

BC SAPscript: Printing with
Forms

 H
E

L
P

.B
C

S
R

V
S

C
R

P
R

O
G

Re lease 4 .6C

BC SAPscript: Printing with Forms SAP AG

Copyright

© Copyright 2001 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose
without the express permission of SAP AG. The information contained herein may be changed
without prior notice.

Some software products marketed by SAP AG and its distributors contain proprietary software
components of other software vendors.

Microsoft®, WINDOWS®, NT®, EXCEL®, Word®, PowerPoint® and SQL Server® are registered
trademarks of
Microsoft Corporation.

IBM®, DB2®, OS/2®, DB2/6000®, Parallel Sysplex®, MVS/ESA®, RS/6000®, AIX®, S/390®,
AS/400®, OS/390®, and OS/400® are registered trademarks of IBM Corporation.

ORACLE® is a registered trademark of ORACLE Corporation.

INFORMIX®-OnLine for SAP and Informix® Dynamic Server

TM
 are registered trademarks of

Informix Software Incorporated.

UNIX®, X/Open®, OSF/1®, and Motif® are registered trademarks of the Open Group.

HTML, DHTML, XML, XHTML are trademarks or registered trademarks of W3C®, World Wide
Web Consortium,
Massachusetts Institute of Technology.

JAVA® is a registered trademark of Sun Microsystems, Inc.

JAVASCRIPT® is a registered trademark of Sun Microsystems, Inc., used under license for
technology invented and implemented by Netscape.

SAP, SAP Logo, R/2, RIVA, R/3, ABAP, SAP ArchiveLink, SAP Business Workflow, WebFlow,
SAP EarlyWatch, BAPI, SAPPHIRE, Management Cockpit, mySAP.com Logo and mySAP.com
are trademarks or registered trademarks of SAP AG in Germany and in several other countries
all over the world. All other products mentioned are trademarks or registered trademarks of their
respective companies.

2 April 2001

 SAP AG BC SAPscript: Printing with Forms

Icons

Icon Meaning

Caution

Example

Note

Recommendation

Syntax

April 2001 3

BC SAPscript: Printing with Forms SAP AG

Inhalt

BC SAPscript: Printing with Forms...8
BC - SAPscript: Printing with Forms... 9
Overview... 10
Printing Texts Using Forms ... 12
Structure of a Form... 13

Header Data... 14
Layout Example .. 15

Text Element .. 16
Paragraph and Character Formats .. 17
Windows and Text Elements.. 18

Pages ... 19
Text Elements in the PC Editor.. 20

Window ... 21
Pages.. 22
Page Window ... 23

Page Windows ... 24
Text Elements of a Form... 26

Text Elements with Names .. 27
Text Elements Without Names .. 29
Activate Text Elements .. 30

Print Program .. 31
Using Print Programs... 32

Example of a Print Program.. 33
Window Types ... 35

Constant Windows (CONST) ... 36
Variable Windows (VAR).. 37
Main Windows (MAIN) ... 38

Output Areas in the Main Window .. 39
TOP Area... 41
BOTTOM Area... 42

How the Composer Works.. 43
Page Control in Forms ... 44
Defining a Subsequent Page Statically.. 45
Defining a Subsequent Page Dynamically... 46
Formatting a Form Page .. 47

Form Control.. 48
Several Print Requests .. 49
Starting a Form Again .. 50
Switching Forms... 51
Finding Forms .. 52

Printing Text Lines and Text Elements ... 53
Output to the BODY Area of the Main Window.. 54
Output to a Window of Type VAR or CONST .. 55
Output to the TOP or BOTTOM Areas of the Main Window.. 56
Calling Control Statements .. 57

The Programming Interface.. 58

4 April 2001

 SAP AG BC SAPscript: Printing with Forms

Structure of Texts.. 59
Text Header ... 60
Text Lines... 61

ITF/OTF Format .. 63
Grouping Texts.. 64

Text Object ... 65
Text ID.. 66

Attributes of Texts... 67
Storage Mode... 68
Line Width .. 69
Editing Interfaces ... 70
Editor Title Line .. 72
Text Format.. 73
Style for Formatting Output .. 74
Form for Formatting Output.. 75
INCLUDE Texts.. 76

Structure of the Text Key.. 77
Storing Text Components .. 79
SAPscript Data Formats ... 80
Authorization Checks ... 82
Storing Texts ... 83

Storing Texts Directly ... 84
Storing Texts in Update Task... 85
Renaming Texts ... 87

Text Memory .. 88
Structure of the Text Memory... 89
Naming Conventions for the Text Memory .. 90
Text Memory and CALL Mode ... 91
Keeping Texts in the Text Memory .. 92
Changing the Storage Mode Dynamically.. 93

Work Areas for Texts .. 94
Text Header : THEAD .. 95
Structure TLINE of the Lines Table.. 99

Example: Creating Work Areas in the Program ... 102
SAPscript in Detail .. 103
Integrating Text-Processing into Application Programs .. 104

Reading Texts .. 105
Saving Texts .. 106
Deleting Texts .. 107
Calling the Editor.. 108

Finding Texts ... 109
Copying Texts .. 110

Inserting Text Lines into Application Screens... 111
Inserting Other Texts .. 113

Including Texts ... 114
Referring to Texts... 115

Processing Texts from Within Programs.. 116
Converting SAPscript Texts... 117
Consistency Checks ... 119
Printing Texts .. 120

April 2001 5

BC SAPscript: Printing with Forms SAP AG

SAPscript Control Tables and Structures .. 121
TTXOB: Definition of the Text Objects... 122
TTXOT: Description of the Text Objects .. 124
TTXID: Definition of Text IDs ... 125
TTXIT: Description of the Text IDs... 127
SAPscript Structures .. 128

Print Output.. 129
Controlling Print Output.. 130
Return Parameters of the Print Output .. 138

Editor Control .. 148
Controlling the Editor.. 149
Return Parameter of the Editor .. 152

SAPscript Function Modules ... 153
READ_TEXT ... 156
READ_TEXT_INLINE ... 159
READ_REFERENCE_LINES ... 162
SAVE_TEXT.. 164
DELETE_TEXT ... 167
COPY_TEXTS... 169
SELECT_TEXT ... 171
REFER_TEXT ... 174
RENAME_TEXT.. 177
COMMIT_TEXT... 178
INIT_TEXT... 180
EDIT_TEXT ... 182
EDIT_TEXT_INLINE ... 186
CHECK_TEXT_AUTHORITY ... 190
CHECK_TEXT_ID... 192
CHECK_TEXT_LANGUAGE.. 193
CHECK_TEXT_OBJECT.. 194
CHECK_TEXT_NAME.. 195
TEXT_SYMBOL_COLLECT... 196
TEXT_SYMBOL_PARSE ... 197
TEXT_SYMBOL_REPLACE... 202
TEXT_SYMBOL_SETVALUE... 205
TEXT_CONTROL_REPLACE .. 206
TEXT_INCLUDE_REPLACE.. 208
PRINT_TEXT .. 210
PRINT_TEXT_ITF ... 215
OPEN_FORM.. 217
CLOSE_FORM ... 221
START_FORM.. 223
WRITE_FORM .. 226
WRITE_FORM_LINES.. 230
END_FORM .. 233
CONTROL_FORM .. 234
READ_FORM_ELEMENTS.. 235
READ_FORM_LINES... 237
CONVERT_TEXT.. 239

6 April 2001

 SAP AG BC SAPscript: Printing with Forms

EXCHANGE_ITF... 243
IMPORT_TEXT ... 245
EXPORT_TEXT .. 248
TRANSFER_TEXT.. 252
CONVERT_TEXT_R2... 254
CONVERT_OTF_MEMORY ... 262

April 2001 7

BC SAPscript: Printing with Forms SAP AG
BC SAPscript: Printing with Forms

BC SAPscript: Printing with Forms

8 April 2001

 SAP AG BC SAPscript: Printing with Forms
 BC - SAPscript: Printing with Forms

BC - SAPscript: Printing with Forms

April 2001 9

BC SAPscript: Printing with Forms SAP AG
Overview

Overview
To use forms efficiently, it is essential that you understand the interdependencies between the
individual components of SAPscript.
SAPscript comprises these five components:
• an editor for entering and editing the lines of a text. The application transactions

automatically call this editor if the user decides to maintain texts that concern an application
object.

• styles and forms for print layout. These are created independent of the individual texts using
the corresponding maintenance transactions and are allocated to the texts later.

• the composer as central output module. Its task is to prepare a text for a certain output
device by including the corresponding formatting information. This information comes from
the style and form allocated to the text. The SAPscript composer is invisible on the outside.

• a programming interface that allows you to include SAPscript components into your own
application programs and to control the output of forms from within the programs.

• several database tables for storing texts, styles and forms.

Composer

Editor Styles
Forms

 Control
 tables

Programming
Interface

Database

In short, form maintenance means to allocate to a text document a form that contains the
information on how to layout the text (formats, fonts, layout, and so on). The print program
retrieves the required data from the form and from the database and controls the output. You use
certain function modules to activate the SAPscript composer, which is responsible for processing
the form.
Not every user of the SAP system works with every component of SAPscript. Depending on the
task, a user is confronted with different components.
• Accounting clerks create texts concerning materials, orders, customers, vendors, and so on.

They usually know only the SAPscript editor.
• Another user may be responsible for the print layout and will use the transactions for

maintaining styles and forms.
• A developer who integrates SAPscript into his own applications or who wants to create print

output using forms, sees SAPscript from the programming interface view point.

This documentation explains the basic principles of printing texts using forms. It describes in
detail the interaction of form and print program and offers examples for better understanding.

10 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Overview

Building on this basic knowledge, the documentation then describes the programming interface
which allows you to integrate the word processing functionality offered by SAPscript into ABAP
programs. This interface is a collection of ABAP function modules, different data structures, and
control tables.
Printing texts using forms [Seite 12]
The programming interface [Seite 58]

April 2001 11

BC SAPscript: Printing with Forms SAP AG
Printing Texts Using Forms

Printing Texts Using Forms
This documentation describes in detail the basic principles of printing texts using forms and the
interactions of the different SAPscript components.

Structure of a Form [Seite 13]
Text Elements of a Form [Seite 26]
Using Print Programs [Seite 32]
Window Types [Seite 35]
How the Composer Works [Seite 43]
Form Control [Seite 48]
Printing Text Lines and Text Elements [Seite 53]

12 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Structure of a Form

Structure of a Form
To output documents using the programming interface [Seite 58], R/3 application programs need
so-called forms. In SAPscript a form describes the layout of the individual print pages and uses
text elements [Seite 16] to supply definable output blocks, which a print program [Seite 31] can
call. General application forms are orders, order acknowledgments, invoices, urging letters, and
so on (Example [Seite 15]).
To create, display, and change SAPscript forms, you use a special maintenance transaction
(Form: Request). To call this transaction from the initial R/3 screen, choose Tools → SAPscript
→ Form (or call transaction SE71 directly). For more detailed information on maintaining forms,
see the documentation Style and Form Maintenance.
Usually a SAPscript form consists of the following objects:
Header Data [Seite 14]
Paragraph and Character Formats [Seite 17]
Windows and Text Elements [Seite 18]
Pages [Seite 19]
Page Windows [Seite 24]
Form Documentation [Extern]

April 2001 13

BC SAPscript: Printing with Forms SAP AG
Header Data

Header Data
The header data of a form consists of global data, such as the page format used, the page
orientation, or the initially used font.You maintain these data in the Basic settings of the header
data. The header data also include the name of the form, its description, the form class, and the
status. To see them, branch to the administration data (pushbutton).
If you display or edit the form header in the form maintenance transaction, the screen looks more
or less like the one below. Depending on whether you use the graphical (32bit platform Windows
95 or Windows NT 4.0 required!) or the traditional alphanumeric Form Painter, you can design
the layout with the mouse (pushbutton Layout) or by defining Windows, Pages and Page
windows. Below, you see the interface of the graphical Form Painter.

14 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Layout Example

Layout Example
The figure below shows a simple example of an invoice form created using SAPscript. Each form
consists of a start page and any number of subsequent pages, depending on the length of the
letter text. In this example, the start page consists of an area for outputting the address, an
information window containing reference data and the date, a window [Seite 21] containing
company-related data, and a main window for the actual letter text. This window for the letter text
appears on the subsequent pages as well, and, in addition, a window for page numbering.
The window for the text body differs from the other windows. Whenever this window on one page
[Seite 22] is full, the remaining text is automatically output on the subsequent page. The window
thus controls the page break. There can be only one window that triggers a page break. Such a
window in SAPscript is called main window.

Address

Info line

Start page Next pages

Continuous letter textCompany data

Example of an invoice form in SAPscript

April 2001 15

BC SAPscript: Printing with Forms SAP AG
Text Element

Text Element
Text elements in SAPscript are the individual text components of a form. In the different windows,
you can define text elements with different attributes. For printout, the print program accesses
them. Text elements can also contain variables (symbols) and SAPscript control statements.
See also: Text Elements of a Form [Seite 26]

16 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Paragraph and Character Formats

Paragraph and Character Formats
To format texts in forms, you need paragraph and character formats. You define them in the form
itself. If you are working with the line editor, the paragraphs you define here appear in the
possible values list (F4) for the format column beside the system-defined standard paragraphs. If
you are using the WYSIWYG PC editor (32bit platforms Windows 95 or Windows NT 4.0
required), the formats defined appear as pushbuttons. The figure below shows an example of
how to maintain a paragraph within transaction SE71 (Form: Request). Use the pushbuttons
Font, Tabs, and Outline to refine paragraph definitions according to your requirements.

For more information on how to create paragraph formats, see the R/3 online help documentation
BC - SAPscript - Style and Form Maintenance [Extern].

April 2001 17

BC SAPscript: Printing with Forms SAP AG
Windows and Text Elements

Windows and Text Elements
Forms usually consist of individual text areas (address, date, footer, and so on). To provide these
areas with texts, you must define the areas first as output areas. Then you can print the
appropriate texts in these output areas, controlled by the print program. SAPscript calls such an
output area a window. To refer to windows via the programming interface, each window must
have a unique name.
Frequently used window names in application forms are ADDRESS, SENDER, MAIN, or PAGE.
You can assign texts to each form window. These so-called text elements [Seite 16] are part of
the form and stored together with the other form elements. Text elements also receive names.
You use these names to refer to the respective text elements via the programming interface.
The control commands and variable symbols used in the editor when creating text elements
correspond to the SAPscript notation used to maintain long texts.
You can create each window only once on each page [Seite 22], except the main window, which
may appear up to 99 times on each page (for example, for printing labels). Windows may
overlap, which can be of importance in certain output situations.
For more information on editing SAPscript texts, see the R/3 online help documentation Word
Processing in the SAPscript Editor.

18 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Pages

Pages
The individual pages of a document often have different layouts: The first page of an invoice
differs from the subsequent pages, on which you need not repeat general information, such as
address or customer data. Just as the text elements of a window, the pages also have names.
You may need these names to specify the subsequent page in case of a page break. The more
variable you want the layout of a document to be, the more different pages you will define in the
SAPscript form.
The figure below shows an example of how to maintain a page within transaction SE71 (Form:
Request). You see the graphical Form Painter, which you can use under the frontend operating
systems Windows 95 and Windoes NT 4.0.
For more information on the graphical Form Painter, see the SAP online documentation BC -
Style and Form Maintenance.

April 2001 19

BC SAPscript: Printing with Forms SAP AG
Text Elements in the PC Editor

Text Elements in the PC Editor

20 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Window

Window
Documents usually consist of different areas containing different texts (date, address, and so on).
SAPscript calls such an output area window. These windows can later be positioned on different
pages. Filling the different windows with the corresponding texts, is controlled by the print
program or the composer, respectively.

April 2001 21

BC SAPscript: Printing with Forms SAP AG
Pages

Pages
Different pages of a document may have different layouts. For example, the first page of an
invoice contains the customer address and letter text. The subsequent pages contain the actual
invoice data, the order number, and so on. To be able to call the correct subsequent page after a
page break, each individual page in SAPscript must have a name.

22 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Page Window

Page Window
A page window is the definition of a rectangular output area on the output medium (for example,
DIN A4 paper page), determined by the left upper edge and the hight and width of the area.
By defining page windows, you determine which windows you want to appear on a page, their
sizes and their positions.

Starting with Release 4.0, the definition of page windows is required for the
alphanumeric Form Painter only. If you use the graphical Form Painter, you can use
the mouse to place the windows on the page (drag & drop, cut & paste). For more
information on the graphical Form Painter, refer to BC - Style and Form
Maintenance.

April 2001 23

BC SAPscript: Printing with Forms SAP AG
Page Windows

Page Windows

Starting with Release 4.0, the definition of page windows is required for the
alphanumeric Form Painter only. If you use the graphical Form Painter, you can use
the mouse to place the windows on the page (drag & drop, cut & paste). For more
information on the graphical Form Painter, refer to BC - Style and Form
Maintenance.

If you use the alphanumeric Form Painter, proceed as follows:
When defining windows and pages, you do not yet determine the position and spacing of the
texts to be output. To do this, you combine a window and a form page to create a so-called page
window. A page window defines the rectangular output area in the output medium (for example,
DIN A4 paper page) by specifying the left upper edge of the output area and its width and hight.
When defining a page window, you determine
• which windows appear on a certain page,
• what size the windows have (width, hight),
• their position (distance between the left upper window edge and the left and upper page

margins).

24 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Page Windows

In this example, the user positions the individual windows (previously defined by a user) on the
page FIRST by specifying the corresponding coordinates. The user can choose between different
measurement units the system offers (LN = Lines, CH = Character, and so on).

April 2001 25

BC SAPscript: Printing with Forms SAP AG
Text Elements of a Form

Text Elements of a Form
SAPscript calls the individual text components of a form text elements. To achieve good
structuring and readability, you assign a fixed name to each text element in the form. The print
program then uses these names to access the elements. This name applies also for translated
versions of a text element, while the contents of the text elements depend on the language.
Text elements are related to a window, that is, a print program can call for each window only
those text elements that exist in this window. The screen below (shot in the SAPscript line editor)
shows the definition of the text elements HEADING and FLIGHTLIST in the window MAIN. The
variables used within '&...&' are replaced by the system at output time (see also Representing
Text Elements in the PC Editor [Seite 20]).

You can compare text elements with numbered texts in ABAP programs (for example, TEXT-
001). However, text elements are much more flexible:
• The length of a text element is unlimited.
• Text elements may contain variable symbols.
• You can use several different formatting options within one text element.
• You can use SAPscript control statements in text elements.
In each window, you may use two different kinds of text elements:
Text Elements with Names [Seite 27]
Text Elements Without Names [Seite 29]
The print program can Activate Text Elements [Seite 30].

26 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Text Elements with Names

Text Elements with Names
You recognize named text elements by the paragraph format /E. In the line editor, such a
paragraph may look like this:

The character string NAME represents the name of the text element. This name can be up to 30
characters long and may consist of letters, digits and/or special characters. The name is followed
by the text lines of this text element. The end of a text element definition is marked by the
beginning of the next text element (the next /E line).

Note that names of text elements are valid only locally. That is, different windows
may contain text elements with the same names.

If you use the PC editor, press the appropriate push button to insert text elements.
The system highlights them in a different color (See also: Representing Text
Elements in the PC Editor [Seite 20]).

To output named text elements, you must use the interface function module WRITE_FORM,
which is called in the print program [Seite 31].
The example below shows text elements for a column heading within an invoice (AS indicates
the standard paragraph format and,, indicates the tab):

You can output named text elements only in the windows, in which they are defined. For this
reason, you need in the interface function module WRITE_FORM, apart from the name of the
text element, the name of the window in which the text element is defined. You call the interface
function module from within the print program.

April 2001 27

BC SAPscript: Printing with Forms SAP AG
Text Elements with Names

28 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Text Elements Without Names

Text Elements Without Names
Nameless text elements or default text elements are those text lines and control statements
that appear at the beginning of the corresponding window contents without having the /E
paragraph format. They include all lines up to the next /E paragraph or to the end of text if no
other named element follows. Thus, you can have only one nameless text element in each
window.
The differences between named an nameless text elements are:
• The system outputs named text elements only if the print program [Seite 31] explicitly calls

them in the function module WRITE_FORM. But it outputs nameless text element
automatically whenever it processes the corresponding window.

• The nameless text element of the MAIN window appears only once at the beginning of the
main window. It does not appear on the subsequent pages of the form which also contain the
main window.

• The nameless text elements of all other windows (except MAIN) appear each time.

The following example shows a default text element in the window ADDRESS of a
form. The text element outputs the address of a customer, thereby including on the
first page the sender short form as include variable for a standard text. To maintain
an output-related logic even within the form, SAPscript additionally offers the control
statements IF and CASE, which you can use to control the print output depending on
the data constellation.

April 2001 29

BC SAPscript: Printing with Forms SAP AG
Activate Text Elements

Activate Text Elements
You activate the text elements of a window from within the print program [Seite 31] by setting the
parameter FUNCTION when calling the function module WRITE_FORM. FUNCTION may have
the following values:
• SET

Replace all active text elements of the window by the current one (default).
• APPEND

Append the current text element to the active text elements.
• DELETE

Delete the current text element from the list of active text elements.
Active text elements are all text elements the system already output to the window when the
current page is called.

In the main window, the value APPEND within the BODY area equals the value SET.
The value DELETE has no effect in this context. In the areas TOP and BOTTOM, the
values act as described above.

30 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Print Program

Print Program
A print program is an application program (REPORT or MODULE POOL) that allows you to print
documents to which forms are allocated. The print program retrieves the required data from the
database and combines them with the data the user entered. Then, it processes the underlying
form, formats the data accordingly, and prints it.
See also: Using Print Programs [Seite 32]

April 2001 31

BC SAPscript: Printing with Forms SAP AG
Using Print Programs

Using Print Programs
R/3 applications (FI, CO, MM and so on) deliver standardized forms and print programs that
customers may have to adapt to their special needs. Only the close interaction of print program
and predefined form allows the user to print forms such as orders or invoices.
One important feature of SAPscript is that forms contain texts with variables besides the layout
information. These variables are replaced independent of the formatting and appear as values in
the printout. The print program is responsible for retrieving the data from the R/3 system and for
the control logic of the output.
This allows the user of SAPscript forms to separate the logic of retrieving data from the layout of
the output. The print program retrieves or calculates the required data and determines their
output order. SAPscript is responsible for formatting and positioning this data on a print page.
Thus, you can modify the layout of the form without having to change the print program.
At runtime of the print program, SAPscript can automatically access data that is defined in the
controlling program. Technically speaking: SAPscript retrieves the values directly from the data
fields of this program.
Example of a Print Program [Seite 33]

32 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Example of a Print Program

Example of a Print Program
The example below shows a typical print program. This simple print program creates an invoice
that contains company-related information, date, page numbering, customer address, and all
flight bookings of a customer.

For the detailed sample program RSTXEXP1, refer to development class
SAPBC460 (corresponding form S_EXAMPLE_1).

Print program: overview
* (1) Get customer data
 TABLES: scustom, sbook, spfli.
 DATA: bookings like sbook...
 select * from...
* (2) Open form
 CALL FUNCTION 'OPEN_FORM'
 EXPORTING
 DEVICE = 'PRINTER'
 FORM = 'S_EXAMPLE_1'
 DIALOG = 'X'
 EXCEPTIONS
 others = 1
* (3) Print table heading
 CALL FUNCTION 'WRITE_FORM'
 EXPORTING
 ELEMENT = 'HEADING'
 TYPE = 'TOP'
 WINDOW = 'MAIN'
 FUNCTION = 'SET'
 ...
* (4) Print customer bookings
 LOOP AT bookings WHERE
 CALL FUNCTION 'WRITE_FORM'
 EXPORTING
 ELEMENT = 'BOOKING'
 TYPE = 'BODY'
 WINDOW = 'MAIN'
 ...
 ENDLOOP
* (5) Close form
 CALL FUNCTION 'CLOSE_FORM'
 ...

