCMATMAS with your newly created object type
(IDOCXAMPLE).

6. Add the triggering event applicable to your object type:
– Select Triggering events
– Select Insert event
– A dialog box appears: type in your object type (IDOCXAMPLE), and use F4 in the

event field to choose the event inputErrorOccurred
– Select Binding definition
– Enter &_EVT_OBJECT& in the field _WI_Object_Id.
– Enter &EXCEPTION& in the field Exception.
– Save your entries.
– Choose Goto → Event linkage, then Activate.
– Select Back twice.

7. Add the terminating event applicable to your object type:
– Select Terminating events

April 2001 215

ALE Programming Guide SAP AG
Creating a Standard Task

– Select Insert event
– A dialog box appears. enter your object type (IDOCXAMPLE) and use F4 in the Event

field for the event inputFinished. Use F4 on the event field and choose the element
_WI_OBJECT_ID

– Select Back. Note: You do not need to maintain the binding definition for this event.
8. To save your changes select Save.

– Select Save.
All the tasks should now be correctly copied. To be sure, check the following three settings:

1. Check the binding to the object:
– Select Binding OM
– &EXCEPTION& should be assigned to the field Exception.
– Select Back.

2. Check the default role:
– Select Default roles.
– The standard role for the agent should be 134. The standard role for the agent should

be 134.
– Select Binding editor. &_WI_OBJECT_ID& should be assigned to the parameter

IDOCNUMBER.
– Select Back twice.

3. Check the work item text:
– – Select Work item text
– A dialog box appears containing the work item text, which should contain two entries:
– &_WI_Object_Id.ShortMessage& This entry ensures that the first 50 characters in the

work item text contain the IDoc's attribute "ShortMessage", which is the first 50
characters of the IDoc's error short text.

– &_WI_Object_Id.ApplicationObjectID&: This entry ensures that the remaining work
item text contains the IDoc's attribute ApplicationObjectID, which is the ID of the
application object contained in the IDoc. In the case of MATMAS it is the material
number. The attribute is determined using the ALE link object.

– Select Back.

An agent is assigned to a work item via Customizing for SAP Business Workflow.
These customizing functions can be found in ALE Customizing under Error
Processing → Create organizational units and assign standard tasks.

216 April 2001

 SAP AG ALE Programming Guide
 Maintaining Inbound Methods

Maintaining Inbound Methods
The event fields in your inbound method mentioned in the section ALE Settings under Process
codes can now be maintained. From the ALE Development screen choose IDoc → Inbound →
Process code Processing type

Process codes are client-dependent Make sure you maintain them in the correct
client.

1. Select your process code (XAMP).
2. Enter your packet object type (IDPKXAMPLE) and the end event massInputFinished in the

IDoc packet fields.
3. Enter the start event inputErrorOccurred and the end event inputFinished in the IDoc fields of

your IDoc object type (IDOCXAMPLE),
4. Enter your application object type, for example, BUS1001 for materials, in the application

object type field.
5. Save your entries.

April 2001 217

ALE Programming Guide SAP AG
Checking Consistency of Inbound Error Handling

Checking Consistency of Inbound Error Handling
You have now maintained everything needed for error handling via Workflow. To verify that
everything is correct, choose IDoc → Inbound → Consistency Check from the ALE Development
screen.
The line containing your process code should appear white if everything is OK, yellow if you are
not using an application object type and everything is OK, and red if at least one setting is
incorrect. (These colors assume the default color settings.)
To see details, double-click on the line containing your process code.

Process codes and event linkages are client-dependent, so make sure you carry out
the check in the correct client.

218 April 2001

	Copyright
	Icons
	Inhalt
	ALE Programming Guide
	Purpose

	Implementing Distribution Using BAPIs
	Process Flow

	Distribution Using BAPIs
	Outbound Processing
	
	Receiver determination
	Calling the generated outbound function module
	Data Filtering
	Conversion of BAPI call into IDoc
	Segment filtering
	Field conversion
	IDoc version change
	Dispatch control

	Inbound Processing
	
	Segment filtering
	Field conversion
	Transfer control
	Conversion of IDoc into BAPI call
	BAPI function module call
	IDoc status determination
	Posting of application data and IDoc status
	Error handling

	Implementing Your Own BAPIs
	Procedure
	Notes about Asynchronous BAPIs

	Filtering Data
	Prerequisites for Using Filter Services

	Reducing Interfaces
	Use

	Prerequisites
	
	Fully Reducible Parameters
	Reducing Parameter Fields

	Procedure
	Result

	Defining and Assigning Filter Object Types
	Process Flow

	Filtering BAPI Parameters
	Use
	Prerequisites
	Features

	Defining Hierarchies Between BAPI Parameters
	Use
	Prerequisites
	Procedure
	Create Hierarchy
	Change Hierarchy
	Display Hierarchy
	Delete Hierarchy
	Editing the Hierarchy Display
	Insert table parameters
	Delete table parameters
	Define field references between parent and child tables
	Save hierarchy

	Maintaining BAPI-ALE Interfaces
	Prerequisites
	Procedure
	Result
	Notes
	
	Namespace enhancement
	Filtering the Data Selection
	Serialization
	Links
	Documentation on Generated Function Modules
	BAPI Return Parameters and IDoc Status
	Restrictions on Generating Interfaces

	Determining the Receiver of a BAPI
	Use
	Features

	Determining Filter Objects of a BAPIs
	Use
	
	Input Parameters:
	Output Parameters:
	Exceptions

	Determining Receivers of Asynchronous BAPIs
	Use
	
	Input Parameters:
	Output Parameters:
	Exceptions

	Determining Filter Objects Using Business Add-Ins
	Use
	Prerequisites
	Structuring a Business Add-In in a Form Routine