In this example, the first section reads the required data from the database and fills it into internal
tables (for example, BOOKINGS). In section (2), the function module OPEN_FORM is called to
initialize the print output of the form S_EXAMPLE_1. Then, WRITE_FORM uses the text element

April 2001 33

BC SAPscript: Printing with Forms SAP AG
Example of a Print Program

[Seite 16] HEADING to output general text and the column heading of the invoice in the MAIN
window (section (3)). In section (4), the text element BOOKING in the MAIN window is used to
output the bookings of a customer that are read in a loop from the internal table BOOKINGS. The
address of the customer as well as company-related information is output in other form windows
directly, using default text elements. CLOSE_FORM finally ends the printing of the form.

For each printout of a form, you must use the pair of function modules
OPEN_FORM and CLOSE_FORM. You can also use a print program to print several
forms, which you can either maintain in separate spool requests or combine into one.
In the latter case, you must use the function modules START_FORM and
END_FORM.

For more information, see OPEN_FORM [Seite 217] and CLOSE_FORM [Seite 221] as well as
START_FORM [Seite 223] and END_FORM [Seite 233].

34 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Window Types

Window Types
When defining a form window [Seite 21], you must select a window type for the window. You can
choose between three types:
• Constant Windows (CONST) [Seite 36]
• Variable Windows (VAR) [Seite 37]
• Main Windows (MAIN) [Seite 38]

April 2001 35

BC SAPscript: Printing with Forms SAP AG
Constant Windows (CONST)

Constant Windows (CONST)

Starting with Release 4.0, the system internally processes windows of type CONST
similar to windows of type VAR. Therefore, if you create a new window, always use
type VAR.

36 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Variable Windows (VAR)

Variable Windows (VAR)
The contents of variable windows is processed again for each page, on which the window
appears. The system outputs only as much text as fits into the window. Text exceeding the
window size is truncated; the system does not trigger a page break. Unlike constant windows, the
page windows declared as variable windows may have different sizes on different form pages.

As far as the processing of the window contents is concerned, the system currently
treats constant and variable windows alike. The only difference is that constant
windows have the same size throughout the form.

April 2001 37

BC SAPscript: Printing with Forms SAP AG
Main Windows (MAIN)

Main Windows (MAIN)
Each form must have one window of type MAIN. Such a window is called the main window of
the form. For SAPscript forms, the main window has a central meaning:
• It controls the page break.
• It contains the text body that may cover several pages.
• It allows to fix text elements at the upper and lower margins of the allocated page window (for

example, for column headings).
As soon as a window of type MAIN is full, SAPscript automatically triggers a page break and
continues to output the remaining text in the main window of the subsequent page. Page
windows of type MAIN have the same width throughout the form. The SAPscript composer thus
avoids reformatting of the text after each page break.

If a page does not have a main window, the system implicitly processes all other
windows of the page and continues with the subsequent page. This page must not
call itself as subsequent page (recursive call), since this would produce an endless
loop. In such a case, SAPscript terminates the output after three subsequent pages.

For printing header lines or totals, the different output areas [Seite 39] of the main window are of
special importance.

38 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Output Areas in the Main Window

Output Areas in the Main Window
For outputting texts in the main window, or, more correctly, in a page window [Seite 23] of type
MAIN, you can choose one of three different areas (see figure below). The upper margin of the
main window is called TOP area; the lower margin is called BOTTOM area. The area in-between
is called BODY of the main window. The sizes of the TOP and BOTTOM areas depend on the
sizes of their text contents. The BODY area varies accordingly.

Areas of the main window

TOP

BODY

BOTTOM

The different areas in the main window

TOP, BODY, and BOTTOM Areas of a Main Window
You can determine or modify the contents of the three areas TOP, BODY, and BOTTOM
dynamically during the output of the form. SAPscript automatically outputs these areas on each
page of a form that contains a main window. When calling the function modules WRITE_FORM
or WRITE_FORM_LINES, the parameter TYPE determines into which of the three areas to
output the text. If this parameter is missing in the call, the system positions the output in the
BODY area.

A definition of a text element in the main window could look like this:

Select Include Line Format Page Insert Replace

The call in the print program then looks like this:

April 2001 39

BC SAPscript: Printing with Forms SAP AG
Output Areas in the Main Window

loop at bookings where...
 call function 'WRITE_FORM'
 exporting
 element = 'BOOKING'
 type = 'BODY'
 window = 'MAIN'.
endloop.

The parameter TYPE of WRITE_FORM has the default value BODY, that is, the
system automatically uses this value if the parameter is not explicitly set to another
value.
When calling WRITE_FORM, the composer replaces the program symbols in the text
element BOOKING (such as &SBOOK-CARRID&) with the contents of the
corresponding table fields in the print program [Seite 31]. As said before, you can
use only fields from Dictionary tables that are defined with TABLES in the print
program.

TOP Area [Seite 41]
BOTTOM Area [Seite 42]

40 April 2001

 SAP AG BC SAPscript: Printing with Forms
 TOP Area

TOP Area
The TOP area always appears at the beginning of the main window. You can use it, for example,
to automatically output headings on the subsequent pages for tables that cover several pages.
All output you place into the TOP area using the print program is not formatted at once, but
stored internally in SAPscript first. Formatting occurs only as soon as the TOP area in the main
window is actually output, that is, as soon as the print program writes text into the BODY area.
Variables are retrieved and replaced in that moment as well.
If the BODY area of the main window was filled before the program reached the definition of the
TOP area, this definition is used as TOP area for the subsequent page. This means, that you can
no longer delete a heading in the TOP area after writing text into the BODY area.

April 2001 41

BC SAPscript: Printing with Forms SAP AG
BOTTOM Area

BOTTOM Area
The BOTTOM area appears at the and of the main window. Unlike the TOP area, you can define
the BOTTOM area for the current page after the output to the BODY area is complete, provided
there is enough space left on the page. Otherwise, the BOTTOM area text is output on the
subsequent page.
If the print program outputs text to the BOTTOM area of the main window, it memorizes these
lines for subsequent pages (just like TOP lines). At the same time, the composer processes
these lines to determine the space the BOTTOM area requires and the space left for the BODY
area. At this moment, it replaces the variables set in the BOTTOM area for the current page.
If, during form output, the BOTTOM area is modified, the system reformats the BOTTOM text and
adjusts the size of the BOTTOM area. If the remaining space in the page window [Seite 23] is not
enough, the BOTTOM text is output on the subsequent page of the form. On these subsequent
pages, the system always formats the BOTTOM area at the beginning of the main window. This
means, that variables appearing in the BOTTOM text always have the value that was valid at the
beginning of the main window.
The following table summarizes the points in time, at which the variables in the different windows
are replaced with the current values.

Window type Area Point of time of variable replacement

MAIN BODY immediately

MAIN TOP at the beginning of the main window

MAIN BOTTOM immediately or at the beginning of the main window of the
subsequent page

VAR after processing the main window

CONST after processing the main window

Due to these conditions, you cannot use only one variable with changing contents for TOP and
BOTTOM areas, since the variable is not always replaced immediately, even if it occurs several
times.

The output of the TOP and BOTTOM area is triggered by the text in the BODY area.
Therefore, text elements written to the TOP or BOTTOM areas must not necessarily
appear in the output. If the BODY area does not contain any text, output of TOP and
BOTTOM elements is suppressed.

42 April 2001

 SAP AG BC SAPscript: Printing with Forms
 How the Composer Works

How the Composer Works
The composer or form processor is the central formatting module for the print output. It prepares
the texts for the different output devices by using the allocated styles or forms.
Processing a form happens in a certain order. You must know some facts concerning the
different window types, the setting of subsequent pages, or the dynamic control from within the
print program.

Page Control in Forms [Seite 44]
Defining a Subsequent Page Statically [Seite 45]
Defining a Subsequent Page Dynamically [Seite 46]
Formatting a Form Page [Seite 47]

April 2001 43

BC SAPscript: Printing with Forms SAP AG
Page Control in Forms

Page Control in Forms
SAPscript automatically triggers a page break as soon as the main window of one page is full. To
be able to execute the page break, the system must know on which subsequent page to continue
outputting the text. You can specify the subsequent page either statically when defining the
form, or you can set the subsequent page dynamically during form output.

If the subsequent page is not specified, SAPscript automatically terminates printing,
thereby ignoring any other output statements of the application program.

44 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Defining a Subsequent Page Statically

Defining a Subsequent Page Statically
You define the subsequent page statically with the form maintenance transaction. First, specify
the start page in the form header [Seite 14]. The system automatically calls this page whenever
the form is started. With this page, or, more correctly, with the page window of this page, the text
output starts. For each page, specify the subsequent page in the page definition. After a page
break, the system continues text output on the subsequent page defined for the last page. By
specifying start page and subsequent pages, you can define a page sequence.

Start page in form header

Next page

Next page

First letter page Subsequent letter page

Static definition of subsequent pages in the form maintenance transaction

April 2001 45

BC SAPscript: Printing with Forms SAP AG
Defining a Subsequent Page Dynamically

Defining a Subsequent Page Dynamically
The page sequence set in the form definition can be changed by the application program
dynamically at runtime. If you want the form to start with a page other than the one defined in the
form header, specify the desired start page using the parameter STARTPAGE when you call the
function module START_FORM. However, this new start page is valid only for the current call of
the function module.
If you want to break to a subsequent page other than the one specified in the page definition, use
the control statement NEW-PAGE to set the name of the new page.
 NEW-PAGE <page>.

NEW-PAGE ends the output on the current page. The new subsequent page is only valid for the
current call of the control statement. You can either include the control statement explicitly into
the text of a text element [Seite 16] or pass it to the form output using the function module
CONTROL_FORM.

46 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Formatting a Form Page

Formatting a Form Page
The process of formatting the output is controlled by the text contents in the BODY area of the
main window. If the main window is completely filled, or if the control statement NEW-PAGE
appears in the main window, the system executes a page break. Only at this point in time the
system formats the contents of the windows of the other types and replaces the variables with
the current values.
For each other window, the system first outputs the default text element, if it exists. Then it
processes and formats the list of the active text elements of this window, which you set using the
function module WRITE_FORM with the parameter FUNCTION (SET, APPEND, DELETE). Any
text that does not fit into the page window is truncated.
As a consequence to this processing order of the composer, the reservation of space for the TOP
and BOTTOM areas must be made beforehand. If the BODY area of the main window already
contains text, a new text output to the TOP area does not appear on the current page but on the
subsequent page in the TOP area. The same applies for the BOTTOM area. If the BODY area is
filled to such an extend that the new BOTTOM text no longer fits into the current main window,
this text appears on the subsequent page in the BOTTOM area.

A frequent error in application programs is that for the subsequent page (for
example, NEXT) of a form no main window is defined. If the formatted text of the
previous page did not fit into the corresponding main window, the composer
searches the subsequent pages for a main window to output the text remainder.
However, if the subsequent page of NEXT is NEXT again, the composer encounters
an endless loop.

To be able to create correct page breaks in longer text, you should define a main
window on each form page.

April 2001 47

BC SAPscript: Printing with Forms SAP AG
Form Control

Form Control
To output SAPscript forms, in the print program you must always start the output with
OPEN_FORM and end it with CLOSE_FORM. The function module OPEN_FORM initializes the
SAPscript composer and opens the specified form for subsequent output. The system combines
all output for this form up to the CLOSE_FORM to one print request. If CLOSE_FORM is
missing, nothing will be printed.
To output data in a form, you must use the SAPscript function modules WRITE_FORM,
WRITE_FORM_LINES, and CONTROL_FORM. You can use these function modules any
number of times in any order between opening and closing a form.

You cannot use the ABAP statement WRITE to write output to a SAPscript form.

Several Print Requests [Seite 49]
Starting a Form Again [Seite 50]
Switching Forms [Seite 51]
Finding Forms [Seite 52]

48 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Several Print Requests

Several Print Requests
Within one transaction, you can open and close several forms using OPEN_FORM and
CLOSE_FORM, however not simultaneously. You can use parameters in the OPEN_FORM to
control whether the output is stored in the same print request. But also the SAP spool decides,
depending on several plausibility checks, whether new output is appended to an existing print
request or whether to create a new print request anyway.

CALL FUNCTION 'OPEN_FORM'

CALL FUNCTION ‘CLOSE_FORM’

CALL FUNCTION 'OPEN_FORM'

CALL FUNCTION ‘CLOSE_FORM’

You cannot combine ABAP list output and SAPscript output in one print request.

April 2001 49

BC SAPscript: Printing with Forms SAP AG
Starting a Form Again

Starting a Form Again
Usually a print program does not print only one urging letter or one account statement, but
several forms for different customers. To have the output for each customer begin with the start
page of the form, you must start the current form again and again.
To start a form again, you must first end the current form and then open the form again. Within
one print request, first call the function module END_FORM. It executes the final processing for
the current form. Then start the form again using START_FORM. Output then begins again on
the start page of the desired form.

CALL FUNCTION 'OPEN_FORM'
 :
CALL FUNCTION 'START_FORM'
 :
CALL FUNCTION 'END_FORM'
 :
CALL FUNCTION 'START_FORM'
 :
CALL FUNCTION 'END_FORM'
 :
CALL FUNCTION CLOSE_FORM

If you use START_FORM and END_FORM, you must not specify a form for
OPEN_FORM. However, in this case you can use the SAPscript output functions
only after opening a form with START_FORM.

50 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Switching Forms

Switching Forms
You can switch forms within one print request. This may be necessary if, depending on the
recipient, the output language changes or if, depending on the country, a different form layout is
required.
You proceed as you would for starting a form again. However, when calling the function module
START_FORM, you specify the name of the new form.

When switching forms, make sure that you use only those forms that have the same
page format (for example, only DINA4 or only LETTER). However, you can easily
mix forms with different page orientations (landscape or portrait format).

April 2001 51

BC SAPscript: Printing with Forms SAP AG
Finding Forms

Finding Forms
If SAPscript does not find the specified form, it automatically searches for another version of the
same form. SAPscript proceeds as follows:

Yes

Yes

Yes

Yes

Client > 0 Client = 0

No

No

No

No

ok okError message

Desired language
exists?

Desired language
exists?

Original language
exists?

Original language
exists?

The SAPscript form processor can use generated forms only. It executes cross-client search only
if the current client does not contain a generated version of the form. If during the search it finds
a form in another client, it generates the form and stores it in the client from which the search
started. If the form is started again, the composer finds it in the current client.
If you use forms delivered by SAP without any modifications, you need not copy these into your
production client. SAPscript automatically searches for a form in client 0 if it does not exist in the
current client. It then stores the generated version of the form in the production client. If you
modify SAP forms, this modification always takes place in a client > 0. Thus, the original SAP
version of the form is preserved in the client 0.

52 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Printing Text Lines and Text Elements

Printing Text Lines and Text Elements
Text Lines
To pass the text lines of a text to the output form, use the function module
WRITE_FORM_LINES. You must include the text header. However, the SAPscript composer
evaluates only the field containing the style (TDSTYLE). If it contains a style, SAPscript uses the
layout specifications for paragraph and character formats of this style. If no style is specified, it
formats the text according to the paragraph and character formats specified in the form.
Paragraph formats that do not exist in the form are replaced by the valid default paragraph
formats.
With WRITE_FORM_LINES, you can pass only texts in the SAPscript ITF format. The system
does not accept text lines in other formats (field TDTEXTTYPE in the text header > SPACE). In
the latter case, the system leaves the function module without further notice.

Text Elements
To call text elements defined in the currently open form, use the function module WRITE_FORM,
specifying the name of the desired text element.

Output to the BODY Area of the Main Window [Seite 54]
Output to a Window of Type VAR or CONST [Seite 55]
Output to the TOP or BOTTOM Areas of the Main Window [Seite 56]
Calling Control Statements [Seite 57]

April 2001 53

BC SAPscript: Printing with Forms SAP AG
Output to the BODY Area of the Main Window

Output to the BODY Area of the Main Window
If you omit the parameter WINDOW in the function calls for WRITE_FORM and
WRITE_FORM_LINES, the system directs all output to the main window of the form. It
immediately formats the the passed text or the desired text element and places them into the
output queue. Once formatted output lines are in the output queue, you cannot delete them
anymore.
The system ignores any entries for the parameter FUNCTION, that is, evaluates them as
APPEND.

54 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Output to a Window of Type VAR or CONST

Output to a Window of Type VAR or CONST
If you want to write output to another window that the main window, you must use the parameter
WINDOW to specify the name of that window. The window need not be defined on the current
page.
All other window are processed after the main window. The system first gathers all output
directed to them. It stores the text lines to be output in the ITF format; it does not format them at
the moment when the function modules WRITE_FORM or WRITE_FORM_LINES are called.
Only if the main window triggers a page break does the system format the texts in the other
windows and places them in the output queue. This is of special importance when you use
variables. They are replaced with the values valid after processing the main window.
The texts gathered for these windows are output again whenever the corresponding window
reappears on a subsequent form page. To modify the text contents, you must set the appropriate
values of the parameter FUNCTION:
• SET

Deletes all text lines placed into the window. The system stores the text lines or text
element lines passed with the current call for future calls of the window.

• APPEND
The old window contents remain. New text lines are appended. APPEND is the default
value of parameter FUNCTION.

• DELETE
You can use this function with WRITE_FORM only. It deletes the text element placed
into this window using SET or APPEND.

You cannot delete text lines placed into the window using WRITE_FORM_LINES. To
delete these lines, you must first delete the entire window contents using SET, and
then write the required texts again.

April 2001 55

BC SAPscript: Printing with Forms SAP AG
Output to the TOP or BOTTOM Areas of the Main Window

Output to the TOP or BOTTOM Areas of the Main
Window
To write output into the TOP or BOTTOM areas of the main window, set the parameter TYPE to
TOP or BOTTOM. You can use this parameter with WRITE_FORM and WRITE_FORM_LINES.
As for all output to windows other than MAIN, you can use the parameter FUNCTION to control
further text processing.

SET All lines of the TOP or BOTTOM area are replaced with the text lines or text
element lines passed with this call.

APPEND The old contents of the TOP or BOTTOM area remain; the new text lines are
appended. The value APPEND is the default for the parameter FUNCTION.

DELETE You can use this function with WRITE_FORM only. It deletes the text element
placed in the TOP or BOTTOM area using SET or APPEND.

You cannot delete text lines placed into the window using WRITE_FORM_LINES. To
delete these lines, you must first delete the entire TOP or BOTTOM area using SET,
and then write the required texts again.

56 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Calling Control Statements

Calling Control Statements
To pass control statements, such as an unconditional page break, use function module
CONTROL_FORM. Control statements are always directed to the main window of the form,
where the system interprets and executes them immediately.

April 2001 57

BC SAPscript: Printing with Forms SAP AG
The Programming Interface

The Programming Interface
This section explains about the most important structures and interdependencies of the
programming interface to word processing. This part of the documentation is designed mainly for
developers, administrators, and consultants, who have gathered some knowledge working with
SAPscript and want to integrate their own applications according to their requirements.
Structure of Texts [Seite 59]
Grouping Texts [Seite 64]
Attributes of Texts [Seite 67]
Structure of the Text Key [Seite 77]
Storing Text Components [Seite 79]
SAPscript Data Formats [Seite 80]
Authorization Checks [Seite 82]
Storing Texts [Seite 83]
Text Memory [Seite 88]
Work Areas for Texts [Seite 94]

The topic below describes the most important steps of integrating SAPscript into an application
program, using graphics and examples for better understanding.
This topic is partly based on information given in previous topics. Therefore, it is advisable to
read the SAPscript documentation consecutively from the beginning.
SAPscript in Detail [Seite 103]
SAPscript Function Modules [Seite 153]

58 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Structure of Texts

Structure of Texts
A SAPscript text module is an object constructed from an administrative information component--
the text header--and a table that contains the actual text lines. With many function modules of the
SAPscript programming interface, you must specify both components. It makes no difference
whether you store the texts with SAPscript or whether you use other text files.
Text Header [Seite 60]
Text Lines [Seite 61]

April 2001 59

BC SAPscript: Printing with Forms SAP AG
Text Header

Text Header
The text header is a structure. It contains administrative information such as:
• Title of the text module
• Creation data (date, time, creator)
• Change information (date, time, user who made last change)
• Allocated style and/or allocated form
• Text format

60 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Text Lines

Text Lines
The lines of a text are stored in an internal table. Each line consists of a format field and a field
with the actual line contents. The contents of these fields is determined by the text format
specified in the field TDTEXTTYPE of the text header. Texts may have SAPscript format as well
as other formats (for example, WinWord DOC or RTF format).
• SAPscript Format (ITF Format)

A text has SAPscript format if the field TDTEXTTYPE is empty. The texts are stored in
the line table exactly as they appear in the SAPscript text editor. This SAPscript format is
called ITF format [Seite 63]. It consists only of those system characters that can be
displayed on the screen and does not contain any hexadecimal codes to control
formatting.
The two-character format field specifies the paragraph type for the subsequent text line.
The possible paragraph formats as well as the underlying formatting options are defined
in the style or form. Special paragraph formats determine whether the line contents are
SAPscript control statements or, for example, comment lines. These paragraph formats
are valid for all text modules. The text line field contains either text or a SAPscript
statement, if it is a command line.
The ITF format is no final format; that means, you need the SAPscript composer to
create the output format (OTF format) using the layout definitions of the style and the
form.

• Non-SAPscript Formats
You can use SAPscript to maintain texts that have a format SAPscript cannot process.
The field TDTEXTTYPE in the header of these texts then specifies the respective text
format. The text lines of these tests are nevertheless stored in an internal table, which
has the structure TLINE [Seite 99]. The structure of the individual text lines depends on
the respective format. To pass texts in a non-SAPscript format, you can use only the
following SAPscript function modules:

READ_TEXT
INIT_TEXT
DELETE_TEXT
COPY_TEXTS
SAVE_TEXT
SELECT_TEXT
RENAME_TEXT
COMMIT_TEXT
EDIT_TEXT
PRINT_TEXT

You cannot mix texts in SAPscript format with texts in another format. This results in
restrictions for using texts in other formats:

• You cannot output non-SAPscript texts in SAPscript forms.
• You cannot INCLUDE them in SAPscript texts.

April 2001 61

BC SAPscript: Printing with Forms SAP AG
Text Lines

• Variables in the SAPscript syntax are not replaced in these texts.
• All editing functions that depend on an interpretation of the text format cannot be used with

these text modules:
– TEXT_CONTROL_REPLACE
– TEXT_SYMBOL_REPLACE
– TEXT_SYMBOL_COLLECT
– TEXT_SYMBOL_PARSE
– ...

SAPscript does not interpret the contents of the text line table, but passes the table to the
corresponding word processing program, which is designed to process the respective text format.
The transfer happens automatically due to the function modules EDIT_TEXT or PRINT_TEXT,
which internally call the function modules EDIT_TEXT_FORMAT_xxx or
PRINT_TEXT_FORMAT_xxx (xxx = contents of field TDTEXTTYPE). These function modules
provide the connection to the corresponding word processing programs.

62 April 2001

 SAP AG BC SAPscript: Printing with Forms
 ITF/OTF Format

ITF/OTF Format
The format ITF (Interchange Text Format) is a SAPscript format for storing and displaying
SAPscript texts.
This format consists of all characters that can be displayed on the screen (system character set).
Before outputting a text, the SAPscript composer must first convert the ITF format to OTF format
(Output Text Format), using the layout definitions of the allocated style and form.
For more information on data formats, see SAPscript Data Formats [Seite 80].

April 2001 63

BC SAPscript: Printing with Forms SAP AG
Grouping Texts

Grouping Texts
From a business-oriented point of view, texts are usually related to a certain application.
Therefore, most texts are allocated to a certain object, depending on their contents. On one
hand, this grouping allows better handling of the texts, on the other hand it facilitates control of
internal processes within SAPscript.
Text Object [Seite 65]
Text ID [Seite 66]

64 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Text Object

Text Object
In the SAP system, texts do not end in themselves but are usually linked with other business
application objects. For example, one text describes a material in detail while another text
contains a special agreement concerning an order. Such texts make sense only in connection
with the allocated object, since they refer to a certain material or a certain order.
Apart from a contextual relation, these objects also determine certain processing parameters,
which the SAPscript functions must consider. For example, when saving a text module, it
depends on the object whether the module is directly written to the text database or whether the
update task is used.
In the SAPscript environment, these objects are called text objects. Being allocated to a text
object is an essential attribute of a text module.
The possible text objects and their respective attributes must be defined in table TTXOB.

April 2001 65

BC SAPscript: Printing with Forms SAP AG
Text ID

Text ID
Usually one text is not enough for an application object. You need several texts to describe all
the individual characteristics of an application object. For example, you may need these texts to
store information on a customer:
• Sales notes
• Marketing notes
• Accounting notes
• Field service notes
To be able to distinguish between the texts of one object, you need another grouping attribute.
SAPscript calls this attribute text ID. You use text IDs to identify the different texts describing the
same text object.
The text IDs and their attributes must be defined in table TTXID.

66 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Attributes of Texts

Attributes of Texts
This topic describes the attributes of texts as well as the individual processing steps within
SAPscript.
Storage Mode [Seite 68]
Line Width [Seite 69]
Editing Interfaces [Seite 70]
Editor Title Line [Seite 72]
Text Format [Seite 73]
Style for Formatting Output [Seite 74]
Form for Formatting Output [Seite 75]
INCLUDE Texts [Seite 76]

April 2001 67

BC SAPscript: Printing with Forms SAP AG
Storage Mode

Storage Mode
Text modules are related to an application object. They are created or edited together with the
object. You can imagine them as a unit, even though they are stored in different tables.
Therefore, the way in which a SAPscript text is written to the database should depend on the way
the application object is stored. The following possibilities exist:
• Direct storage

When calling the corresponding save function, the system immediately writes the text
module to the text database.

• Storage in the update task
All changes to the text modules of a transaction are stored intermediately in a buffer.
Only when the application object is updated does the system write the texts to the log file
and, in the update task, stores them in the text file.

• No storage within SAPscript
You can use SAPscript to edit texts that are not stored in the text database. In this case,
SAPscript only returns the changed text table to the application program, which is itself
responsible for storing the text.

This text attribute is defined in the table TTXOB in field TDSAVEMODE. With some function
modules, you can use the parameter SAVEMODE_DIRECT to temporarily switch from storage in
update task to direct storage.

68 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Line Width

Line Width
This attribute determines the line width to be used for this text in the text editor. A SAPscript text
line may consist of up to 132 characters.
The editor can display only 72 characters of a text line. If the line width exceeds 72, you can shift
the editor display horizontally and thus switch between the left and the right text part. If you set
the line width to less than 72, in the editor you can use only as many characters as specified.

Beware that a very small line width may cause problems, since control statements
must be contained in one line, and they may be too long then.

You define the line width in table TTXOB in field TDLINESIZE. When initializing the text using the
function module INIT_TEXT, the system passes the value you enter here into the corresponding
field in the text header. You can modify the line width for each individual text by changing the line
size in the text header in field TDLINESIZE after calling the function module READ_TEXT or
INIT_TEXT. The system saves the new line width together with the text module.

The line width of the text editor does not effect the line width of a text prepared for
printing. This width is determined only from the definition of the paragraph format, the
chosen font, and the window width within the form.

April 2001 69

BC SAPscript: Printing with Forms SAP AG
Editing Interfaces

Editing Interfaces
If you want to edit a text with the text editor, you can choose between different interfaces. These
interfaces determine which functions you can call to edit a text module.
Usually, you work with the interfaces TA or TN:
• TA → application texts (variant 1)

You choose this interface if you can select several texts from the application environment
and you want to navigate in this selection list from within the text editor. You need not
save each text explicitly, since the navigation functions (Next text, Previous text, Back)
automatically save text changes.

• TN → application texts (variant 2)
You choose this interface, if you want to edit only one text from the application
environment.

• TX → standard texts (text object TEXT)

Depending on the interface, different menu functions are active:

Menu function TX TN TA

Text → Other text X

Text → Save X X

Text → Save as X

Goto → Next text X

Goto → Previous text X

Format → Style → Allocate X

Format → Form → Allocate X

Format → Convert X

Environment X

For special applications, there are other interfaces:
• TD → Documentation
• TY → Form texts
• TO → Office texts
These definitions are designed for SAP applications and contain functions which you cannot use
in general.

70 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Editing Interfaces

Define the editor interface of a text object in table TTXOB in the field TDAPPL. You
cannot change a value specified in this table for an individual text with the SAPscript
programming interface.

April 2001 71

BC SAPscript: Printing with Forms SAP AG
Editor Title Line

Editor Title Line
SAPscript displays the following status information in the title line of the editor:
 <text ID> <action >: <text name> <text> Language <language key>
The fields have the following meanings:
• <text ID>:

Long text of the text ID from table TTXIT
• <action>:

The current action is defined by the call of the text editor or by the current processing
step within the text editor (change, display, mark, insert).

• <text name>:
Name of the currently edited text.

• <text>:
Additional text from the application program.

• <language key>:
Language ID of the currently edited text.

You can modify this default information.
If the field TDSHOWNAME in table TTXID is empty, the display of the text name is suppressed.
The contents of field <text> is supplied by the application program. Its value is passed using the
parameter EDITOR_TITLE when the text editor is called.
The application program can even lay out the title line of the editor completely to its own
requirements, by using the parameter CONTROL of the function modules EDIT_TEXT or
EDIT_TEXT_INLINE. If the parameter field USERTITLE contains an X, the title line preset by
SAPscript is completely suppressed. The system then displays only the text passed in the
parameter EDITOR_TITLE. If you use a variable & in this parameter, the system replaces it with
the editing function (Display <-> Change,...).

72 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Text Format

Text Format
You can use the SAPscript programming interface not only to maintain texts in the SAPscript
format ITF [Seite 63] but also to pass texts with other formats. When calling the SAPscript
function modules, the system passes all text lines, independent of their format, in a line table with
the structure TLINE.
However, you can pass texts with other formats only to certain text modules. And the function
modules EDIT_TEXT_FORMAT_xxx or PRINT_TEXT_FORMAT_xxx must exist for editing and
printing these texts (xxx = text format). These function modules create a connection to the word
processing program that can process the specified format.
You can define the text format both in table TTXOB and in table TTXID in the field
TDTEXTTYPE, according to the following priority rules:

Table describing the text format

TTXOB-TDTEXTTYPE TTXID-TDTEXTTYPE Text format

 > SPACE = SPACE from table TTXOB

 > SPACE > SPACE from table TTXID

 = SPACE > SPACE from table TTXID

 = SPACE = SPACE SAPscript ITF format

When initializing a text using the function module INIT_TEXT, the system passes the text format
to the field TDTEXTTYPE of the text header, depending on how tables TTXOB or TTXID are set
and on the priority rules described above.
For an individual text, you can modify the text format by entering the desired format into this field
of the text header after the call of function module INIT_TEXT. The system saves the new text
format together with the text module.

To modify the text format of an existing text, you must convert the text from the old to
the new format, using special converters supplied by the SAPscript programming
interface.

April 2001 73

BC SAPscript: Printing with Forms SAP AG
Style for Formatting Output

Style for Formatting Output
The output format of SAPscript texts is controlled by character and paragraph formats. All output
formats you may use for a certain text are combined in a style, which is allocated to the text. The
style is stored in the text header in field TDSTYLE.
When creating a new text module using function module INIT_TEXT, the system can
automatically store a default style in the text header. However, you must first define default styles
for the objects concerned in table TTXOB in field TDSTYLE.
To change the style of a text after executing INIT_TEXT or READ_TEXT, enter the desired style
in the text header. If you want to allocate a style for printing only, simply specify the style in the
text header before calling the function modules PRINT_TEXT or WRITE_FORM_LINES. With
certain text objects, the user can change the style in the text editor, provided the text interface
offers the corresponding menu functions. The system then stores the style together with the text.

74 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Form for Formatting Output

Form for Formatting Output
A style determines only the paragraph and character formats. To layout the individual print
pages, you define forms in SAPscript. You can also specify paragraph and character formats in
forms. If no style is allocated to a text, the system uses the paragraph or character formats
defined in the form under the same names. If no form is allocated to a text, the system
automatically uses the form SYSTEM.
The form is stored in the text header in field TDFORM. When initializing the text using
INIT_TEXT, the system copies the default value from the corresponding field in table TTXOB into
the text header. After initializing or reading a text, you can change the form by entering another
form into the text header. If you want to allocate a form for printing only, simply specify the form
in the text header before calling the function module PRINT_TEXT. With certain text objects, the
user can change the form in the text editor, provided the text interface offers the corresponding
menu functions. The system then stores the form together with the text.

A form specified in the text header is used only if you format a text directly from
within the editor or print it using the function module PRINT_TEXT. If you pass a text
to the function module WRITE_FORM_LINES, the system ignores the form specified
in the text header and uses the form opened with OPEN_FORM or START_FORM
instead.

April 2001 75

BC SAPscript: Printing with Forms SAP AG
INCLUDE Texts

INCLUDE Texts
To include the contents of one text into another, use the statement INCLUDE. The SAPscript
composer then includes the second text when processing the first. To specify the text to be
included, you must enter the text name with the INCLUDE statement. Entering the text object, the
text ID, and the text language is optional. If you omit these entries, the system uses defaults.
These defaults are described in the documentation of the SAPscript statement INCLUDE.
The default for the text ID is stored in the field TDID of table TTXID. If the table does not contain
an entry here, the system takes the ID of the text that contains the INCLUDE statement.

76 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Structure of the Text Key

Structure of the Text Key
SAPscript texts are usually allocated to an object from an SAP application. For example, there
are texts on customers, vendors, and materials. To see immediately to which application object a
text belongs, the text name should correspond to the respective object name.

 Text name

Customer 0000000012 0000000012

Customer 0000000007 0000000007

Vendor 0000000014 0000000014

As long as the names of customers differ from the names of vendors, no problems can occur.
However, since this is not the case, you need another attribute in the text key to make the
allocation unique: the text object. The text object links a text directly to the corresponding
application object.

 Text object Text name

Customer 0000000012 KNA1 0000000012

Vendor 0000000012 LNA1 0000000012

In most cases, one text to describe an application object is not enough. For customers, you may
need texts for the accounts department, for the marketing department, and for the sales
department. To identify these different types of texts, you use the text ID. The text ID, thus, is an
attribute for distinguishing texts within one text object.

 Text object Text name Text ID

Customer 0000000012 Accounting note KNA1 0000000012 0002

Customer 0000000012 Marketing note KNA1 0000000012 0003

Customer 0000000012 Sales note KNA1 0000000012 0001

Vendor 0000000012 Accounting note LNA1 0000000014 0001

Since the R/3 system is a multi-lingual system, these different texts, moreover, can appear in
different languages. This makes the language ID another integral part of the text key:

 Text object Text name Text ID Text language

Customer 0000000012
Accounting note

KNA1 0000000012 0002 D

Customer 0000000012
Accounting note

KNA1 0000000012 0002 E

April 2001 77

BC SAPscript: Printing with Forms SAP AG
Structure of the Text Key

Customer 0000000012
Marketing note

KNA1 0000000012 0003 D

Customer 0000000012
Marketing note

KNA1 0000000012 0003 F

Customer 0000000012
Sales note

KNA1 0000000012 0001 E

Vendor 0000000012
Accounting note

LNA1 0000000014 0001 D

Vendor 0000000012
Accounting note

LNA1 0000000014 0001 E

All texts are stored with the respective client. Thus, the client in also part of the text key. The
complete text key now consists of the following components:

 Type Length Table field for Like definition

Client CLNT 3 THEAD-MANDT

Text object CHAR 10 THEAD-TDOBJECT

Text name CHAR 70 THEAD-TDNAME

Text ID CHAR 4 THEAD-TDID

Text language LANG 1 THEAD-TDSPRAS

To find out the key of a text, in the SAPscript text editor choose Goto → Header to display the
text header. A dialog box appears that contains the key components of the current text and other
information.
The SAPscript function interface checks whether the key fields passed contain valid values:
• Text object:

The text object specified must be defined in table TTXOB.
• Text ID:

The text ID specified must be defined in table TTXID together with the specified text
object.

• Text language:
The language specified must be defined in table T002.

• Text name:
The text name specified must not contain the characters ‘,’ (comma) and ‘*’ (asterisk).

78 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Storing Text Components

Storing Text Components
As mentioned before, a SAPscript text consists of a text header and the text lines. If, according to
the storage mode, the corresponding text object is stored in a text file, these two text components
are stored in separate tables.

To avoid inconsistencies, use only the corresponding SAPscript function modules to
read texts from or write them to text files.

The system stores only those texts in the text file, that have the values ‘D’ (direct) or ‘V’ (update
task) specified as storage mode.

STXH

STXL

STXB

Text header
(SAPscript
 and other format)

Text lines
(SAPscript format)

Text lines
(Other format)

STXH: Store text header
The text header is stored in the transparent table STXH. This table contains both the text
headers of SAPscript texts and of texts with other formats. When reading the table, the system
copies this information into the corresponding fields of structure THEAD, which is the basic
structure of the internal work area of the text header.

STXL: Store text lines in ITF format
Table STXL stores the text lines of a text in ITF format [Seite 63]. This is a non-transparent table,
which can be accessed using IMPORT FROM DATABASE / EXPORT TO DATABASE. The text
lines are stored in compressed form.

STXB: Store text lines in other formats
If in field TDTEXTTYPE of the text header a text format appears, the text module has a non-
SAPscript format. The lines of such texts are stored in table STXB. This table can also store non-
representable characters (HEX codes < SPACE). STXB is a non-transparent table, which can be
accessed using IMPORT FROM DATABASE / EXPORT TO DATABASE. The text lines are
stored in compressed form.

April 2001 79

BC SAPscript: Printing with Forms SAP AG
SAPscript Data Formats

SAPscript Data Formats
Texts created and formatted with SAPscript have a certain data format, the so-called ITF format
(Interchange Text Format). It is also used to describe styles and forms.
The ITF format is a readable format, that means, it contains only those characters of the
character set that come "behind" the blank character. Characters smaller than the blank
character are not used in the ITF format. The ITF format consists of two parts, the format field
and the actual line contents. Certain elements of the format are fixed (for example, the paragraph
format '/' for a new line or '/:' to identify the line contents as a control statement). Other
elements, such as names of paragraph or character formats can be defined by the user when
maintaining the styles and forms.
This format is used in all interfaces between the different components of SAPscript to represent
the text lines. In the editor, you edit texts directly in ITF format; the user directly sees the
paragraph and character formats and the control statements.
However, this is only a small part of the total extent of the ITF format. Other ITF elements are
used to describe styles and forms, even though these attributes are not maintained in ITF format.
The table containing the text lines that are passed across the interfaces of SAPscript function
modules also contains texts in ITF format.

Composer

 User

Editor Styles
Forms

Programming
interface

Converter External
format

Output
functions

ITF

ITF

O
TF

IT
F

IT
F

IT
F

ITF

ITF

ITF
Database

The composer prepares an ITF text for output, that is converts it into a format that represents the
print version. This is the so-called OTF format (Output Text Format). It contains all information on
the final line structure and on page breaks. The OTF format is a final format. A text in OTF format
can no longer be edited.
The OTF format as the ITF format consists of readable characters. It describes the edited text for
a certain output device. Nevertheless, this format is independent of the control language
understood by the corresponding output device. The device's print driver converts the OTF
format into the language of the output device (for example, Postscript, PCL,...).

80 April 2001

 SAP AG BC SAPscript: Printing with Forms
 SAPscript Data Formats

April 2001 81

BC SAPscript: Printing with Forms SAP AG
Authorization Checks

Authorization Checks
Authorization Checks for Standard Texts
SAPscript supports authorization checks only for standard texts. These are texts with the text
object TEXT, which are edited using transaction SO10. To call this transaction, choose Tools →
Word processing → Standard text.
The authorization object is S_SCRP_TEXT, with the fields

TEXTNAME Name of the standard text

TEXTID ID of the standard text

LANGUAGE Language key of the standard text

ACTVT Activity

For TEXTNAME, TEXTID, and LANGUAGE, you can enter single values, intervals, and generic
entries, if allowed as authorization values.
For the activity, SAPscript distinguishes between display and change only.

The authorization for changing a standard text does not automatically imply the
authorization for displaying it. If you want a user to both display and change a text,
you must allocate authorizations for both activities.

SAPscript executes a create/change or display authorization check when the transaction SO10 is
called. To include a standard text into another using Include → Text → Standard... in the editor,
the user needs only display authorization. The same applies if the user includes standard texts
using the control statement INCLUDE. The system executes the check when processing the text
module for output.
If the user has no authorization, the system ignores the INCLUDE statement. If an INCLUDE
statement in the form specifies a standard text to be included into the output, the system does
not execute a check.
To check whether a user has authorizations for standard texts, use the function module
CHECK_TEXT_AUTHORITY.

Authorization Checks for Other Texts
For texts allocated to an object other than TEXT, SAPscript does not execute authorization
checks. Since these texts are usually allocated to business application objects, SAPscript
assumes that the application program checks whether the user is authorized to use the object. If
a user is authorized to display a material, this implies the authorization to display the texts
allocated to this material. If you want these texts to be independent of the object authorization,
you must define new authorization objects for the texts and include an appropriate authorization
check call into the application program.

82 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Storing Texts

Storing Texts
Modifications to texts should be executed in the same ways as modifications to the application
object to which the text is allocated via the text object. This means that text modifications must be
stored in the update task whenever the application object uses the update task to store data.
You use the storage mode to determine how a text is stored. You can set the storage mode for
each text object used to allocate texts to application objects. The storage modes used by
SAPscript are stored in table TTXOB:
• D = Store changes directly:

The system immediately executes all SAPscript functions that change text files.
• V = Store changes in update task:

The system saves changes to text modules internally when the corresponding function is
called and only writes them to the text file in the update task, together with changes to
the application object.

All other storage modes are not supported by SAPscript. Those texts are not stored in the text
file. If you want to store a text that uses such a storage mode using functions from the SAPscript
programming interface, the corresponding function module triggers the exception SAVEMODE
and stops.

Storing Texts Directly [Seite 84]
Storing Texts in Update Task [Seite 85]
Renaming Texts [Seite 87]

April 2001 83

BC SAPscript: Printing with Forms SAP AG
Storing Texts Directly

Storing Texts Directly
If a text has the attribute 'direct storage', all changes are written to the text database as soon as
SAPscript calls the corresponding function modules (SAVE_TEXT, DELETE_TEXT,...). Since
SAPscript does not create backup copies of texts, the old version of the text can no longer be
reconstructed.

DELETE_TEXTREAD_TEXT

SAVE_TEXT

COPY_TEXTS

Text file

The function module SAVE_TEXT is called implicitly within the function modules EDIT_TEXT and
EDIT_TEXT_INLINE. To avoid too many accesses to the text database (performance) or to
synchronize the modification time of the texts with those of the application object, you can
deactivate automatic storage for these function modules (parameter SAVE). However, you must
then call the function module SAVE_TEXT explicitly at the appropriate time. This is usually the
time when the other application data is stored as well. This procedure ensures that the system
executes all changes to an application object simultaneously.

84 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Storing Texts in Update Task

Storing Texts in Update Task
If the value in the storage mode of a text is set to 'update task', this text is automatically stored.
You need no extra function modules for this storage mode. The application program always calls
the same SAPscript function modules, independent of the storage mode.
When using storage mode 'V', at the end of the dialog transaction the application program must
call a SAPscript function module that prepares the update of the texts processed so far.
Texts maintained with SAPscript consist of a text header and a table containing the text lines.
The system keeps these two components in the work areas defined in the application program.
The application program must provide these work areas for each text. This means, if two text
modules are edited at the same time, two structures must exist to contain the text headers and
two tables for the text lines. This is necessary, if several texts are displayed and changed on the
same screen. If the texts appear one after the other on different screens, you can reuse the same
work areas, provided the old text has been stored. For direct storage, this is no problem, since
the changes immediately go to the text file and the system can read the text from there, if the
user may need it again during the transaction.

Text memory

DELETE_TEXT

COPY_TEXTS

COMMIT_TEXT

READ_TEXT

RENAME_TEXT

UPDATE; INSERT;
DELETE; COPY
in update task

READ_TEXTSAVE_TEXT

Text file

Log file

When using the update task, you are not allowed to write the text to the text file, because all
database changes are executed only after the user triggered the function 'Update' in the
application transaction. For this reason, changes to the text modules are stored intermediately in
an administration table controlled by SAPscript: the text memory. If the user wants to edit a
changed text again during the transaction, SAPscript fetches the current version of the text from
the text memory. The text memory stores the database function to be executed (insert, update or
delete) as well as the text header and text lines of the corresponding texts.

At the end of the transaction, the application program must use the function module
COMMIT_TEXT to tell the word processing program to pass the texts stored in the

April 2001 85

BC SAPscript: Printing with Forms SAP AG
Storing Texts in Update Task

text memory to the update task. After this, the text memory is empty again, unless
specified otherwise. After all data of the application program are passed to the
update task, a COMMIT WORK must occur to update the texts. The function module
COMMIT_TEXT itself does not execute a COMMIT WORK.

You must not change the storage mode set in table TTXOB without adapting the
application programs, since, depending on this setting, the programs may have to
call the function module COMMIT_TEXT and a COMMIT WORK.

86 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Renaming Texts

Renaming Texts
The name of a text usually corresponds to the key of the application object. However, in some
transactions, this key is determined only at the moment the user executes the function 'Update'.
Since texts are edited before this moment, they must have temporary names in this case. These
names are then replaced by the finally valid text names shortly before calling COMMIT_TEXT.
To do this, use the function module RENAME_TEXT, which replaces temporary names with the
correct text names. You must call this function module before calling COMMIT_TEXT. Otherwise,
the texts are stored under the temporary names. You can rename texts in the text memory only.

April 2001 87

BC SAPscript: Printing with Forms SAP AG
Text Memory

Text Memory
Within one transaction, the text memory contains all texts with storage mode 'V' that have been
processed during this transaction using SAPscript function modules that change the text
database.
Structure of the Text Memory [Seite 89]
Naming Conventions for the Text Memory [Seite 90]
Text Memory and CALL Mode [Seite 91]
Keeping Texts in the Text Memory [Seite 92]
Changing the Storage Mode Dynamically [Seite 93]

88 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Structure of the Text Memory

Structure of the Text Memory
The text memory consists of an administration table for all texts processed during the transaction.
This table specifies for each text which function to execute with it. Depending on this function,
other information may be included for that particular text in the text memory.

Text 1

Text 4

Text 17

Text 21

Text 1
Text 2
Text 5

Text 4
Text 7
Text 8
Text 9

Insert
Delete

-
Update
Delete
Copy
Copy

April 2001 89

BC SAPscript: Printing with Forms SAP AG
Naming Conventions for the Text Memory

Naming Conventions for the Text Memory
SAPscript stores its data in the ABAP memory using different IDs. All IDs for SAPscript entries
start with the character string 'SAPLSTXD'.

If you work with the ABAP memory within your application program, you are not
allowed to use IDs that start with this character string.

90 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Text Memory and CALL Mode

Text Memory and CALL Mode
The text memory is part of the ABAP memory. This means that the system keeps its contents
whenever the application program calls a transaction (CALL TRANSACTION, SUBMIT AND
RETURN or CALL DIALOG). Apart from transactions, this applies for reports or dialog modules
as well. All programs in this CALL hierarchy called by the application program use the same text
memory and thus have access to the same texts.
If one of these called programs executes a COMMIT_TEXT, the system transfers all texts to the
update task, even those texts that do not belong to that particular program. In such a case, you
can use the parameters OBJECT, NAME, ID, and LANGUAGE to specify exactly the texts you
want to transfer. You can also use generic names. All other texts, which do not match the
selection criteria, remain unchanged in the text memory. If they are changed, you must use other
COMMIT_TEXT calls to pass them to the update task.

April 2001 91

BC SAPscript: Printing with Forms SAP AG
Keeping Texts in the Text Memory

Keeping Texts in the Text Memory
As described above, the text memory is empty after the final call of the function module
COMMIT_TEXT. For a new read access, the system uses the text file. If the update task is slow,
the system may read the old text contents.
However, some applications must continue processing texts with the same transaction after a
COMMIT_TEXT, for example, to print a document. In this case, you can use the parameter
KEEP of the function module COMMIT_TEXT to keep the texts in the text memory. The system
flags them to indicate that they have been sent to the update task. If you call COMMIT_TEXT
again, the flagged texts are not passed to the update task, unless they have been changed again
in the meantime.