	Procedure
	Result

	Example Programs with Asynchronous BAPI Calls
	Filter Object Types Are Not Known at Runtime
	Receiver determination with business add-in
	Form routine implemented by SAP
	Methods Implemented by Customers

	Filter Object Types are Known at Runtime

	Determining Receivers of Synchronous BAPIs
	Use
	
	Input Parameters:
	Output Parameters:
	Exceptions

	Example Programs with Synchronous BAPI Calls
	Filter Object Types Are Not Known at Runtime
	Filter Object Types are Known at Runtime

	Determining Unique Receivers of Synchronous BAPIs
	
	
	Input Parameters:
	Output Parameters:
	Exceptions

	Developing BAPIs for Interactive Processing
	Prerequisites
	Procedure

	Enhancing IDocs of BAPI-ALE Interfaces
	Prerequisites
	Procedure

	Distribution Using Message Types
	Purpose
	Process Flow

	Distribution Using Message Types
	Outbound Processing
	
	Receiver Determination
	Segment Filtering
	Field Conversion
	IDoc Version Change
	Dispatch Control

	Inbound Processing
	
	Segment Filtering
	Field Conversion
	Transfer control

	Implementing Outbound Processing
	Developing a Function Module for ALE Outbound Processing
	Basics
	Interrogating the Distribution Model
	Structure of Control Records
	Structure of the Data Records
	Converting Currency Amounts
	Replacing SAP Codes With ISO Codes
	Left-justified Filling of IDoc Fields
	Calling MASTER_IDOC_DISTRIBUTE
	Exceptions and Export Parameters of MASTER_IDOC_DISTRIBUTE
	Example of Generating an IDoc
	Example Program to Generate an IDoc
	Using the Example Coding
	Customizing ALE Outbound Processing
	Defining ALE Object Types
	Assigning the Object Type for the Outbound Link to the Message Type
	Assigning the Application Object Type for the Outbound Link to the Message Type
	Outbound Processing Using Message Control
	
	Customizing
	Programming

	Implementing Inbound Processing
	
	Components of an ALE interface for processing inbound IDocs
	Processing an inbound IDoc

	Inbound Function Module
	Embedding a Function Module in ALE Inbound Processing
	Data Consistency
	Ensuring Data Consistency
	Serialization
	Processing IDocs Individually
	Naming Convention
	The Function Module’s Interface
	Import Parameters
	IDoc Processing
	Export Parameters
	The Inbound Function Module’s Export Parameters
	Export Parameters When IDoc was Successfully Processed
	Export Parameters When an Error Occurred in IDoc Processing
	Example of Processing an IDoc
	Example Program to Process an IDoc
	Serialization Using Message Types
	Example Program for Serialization
	Customer Exits
	Example Program for a Customer Exit
	Mass Processing
	Import Parameters
	Export Parameters
	All Inbound IDocs Processed Successfully
	Error in One Inbound IDoc
	Example Program for Mass Processing IDocs
	Using Call Transaction
	ALE-Enabled Transactions
	Call Transaction Succeeds
	
	How can you tell whether the Call Transaction has succeeded?

	Call Transaction Fails
	Import Parameters in CALL TRANSACTION
	Export Parameters in CALL TRANSACTION
	Inbound Processing Successful
	Error During Inbound Processing
	ALE Settings
	Declaring the Function Module’s Attributes
	
	Dialog possible?
	Inbound type

	Registering the Function Modules in Inbound Processing
	Creating an Inbound Processing Code
	
	Naming Convention

	Inbound Processing Using SAP Workflow
	Work Items
	Workflow
	IDOCXAMPLE as a Reference for IDOC_PACKET
	IDPKXAMPLE as a Reference for IDOC_PACKET
	Advanced Workflow Programming
	Setting the Parameter RESULT in the Event Container
	Event inputErrorOccurred
	Event inputFinished
	Triggering an Application Event After Successful IDoc Processing
	Using the Parameter NO_OF_RETRIES
	Master Data Distribution
	Defining the Message
	Processing Outbound Master Data
	Distributing Master Data Using the SMD Tool
	Procedure
	Activate change pointers for each message type
	Maintain change-relevant fields for message type
	Activating change pointers generally
	Implement function module for evaluating change pointers
	Defining the ALE object type MSGFN as a filter object type

	Sending Master Data Directly
	Procedure

	Processing Inbound Master Data
	Connections to Non-SAP Systems
	Translator Programs for Communication
	Definition
	Use
	Structure
	Integration

	Technical Implementation
	TCP / IP Settings
	Sending IDocs to an External System
	Sending IDocs: External System to SAP System
	Transaction Identification Management (TID)
	Integrating Dialog Interfaces
	Use
	Procedure
	Naming Dialog Methods
	Calling Dialog Methods

	Calls With References to the Logical System
	Calls Without References to the Logical System
	Serialization of Messages
	Use
	Features

	Serialization by Object Type
	Use
	Prerequisites
	Features
	
	Outbound Processing (Source System)
	Inbound Processing (Target System)

	Serialization By Message Type
	Use
	Prerequisites
	Features

	Serialization at IDoc Level
	Use
	Prerequisites
	Features

	Automatic Tests
	Example Scenario for Distributing Master Data
	Creating an ALE Scenario
	Preparing the Test
	Test module P3017940
	Starting the sender system
	Starting the receiver system

	Examples:

	Developing the Test Procedure
	Process Schema
	Remote Call to Test Module
	Error Handling
	Objects, Events and Tasks to be Created
	Object Types and Events
	Creating IDoc Object Type: IDOCXAMPLE
	Creating IDoc Packet Object Type: IDPKXAMPLE
	Creating a Standard Task
	Maintaining Inbound Methods
	Checking Consistency of Inbound Error Handling