92 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Changing the Storage Mode Dynamically

Changing the Storage Mode Dynamically
In certain cases, it makes no sense to change a text module using the update task (for example,
background programs). In these situations, the system must handle text with storage mode 'V'
just like texts with direct storage to the database. The corresponding function modules offer the
parameter SAVEMODE_DIRECT, which ensures that a text is stored immediately when calling,
for example, SAVE_TEXT. However, you can also use this parameter with COMMIT_TEXT. In
this case, all texts are stored in the text memory first and written to the database together at the
same time, that is, at the call of COMMT_TEXT. For these texts, you need no COMMIT WORK.

April 2001 93

BC SAPscript: Printing with Forms SAP AG
Work Areas for Texts

Work Areas for Texts
According to the structure of a text (text header and text lines table), programs that use the
SAPscript programming interface must create the appropriate work areas to store these
components of a text.
The text header includes all administrative information on a text module. It must be specified with
all SAPscript function modules supplied for processing a text module. Its structure is described in
the structure THEAD.
The lines table accepts the lines of a text. The structure of a text line is determined by the
structure TLINE. All text lines passed to SAPscript using the function module interface must have
this line structure.
The specified work areas can contain the information for one text only. If you want to process
several texts at the same time, you must create a work area set for each text. After completely
processing one text, for example, after saving the text, its work areas can be used for another
text. To do this, either use, for example, READ_TEXT to transfer a new text into the work areas,
or use INIT_TEXT to initialize them for a new text module.

Text Header : THEAD [Seite 95]
Structure TLINE of the Lines Table [Seite 99]
Example: Creating Work Areas in the Program [Seite 102]

94 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Text Header : THEAD

Text Header : THEAD
The text header contains all administrative information on a text module. You must specify it with
all SAPscript function modules that exist for processing a text module.
You must create one set of work areas for each text module you want to process using
SAPscript. However, you can reuse such a set of work areas after processing of the old text
module is complete.
The text header contains the following fields:

TDOBJECT: application object of the text
The field is part of the text key. It contains the name of the text object to which the text is
allocated. This object must be defined in table TTXOB.

TDNAME: name of the text
The field is part of the text key. It contains the name of the text module. This name may be up to
70 characters long. An internal structure of the text name is preset by the text object, but not
interpreted by SAPscript.

TDID: ID of the text
The field is part of the text key. It contains the name of the text ID to which the text module
belongs. The text ID must be defined in table TTXID together with the text object.

TDSPRAS: language key of the text
The field is part of the text key. It contains the language key of the language used to enter the
text lines of the text module. The language key must be defined in table T002.

TDTITLE: short description of the text
This field can be used to store a short description of the contents of the text module. To maintain
the field, in the editor choose Goto -> Header. With standard texts, you can use the search
function to find texts that contain certain character strings in this field.

TDSTYLE: style including paragraph and character formats
If a style is allocated to a text module, this field contains the name of the style. The system then
edits paragraphs according to the definitions in this style. If no style is specified, the system uses
the corresponding information from the form into which the text module is output.

TDFORM: form for output
If a form is allocated to a text module, this field contains the name of the form. The system then
uses the formatting information of the form to format the text for output. However, the form
specified here is used only, if the text is output using the function module PRINT_TEXT.

April 2001 95

BC SAPscript: Printing with Forms SAP AG
Text Header : THEAD

TDVERSION: version number of the text
The field contains the version number of the text. When creating the text, the system sets the
number to 1. For each change to the text, the system increases the number by 1. If you delete a
text module and create a new one using the same name, the value is reset to 1.

TDFUSER: name of the user who created the text
This field contains the name of the user who created the text module. The system retrieves the
user name from the system field SYST-UNAME. The field contents remain the same, even if the
text module is changed. If you delete a text module and create a new one using the same name,
the system enters the currently active user into the field.

TDFRELES: release at which the text was created
This field contains the release of the SAP system at which the text module was created. The
system retrieves the value from the system field SYST-SAPRL. The field contents remain the
same, even if the text module is changed. If you delete the text module and create a new one
using the same name, the system enters the current SAP release into this field.

TDFDATE: creation date
The field contains the complete date of the day on which the text module was created. The
system retrieves the value from the system field SYST-DATUM. The field contents remain the
same, even if the text module is changed. If you delete the text module and create a new one
using the same name, the system enters the current date of day as creation date.

TDFTIME: creation time
The field contains the time of day at which the text module was created. The system retrieves the
value from the system field SYST-UZEIT. The field contents remain the same, even if the text
module is changed. If you delete the text module and create a new one using the same name,
the system enters the current time of day as creation time.

TDLUSER: name of the user who last changed the text
The field contains the name of the user who last changed and saved the text module. The
system retrieves the value from the system field SYST-UNAME. If the text module is new, this
field contains the same value as TDFUSER.

TDLRELES: release at which the last change to the text occurred
The field contains the release of the SAP system at which the last change to the text module took
place. The system retrieves the value from the system field SYST-SAPRL. If the text module is
new, this field contains the same value as TDFRELES.

TDLDATE: date of last change
The field contains the complete date of the day on which the text module was last changed and
saved. The system retrieves the value from the system field SYST-DATUM. If the text module is
new, this field contains the same value as TDFDATE.

96 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Text Header : THEAD

TDLTIME: time of last change
The field contains the complete time of day at which the text module was last changed and
saved. The system retrieves the value from the system field SYST-UZEIT. If the text module is
new, this field contains the same value as TDFTIME.

TDLINESIZE: line width in the editor
The field contains the line width of the text module. This is the line width for formatting the text in
ITF format [Seite 63], that is, the format used for display in the editor. The lines of a paragraph
are formatted in the width specified here, however, no wider than 72 characters. Exceptions are
lines with paragraph formats that exclude the lines from formatting (command lines, long text
lines, raw lines...). This line width has nothing to do with the line width when formatting a text for
print output. The latter is determined individually for each paragraph by settings in the form and in
the style.
The line width must have a value between 40 and 132.

TDTXTLINES: number of text lines
The field contains the number of text lines of this text module, which are stored in the
corresponding lines table.

TDOSPRAS: original language (only for forms and styles)
This field is interpreted for forms (object = FORM) and styles (object =STYLE) only. Forms and
styles consist of a definition part and a text part. The definition part is language-independent and
occurs only once, whereas the text part can occur in several languages. This field specifies which
of the existing languages is the original language, that is, the basis for translation. The definition
part is also stored as text module and must, therefore, have a language key even though it is
language-independent. The original language thus also determines the language key of the
definition part of a style or form.

TDTRANSTAT: translation status (only for forms and styles)

TDMACODE1: short title 1
The field should contain a short title in the form of a key word. When searching for standard texts,
the selection can be limited by entering a search character string for this field.

TDMACODE2: short title 2
The field should contain a short title in the form of a key word. When searching for standard texts,
the selection can be limited by entering a search character string for this field.

TDREFOBJ: object of the reference text
The field contains the object name of the reference text to which the current text module refers.

TDREFNAME: name of the reference text
The field contains the name of the reference text to which the current text module refers.

April 2001 97

BC SAPscript: Printing with Forms SAP AG
Text Header : THEAD

TDREFID: text ID of the reference text
The field contains the name of the text ID of the reference text to which the current text module
refers.

TDTEXTTYPE: text format
Texts can be stored in different text formats. This field contains the name of the format of the text
module. If the field is empty, SAPscript assumes that the text lines have ITF format and calls the
SAPscript text editor. If the field contains a value, the system assumes a non-SAPscript format
and calls the word processing program competent for this format.

TDOCLASS: object class
To allocate a text object to an application class, you can specify the name of a program class in
this field. The value must be defined in table TRCL. SAPscript uses this field only for maintaining
forms.

TDHYPHENAT: not used

TDCOMPRESS: not used

98 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Structure TLINE of the Lines Table

Structure TLINE of the Lines Table
The lines table contains the lines of a text module. Its structure is determined by the structure
TLINE. All text lines passed to SAPscript across the interfaces of function modules must have
this line structure.
SAPscript has its own format for text lines, the ITF format [Seite 63]. A text line in this format
consists of two fields, the format field and the actual line contents. These two fields form the
structure TLINE. The ITF format also determines the meaning and the typing of the control
information allowed in the format and line fields.
You can use SAPscript to administer texts that have other formats that ITF. The information on
the text format is stored in the text header. To pass texts with other formats to SAPscript via
function modules, you must also use the structure TLINE. SAPscript, however, does not interpret
the contents of the text lines but passes them on to the function modules, which call the interface
to the external word processing program.

TDFORMAT: format field
The format column contains format keys that determine the output formatting of the text or start
control statements. A format key determines the beginning of a new text paragraph and its
formatting. All subsequent text lines, which contain blanks in this field, belong to the same
paragraph. These lines are treated as texts with automatic line feed. The SAPscript editor
formats these lines by fitting as many words as possible into one editor line, always considering
blanks between words.
The formatting in the editor is independent of the formatting for output. Output formatting of a text
is visible only when the text is actually printed or displayed on the screen. For output editing, the
layout specifications of the paragraph format are evaluated. The possible format keys and their
meanings are determined in styles or forms.
If you allocate a style or form to a text module, you can use the paragraph formats specified there
for the text layout. Format keys which the user can define consist of one or two characters. The
letters from A to Z and the numbers from 0 to 9 are allowed. The paragraph format must begin
with a letter. If a format key is not part of the allocated style or form, the system uses the default
paragraph of that style or form.
Some format keys are predefined by SAPscript. You can use them in all texts:
* default paragraph

For output formatting of the subsequent paragraph, the system uses the formatting
specifications that correspond to the paragraph defined as default paragraph in the
allocated style or form.

/ new line
For output formatting, the subsequent text appears on a new line. The formatting
specifications of the last paragraph format apply.

/: command line
The system interprets the characters in the actual text line as control statements rather
than text. Control statements are interpreted and executed when the test is formatted for
output. The entire control statement must fit into one line; spreading it over subsequent
lines is not allowed. The SAPscript editor does not format control statement lines.

/* comment line
When formatting a text for output, the system does not output this line.

= long line

April 2001 99

BC SAPscript: Printing with Forms SAP AG
Structure TLINE of the Lines Table

This line is not subjected to line formatting in the SAPscript editor. The system appends
the text in this line directly to the last character of the previous line. If you want some
space in the output between the first and the second line, you must start the long line
with at least one blank.

/= long line with line feed
This line is treated just as = (long line), but when formatting for output, the subsequent
text appears in a new line.

(raw line
The SAPscript composer does not interpret the subsequent line when formatting the text
for output. This means that any character formats, variables, tabs, mask characters, or
hypertext links contained in this line are not evaluated and reach the output device
unchanged. In addition, the text in this line is directly appended to the last character of
the previous text line. If you want some space in the output between the first and the
second line, you must start the raw line with at least one blank.

/(raw line with line feed
This line is treated just as ((raw line), but when formatting for output, the subsequent
text appears on a new line.

>x fix line
This line in input-disabled in the SAPscript editor. You cannot delete or split it. You can
create a fix line only from within the program, for example, to allocate a fixed structure to
a text, which the user cannot change. Replace the ‘x’ with any number or any letter to
distinguish, for example, between different subtitles.
If several fix lines with the same identifier appear in sequence, the SAPscript editor
considers them as a unit. You cannot insert anything in-between in the editor. For output
formatting, SAPscript interprets the first two characters of the line contents of a fix line as
paragraph format. Either specify the desired paragraph format in these two characters or
leave them blank.

TDLINE: text line
The field TDLINE contains the actual text. Depending on the format field of the line, the system
interprets the line contents as
• text
• control statement
• comment
The control statement contained in a SAPscript text line must consist of readable characters. You
cannot use hexadecimal codes, which cannot be displayed on the screen. If you do use
hexadecimal codes, using SAPscript function modules may present unwanted results.
Beside the actual text, text lines can contain character formats and variables.
Character formats define the formatting of individual characters or character strings within a
paragraph. They begin with the escape symbol <z> and end with the characters </>. If you leave
out the end sequence, the system uses the character format until the end of the paragraph. You
can nest character formats.
‘z’ is the name of the character format, which is defined either in the allocated style or form.
Character formats defined by the user consist of one or two characters. Allowed are the letters
from A to Z and the numbers from 0 to 9. The name must start with a letter. If a character format
appears in the text that is defined neither in the style nor in the form, SAPscript ignores it.
Apart from the character formats the user can define, there are some formats predefined by
SAPscript, which can be used in all texts:

100 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Structure TLINE of the Lines Table

<(>... <)> raw character
The characters in-between this character format are output unchanged. This allows you
to pass certain character sequences and SAPscript variables to the output. This
character format corresponds to the paragraph format 'raw line'.

<x> special character
Use this format to output a character that you cannot enter via the keyboard. Replace ‘x’
with the number of the SAP character. All characters valid in the SAP system have a
unique number. However, you can print or display this character only, if it is defined in
the system character set and if the character set of the corresponding output device also
contains it.

Variables (or symbols) are placeholders for values that you set at the moment of actually
formatting the text for output. To recognize variables, they must have a certain structure:
• Variables must be included in & characters.
• The variable name must not contain blanks.
• The entire variable must fit into the field TDLINE.

April 2001 101

BC SAPscript: Printing with Forms SAP AG
Example: Creating Work Areas in the Program

Example: Creating Work Areas in the Program
To define the work area for the text header, use a structure like THEAD:
DATA <name of textheader> LIKE THEAD.

To define the work area of the lines table, use an internal table with the line structure TLINE:
DATA <name of linetable> LIKE TLINE OCCURS <n> WITH HEADER LINE.

You can use the above short forms for declaring work areas only, if you use release
3.0 or higher. They have the same effects as
DATA BEGIN OF <name of textheader>.
 INCLUDE STRUCTURE THEAD.
DATA END OF <name of textheader>.
or
DATA BEGIN OF <name of linetable> OCCURS <n>.
 INCLUDE STRUCTURE TLINE.
DATA END OF <name of linetable>.

102 April 2001

 SAP AG BC SAPscript: Printing with Forms
 SAPscript in Detail

SAPscript in Detail
This section offers further details on some SAPscript areas. Besides a list of the control tables
used, more information on how to control the printout and the editor is provided.
Integrating Text-Processing into Application Programs [Seite 104]
SAPscript Control Tables and Structures [Seite 121]
Controlling Print Output [Seite 129]
Editor Control [Seite 148]

April 2001 103

BC SAPscript: Printing with Forms SAP AG
Integrating Text-Processing into Application Programs

Integrating Text-Processing into Application Programs
This section deals with the explicit integration of text-processing into application programs.
Examples are used to clarify the explanations. Special tips may help you with problems.
Reading Texts [Seite 105]
Saving Texts [Seite 106]
Deleting Texts [Seite 107]
Calling the Editor [Seite 108]
Finding Texts [Seite 109]
Copying Texts [Seite 110]
Inserting Text Lines into Application Screens [Seite 111]
Inserting Other Texts [Seite 113]
Processing Texts from Within Programs [Seite 116]
Converting SAPscript Texts [Seite 117]
Consistency Checks [Seite 119]
Printing Texts [Seite 120]

104 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Reading Texts

Reading Texts
You can process texts only if they are stored in the internal work areas of the program.
Therefore, you must first transfer a text into the work areas.
To transfer the text header of a text into the specified structure and the text lines into the
specified lines table, use the function module READ_TEXT.
Usually, the system reads a text from the text file. However, for texts with storage in the update
task, the system first looks into the text memory to see whether it contains a currently processed
version. If so, the system reads this version of the text into the work area, otherwise the text
version from the text file.
To read a text version stored in the archive, use the parameter ARCHIVE_HANDLE.
If the desired text does not exist, READ_TEXT ends with the exception NOT_FOUND. The
contents of the work areas for text header and text lines are then undefined. To be able to use
these work areas for another text, you must first initialize them with INIT_TEXT.
The function module READ_TEXT also handles text references. It reads the reference chain to
its end and supplies the text lines of this text in the lines table as well.

April 2001 105

BC SAPscript: Printing with Forms SAP AG
Saving Texts

Saving Texts
To re-transfer texts from the internal work areas to the text file, use the function module
SAVE_TEXT.
The application program does not know whether the text is new or a changed version of an
existing text. To be able to find this out, the program must read the text file first.
If a text exists, the transferred text lines overwrite the old version. If it does not exist, the system
creates it. If you know from the beginning that the text is new, you can suppress this read
process using the parameter INSERT and thus improve performance.
A text you want to store in the text file must consist of at least one line whose paragraph format
or line contents is unequal to SPACE. Otherwise the system automatically deletes this text from
the text file.
Changes to the text file are valid at once if the text object of the text is set to direct storage. If it is
set to storage in update task, the text changes are temporarily stored in the text memory. The
function module COMMIT_WORK then transfers them to the log file, from where they are
updated with the next COMMIT WORK.
The function module SAVE_TEXT can handle only texts that are eventually stored in the text file,
that is, text with storage mode 'D' or 'V'.

106 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Deleting Texts

Deleting Texts
To explicitly delete texts from the text file, use DELETE_TEXT and specify the key of the desired
text. You must not read the text first.

Delete all texts with company code 0001 for customer 4711.

 EXPORTING OBJECT = 'KNB1'
 NAME = '00000047110001'
 ID = '*'

Delete all company code-related texts of customer 4711.

 EXPORTING OBJECT = 'KNB1'
 NAME = '0000004711*'

With DELETE_TEXT, you can specify the text name, text ID, and text language generically as
well. This allows you to delete, for example, all texts belonging to an application object, in one
call.

CALL FUNCTION 'DELETE_TEXT'

 LANGUAGE = '*'.

CALL FUNCTION 'DELETE_TEXT'

 ID = '*'
 LANGUAGE = '*'.

The texts are deleted from the text file immediately, if the text object of the text(s) is set to direct
storage. If it is set to storage in update task, the deletion request is stored in the text memory
first. The function module COMMIT_WORK then transfers the request to the log file, from where
it is executed with the next COMMIT WORK.
The function module DELETE_TEXT can handle only texts that are stored in the text file, that is,
text with storage mode 'D' or 'V'.

April 2001 107

BC SAPscript: Printing with Forms SAP AG
Calling the Editor

Calling the Editor
Use the function module EDIT_TEXT to branch to a (fullscreen) text editor that allows you to edit
the transferred text. Depending on the text format in the text header (TDTEXTTYPE), the system
calls the corresponding editor. If the format field is empty, it calls the SAPscript editor. Otherwise
it internally calls the function module EDIT_TEXT_FORMAT_xxx, which is responsible for
establishing the link to the text editor that can process texts in the format xxx.
The SAPscript editor offers several functions.
The editor interface, that is, the activated functions in the editor menus, are determined by the
text interface allocated to the text object in table TTXOB. In addition, you can set certain
attributes of the interface using the parameters CONTROL, DISPLAY, and EDITOR_TITLE when
calling the function module EDIT_TEXT.

Call the Editor Without Navigation
If you want to edit only one text in the editor, you should specify the interface TN for the
corresponding text object in table TTXOB. After editing the text, you leave the editor and return to
the application screen.

Call the Editor with Navigation
If you want to select several texts from the application screen and must, therefore, navigate in the
text editor in this selection list, you must use the interface TA. This interface offers the functions
Next text and Previous text in the Goto menu. You can use them to move among the selected
texts without having to leave the editor.
From within the program, you must call the function module in a loop. After editing one text, you
end the function module and return to the calling program. The program decides, depending on
the parameter RESULT, field USEREXIT, which function the user used to leave the text editor,
and then, depending on that function, either calls the text editor with another text or leaves the
loop.
How to proceed:
1. Provide the desired text of the selection list by placing the text header and the text lines into

the appropriate work areas.
2. Use the parameter CONTROL to specify which function Next text or Previous text you want

to activate:
APP_NEXT = 'X', if the text passed for the subsequent editor call is not the last text in the

selection list,
APP_PREV = 'X', if the text passed for the subsequent editor call is not the first in the

selection list.
3. Call the text editor.
4. Check the return parameter RESULT, field USEREXIT to determine the next step:

– Go to the beginning of the loop if the value of the field is either 'N' (Next text) or
'P' (Previous text).

– Otherwise leave the loop.

108 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Finding Texts

Finding Texts
This topic tells you how to find out which texts belong to an application object.
The name of SAPscript texts (field TDNAME) should correspond to the key of the application
object to which the text is allocated. Different text types among the texts of an application object
are determined by the text ID (field TDID) and by the language of the text.
If the text name corresponds to the key of the application object, you can identify all texts
belonging to that object by the key. You need not store fields in the data record of the application
object that contain the text name.
If an application transaction wants to know which texts exist for a material or a customer, it calls
the function module SELECT_TEXT to find out. The function module in a result table returns the
headers of all texts that match the selection criteria.
The function module selects texts not only from the text database, but also from the text memory.

You want to find all texts that belong to customer 4711 (centrally). The allocated text
object is KNA1. The system returns the text headers of the found texts in table
CUSTOMER_TEXTS:
DATA: CUSTOMER_TEXTS LIKE THEAD OCCURS 10.
CALL FUNCTION 'SELECT_TEXT'
 EXPORTING OBJECT = 'KNA1'
 NAME = '0000004711'
 ID = '*'
 LANGUAGE = '*'

If you want to search for the texts of a customer in the company code 0001, use the following
parameters of the function module SELECT_TEXT:

CALL FUNCTION 'SELECT_TEXT'
 EXPORTING OBJECT = 'KNB1'

 ID = '*'
 LANGUAGE = '*'
 TABLES SELECTIONS = CUSTOMER_TEXTS.

 TABLES SELECTIONS = CUSTOMER_TEXTS.

 NAME = '00000047110001'

If you do not know the structure of the text name, use the corresponding application transaction
to display one of the texts in the text editor and request information on the text by choosing Goto
→ Header. The text name of this text appears, from which you can now easily determine the text
name structure.

April 2001 109

BC SAPscript: Printing with Forms SAP AG
Copying Texts

Copying Texts
To copy SAPscript text, proceed like this:

2. Rename the text by entering the new values into the fields TDOBJECT, TDNAME, TDID in
the text header.

3. Save the text using SAVE_TEXT.
Use this procedure if the text to be copied is a model only and will be modified before saving,
either from within the program or by the user in the text editor.
The disadvantage of this procedure is that the entire text is read into the internal work areas and
then rewritten to the text database, possibly without any changes. The performance of this
procedure is bad, especially so, if you want to copy a lot of texts in one transaction and store
them using the update task.
In such a case, you better use the function module COPY_TEXTS: Enter the key of the texts to
be copies and their new names into a table. The system then copies the texts by copying only the
required data records.

1. Read the text you want to copy using READ_TEXT.

110 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Inserting Text Lines into Application Screens

Inserting Text Lines into Application Screens
In many cases, it is superfluous to call the SAPscript fullscreen editor for editing transaction texts.
It may be sufficient to offer only the first text lines on the screen. This allows you to display
several texts on one screen, even together with other data of the application object. If all text
lines fit into this reserved area, the user can even change the text directly on the application
screen. You must call the editor only if you allow the user to enter more than one line.
If a text contains more lines than are reserved on the application screen, you can display a flag,
The user then knows that the text displayed on the screen is not complete.
This procedure is called inline processing. SAPscript supports it only in parts. For inline
processing, you use the function modules READ_TEXT_INLINE and EDIT_TEXT_INLINE, which
have the same functionality as READ_TEXT and EDIT_TEXT.
READ_TEXT_INLINE transfers the first few text lines into a second internal table (INLINES). The
application program must then transfer these lines at the event PBO into the corresponding
screen fields. The application must decide whether to display the character formats on the inline
screen. If not, it may be necessary for the application program to include a paragraph format. At
the PAI event, the application program must retransfer the corresponding screen fields into the
table INLINES and call the function module EDIT_TEXT_INLINE. It merges the text lines in table
INLINES with the text lines in table LINES, reformats the text, and places the first few text lines
back into table INLINES.
To automatically branch to the fullscreen editor after merging the texts, use another parameter.
To determine, whether a text consists of more lines that fit onto the inline screen, and to display
the corresponding flag to the user, compare the number of lines of table LINES with the number
of lines of table INLINES.

READ_TEXT_INLINE

INLINES

PBO

PAI

EDIT TEXT INLINE
(PAI)

In contrast to editing texts in the fullscreen editor, inline processing encounters some restrictions:
• The system cannot automatically concatenate words that are split by the end of the line.
• Inline processing does not support the editing functions offered by the fullscreen editor. You

can use only the elementary editing functions for screen fields, which are generally available.

You only see the beginning of the text lines. If they are wider than the screen fields, you
must use the fullscreen editor to edit the hidden part of a line.

• If you suppress the format field of the SAPscript text line in the display, you must use the
fullscreen editor to enter control statements.

• The system stores changes to the text lines immediately in the original lines table of the text,
automatically using function Save of the editor. Thus, you cannot restore the original version

• You cannot scroll the text.

April 2001 111

BC SAPscript: Printing with Forms SAP AG
Inserting Text Lines into Application Screens

of the text, unless you cancel the update task and reset all changes made by the entire
transaction.

112 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Inserting Other Texts

Inserting Other Texts
SAPscript supports two procedure to insert texts from other text modules into a text, depending
on the purpose behind it.
Including Texts [Seite 114]
Referring to Texts [Seite 115]

April 2001 113

BC SAPscript: Printing with Forms SAP AG
Including Texts

Including Texts
To include a text into any text module, the user enters the INCLUDE control statement in the
SAPscript editor. When formatting the text for print output, the system reads the text lines of the
specified text and inserts them in the current text printout.
In each text, several INLCUDE statements can appear together with other text lines. In the
SAPscript editor, you can see only the INCLUDE statement, not the lines of the text you include.
With an INCLUDE statement, you always include all lines of the specified text. You can nest
INCLUDE statements.
If you change a text, these changes effect all texts that include it. If you delete a text, a
corresponding INCLUDE statement is without effect.
To change text lines of an included text, you must resolve the INCLUDE statement. In the text
editor, choose Edit → Selected area → Expand INCLUDE. The system now copies the text lines
into the current text and deletes the INCLUDE statement. Afterwards, there is no more link to the
text originally specified in the INCLUDE statement. This means, that changes to the original text
no longer effect the current text.
You cannot INCLUDE any texts, but are restricted to texts of certain text objects and text IDs,
depending on the text environment the INCLUDE statement appears in. When including a
standard text, SAPscript checks whether the user has the display authorization for this text.
For more information, see the documentation Style and Form Maintenance under the description
of the INCLUDE statement.

114 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Referring to Texts

Referring to Texts
You use text references, if you also want to refer to the allocated application object. You use this
procedure, for example, when creating an order and a similar order already exists, part of whose
data you can reuse.

For text references, the system stores only the text header. The text lines are filled when the
system reads the reference text. A reference can extend over several levels, that is, a referred
text can itself refer to another text. In this case, when reading the texts, the system works through
the entire reference chain and uses the text lines of the text at the end of the chain.
For text references, there are no restrictions concerning the text object, text ID or text name. The
application program that establishes the reference must make sure that it refers to the correct
texts. SAPscript does not execute an authorization check.

If you want to resolve a reference from within the program, you must first make sure that the text
lines of the reference text are stored in the corresponding lines table. Then simply delete the
fields TDREFOBJ, TDREFNAME, and TDREFID in the text header.
If a reference text no longer exists, the system ends the corresponding function module, for
example, READ_TEXT with the exception REFERENCE_CHECK. The SAPscript composer
ignores missing reference texts when formatting a text for printing.
Function modules:

READ_TEXT

You refer to texts from within the program; that is, to establish a text reference the application
program must call the SAPscript function module REFER_TEXT. A text that refers to another text
module may itself not contain any further text lines. The reference is established by storing the
referred text in the fields TDREFOBJ, TDREFNAME, and TDREFID of the text header of the
current text. The system automatically sets the language of the referred text to the language of
the current text.

As for including texts, for printing or displaying the reference text in the editor the system always
uses the current text version. In contrast to INCLUDE texts, the SAPscript editor displays all lines
of the referred text. However, the text area in the editor is input-disabled, so that you can neither
change the text nor insert other text lines. If you want to change the text, you must first unlock it.
In the editor choose Text → Unlock. The system then resolves the reference and copies the
lines, as for including, into the current text module. The text lines of the editor are now input-
enabled, but there is no more link to the original reference text.

REFER_TEXT
READ_REFERENCE_LINES

April 2001 115

BC SAPscript: Printing with Forms SAP AG
Processing Texts from Within Programs

Processing Texts from Within Programs
SAPscript texts are stored in the lines table in ITF format. This format consists of readable
characters only and does not contain any hexadecimal codes < SPACE.
To process the lines table from within an application program, use the ABAP statements for table
processing (LOOP, READ, INSERT, DELETE). Since the fields of structure TLINE are of type C,
you can use all ABAP statements available for processing type C fields.
SAPscript offers a number of function modules to modify the text lines table, taking into account
the syntax and semantics of the SAPscript ITF format.

116 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Converting SAPscript Texts

Converting SAPscript Texts
SAPscript texts are stored in Interchange Text Format (ITF). As interface to other word
processing programs, SAPscript offers conversion programs to the text file formats Rich Text
Format (RTF) and ASCII as well as migration for R/2 texts.

RTF Files
RTF files contain the entire formatting information of a text and can be interpreted as well as
created by all common word processing programs.
RTF files created from SAPscript texts largely contain the character and paragraph formats from
the style or form of the original text. They can easily be read into modern word processing
programs; however, for using older DOS programs you must make some preparations first: For
Microsoft Word (starting with version 5.0), for example, you must convert the RTF file on
operating system level into a Word text file and a template using the following commands:

MS-DOS rtf_dos file1.rtf file2.txt file3.dfv /o/c

MS-DOS rtf_dos file1.rtf file2.txt file3.dfv /o/m

OS/2 rtf_os2 file1.rtf file2.txt file3.dfv /o/c

OS/2 rtf_os2 file1.rtf file2.txt file3.dfv /o/m

/o If file2.txt exists, it is overwritten without notice.
/c Creates the new template file3.dfv.
/m The template file3.dfv exists and will be modified if necessary.

If you want the names of paragraph and character formats to be different in Word or if you want
to adapt them to an existing Word template, you must execute a format conversion.
When importing RTF files into SAPscript, you should create the source text with a template and
store it as RTF file. Paragraphs and characters formatted with templates can receive formats
again in SAPscript. So make sure not to format texts using Word buttons! On the R/3 side, a style
or form should exist whose character and paragraph formats correspond to those of the template
and have the same keys. If this is not possible because the template has other keys, you can
start a format conversion.

ASCII Files
In ASCII files, the text is stored unformatted. The only formatting element is the line feed.
Character set conversions into and from all character sets defined in the spool administration are
supported.
From within the SAPscript editor, you can
• export SAPscript texts into a local file in the formats ITF, RTF, or ASCII,
• import local files of the formats ITF, RTF, or ASCII and insert them at the cursor position as

ITF text.
To find these functions in the text editor, choose Text → Upload... / Text → Download...,
Documentation → Upload... / Documentation → Download... or Clipboard→ Upload... / Clipboard
→ Download....
From within application programs, you can call these and further functions using a set of function
modules.

April 2001 117

BC SAPscript: Printing with Forms SAP AG
Converting SAPscript Texts

Programming Example
Convert a SAPscript standard text in system language into an RTF file and write it into a local
directory. You can choose the text name and the name of the target file at will; default values are
"SAPSCRIPT-DRUCKERTEST" and as local directory "C:\temp\". The system does not check
whether the file name ends with ".rtf"; you must check this yourself.

REPORT YCMTESTE LINE-SIZE 255 MESSAGE-ID TD.
PARAMETERS:
 TEXTNAME LIKE THEAD-TDNAME DEFAULT 'SAPSCRIPT-
DRUCKERTEST',
 FILE LIKE RLGRAP-FILENAME DEFAULT 'C:\temp\'.
DATA: TEXTHEADER LIKE THEAD.
DATA: TEXTLINES LIKE TLINE OCCURS 100 WITH HEADER LINE.
CALL FUNCTION 'READ_TEXT'
 EXPORTING NAME = TEXTNAME
 LANGUAGE = SY-LANGU
 OBJECT = 'TEXT'
 ID = 'ST '
 IMPORTING HEADER = TEXTHEADER
 TABLES LINES = TEXTLINES
 EXCEPTIONS OTHERS = 1.
CHECK SY-SUBRC = 0.
CALL FUNCTION 'EXPORT_TEXT'
 EXPORTING CODEPAGE = '1133'
 FILE = FILE
 FORMATWIDTH = 132
 FORMAT_TYPE = 'RTF'
 HEADER = TEXTHEADER
 SSHEET = ' '
 WITH_TAB = ' '
 TABLES ITF_LINES = TEXTLINES
 EXCEPTIONS DOWNLOAD_ERROR = 1
 FILE_OPEN_ERROR = 2
 FILE_WRITE_ERROR = 3.
CASE SY-SUBRC.

 WHEN 1. MESSAGE E815 WITH FILE.
 WHEN 2. MESSAGE E811 WITH FILE.
 WHEN 3. MESSAGE E814 WITH FILE.
ENDCASE.

 WHEN 0. MESSAGE S807 WITH FILE.

118 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Consistency Checks

Consistency Checks
At the interface to its function modules, SAPscript implicitly always checks whether the specified
text object, text name, text ID, and text language are valid. To execute such a check independent
of a SAPscript processing function, the system provides function modules that allow you to
explicitly check the validity of these specifications.

April 2001 119

BC SAPscript: Printing with Forms SAP AG
Printing Texts

Printing Texts

During formatting, the system
• formats the individual text paragraphs according to the definitions in the style or form,
• replaces variables with their current values,
• interprets and executes the control statements contained in the text,
• automatically triggers page breaks according to the page layout specified in the form.
The function module automatically opens the form and closes it after formatting the text lines. All
text lines transferred appear in the main window of the form (MAIN).

With each application program, you can specify different formatting parameters by using the
parameter OPTIONS. The user gets a dialog window, in which he can change the default values
of certain parameters. You can evaluate these changes by comparing the fields of the parameter
OPTION with the corresponding fields of the return parameter RESULT of the program.

The function module PRINT_TEXT internally calls the function modules
OPEN_FORM, WRITE_FORM_LINES, and CLOSE_FORM. Therefore, you cannot
call PRINT_TEXT after a form has been opened using OPEN_FORM. The system
then ends the function module with the exception UNCLOSED.

If the text module you want to print is not in ITF format, that is, the field TDTEXTTYPE of the text
header is not empty, you cannot use the SAPscript composer to format this text. Instead, the
system calls the function module PRINT_TEXT_FORMAT_xxx, which calls the word processing
program appropriate for processing the specified text format. If this is impossible, PRINT_TEXT
ends with an exception.

To print a text, you can use the function module PRINT_TEXT. However, you can format only
one text with this function module. Formatting occurs according to the formatting information
specified in the text header (style and form). If no form is defined for a text, the system implicitly
underlays the form SYSTEM.

If you want to output a text module in such a way that you can view it in the text editor in ITF
format, use the function module PRINT_TEXT_ITF. The system ignores the style and form
specifications in the text header and uses the form SAPSCRIPT_ITF instead.

120 April 2001

 SAP AG BC SAPscript: Printing with Forms
 SAPscript Control Tables and Structures

SAPscript Control Tables and Structures
This topic introduces the control tables SAPscript employs. You also find an overview of the
structures used.

Control Tables

TTXOB [Seite 122] Definition of the text objects

TTXOT [Seite 124] Descriptions of the text objects

TTXID [Seite 125] Definition of the text IDs

TTXIT [Seite 127] Descriptions of the text IDs

To maintain the above tables, use transaction SE75. To call the transaction, choose Tools →
Word processing → Settings
SAPscript Structures [Seite 128]

April 2001 121

BC SAPscript: Printing with Forms SAP AG
TTXOB: Definition of the Text Objects

TTXOB: Definition of the Text Objects
The control table TTXOB contains the definitions of the text objects supported by SAPscript. The
table's key is the 10-digit text object. Using the SAPscript function modules, you can process only
texts whose objects are stored in this table. If you pass an object name to a SAPscript function
module that is not defined in table TTXOB, the function module triggers the exception OBJECT.
The table is client-independent. To maintain it, choose Tools → Word processing → Settings to
call transaction SE75.

TDSAVEMODE: storage mode
You can enter the following values in this field:

'D' direct storage

'V' storage in update task

' ' text not stored in the text file

Usually, you are not allowed to change this parameter, since the application
programs must execute extra functions depending on the storage mode (for
example, COMMIT_TEXT).

TDAPPL: editor interface
The parameter specifies the editor interface set when a text with this object is edited in the
SAPscript text editor. The interface must be defined for program SAPLSTXX.
The specified interface determines the first two letters of a status set. Depending on the
processing mode (change, display, insert, mark), the SAPscript editor supplies the last two
characters of the four-digit status name.

TDLINESIZE: line width of the editor

TDSTYLE: default style

TDFORM: default form

If you do not define a default form, SAPscript uses the form SYSTEM.

Maximum line width allowed for a text in the editor.

If you create a new text module, the system automatically allocates the style specified in this
field. The style determines the paragraph and character formats. Depending on the editor
interface, you can change this style in retrospect.

If you create a new text module, the system proposes the form specified in this field. It is used, if
you print the text module from within the text editor. If you print the text module from within the
application program, you can specify another form when calling the corresponding function
module. Depending on the text interface, you may be allowed to change the default form in the
text editor.

122 April 2001

 SAP AG BC SAPscript: Printing with Forms
 TTXOB: Definition of the Text Objects

TDTEXTTYPE: text format
This field determines the format of the text. Depending on the format, the system calls the
appropriate editor. You can specify the format both for a text object in table TTXOB and for a text
ID in table TTXID. If you use table TTXOB to specify a format, it applies to all IDs that belong to
this object.
If you specify a format neither in table TTXOB not in table TTXID, the system interprets the text in
ITF format and calls the SAPscript editor.

April 2001 123

BC SAPscript: Printing with Forms SAP AG
TTXOT: Description of the Text Objects

TTXOT: Description of the Text Objects
This table contains a language-dependent short text used to describe the meaning of a text
object.
The table is client-independent. To maintain the table, call transaction SE75 by choosing Tools
→ Word processing → Settings.

124 April 2001

 SAP AG BC SAPscript: Printing with Forms
 TTXID: Definition of Text IDs

TTXID: Definition of Text IDs
This control table contains all text IDs supported by SAPscript. Text IDs are always allocated to a
text object. The key of this table thus consists of the text object and a four-digit text ID. You can
use the SAPscript function modules only to process texts whose IDs are stored in this table.
The table is client-independent. To maintain the table, call transaction SE75 by choosing Tools
→ Word processing → Settings.

TDINCLID: include ID
You use the INCLUDE statement to include the contents of a second text into the first text. To
specify the text you want to include, you must also enter the text ID. If it is missing in the
INCLUDE statement, the system uses the default ID (if any) which you can specify in this field.

TDSHOWNAME: display text name
This field determines whether the name of a text appears in the title line of the SAPscript text
editor together with other information.
By default, this title line consists of the following fields:
<text ID> <activity>: <text name> <text> Language <language key>
<text ID>: long text of the text ID from table TTXIT
<activity>: The activity is determined by the call of the text editor or by the current activity within
the text editor (change, display, insert, mark).
<text name>: name of the currently edited text
<text>: additional text, which the application program may specify when calling the text editor
<language key>: language key of the currently edited text
If the field is empty, the system does not display the text name in the title line of the editor. This
allows you to set any title text in the editor when calling EDIT_TEXT [Seite 182] with the
parameter EDITOR_TITLE. The system displays this title in addition to the other headings
generated by SAPscript in the title bar. You can use this to display difficult technical text names
in the title bar in decrypted form.

TDTEXTTYPE: text format
This field determines the format of the text. If in table TTXOB the field TDTEXTTYPE is empty for
the object to which a text ID belongs, the system uses the format specified here for the text ID.
Otherwise, the entry made for the text object prevails.
If this field is empty, the system interprets the text in ITF format and calls the SAPscript editor.

TDKEYSTRUC: structure of the text key

TDOBLIGAT: reserve
SAPscript does currently not evaluate this field.

TDDELPROT: reserve

TDINCLRES: reserve
SAPscript does currently not evaluate this field.

In this field, you can store the name of a structure which describes the key structure of the name
field of the text module. This field is used for documentation only and is not evaluated by
SAPscript.

SAPscript does currently not evaluate this field.

April 2001 125

BC SAPscript: Printing with Forms SAP AG
TTXID: Definition of Text IDs

126 April 2001

 SAP AG BC SAPscript: Printing with Forms
 TTXIT: Description of the Text IDs

TTXIT: Description of the Text IDs
This table contains a language-dependent short text used to describe the meaning of a text ID.
The table is client-independent. To maintain the table, call transaction SE75 by choosing Tools
→ Word processing → Settings.

April 2001 127

BC SAPscript: Printing with Forms SAP AG
SAPscript Structures

SAPscript Structures

THEAD Structure for storing the text header

TLINE Structure for storing a text line

ITCPO Control parameter for output formatting

ITCPP Return parameter from output formatting

ITCED Control parameter for the text editor

ITCER Return parameter from the text editor

ITCST Structure of the result table that gathers all the symbols appearing in a text

ITCWE Structure of the result table that lists all the elements appearing in a form

128 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Print Output

Print Output
Controlling the print output is a most interesting topic and is treated in detail in the following.
Controlling Print Output [Seite 130]
Return Parameters of the Print Output [Seite 138]

April 2001 129

BC SAPscript: Printing with Forms SAP AG
Controlling Print Output

Controlling Print Output
With the function modules PRINT_TEXT and OPEN_FORM, you can set output formatting and
print control using the parameter OPTIONS. The data you pass to this parameter must have the
structure ITCPO. The fields of this structure come from the areas SAPscript, the spool, and
SAPcomm. Some of these fields can be changed by the user on the selection screen, if you
requested it using the parameter DIALOG with the above function modules. The print program
evaluates these changes using the corresponding fields of the parameter RESULT.

TDPAGESLCT SAPscript: select print page

TDPREVIEW SAPscript: show print view

TDNOPREV SAPscript: disable print view

TDNOPRINT SAPscript: disable printing from within print view

TDTITLE SAPscript: text for tiltle line in the output selection screen

TDPROGRAM SAPscript: program name for replacing symbols

TDTEST SAPscript: test printout

TDIEXIT SAPscript: return immediately after printing

TDGETOTF SAPscript: return OTF table, no print output

TDSCRNPOS SAPscript: display position of OTF on screen

TDDEST Spool: name of the output device

TDPRINTE Spool: name of the device type

TDCOPIES Spool: number of copies

TDNEWID Spool: new request

TDIMMED Spool: print request immediately

TDDELETE Spool: delete request after printing

TDLIFETIME Spool: retention time of the request

TDDATASET Spool: identification of the request

TDSUFFIX1 Spool: suffix 1 of the request

TDSUFFIX2 Spool: suffix 2 of the request

TDAUTORITY Spool: authorization for a request

TDARMOD Spool: archiving mode

TDCOVER Spool: print cover page

TDCOVTITLE Spool: cover page: title text

TDRECEIVER Spool: cover page: recipient name

TDDIVISION Spool: cover page: division name

130 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Controlling Print Output

TDSCHEDULE SAPcomm: type of scheduled send time

TDSENDDATE SAPcomm: requested send date

TDSENDTIME SAPcomm: requested send time

TDTELELAND SAPcomm: country key of recipient country

TDTELENUM SAPcomm: telecommunications partner

TDPAGESLCT: SAPscript: select print page
The field contains the page specifications of the pages to be printed. You can specify individual
pages, page intervals, and a combination of both. If the field is empty, the system prints all
pages.
The page numbers refer to the physical pages of the SAPscript printout, not to the logical page
numbering of the form.
Example:

4 only page 4

2-5 pages 2 to 5, included

20 from beginning to page 20, included

3- from page 3 to end

To combine these variants, separate the different specifications with commas:

• 4,8-10,15-
prints the pages 4, 8 to 10, and then from page 15 to the end.

The user can change the values proposed in this field on the selection screen.

TDPREVIEW: SAPscript: print view
The field determines whether SAPscript shall create a print view. You can then see on the screen
exactly what the printout will look like later. In background processing, the system does not
interpret this field. It always creates a spool request.
Possible values:

‘X’ print view wanted

‘ ‘ no print view wanted

TDNOPREV: SAPscript: disable print view
On the print selection screen, the user can choose to display the print view of the SAPscript
output on the screen. If you want to disable this function, use field TDNOPREV.
Possible values:

‘X’ disable print view function

April 2001 131

BC SAPscript: Printing with Forms SAP AG
Controlling Print Output

‘ ‘ allow print view function

TDNOPRINT: SAPscript: disable printing from within print view
Use this field to determine whether the user is allowed to start the printing process from within
the print view of a SAPscript text. If, for example, the application program shall control print
output independent of any user entries, activate this field.
Possible values:

‘X’ printing from within print view disabled

‘ ‘ Printing from within print view allowed

TDTITLE: SAPscript: text for title line of print selection screen
The text in this field is displayed in the title line of the print selection screen.

TDPROGRAM: SAPscript: program name for replacing symbols
To replace program symbols, SAPscript must know in which active program to find the work
areas for the corresponding values. If no program is specified in this field, the system looks in the
program that was called first (program name from SY-CPROG); otherwise in the data area of the
program specified here.
The program name is valid during the entire print process. With form printing, however, you can
specify a new program name when calling the function module START_FORM. This new
program name is then valid until the next END_FORM. Afterwards, the system uses the program
name specified in TDPROGRAM again.
SAPscript accesses the table fields of this program using a dynamic ASSIGN with the program
name specified here. If no program name is entered or if the program has not been loaded yet,
the system treats the symbol as text symbol.

TDTEST: SAPscript: test printout
Use this field to format a text for printing in a test mode. This means that the system does not
replace the symbols in the text with their current values. Instead, it represents all output positions
of a symbol value using 'X'.
Possible values:

‘X’ format text in test mode

‘ ‘ format text as usual

TDIEXIT: SAPscript: return immediately after printing
Use this parameter to determine whether to return to the application program immediately after
printing the text from within the print view. Usually, the system remains in the print view.
Returning to the application program may be necessary, if a text is to be printed only once or if
the print view is no longer needed after printing.
Possible values:

‘X’ leave print view immediately after printing

132 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Controlling Print Output

‘ ‘ remain in print view after printing

TDGETOTF: SAPscript: return the OTF table
If you enter ‘X’ in this field, the SAPscript composer produces the print format as usual, but does
not pass it to the spool or print view. Instead, it passes the OTF format created to the calling
program for further processing, using the table parameter OTFDATA of the function modules
PRINT_TEXT and CLOSE_FORM.
Possible values:

‘X’ return output format

‘ ‘ pass output format to spool or print view

TDDEST: Spool: name of the output device
Specify the name of the device on which you want to output the formatted SAPscript text. If you
enter ‘*’ or leave the field empty, the system uses the default value specific in the user master
record of the active user. If, in this case, no printer is specified in the user master record, the
system displays the print selection screen, even if you wanted to suppress the dialog when
calling the function modules PRINT_TEXT or OPEN_FORM (parameter DIALOG).
The user can change the value proposed on the selection screen.

TDPRINTER: Spool: name of the device type
Usually, this field is empty. On the selection screen, the user can choose among all existing
printers. However, if you want to ensure that the text is output on printers of a certain type only,
you can specify the device type in this field. On the selection screen, the system then offers only
the printers of this type.

The device type you specify must be defined in table TSP0A. To find these types out,
use the spool administration (transaction SPAD).

Specify how often you want the spool to print a text. ‘1’ means that the entire text is printed once
(default). If you specify '2', the system prints all pages twice. SAPscript internally replaces the
value '0' with ‘1’.
When you create more than one copy, the sequence of the printed pages is 1-2-3..., 1-2-3...

TDNEWID: Spool: new spool request
This field determines whether to append the current spool request to an existing request with the
same attributes or whether to create a new request. To append a request to another, the values
of the fields Name, Output device, Number of copies and the Formatting mode must be the
same, and the existing spool request must still be active. This is no longer the case, if a spool
request is released to printing. If the system does not find a matching spool request, it always
creates a new one.
Possible values:

TDCOPIES: Spool: number of copies

The user can change the proposed value on the print selection screen.

April 2001 133

BC SAPscript: Printing with Forms SAP AG
Controlling Print Output

‘X’ create a new spool request

‘ ‘ find a matching spool request for appending

The user can change the proposed value on the print selection screen.

TDIMMED: Spool: print request immediately
Use this field to determine whether to send the print request to the output device immediately
after completing it. Otherwise, you must use the spool print control (transaction SP01) to release
the print request.

The user can change the proposed value on the print selection screen.

Use this field to determine whether to delete the spool request immediately after printing it on the
output device or whether to keep it for the spool retention period.
Possible values:

The user can change the proposed value on the print selection screen.

TDLIFETIME: Spool. retention time of the request
This field determines for how many days the system keeps a request in the spool before deleting
it. If the field is empty, SAPscript inserts the default value '8'.
The user can change the proposed value on the print selection screen.

TDDATASET: Spool: identification of the request

If the field is empty, SAPscript enters the value SCRIPT.
The user can change the proposed value on the print selection screen.

TDSUFFIX1: Spool: suffix 1 of the request
Second part of the identification of the spool request. See also the description of field
TDDATASET.

The user can change the proposed value on the print selection screen.

Possible values:

‘X’ print request immediately after completing it

‘ ‘ keep request in spool after completing it

TDDELETE: Spool: delete request after printing

‘X’ delete immediately after printing

‘ ‘ delete after retention time has expired

The field is the first component of the three-part identification of the spool request (including also
the fields TDSUFFIX1 and TDSUFFIX2). There is no naming convention for the identification. If
your application uses a certain convention, see the corresponding application documentation.

If the field is empty, SAPscript enters the output destination (TDDEST).

134 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Controlling Print Output

TDSUFFIX2: Spool: suffix 2 of the request
Third part of the identification of the spool request. See also the description of field TDDATASET.
If the field is empty, SAPscript enters the name of the user.

TDAUTORITY: Spool: authorization for request

The spool print control (transaction SP01) checks whether the authorization object S_SPO_ACT
(spool actions) of the user contains the specified value.
The user can change the proposed value on the print selection screen.

TDARMOD: Spool: archiving mode
Use this field to determine whether only to print a request or whether to store it in the optical
archive as well.

The user can change the proposed value on the print selection screen.

This field determines whether the printout includes a cover page containing information such as
recipient name, division name, format used, and so on.
Possible values:

The user can change the proposed value on the print selection screen.

TDCOVTITLE: Spool: cover page: title text

The user can change the proposed value on the print selection screen.

TDRECEIVER: Spool: cover page: recipient name
You can specify the name of the user who receives the spool request. The system prints this
name on the cover page. The default value is the name of the current user.
The user can change the proposed value on the print selection screen.

The user can change the proposed value on the print selection screen.

This field defines an authorization value for the spool request. Only users with the specified
authorization can display or print the contents of the spool request.

Possible values:

‘1’ only print request (default)

‘2’ only archive request

‘3’ print and archive request

TDCOVER: Spool: print cover page

‘X’ print cover page

‘ ‘ suppress cover page

‘D’ print cover page depending on the setting of the respective output device.
(see definition of the device in the spool administration (transaction SPAD),
in the column output devices)

This field contains a text describing the spool request. It appears on the cover page.

April 2001 135

BC SAPscript: Printing with Forms SAP AG
Controlling Print Output

TDDIVISION: Spool: cover page: division name
This field contains the name of the division to which the user belongs. The system prints this
name on the cover page.
The user can change the proposed value on the print selection screen.

TDSCHEDULE: SAPcomm: type of scheduled send time
Use this field to determine whether to send a spool request via the SAP communication interface
immediately or whether to wait for the night.
Possible values:

‘IMM’ send request immediately

‘NIG‘ send request during the night

If the field is empty, the system uses the default value ‘IMM’.
The user can change the proposed value on the print selection screen.

TDSENDDATE: SAPcomm: requested send date
In this field, enter the date on which to send the print request via the SAP communication
interface.
The user can change the proposed value on the print selection screen.

TDSENDTIME: SAPcomm: requested send time
In this field, enter the time at which to send the print request via the SAP communication
interface.
The user can change the proposed value on the print selection screen.

TDTELELAND: SAPcomm: country key for recipient country
According to the country key specified in this field, the SAP communication interface determines
the country-specific area code and uses it as prefix to the telephone number of the
telecommunications partner specified in field TDTELENUM.
The user can change the proposed value on the print selection screen.

TDTELENUM: SAPcomm: number of telecommunications partner
In this field, enter the number of the desired telecommunications partner is the way it is dialed in
the recipient country. The system automatically includes the area code which you specify in the
field TDTELELAND.
To switch off automatic number check and prefixing with the area code, start the number in this
field with '&'. In this case, you must specify the entire number, including area code, but without
operator call.
The telephone number must be of a certain format:
TELEFAX
Allows only digits and the characters ‘(‘, ‘)’, ‘/’, ‘-’, and ‘.' as well as blanks.

136 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Controlling Print Output

TELEX
Allows only digits, the letters A to Z, and blanks. The number must have the following structure:
nnn...n aaaa..a ccc

'n' digits that form the numeric part of the telex identification

‘a' letters that for the alphanumeric part of the telex identification

‘ccc’ consists of one, two, or three letters and corresponds to the country key

TELETEX
Allows only digits and the letter A to Z. The number must have the following structure:
nnn...n=aaaa..a

‘n' digits thst form the numeric part of the teletex identification

'a' etters that form the alphanumeric part of the teletex identification

The user can change the proposed value on the print selection screen.

April 2001 137

BC SAPscript: Printing with Forms SAP AG
Return Parameters of the Print Output

Return Parameters of the Print Output
After formatting SAPscript texts for printing, the parameter RESULT contains information and
settings which can be of interest for the calling program. This information can be passed using
the function modules PRINT_TEXT or CLOSE_FORM. The parameter reference structure is
ITCPP.
The structure includes fields, which have previously been passed in the parameter OPTIONS
when calling the output function module, and other information, which the system can supply only
after completing the formatting request.
Differences between the values in the parameter OPTIONS and the corresponding fields in the
parameter RESULT tell the application program that the user changed the default values
displayed in the print selection screen.

TDPAGESLCT SAPscript: select print page

TDNOPREV SAPscript: disable print view

TDPREVIEW SAPscript: print view

TDNOPRINT SAPscript: disable print function from within print view

TDTITLE SAPscript: text for title line in the print selection screen

TDPROGRAM SAPscript: program name for replacing symbols

TDTEST SAPscript: test printout

TDIEXIT SAPscript: return immediately after printing

TDGETOTF SAPscript: return OTF table; no print output

TDSCRNPOS SAPscript: display position for OTF on the screen

TDAPPL SAPscript: interface of the print view

TDOTFCALL SAPscript: name of the driver module

TDOTFTYPE SAPscript: OTF type

TDPAGES SAPscript: number of printed pages

TDFORMS SAPscript: number of used forms

TDWARNINGS SAPscript: number of warnings during print formatting

TDDEVICE SAPscript: type of output device

TDSCREEN SAPscript: type of screen display

TDSCDRIVER SAPscript: type of screen driver

TDSCABAP SAPscript: ABAP list as print view

USEREXIT SAPscript: last executed user function

TDRTL SAPscript: right-to-left language in OTF

TDDEST Spool: name of the output device

138 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Return Parameters of the Print Output

TDPRINTER Spool: name of device type

TDCOPIES Spool: number of copies

TDNEWID Spool: new request

TDIMMED Spool: print request immediately

TDDELETE Spool: delete request after printing

TDLIFETIME Spool: retention time of the request

TDDATASET Spool: identification of the request

TDSUFFIX1 Spool: suffix 1 of the request

TDSUFFIX2 Spool: suffix 2 of the request

TDAUTORITY Spool: authorization for a request

TDARMOD Spool: archiving mode

TDCOVER Spool: print cover page

TDCOVTITLE Spool: cover page: title text

TDRECEIVER Spool: cover page: recipient name

TDDIVISION Spool: cover page: division name

TDSPOOLID Spool: number of the request

TDDRIVER Spool: name of a driver

TDABAP Spool: driver type

TDPAGEFORM Spool: page format of the spool request

TDSCHEDULE SAPcomm: type of scheduled send time

TDSENDDATE SAPcomm: requested send date

TDSENDTIME SAPcomm: requested send time

TDTELELAND SAPcomm: country key of recipient country

TDTELENUM SAPcomm: number of telecommunications partner

TDTELENUME SAPcomm: dialed number of telecommunications partner

TDPAGESLCT: SAPscript: select print pages
The field contains the pages to be printed. The value either comes from user entries on the print
selection screen or from the corresponding field passed in the OPTIONS parameter.

TDNOPREV: SAPscript: print view
Describes whether the user was able to call the print view from the print selection screen.
Possible values:

'X' print view was disabled

April 2001 139

BC SAPscript: Printing with Forms SAP AG
Return Parameters of the Print Output

' ' print view was enabled

TDPREVIEW: SAPscript: display print view
The print program uses this field to determine whether the user actually called the print view from
the print selection screen.
Possible values:

'X' user called print view

' ' print view was not called

TDNOPRINT: SAPscript: disable print function from print view
Describes whether the user was able to print the SAPscript text from within the print view.
Possible values:

'X' print function enabled on print view display

' ' print function disabled on print view display

TDTITLE: SAPscript: title on print selection screen
The field contains the text, which was displayed in the title line of the print selection screen.

TDPROGRAM: SAPscript: program name for replacing symbols
The field returns the name of the program that was specified in the corresponding field of the
OPTIONS parameter when calling the print function. This program is the default value for work
areas from which the system replaced the program symbols with the current values.

TDTEST: SAPscript: test printout
Indicates whether the user used the print function in test mode.
Possible values:

'X' formatting in test mode

' ' normal print formatting

TDIEXIT: SAPscript: return after printing
The field indicates whether after printing from within the print view, the system immediately
returned to the application program.
Possible values:

'X' print view left immediately after printing

140 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Return Parameters of the Print Output

' ' remained in print view after printing

TDGETOTF: SAPscript: return of OTF table; no print output
The field indicates whether the SAPscript formatting program passed the print output (OTF) to
the print view or spool or whether it returned the output to the calling program using table
OTFDATA.
Possible values:

'X' print output returned in table OTFDATA

' ' print output passed to print view or spool

TDSCRNPOS: SAPscript: display position for OTF on the screen
The field returns the display position on the screen, which was specified in the call in the
corresponding field of the OPTIONS parameter.

TDAPPL: SAPscript: interface of the print view
The field returns the abbreviation of the interface name used for the print view. The abbreviation
corresponds to the editor interface name you can specify for a word processing application object
in table TTXOB. The contents corresponds to the value passed in the parameter APPLICATION
when calling the function modules OPEN_FORM or PRINT_TEXT.

TDOTFCALL: SAPscript: name of driver function module
The field contains the name of the ABAP function module used as driver to convert the OTF
format into the device-specific control sequences. This field is filled only if in table TSP09 an
entry for the current output device specifies that the system shall use an ABAP function module
as driver.

Usually, this field is empty, since in recent releases the output drivers are C
functions.

TDOTFTYPE: SAPscript: driver type for OTF output
This field specifies the type of the OTF driver used to print a SAPscript document. The format
SAPscript creates after formatting a text for outputting is called OTF format (Output Text Format).
This format is independent of the output device and must therefore be converted before
outputting the text on a certain device (screen, printer type). During this conversion, the system,
that is, the SAPscript drivers, replace the OTF commands with device-specific control
sequences. The names of the drivers are defined in table TSP09. Table TSP0A is used to
allocate a driver to each device type (including printers, screens, telefaxes, and so on). This
driver then formats SAPscript texts for this device.
At present, the following OTF drivers exist:

• STN2 for normal line printers
• PRES for Kyocera PRESCRIBE printers

April 2001 141

BC SAPscript: Printing with Forms SAP AG
Return Parameters of the Print Output

• POST for Postscript printers
• HPL2 for HP LaserJet II printers

TDPAGES: SAPscript: number of printed pages
This field specifies the number of physical pages created for screen display or print output. This
number includes all copies, even though they are created only by the spool system and cannot
be seen in the print view. A cover page is not included into the number stored in TDPAGES.

TDFORMS: SAPscript: number of used forms
The contents of this field indicates how many forms were started during SAPscript formatting. If
you called the function module PRINT_TEXT for printing, this field always contains 1. If you used
explicit form control, the system counts all forms called using the function module START_FORM
within a OPEN_FORM / CLOSE_FORM chain.

TDWARNINGS: SAPscript: warnings during formatting
This field contains the number of warnings that occurred during print formatting. Warnings in
SAPscript do not end the print formatting process. Depending on the type of warning, the system
either ignores the cause or uses default values.
Possible warnings are:

• Character format not defined
• Paragraph format not defined
• The system encountered the end sequence </> without a corresponding character

format.
• In the current paragraph, the end sequence </> of a character format is missing.
• The system could not find a text the user wanted to INCLUDE.
• A specified character is not defined in the current print font.
• An invalid text statement has been called.

TDDEVICE: SAPscript: type of output device
The field returns the type of the output device used. Its contents corresponds to the value of the
parameters DEVICE, which you can specify when calling the function modules PRINT_TEXT and
OPEN_FORM
Possible values:

'PRINTER' Formatting for the specified printer

'TELEX' Formatting for telex output

'TELEFAX' Formatting for telefax output

'SCREEN' Formatting for screen output as ABAP list. The parameter APPLICATION
determines the interface.

'ABAP' Formatting for screen output as ABAP list. The calling program controls the
interface.

'OTF_MEM' The OTF format created by SAPscript is stored in the text memory.
Formatting as for SCREEN

142 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Return Parameters of the Print Output

TDSCREEN: SAPscript: type of screen display
Returns the type of screen display. The value ‘SCREEN’ is returned only if in DEVICE, formatting
for screen output is specified. All other values refer to the value ‘PRINTER’ of the field DEVICE
and appear only if the user selected the print view as screen display.
Possible values:

' ' no screen display

'SCREEN' formatting for screen as ABAP list

'MF' print view display for Motif

'PM' print view display for OS/2

'WN' print view display for Windows

'WN32' print view display for Windows NT

TDSCDRIVER: SAPscript: type of screen driver
Returns the type of the driver used to create the screen display of the print view.
Possible values:

' ' no screen display

'LIST' ABAP list

'MF' print view for Motif

'PM' print view for OS/2

'WN' print view for Windows

'WN32' Print view for Windows NT

TDSCABAP: SAPscript: ABAP list as print view
The field indicates whether the SAPscript print view was represented as ABAP list.
Possible values:

'X' ABAP list

' ' no ABAP list

USEREXIT: SAPscript: last executed user action
The field indicates the function the user chose to leave the print selection screen.
Possible values:

'C' user chose function Cancel

'B' user chose function Back

'E' user chose function Exit

April 2001 143

BC SAPscript: Printing with Forms SAP AG
Return Parameters of the Print Output

TDRTL: SAPscript: right-to-left language in OTF
The field indicates whether the print output contains text lines in a language whose characters
are output from right to left (fro example, Hebrew).
Possible values:

'X' right-to-left language

' ' no right-to-left language

TDDEST: Spool: name of output device
The field contains the name of the output device for which the system formatted the output.

TDPRINTER: Spool: name of device type
The field contains the type of the device specified in TDDEST.

TDCOPIES: Spool: number of copies
The field indicates how often the output was printed.
The user can set the contents of this field on the print selection screen.

TDNEWID: Spool: new request
Tells the print program whether to append the output to an existing request or whether to create
a new request anyway.
The user can set this option on the print selection screen.
Possible values:

'X' new spool request

' ' append to existing spool request

TDIMMED: Spool: print request immediately
The field indicates whether the request was printed immediately after completion or whether it
was kept in the spool until the user or the program explicitly triggered print output.
The user can set this option on the print selection screen.
Possible values:

'X' request printed immediately

' ' request kept in spool

TDDELETE: Spool: delete request after printing
Indicates whether the spool request shall be deleted after printing.
The user can set this option on the print selection screen.

144 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Return Parameters of the Print Output

Possible values:

'X' delete request after printing

' ' keep request

TDLIFETIME: Spool: retention period of the request
The value corresponds to the number of days for which the request is kept in the spool.
The user can set this option on the print selection screen.

TDDATASET: Spool: name of the request
Returns the first part of the three-part identification of the spool request.
The user can set this option on the print selection screen.

TDSUFFIX1: Spool: suffix 1 of the request
Returns the second part of the three-part identification of the spool request.
The user can set this option on the print selection screen.

TDSUFFIX2: Spool: suffix 2 of the request
Returns the third part of the three-part identification of the request.
The user can set this option on the print selection screen.

TDARMOD: Spool: archiving mode
The print program uses this field to determine the archiving mode the user set on the print
selection screen.
Possible values:

'1' request printed (default)

'2' request archived

'3' request printed and archived

TDCOVER: Spool: print cover page
Indicates whether a cover page was printed.
The user can set this option on the print selection screen.
Possible values:

'X' cover page printed

' ' no cover page printed

'D' cover page printed according to the default setting of the output device (see
definition of the device in the spool administration, transaction SPAD, column output
device).

April 2001 145

BC SAPscript: Printing with Forms SAP AG
Return Parameters of the Print Output

TDCOVTITLE: Spool: cover page: title text
Contains the title text for the cover page
The user can enter the title text on the print selection screen.

TDRECEIVER: Spool: cover page: recipient name
Contains the recipient name for the cover page of the print request, which the user entered on
the print selection screen.

TDDIVISION: Spool: cover page: division name
Contains the division name for the cover page of the print request, which the user entered on the
print selection screen.

TDAUTORITY: Spool: print authorization
The field specifies the authorization a user must have to display the print request in the spool.
The user can set this option on the print selection screen.

The spool print control (transaction SP01) checks whether a user has this value
stored in the authorization object S_SPO_ACT (spool actions).

TDSPOOLID: Spool: number of the request
The field returns the number of the spool request into which the system placed the print output.
The spool system assigns this number. If the value is > 0, the print program knows, that the
system actually printed the request.

TDDRIVER: Spool: name of the driver
Contains the name of the driver that converted the SAPscript output format OTF into the final
printer control sequences.

TDABAP: Spool: driver type
Returns the type of the SAPscript printer driver used for output.
Possible values:

'X' printer driver in ABAP

' ' printer driver in C

TDPAGEFORM: Spool: page format of the request
The field describes the page format of the print request. The page format is determined by the
forms called in the current print request. One print request can contain only output with the same
page format.

146 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Return Parameters of the Print Output

The possible page formats are described in table TSP08, which you can display using the spool
administration (transaction SPAD, page formats).

TDSCHEDULE: SAPcomm: type of scheduled send time
Returns the type of send time of a print request sent via the SAP communication interface.
Possible values:

'IMM' send request immediately

'NIG' send request during the night

TDSENDDATE: SAPcomm: requested send date
The field contains the date on which the request shall be sent via the SAP communication
interface.

TDSENDTIME: SAPcomm: requested send time
The field contains the time at which the request shall be sent via the SAP communication
interface.

TDTELELAND: SAPcomm: country key
Specifies the country key of the desired telecommunications partner. According to this key, the
system includes other country-specific information into the telephone number of the
telecommunications partner.

TDTELENUM: SAPcomm: number of the telecommunications partner
Contains the originally specified number of the telecommunications partner.

TDTELENUME: SAPcomm: dialed number of the telecommunications partner
This field contains the complete telephone number of the telecommunications partner in the form
in which the SAP communication interface constructed it according to the specified country key.

April 2001 147

BC SAPscript: Printing with Forms SAP AG
Editor Control

Editor Control
The following topics explain how you can control the editor and which parameters the editor uses
to return values and messages.
Controlling the Editor [Seite 149]
Return Parameter of the Editor [Seite 152]

148 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Controlling the Editor

Controlling the Editor
When calling the SAPscript text editor using the function modules EDIT_TEXT or
EDIT_TEXT_INLINE, you can use the parameter CONTROL to set certain attributes of the editor.
Some of these attributes depend on the editor interface used. The parameter CONTROL uses
the structure ITCED.

NOENDLINES: no blank lines at the end of the text
Using this field, you can determine whether you want the system to automatically insert blank
lines at the end of a text up to the bottom of the screen. These blank lines are ready to accept
input.
These blank lines facilitate entering text at the end of the original text. The system automatically
deletes any unused lines when saving the text.
Possible values:

‘X’ insert no blank line

‘ ‘ fill screen window with input-enabled blank lines (default)

SCROLLEND: position cursor at text end
Use this field to indicate whether you want the system to automatically position the cursor at the
end of the text whenever you call the SAPscript editor. By default, the system displays the
beginning of the text, starting with the first line of text, and positions the cursor on the first column
of the first line.
Possible values:

'X' position cursor at end of text

' ' display text from the first line (default)

USERTITLE: suppress SAPscript status information
SAPscript display the following status information in the tile line:
• function (display or change)
• text description from table TTXIT
• text name, if required by table TTXID
The calling program can pass additional information in the parameter EDITOR_TITLE when
calling the function modules EDIT_TEXT or EDIT_TEXT_INLINE. The system displays this title
text in addition to the SAPscript status information (default).
Use the parameter USERTITLE to suppress the SAPscript status information.
Possible values:

'X' suppress SAPscript status information

' ' include SAPscript status information into the title (default)

If you suppress SAPscript status information, the system replaces a & character in the parameter
EDITOR_TITLE with the editing function (display, change).

April 2001 149

BC SAPscript: Printing with Forms SAP AG
Controlling the Editor

SHOWTPFM: display the format of template lines
Use the paragraph format ‘>‘ to define the contents of a line as template line. The system then
highlights the line contents and disables the field for input. This function allows you to separate
the text into different sections whose separator lines the user cannot change.
Usually, you want these template lines to appear in the printout as well. Therefore, you must
place the paragraph format of the template line into the first two columns of the line. The editor
does not display this paragraph format.
If you want to see the paragraph format in the editor, request it using the parameter
SHOWTPFM.
Possible values:

'X' display format of template lines

' ' suppress format information of template lines

APP_NEXT: activate menu function Next text
The calling program tells the SAPscript editor that a subsequent text exists for the current text.
This activates the menu function Goto → Next text in the editor.
Possible values:

'X' subsequent text exists

' ' no subsequent text exists

This field applies only to texts edited on the TA interface.

APP_PREV: activate menu function Previous text
The calling program tells the SAPscript editor that a previous text exists for the current text. This
activates the menu function Goto → Previous text in the editor.
Possible values:

'X' Previous text exists

' ' no previous text exists

This field applies only to texts edited on the TA interface.

APP_SUBID: use existing editor interfaces for own applications
The editor interface is set according to the interface assigned to the text object. If you want to
change an existing interface, you can specify an application SUBID with reference type TDAPP.

150 April 2001

 SAP AG BC SAPscript: Printing with Forms
 Controlling the Editor

When you specify the application SUBID, the system takes you to a function module
of the application. Handling the respective function codes and activating or
deactivating menu functions must be done by the application.

CHANGEMODE: allow switching between Create/Change
You can determine whether to allow switching between display and editing mode in the editor. If
you select the parameter, the system displays the appropriate pushbutton in the editort.

You can set this parameter in the PC editor only. And, the parameter is effective for
the TX interface for standard texts only.

Possible values:

'X' allow switching between display and editing mode

' ' do not allow switching (default)

April 2001 151

BC SAPscript: Printing with Forms SAP AG
Return Parameter of the Editor

Return Parameter of the Editor
After leaving the SAPscript editor, you can use the parameter RESULT to evaluate status
information. The editor returns this information in the structure ITCER.

FUNCTION: change information on the text module
This field indicates the function executed on the transferred text module.
Possible values:

'D' The transferred text was deleted.

'I' The system transferred an empty lines table into which text lines were inserted.

'U' An existing text was changed and saved.

' ' The text remained unchanged.

USEREXIT: exit status of the editor
he field contains the function which the user chose to leave the SAPscript editor.
Possible values:

'C' user chose function Cancel

'B' user chose function Back

'E' user chose function Exit

'N' user chose function Next text

'P' user chose function Previous text

152 April 2001

 SAP AG BC SAPscript: Printing with Forms
 SAPscript Function Modules

SAPscript Function Modules
This section contains a detailed description of the function modules used by SAPscript.

Database

READ_TEXT [Seite 156] Reads a text module and passes it to the specified
work areas.

READ_TEXT_INLINE [Seite 159] Like READ_TEXT. In addition, it passes the first
few text lines to a second lines table.

READ_REFERENCE_LINES
[Seite 162]

Reads the text lines of a reference text and passes
them to the specified lines table.

SAVE_TEXT [Seite 164] Saves a text.

DELETE_TEXT [Seite 167] Deletes a text.

COPY_TEXTS [Seite 169] Copies a text.

SELECT_TEXT [Seite 171] Finds the texts for an application object.

Administration

REFER_TEXT [Seite 174] Creates a reference to another text.

RENAME_TEXT [Seite 177] Renames the text in the text memory.

COMMIT_TEXT [Seite 178] Creates for all texts in the text memory the call of
an appropriate update module.

INIT_TEXT [Seite 180] Initializes the internal work areas for a text.

Editor call

EDIT_TEXT [Seite 182] Calls the text editor.

EDIT_TEXT_INLINE [Seite 186] Merges the inline lines with the other text lines and
calls the text editor.

Consistency check

CHECK_TEXT_AUTHORITY
[Seite 190]

Checks the authorization for standard texts.

CHECK_TEXT_ID [Seite 192] Checks whether the specified text ID is valid.

CHECK_TEXT_LANGUAGE
[Seite 193]

Checks whether the specified text language is valid.

CHECK_TEXT_OBJECT [Seite
194]

Checks whether the specified text object is valid.

CHECK_TEXT_NAME [Seite 195] Checks whether the specified text name is valid.

April 2001 153

BC SAPscript: Printing with Forms SAP AG
SAPscript Function Modules

Editing functions

TEXT_SYMBOL_COLLECT [Seite
196]

Finds the variable symbols that occur in a text.

TEXT_SYMBOL_PARSE [Seite
197]

Checks whether a character string is a SAPscript
symbol.

TEXT_SYMBOL_REPLACE [Seite
202]

Replaces symbols in a text with their values.

TEXT_SYMBOL_SETVALUE
[Seite 205]

Defines the value of a text symbol.

TEXT_CONTROL_REPLACE
[Seite 206]

Replaces control statements in a text (IF, CASE...).

TEXT_INCLUDE_REPLACE
[Seite 208]

Replaces INCLUDE control statements by the text
lines of the corresponding text.

Print

PRINT_TEXT [Seite 210] Formats a text for output.

PRINT_TEXT_ITF [Seite 215] Prints a text in the internal ITF format.

Form functions

OPEN_FORM [Seite 217] Opens the form output.

CLOSE_FORM [Seite 221] Ends the form output.

START_FORM [Seite 223] Starts a new form.

WRITE_FORM [Seite 226] Calls a form element.

WRITE_FORM_LINES [Seite 230] Writes text lines into a form.

END_FORM [Seite 233] Ends the current form.

CONTROL_FORM [Seite 234] Sends a control statement to the form.

READ_FORM_ELEMENTS [Seite
235]

Finds the elements of a form.

READ_FORM_LINES [Seite 237] Passes the lines of a form elements into an internal
lines table.

Conversion

CONVERT_TEXT [Seite 239] Converts texts between different formats.

CONVERT_TEXT_R2 [Seite 254] Converts texts between R/3 format (SAPscript) and
R/2 format.

154 April 2001

 SAP AG BC SAPscript: Printing with Forms
 SAPscript Function Modules

CONVERT_OTF_MEMORY [Seite
262]

Converts the formatted text (OTF format).

EXCHANGE_ITF [Seite 243] Exchanges the paragraph and character formats of
a text with those of another style or form.

Transfer

IMPORT_TEXT [Seite 245] Imports texts.

EXPORT_TEXT [Seite 248] Exports texts.

TRANSFER_TEXT [Seite 252] Uploads/Downloads texts.

April 2001 155

BC SAPscript: Printing with Forms SAP AG
READ_TEXT

READ_TEXT
READ_TEXT provides a text for the application program in the specified work areas.
The function module reads the desired text from the text file, the text memory, or the archive. You
must fully specify the text using OBJECT, NAME, ID, and LANGUAGE. An internal work area can
hold only one text; therefore, generic specifications are not allowed with these options.
After successful reading, the system places header information and text lines into the work areas
specified with HEADER and LINES.
If a reference text is used, SAPscript automatically processes the reference chain and provides
the text lines found in the text at the end of the chain. If an error occurs, the system leaves the
function module and triggers the exception REFERENCE_CHECK.

Function call:

CALL FUNCTION 'READ_TEXT'
 EXPORTING CLIENT = SY-MANDT
 OBJECT = ?...
 NAME = ?...
 ID = ?...
 LANGUAGE = ?...
 ARCHIVE_HANDLE = 0
 IMPORTING HEADER =
 TABLES LINES = ?...
 EXCEPTIONS ID =
 LANGUAGE =
 NAME =
 NOT_FOUND =
 OBJECT =
 REFERENCE_CHECK =
 WRONG_ACCESS_TO_ARCHIVE =

Export parameters:

CLIENT Specify the client under which the text is stored. If you omit this
parameter, the system uses the current client as default.
Reference field: SY-MANDT
Default value: SY-MANDT

OBJECT

Enter the name of the text object to which the text is allocated. Table
TTXOB contains the valid objects.
Reference field: THEAD-TDOBJECT

156 April 2001

 SAP AG BC SAPscript: Printing with Forms
 READ_TEXT

NAME Enter the name of the text module. The name may be up to 70
characters long. Its internal structure depends on the text object used.
Reference field: THEAD-TDNAME

ID Enter the text ID of the text module. Table TTXID contains the valid text
IDs, depending on the text object.
Reference field: THEAD-TDID

LANGUAGE Enter the language key of the text module. The system accepts only
languages that are defined in table T002.
Reference field: THEAD-TDSPRAS

ARCHIVE_HANDLE If you want to read the text from the archive, you must enter a handle
here. The system uses it to access the archive. You can create the
handle using the function module ACHIVE_OPEN_FOR_READ.
The value '0' indicates that you do not want to read the text from the
archive.
Reference field: SY-TABIX
Default value: 0

Import parameters:

HEADER If the system finds the desired text, it returns the text header in this parameter.
Structure: THEAD

Table parameters:

LINES The table contains all text lines that belong to the text read.
Structure: TLINE

Exceptions:

ID The text ID specified in the parameter ID does not exist in
table TTXID. It must be defined there together with the object
of the text module.

LANGUAGE The parameter LANGUAGE contains a language key that
does not exist in table T002.

NAME The parameter NAME contains the name of a text module that
does not correspond to the SAPscript conventions.
Possible errors:
• The field contains only blanks.
• The field contains the invalid characters ‘*’ or ‘,’.

April 2001 157

BC SAPscript: Printing with Forms SAP AG
READ_TEXT

OBJECT The parameter OBJECT contains the name of a text object
that does not exist in table TTXOB.

NOT_FOUND The system did not find the specified text module.

REFERENCE_CHECK The text module to be read has no text lines of its own but
refers to the lines of another text module. This reference chain
can include several levels. For the current text, the chain is
interrupted, that is, one of the text modules referred to in the
chain no longer exists.

WRONG_ACCESS_
TO_ARCHIVE

The exception WRONG_ACCESS_TO_ARCHIVE is triggered
if an archive is accessed using an incorrect or non-existing
archive handle or an incorrect mode (that is, read if the
archive is open for writing or vice versa).

158 April 2001

 SAP AG BC SAPscript: Printing with Forms
 READ_TEXT_INLINE

READ_TEXT_INLINE
READ_TEXT_INLINE provides a text for the application program in the specified work areas.
You must specify these work areas with all SAPscript function modules that process the text.
The function module reads a text from the text file or the text memory. You must fully specify the
text using OBJECT, NAME, ID, and LANGUAGE. An internal work area can hold only one text;
therefore, generic specifications are not allowed with these options.
In addition, the system transfers as many lines from the LINES table to the INLINES table as
specified in the parameter INLINE_COUNT. You can use this lines table to display the first text
lines on any screen for the user to modify them. At the event PAI, you must then call the function
module EDIT_TEXT_INLINE.

Function call:

CALL FUNCTION 'READ_TEXT_INLINE'
 EXPORTING OBJECT = ?...
 NAME = ?...
 ID = ?...
 LANGUAGE = ?...
 INLINE_COUNT = ?...
 IMPORTING HEADER =
 TABLES LINES = ?...
 INLINES = ?...
 EXCEPTIONS ID =
 LANGUAGE =
 NAME =
 NOT_FOUND =
 OBJECT =
 REFERENCE_CHECK =

Export parameters:

OBJECT

Enter the name of the text object to which the text is allocated. Table TTXOB
contains the valid text objects.
Reference field: THEAD-TDOBJECT

NAME

Enter the name of the text module. The name may be up to 70 characters
long. Its internal structure depends on the text object used.
Reference field: THEAD-TDNAME

ID Enter the text ID of the text module. Table TTXID contains the valid text IDs,
depending on the text object.
Reference field: THEAD-TDID

April 2001 159

BC SAPscript: Printing with Forms SAP AG
READ_TEXT_INLINE

LANGUAGE Enter the language key of the text module. The system accepts only
languages that are defined in table T002.
Reference field: THEAD-TDSPRAS

INLINE_COUNT Specify the number of lines you want the system to transfer to table INLINES
from the beginning of the text lines table LINES.

Import parameters:

HEADER If the system finds the text, it returns the table header in this parameter.
Structure: THEAD

Table parameters:

LINES The table contains all text lines that belong to the text read.
Structure: TLINE

INLINES The table contains as many lines of table LINES as specified in the parameter
INLINE_COUNT.
Structure: TLINE

Exceptions:

ID The text ID specified in the parameter ID does not exist in table
TTXID. It must be defined there together with the object of the text
module.

LANGUAGE The parameter LANGUAGE contains a language key that does not
exist in table T002.

NAME The parameter NAME contains the name of a text module that does
not correspond to the SAPscript conventions.
Possible errors:
• The field contains only blanks.
• The field contains the invalid characters ‘*’ or ‘,’.

OBJECT The parameter OBJECT contains the name of a text object that does
not exist in table TTXOB.

NOT_FOUND The system did not find the specified text module.

160 April 2001

 SAP AG BC SAPscript: Printing with Forms
 READ_TEXT_INLINE

REFERENCE_CHECK The text module to be read has no text lines of its own but refers to
the lines of another text module. This reference chain can include
several levels. For the current text, the chain is interrupted, that is, one
of the text modules referred to in the chain no longer exists.

April 2001 161

BC SAPscript: Printing with Forms SAP AG
READ_REFERENCE_LINES

READ_REFERENCE_LINES
If you did not include the text lines of the reference texts into the REFER_TEXT function module,
you can use READ_REFERERNCE_LINES to read them at a later time.

Function call:

CALL FUNCTION 'READ_REFERENCE_LINES'
 EXPORTING HEADER = ?...
 IMPORTING NEWHEADER =
 TABLES LINES = ?...
 EXCEPTIONS ID =
 LANGUAGE =
 NAME =
 NOT_FOUND =
 NO_REFERENCE =
 OBJECT =
 REFERENCE_CHECK =

Export parameters:

HEADER The field contains the text header of the text that contains the reference to another
text. The system reads the lines of the text specified in the fields TDREFOBJ,
TDREFNAME, and TDREFID and stores them in table LINES.
Structure: THEAD

Import parameters:

NEWHEADER Contains the modified text header. The structure specified here is usually the
same as the structure passed with the parameter HEADER.
Structure: THEAD

Table parameters:

LINES LINES contains all text lines of the reference text.
Structure: TLINE

Exceptions:

162 April 2001

 SAP AG BC SAPscript: Printing with Forms
 READ_REFERENCE_LINES

ID The text ID specified in the parameter ID does not exist in table
TTXID. It must be defined there together with the object of the text
module.

LANGUAGE The parameter LANGUAGE contains a language key that does not
exist in table T002.

NAME The parameter NAME contains the name of a text module that does
not correspond to the SAPscript conventions.
Possible errors:
• The field contains only blanks.
• The field contains the invalid characters ‘*’ or ‘,’.

OBJECT The parameter OBJECT contains the name of a text object that does
not exist in table TTXOB.

NOT_FOUND The system did not find the specified text module.

REFERENCE_CHECK The text module to be read has no text lines of its own but refers to
the lines of another text module. This reference chain can include
several levels. For the current text, the chain is interrupted, that is, one
of the text modules referred to in the chain no longer exists.

NO_REFERENCE In the text header, the fields TDREFOBJ, TDREFID, and
TDREFNAME do not contain a reference text. One or more of these
fields are empty.

April 2001 163

BC SAPscript: Printing with Forms SAP AG
SAVE_TEXT

SAVE_TEXT
SAVE_TEXT writes a text module back to the text file or the text memory, depending on the
storage mode of the corresponding text object.
You can use this module either to change existing texts or to create new texts. If you know for
sure that the text is new, use the parameter INSERT to indicate this. The system then does not
have to read the text first, which improves the performance of the function module.
If the lines table passed with the function module is empty, the system deletes the text from the
text file.

Function call:

CALL FUNCTION 'SAVE_TEXT'
 EXPORTING CLIENT = SY-MANDT
 HEADER = ?...
 INSERT = SPACE
 SAVEMODE_DIRECT = SPACE
 OWNER_SPECIFIED = SPACE
 IMPORTING FUNCTION =
 NEWHEADER =
 TABLES LINES = ?...
 EXCEPTIONS ID =
 LANGUAGE =
 NAME =
 OBJECT =

Export parameters:

CLIENT Specify the client under which to store the text. If you omit this
parameter, the system uses the current client as default.
Reference field: SY-MANDT
Default value: SY-MANDT

HEADER Enter the structure that contains the text header of the text you want to
save.
Structure: THEAD

164 April 2001

 SAP AG BC SAPscript: Printing with Forms
 SAVE_TEXT

INSERT This parameter indicates that the text module is new. Usually,
SAPscript reads the text file first to check whether the text module
exists. If you know that the text is new before the application program
calls the function module, use this parameter to prevent the system
from this read process and thus improve the performance.
Possible values:
' ' Determine update mode automatically
'X' Text is new
Default value: SPACE

SAVEMODE_DIRECT You determine the storage mode of a text module (direct, in update
task) via the text object in table TTXOB. However, it may be necessary
to replace storage in update task with direct storage of a text (for
example, for background processing).
Possible values:
' ' Storage mode according to text object
'X' Save text module directly
Default value: SPACE

OWNER_SPECIFIED When creating a new text, the parameter indicates whether the
creation information in the text header is filled in automatically by
SAPscript, or whether to use the data passed in the header. The
parameter concerns the fields TDFUSER, TDFDATE, TDFTIME, and
TDFRELES in the text header.
Possible values:
' ' Information taken from SAPscript
'X' Information taken from header
If you use this parameter, but one of the required fields is initial, this
field is filled by SAPscript.
You use this parameter if you use a program to insert text under a
certain owner or a certain release information, which do not
correspond to the current environment (for example, a migration
program for transferring texts from the R/2 system to the R/3 system).
Default value: SPACE

Import parameters:

April 2001 165

BC SAPscript: Printing with Forms SAP AG
SAVE_TEXT

FUNCTION The parameter returns the processing status of the text module for the current
call.
Possible values:
' ' no action
'I' text module was created
'U' text module was modified
'D' text module was deleted

Table parameters:

LINES The table contains the text lines of the text to be saved.
Structure: TLINE

Exceptions:

ID The text ID specified in the parameter ID does not exist in table TTXID. It must
be defined there together with the object of the text module.

LANGUAGE The parameter LANGUAGE contains a language key that does not exist in table
T002.

NAME The parameter NAME contains the name of a text module that does not
correspond to the SAPscript conventions.
Possible errors:
• The field contains only blanks.
• The field contains the invalid characters ‘*’ or ‘,’.

OBJECT The parameter OBJECT contains the name of a text object that does not exist in
table TTXOB.

166 April 2001

 SAP AG BC SAPscript: Printing with Forms
 DELETE_TEXT

DELETE_TEXT
Use DELETE_TEXT to delete one or more text modules from the text file. You can enter generic
values in the fields NAME, ID, and LANGUAGE. Depending on the corresponding text object, the
system either deletes the texts directly or flags them in the text memory as to be deleted.

Function call:

CALL FUNCTION 'DELETE_TEXT'
 EXPORTING CLIENT = SY-MANDT
 OBJECT = ?...
 NAME = ?...
 ID = ?...
 LANGUAGE = ?...
 SAVEMODE_DIRECT = SPACE
 TEXTMEMORY_ONLY = SPACE
 EXCEPTIONS NOT_FOUND =

Export parameters:

CLIENT Specify the client in which the text you want to delete is stored. If you
omit this parameter, the system uses the current client as default.
This parameter is only valid for direct storage; it is not valid if you use
the text memory.
Reference field: SY-MANDT
Default value: SY-MANDT

OBJECT Enter the name of a text object. The system then deletes only those
texts that are allocated to this text object.
Reference field: THEAD-TDOBJECT

NAME The parameter indicates the name of the text module to be deleted.
You can enter a generic value.
Reference field: THEAD-TDNAME

ID Enter the text ID of the text you want to delete. You can enter a
generic value.
Reference field:THEAD-TDID

LANGUAGE Enter the language key of the text module. You can enter a generic
value.
Reference field: THEAD-TDSPRAS

April 2001 167

BC SAPscript: Printing with Forms SAP AG
DELETE_TEXT

SAVEMODE_DIRECT You determine the storage mode of a text module (direct, in update
task) via the text object in table TTXOB. However, it may be
necessary to replace storage in update task with direct storage of a
text (for example, for background processing).
Possible values:
' ' Storage mode according to text object
'X' Save text module directly
Default value: SPACE

TEXTMEMORY_ONLY Use this parameter to indicate that you want the delete function to
apply for the text memory only. If the parameter contains 'X', the
system does not delete the text itself from the text memory but only its
entry. This allows you to rollback all changes made to a text during a
transaction.
The parameter is valid only for texts stored in the text memory.

Exceptions:

NOT_FOUND The system did not find the specified text module.

168 April 2001

 SAP AG BC SAPscript: Printing with Forms
 COPY_TEXTS

COPY_TEXTS
Use this function module to copy texts. You can copy only texts that exist in the text file.
Apart from the text keys of the texts to be copied, COPY_TEXTS only needs the text keys of the
target texts. You use table TEXTS to pass these values to the function module.
The system then copies the texts in blocks without first passing them to the text work areas.
After the function module is finished, you can read the result for each text in the field SUBRC of
table TEXTS.
This function works much faster than the following copy procedure:
1. Read the text you want to copy using READ_TEXT.
2. Enter target text key in the header.
3. Save text module under the new name using SAVE_TEXT.

Function call:

CALL FUNCTION 'COPY_TEXTS'
 EXPORTING SAVEMODE_DIRECT = ' '
 INSERT = ' '
 IMPORTING ERROR =
 TABLES TEXTS = ?...

Export parameters:

SAVEMODE_DIRECT You determine the storage mode of a text module (direct, in update
task) via the text object in table TTXOB. However, it may be necessary
to replace storage in update task with direct storage of a text (for
example, for background processing).
Possible values:
' ' Storage mode according to text object
'X' Save text module directly
Default value: SPACE

INSERT This parameter indicates that the text module is new. Usually,
SAPscript reads the text file first to check whether the text module
exists. If you know that the text is new before the application program
calls the function module, use this parameter to prevent the system
from this read process and thus improve the performance.
Possible values:
' ' Determine update mode automatically
'X' Text is new
Default value: SPACE

April 2001 169

BC SAPscript: Printing with Forms SAP AG
COPY_TEXTS

Import parameters:

ERROR The parameter indicates whether an error occurred during the copy process.
Possible values:
' ' no error
'X' error in copy process
This error flag only shows that an error occurred during the copy process. For more
information, read the field SUBRC in table TEXTS.

Table parameters:

TEXTS The table contains the texts to be copied.
For each table line, you can call a copy function. You must always specify the entire
text keys of source and target texts. Generic values are not allowed.
After finishing the copy process, the field SUBRC contains for each text the return
value of the copy process.
Possible values of SUBRC:

00 text copied
01 invalid target text ID
02 invalid characters in the target text name
03 invalid target text object
04 invalid storage mode for target text
05 error when reading source text header
06 error when reading target text header
07 error when writing target text header
08 error when copying text lines

Structure: ITCTC

170 April 2001

 SAP AG BC SAPscript: Printing with Forms
 SELECT_TEXT

SELECT_TEXT
SELECT_TEXT creates a table from the text headers of all text modules that match the
selections specified in the fields OBJECT, NAME, ID, and LANGUAGE. The entries in the fields
OBJECT, NAME, ID, and LANGUAGE can also be generic.
Usually, the function module searches for texts in the text file as well as in the text memory. To
limit the search area, use the options TEXTMEMORY_ONLY or DATABASE_ONLY.
If the option ARCHIV_HANDLE contains a value greater than 0, the system searches the archive
for the specified texts.

Function call:

CALL FUNCTION 'SELECT_TEXT'
 EXPORTING CLIENT = SY-MANDT
 OBJECT = ?...
 NAME = ?...
 ID = ?...
 LANGUAGE = ?...
 DATABASE_ONLY = SPACE
 TEXTMEMORY_ONLY = SPACE
 ARCHIVE_HANDLE = 0
 IMPORTING ENTRIES =
 TABLES SELECTIONS = ?...
 EXCEPTIONS WRONG_ACCESS_TO_ARCHIVE =

Export parameters:

CLIENT Specify the client, in which to search for the texts. If you omit this
parameter, the system uses the current client as default.
Reference field: SY-MANDT
Default value: SY-MANDT

OBJECT Enter the name of the text object of the text you want to find. You can
enter a generic value.
Reference field: THEAD-TDOBJECT

NAME Enter the name of the text module you want to find. You can enter a
generic value.
Reference field: THEAD-TDNAME

ID Enter a text ID. You can enter a generic value.
Reference field: THEAD-TDID

April 2001 171

BC SAPscript: Printing with Forms SAP AG
SELECT_TEXT

LANGUAGE Enter the language key of the text module you want to find. You can
enter a generic value. The system then searches for the text in all
languages that match the entry.
Reference field: THEAD-TDSPRAS

DATABASE_ONLY Mark this field if you want to search for the text modules in the text file
only.
Possible values:
' ' search in text file and text memory
'X' search in text file only
Default value: SPACE

TEXTMEMORY_ONLY Mark this field if you want to search for the text modules in the text
memory only.
Possible values:
' ' search in text file and in text memory
'X' search in text memory only
Default value: SPACE

ARCHIVE_HANDLE If you want the system to search for the text modules in the archive,
you must enter a handle here. The system needs the handle to
access the archive. You can use the function module
ACHIVE_OPEN_FOR_READ to create the handle.
The value '0' indicates that you do not want to read the archive.
Reference field: SY-TABIX
Default value: 0

Import parameters:

ENTRIES ENTRIES contains the number of selected text modules. This value corresponds to
the number of lines in table SELECTIONS.
Reference field: SY-TFILL

Table parameters:

SELECTIONS The table SELECTIONS contains the text headers of all found texts that match
the selection criteria specified in the call of function module SELECT_TEXT.
Structure: THEAD

Exceptions:

172 April 2001

 SAP AG BC SAPscript: Printing with Forms
 SELECT_TEXT

WRONG_ACCESS_TO
_ARCHIVE

The exception WRONG_ACCESS_TO_ARCHIVE is triggered
if an archive is accessed using an incorrect or non-existing
archive handle or an incorrect mode (that is, read if the
archive is open for writing or vice versa).

April 2001 173

BC SAPscript: Printing with Forms SAP AG
REFER_TEXT

REFER_TEXT
You can create SAPscript texts as references to the text lines of other text modules. In this case,
the system does not store text lines but only the references to the other text module. Changes to
the reference text now affect the calling text module as well. You can create a reference chain
over several levels.
The text module specified in the header refers to another text module. This text is specified using
the parameters REF_OBJECT, REF_NAME, and REF_ID. The language of the reference text is
always the same as the language of the calling text.
Usually, you will refer to a text that exists in the database. The system can then return the text
lines of the reference text in the LINES table using READ_LINES. If the text exists in the text
memory only and has not yet been written to the database, you can create the reference but not
use READ_LINES to read the text lines of the reference text.

REFER_TEXT does not trigger a SAVE_TEXT function call. To save a reference
text, you must explicitly call SAVE_TEXT after executing REFER_TEXT.

Handling in the Editor
In the fullscreen editor, you cannot edit the text lines of the reference text read into table LINES.
The editor can only display them. If you want to make changes, you must unlock the text in the
editor. In this case, however, the connection to the original reference text is lost.
The user can resolve the connection to the reference text in the editor by choosing Text →
Unlock. The text lines are then ready for editing. However, any connection to the original
reference text is lost.
To resolve the reference from within the program, simply delete the fields TDREFOBJ,
TDREFNAME, and TDREFID in the text header.

Function call:

CALL FUNCTION 'REFER_TEXT'
 EXPORTING HEADER = ?...
 REF_OBJECT = ?...
 REF_NAME = ?...
 REF_ID = ?...
 CHECK_REFERENCE = 'X'
 READ_LINES = 'X'
 IMPORTING NEWHEADER =
 TABLES LINES = ?...
 EXCEPTIONS NOT_FOUND =
 REFERENCE_CHECK =

Export parameters:

174 April 2001

 SAP AG BC SAPscript: Printing with Forms
 REFER_TEXT

HEADER Enter the text header of the text for which you want to create a
reference to another text.
Structure: THEAD

REF_OBJECT The parameter contains the text object of the reference text.
Reference field: THEAD-TDOBJECT

REF_NAME Enter the name of the reference text.
Reference field: THEAD-TDNAME

REF_ID REF_ID contains the ID of the reference text.
Reference field: THEAD-TDID

CHECK_REFERENCE The parameter indicates whether you want the system to check the
existence of the reference text.
Possible values:
' ' no check
'X' the system checks whether the reference text exists.
The system always executes the check if you want to read the lines of
the reference text.
Default value: 'X'

READ_LINES Indicates whether to return the lines of the reference text in table
LINES.
Possible values:
' ' do not read text lines
'X' read text lines
Default value: 'X'

Import parameters:

NEWHEADER The field contains the modified header. The text header stores whether the text
module refers to another text. Therefore, you must specify a corresponding
structure; otherwise calling the function module REFER_TEXT has no effect.
The structure is usually the same as the one used in the HEADER parameter.
Structure: THEAD

Table parameters:

LINES The table contains the text lines of the reference text, provided the parameter
READ_LINES has the value 'X'.
Structure: TLINE

Exceptions:

April 2001 175

BC SAPscript: Printing with Forms SAP AG
REFER_TEXT

NOT_FOUND The system did not find the specified text module.

REFERENCE_CHECK The text module to be read has no text lines of its own but refers to
the lines of another text module. This reference chain can include
several levels. For the current text, the chain is interrupted, that is, one
of the text modules referred to in the chain no longer exists.

176 April 2001

 SAP AG BC SAPscript: Printing with Forms
 RENAME_TEXT

RENAME_TEXT
In application programs, the complete name of a master record or document is known only
directly before the COMMIT WORK. In the meantime, the system must use dummy names for
the corresponding text modules. Before the COMMIT_TEXT, it must replace the dummy names
with the final names, using the function module RENAME_TEXT. The text concerned receives
the name specified in NEWNAME.
You can change only the name of one text module. OBJECT, ID, and LANGUAGE remain
unchanged. Generic entries for ID and LANGUAGE are allowed.

The text module does not execute RENAME in the database. It only renames texts in
the text memory.

Function call
CALL FUNCTION 'RENAME_TEXT'
 EXPORTING OBJECT = ?...
 NAME = ?...
 ID = ?...
 LANGUAGE = ?...
 NEWNAME = ?...
 EXCEPTIONS NOT_FOUND =

Export parameters

OBJECT Enter the name of the text object to which the text is allocated.
Reference field: THEAD-TDOBJECT

NAME Enter the name of the text module you want to rename.
Reference field: THEAD-TDNAME

ID Enter the text ID of the text module you want to rename. You can enter a generic
value.
Reference field: THEAD-TDID

LANGUAGE Enter the language key of the text module. You can enter a generic value.
Reference field: THEAD-TDSPRAS

NEWNAME NEWNAME determines the new text name. The system renames all texts in the
text memory that match the selections specified in the parameters OBJECT,
NAME, ID, and LANGUAGE.
Reference field: THEAD-TDNAME

Exceptions
NOT_FOUND The system did not find the specified text module.

April 2001 177

BC SAPscript: Printing with Forms SAP AG
COMMIT_TEXT

COMMIT_TEXT
The system keeps all text modules for which you defined 'storage in update task' in the
corresponding text object in the text memory. As soon as it updates the corresponding
application object, it must also place the text modules into the log file.
The function module COMMIT_TEXT generates for the text modules in the text object a CALL
FUNCTION... IN UPDATE TASK statement in accordance with the action to be executed (delete,
create, change).

No COMMIT WORK is created. This must be executed by the application program.

If you do not specify OBJECT, NAME, ID, and LANGUAGE, the system transfers all texts from
the text memory. To limit the function to certain texts, enter values (fully or generically) in the
above fields. The system then selects all texts that match the selections in the fields up to the
first '*'.
By default, the system deletes texts from the text memory as soon as they are written to the log
file. If you want to keep updated texts in the text memory, call the function module with the
parameter KEEP = 'X'. The system then keeps the texts in the text memory and flags them as
updated. When calling COMMIT_TEXT again, the system ignores these texts. If you change
such a text again during the transaction (for example, using SAVE_TEXT or DELETE_TEXT), the
system deletes the flag. However, you need another COMMIT_TEXT to update the text.

Function call:

CALL FUNCTION 'COMMIT_TEXT'
 EXPORTING OBJECT = '*'
 NAME = '*'
 ID = '*'
 LANGUAGE = '*'
 SAVEMODE_DIRECT = SPACE
 KEEP = SPACE
 IMPORTING COMMIT_COUNT =

Export parameters:

OBJECT Enter the name of the text object. The system then transfers only texts
with this text object to the log file. You can enter a generic value. If you
omit this parameter, the system uses texts of all objects.
Reference field: THEAD-TDOBJECT
Default value: '*'

178 April 2001

 SAP AG BC SAPscript: Printing with Forms
 COMMIT_TEXT

NAME Enter the name of the text modules you want to update. You can enter
a generic value. If you omit the parameter, the system uses all texts
that match any other selections.
Reference field: THEAD-TDNAME
Default value: '*'

ID Enter the text ID of the text modules. You can enter a generic value. If
you omit this parameter, the system uses all IDs.
Reference field: THEAD-TDID
Default value: '*'

LANGUAGE Enter the language key of the text modules. You can enter a generic
value. If you omit this parameter, the system uses all languages.
Reference field: THEAD-TDSPRAS
Default value: '*'

SAVEMODE_DIRECT You determine the storage mode of a text module (direct, in update
task) via the text object in table TTXOB. However, it may be necessary
to replace storage in update task with direct storage of a text (for
example, for background processing).
Possible values:
' ' Storage mode according to text object
'X' Save text module directly
Default value: SPACE

KEEP Use the parameter KEEP to indicate whether to keep updated texts in
the text memory. This allows you to access these texts during the
current transaction even though no COMMIT WORK was executed.
If another COMMIT_TEXT occurs within the transaction, the texts kept
with KEEP are ignored, unless you changed them again using function
modules such as SAVE_TEXT or DELETE_TEXT.
Default value: SPACE

Import parameters:

COMMIT_COUNT The parameter returns the number of text modules transferred to the
update task.
Reference field: SY-INDEX

April 2001 179

BC SAPscript: Printing with Forms SAP AG
INIT_TEXT

INIT_TEXT
For each text module you want to process using SAPscript, you must provide two work areas
from within the application program: one for the text header and one for the lines table. You must
initialize these work areas whenever you create a new text or the system terminated a function
module READ_TEXT or READ_TEXT_INLINE with an exception.

You can reuse the work areas if the previously edited text is stored or if you no longer need it.
You must fully specify the text module in the fields OBJECT, NAME, ID, and LANGUAGE.
Generic entries are not allowed.
After calling INIT_TEXT, the header contains initial values and the lines table is empty.

Function call:

CALL FUNCTION 'INIT_TEXT'
 EXPORTING ID = ?...
 LANGUAGE = ?...
 NAME = ?...
 OBJECT = ?...
 IMPORTING HEADER =

 TABLES LINES = ?...
 EXCEPTIONS ID =
 LANGUAGE =
 NAME =
 OBJECT =

Export parameters:

OBJECT Enter the name of the text object to which the text is allocated. Table TTXOB
contains the valid objects.
Reference field: THEAD-TDOBJECT

NAME Enter the name of the text module. The name may be up to 70 characters long.
Its internal structure depends on the text object used.
Reference field: THEAD-TDNAME

ID Enter the text ID of the text module. Table TTXID contains the valid text IDs,
depending on the text object.
Reference field: THEAD-TDID

LANGUAGE Enter the language key of the text module. The system accepts only languages
that are defined in table T002.
Reference field: THEAD-TDSPRAS

180 April 2001

 SAP AG BC SAPscript: Printing with Forms
 INIT_TEXT

Import parameters:

HEADER This parameter returns the initialized text header.
Structure: THEAD

Table parameters:

LINES All lines of the specified text lines table are deleted.
Structure: TLINE

Exceptions:

ID The text ID specified in the parameter ID does not exist in table TTXID. It must
be defined there together with the object of the text module.

LANGUAGE The parameter LANGUAGE contains a language key that is not defined in table
T002.

NAME The parameter NAME contains a text module name that does not correspond to
the SAPscript conventions.
Possible errors:
• Field contains only blanks
• Field contains the invalid characters '*' or '.'

OBJECT The parameter OBJECT contains the name of a text object that is not defined in
table TTXOB.

April 2001 181

BC SAPscript: Printing with Forms SAP AG
EDIT_TEXT

EDIT_TEXT
This function module calls the fullscreen editor. You can use the editor functions to edit the text
lines. The system sets the editor interface according to the interface specification in the text
object.
Usually, the system implicitly calls the function module SAVE_TEXT if you leave the editor
choosing Save, provided the text is stored in the text file according to the allocated text object. To
deactivate this call, use the parameter SAVE.
If the field TDFORMAT in the text header contains SPACE, the system calls the SAPscript Editor.
Otherwise, it calls the function module EDIT_TEXT_FORMAT_xxx where xxx is the contents of
the field TDFORMAT. This function module then calls the editor required for the specified text
format. Which of the parameters passed with EDIT_TEXT the system evaluates, depends on this
interface module and the called word processing program.

Function call
 EXPORTING
 DISPLAY = SPACE
 EDITOR_TITLE= SPACE
 HEADER =
 SAVE = 'X'
 CONTROL = SPACE
 PROGRAM = SPACE
 IMPORTING
 NEWHEADER =
 FUNCTION =
 RESULT =
 TABLES
 LINES =
 EXCEPTIONS
 ID =
 LANGUAGE =
 LINESIZE =
 NAME =
 OBJECT =
 TEXTFORMAT =
 COMMUNICATION=

Export parameters
DISPLAY The parameter indicates whether the text editor is called in display or in

change mode. In display mode, the user cannot edit the text.
Possible values:
'X' display mode
' ' change mode
Default value: SPACE

182 April 2001

 SAP AG BC SAPscript: Printing with Forms
 EDIT_TEXT

EDITOR_TITLE The system displays the title specified here in addition to the other headings
generated by SAPscript in the title bar of the text editor window. Thus you
can set any title text in the editor. This allows you to decrypt complicated
technical text names to display them in the title bar.
Reference field: TTXIT-TDTEXT
Default value: SPACE

HEADER Enter the structure that contains the text header of the text to be edited.
Structure: THEAD

CONTROL Use this parameter to set certain attributes of the SAPscript editor. The
attributes are described in the fields of structure ITCED.
Structure: ITCED
Default value: SPACE

SAVE Use this parameter to determine whether the system calls SAVE_TEXT after
saving the text in the editor. If you want to suppress this call, the application
program must later on call the function module SAVE_TEXT itself. In both
cases, the system returns the changed text lines to the application program.
Possible values:
'X' call SAVE_TEXT
' ' suppress SAVE_TEXT
Default value: 'X'

PROGRAM Use this parameter to determine the program whose work areas the system
uses to replace the values of the program symbols. If you omit this
parameter, the system uses the first program called to search for the field
values (SY-CPROG).
Reference field: SY-REPID
Default value: SPACE

Import parameters
NEWHEADER Return parameter for the text header. Due to certain operations in the editor

also fields in the text header are changed.
Structure: THEAD

FUNCTION Return parameter for the processing status of the text module for the current
editor call.
Possible values:
' ' no action
'I' text module created
'U' text module changed
'D' text module deleted

RESULT The SAPscript Editor uses this parameter to return status information to the
calling program. The information is described by the fields of structure ITCER.
Structure: ITCER

April 2001 183

BC SAPscript: Printing with Forms SAP AG
EDIT_TEXT

Table parameters
LINES Contains a table with the lines of the text module.

Structure: TLINE

Exceptions
ID The text ID specified in the parameter ID does not exist in table TTXID. It

must be defined there together with the object of the text module.

LANGUAGE The language key specified in the parameter LANGUAGE of the text
header is not defined in table T002.

LINESIZE The field TDLINESIZE of the text header contains a line width less than 0
or greater than 132.

NAME The parameter NAME of the text header contains the name of a text
module, which does not correspond to the SAPscript conventions.
Possible errors:
• The field contains only blanks.
• The field contains the invalid characters ‘*’ or ‘,’.

OBJECT The parameter OBJECT in the text header contains the name of a text
object, which is not defined in table TTXOB.

TEXTFORMAT The text lines passed to the function module have a format, which cannot
be processed by the current environment. The format is stored in the text
header in the field TDTEXTTYPE.
Possible reasons:
• The text format is not supported.
• The text format cannot be processed on the current front-end, since

the required word processing program is not installed.
• The text format cannot be processed under batch input conditions,

since the required word processing program cannot be used for batch
input.

• The text format cannot be used in background processing, since the
required word processing program cannot be called from within
background processes.

184 April 2001

 SAP AG BC SAPscript: Printing with Forms
 EDIT_TEXT

COMMUNICATION The field TDTEXTTYPE of the text header is not empty, that is, it contains
a text format which requires an external word processing program to be
called. When calling this program, an error occurred.
Possible reasons:
• The external word processing program is not or not correctly installed

on the front-end.
• Word processing could not be started.

When processing texts in a non-SAPscript format, the system internally
calls the function modules EDIT_TEXT_FORMAT_xxx or
PRINT_TEXT_FORMAT_xxx, where xxx is the contents of field
TDTEXTTYPE. These function modules ended with the exception
COMMUNICATION.

• During communication with this word processing program, an error
occurred.

• During text data transfer, an error occurred.

SAPscript passes this message to the print program without any further
analysis.

April 2001 185

BC SAPscript: Printing with Forms SAP AG
EDIT_TEXT_INLINE

EDIT_TEXT_INLINE
In an application it may be necessary to display or edit the first few lines of a text in any screen.
To do this, use the function module EDIT_TEXT_INLINE.
The system then merges the lines of table INLINES with those of table LINES. The parameter
INLINE_COUNT determines the number of lines in table INLINES. If necessary, the user can
branch to the fullscreen editor. In this case, the function module behaves like EDIT_TEXT.
After executing the function, the system fills table INLINES with the specified number of lines
from LINES. You can use the parameter SAVE to specify whether to call the function module
SAVE_TEXT automatically if any lines are changed.
The application program is responsible for outputting the text lines from table INLINES to the
screen and for returning the changed lines after the user pressed ENTER. On the application
screen, the user can use only the general editing functions provided for all screen fields.
The function module is called at the PBO event.

Function call:

CALL FUNCTION 'EDIT_TEXT_INLINE'
 EXPORTING
 DISPLAY = SPACE
 EDITOR_TITLE= SPACE
 HEADER =
 INLINE_COUNT=
 SAVE = 'X'
 TEXTSCREEN = SPACE
 CONTROL = SPACE
 PROGRAM = SPACE
 IMPORTING
 FUNCTION =
 NEWHEADER =
 RESULT =
 TABLES
 INLINES =
 LINES =
 EXCEPTIONS
 ID =
 LANGUAGE =
 LINESIZE =
 NAME =
 OBJECT =

Export parameters:

186 April 2001

 SAP AG BC SAPscript: Printing with Forms
 EDIT_TEXT_INLINE

DISPLAY The parameter indicates whether the text editor is called in display or in
change mode. In display mode, the user cannot edit the text.
Possible values:
'X' display mode
' ' change mode
Default value: SPACE

EDITOR_TITLE Enter a title that you want the system to display in the title bar of the text
editor window in addition to the headings generated by SAPscript.
Reference field: TTXIT-TDTEXT
Default value: SPACE

HEADER Enter the structure that contains the text header of the text to be edited.
Structure: THEAD

INLINE_COUNT Enter the number of text lines you want the system to pass from table LINES
to table INLINES. The system always starts at the beginning of table LINES.
This value corresponds to the number of text lines displayed on a screen.

SAVE Use this parameter to determine whether the system calls SAVE_TEXT after
saving the text in the editor. If you want to suppress this call, the application
program must lateron call the function module SAVE_TEXT itself. In both
cases, the system returns the changed text lines to the application program.
Possible values:
'X' call SAVE_TEXT
' ' suppress SAVE_TEXT
Default value: 'X'

TEXTSCREEN The parameter determines whether, after comparing the INLINES lines, to
call the text editor.
Possible values:
' ' do not call text editor
'X' call text editor
Default value: SPACE

CONTROL Use the parameter CONTROL to set certain attributes of the SAPscript
Editor. These attributes are described in the fields of structure ITCED.
Structure: ITCED
Default value: SPACE

PROGRAM Use this parameter to determine the program whose work areas the system
uses to replace the values of the program symbols. If you omit this
parameter, the system uses the first program called to search for the field
values (SY-CPROG).
The form processor replaces program symbols in the print view only, but not
in the editor itself.
Reference field: SY-REPID
Default value: SPACE

April 2001 187

BC SAPscript: Printing with Forms SAP AG
EDIT_TEXT_INLINE

Import parameters:

' ' no action
'I' text module created

FUNCTION Return parameter for the processing status of the text module for the current
editor call.
Possible values:

'U' text module changed
'D' text module deleted

NEWHEADER Return parameter for the text header. Due to certain operations in the editor,
also fields in the text header are changed.
Structure: THEAD

RESULT The SAPscript Editor uses this parameter to return status information to the
calling program. The information is described by the fields of structure ITCER.
Structure: ITCER

Table parameters:

Structure: TLINE

INLINES Contains the first INLINE_COUNT lines of table LINES. The application program
must transfer these lines at the PAI event to the corresponding fields of the
appropriate application screen. And, at the PBO event, it must return the lines from
the screen fields to the table before calling the function module.

LINES Contains the table with the lines of the text module.
Structure: TLINE

Exceptions:

ID The text ID specified in the parameter ID does not exist in table TTXID. It must
be defined there together with the object of the text module.

LANGUAGE The language key specified in the parameter LANGUAGE of the text header is
not defined in table T002.

LINESIZE The field TDLINESIZE of the text header contains a line width less than 0 or
greater than 132.

NAME The parameter NAME or the field TDNAME of the text header contains the name
of a text module, which does not correspond to the SAPscript conventions.
Possible errors:
• The field contains only blanks.
• The field contains the invalid characters ‘*’ or ‘,’.

188 April 2001

 SAP AG BC SAPscript: Printing with Forms
 EDIT_TEXT_INLINE

OBJECT The parameter OBJECT in the text header contains the name of a text object,
which is not defined in table TTXOB.

April 2001 189

BC SAPscript: Printing with Forms SAP AG
CHECK_TEXT_AUTHORITY

CHECK_TEXT_AUTHORITY
The function module checks whether the user is authorized to display or change the specified
text module. You can use this function for texts of object type TEXT only. These are the standard
texts that you edit using transaction SO10. If the user has no authorization, the system
terminates the function module with the exception NO_AUTHORITY. The system checks the
user authorization in the authorization object S_SCRP_TXT.

Function call:

CALL FUNCTION 'CHECK_TEXT_AUTHORITY'
 EXPORTING OBJECT = 'TEXT '
 NAME = ?...
 ID = ?...
 LANGUAGE = ?...
 ACTIVITY = ?...
 EXCEPTIONS NO_AUTHORITY =

Export parameters:

OBJECT Enter the name of the text object allocated to the text. At present, only TEXT
(standard texts) is allowed.
Reference field: THEAD-TDOBJECT

NAME Enter the name of the text module for which to execute the check.
Reference field: THEAD-TDNAME

ID Enter the ID of this text.
Reference field: THEAD-TDID

LANGUAGE Enter the language key of this text.
Reference field: THEAD-TDSPRAS

ACTIVITY In the parameter ACTIVITY, you must specify the functions used to edit the text
module in the application program.

‘SHOW’ display the test module
Possible values:

'EDIT' change the text module

Exceptions:

190 April 2001

 SAP AG BC SAPscript: Printing with Forms
 CHECK_TEXT_AUTHORITY

NO_AUTHORITY The user is not authorized to edit the specified standard text (object TEXT)
using the chosen function.
The system checks the authorization against the object S_SCRP_TXT with
the fields text name, text ID within the text object TEXT, text language, and
chosen activity.

• The parameter ACTIVITY contains the value ‘EDIT’ (change). The user
is not authorized to change the specified text module, that is in the field
ACTVT, the authorization value ‘02’ is missing for the specified text.

• Error when calling the authorization check. For information on this error,
see the documentation of the ABAP statement AUTHORITY-CHECK.

Possible reasons:
• The parameter ACTIVITY contains the value ‘SHOW’ (display). The

user is not authorized to display the specified text module, that is in the
field ACTVT, the authorization value ‘03’ is missing for the specified
text.

If non of these reasons is the cause of the error, the reason could be:
• The field ACTIVITY contains an invalid value.

April 2001 191

BC SAPscript: Printing with Forms SAP AG
CHECK_TEXT_ID

CHECK_TEXT_ID

Function call

CHECK_TEXT_ID checks whether the specified text ID is defined in table TTXID. If it exists, the
parameter ID_INFO contains the corresponding entry in table TTXID. If it does not exist, the
system terminates the function module with the exception ID.

:

CALL FUNCTION 'CHECK_TEXT_ID'

 EXPORTING OBJECT = ?...
 ID = ?...
 IMPORTING ID_INFO =
 EXCEPTIONS ID =

Export parameters:

OBJECT The parameter OBJECT contains the text object that belongs to the text ID.
Reference field: THEAD-TDOBJECT

ID The parameter ID contains the text ID to be checked.
Reference field: THEAD-TDID

Import parameters:

ID_INFO

Contains the attributes defined in table TTXID for the specified text ID.
Reference field: THEAD-TDID

Exceptions:

ID The text ID specified in the parameter ID or in the field TDID of the text header does not
exist in table TTXID. It must be defined there together with the object of the text module.

192 April 2001

 SAP AG BC SAPscript: Printing with Forms
 CHECK_TEXT_LANGUAGE

CHECK_TEXT_LANGUAGE
CHECK_TEXT_LANGUAGE checks whether the language of a text module is defined in table
T002. If not, the system terminates the function module with the exception LANGUAGE.

Function call:

CALL FUNCTION 'CHECK_TEXT_LANGUAGE'
 EXPORTING LANGUAGE = ?...
 EXCEPTIONS LANGUAGE =

Export parameters:

LANGUAGE

The parameter LANGUAGE contains the text language to be checked.
Reference field: THEAD-TDSPRAS

Exceptions:

LANGUAGE The parameter LANGUAGE contains a text language key that is not defined in
table T002.

April 2001 193

BC SAPscript: Printing with Forms SAP AG
CHECK_TEXT_OBJECT

CHECK_TEXT_OBJECT
CHECK_TEXT_OBJECT checks whether the specified text object is defined in table TTXOB. If
yes, the parameter OBJECT_INFO contains the corresponding entry of table TTXOB. If no, the
system terminates the function module with the exception OBJECT.

Function call:

CALL FUNCTION 'CHECK_TEXT_OBJECT'
 EXPORTING OBJECT = ?...

 IMPORTING OBJECT_INFO =
 EXCEPTIONS OBJECT =

Export parameters:

Reference field: THEAD-TDOBJECT
OBJECT The parameter OBJECT contains the text object to be checked.

Import parameters:

OBJECT_INFO

Contains the attributes defined in table TTXOB for the specified text object.
Reference field: THEAD-TDOBJECT

Exceptions:

OBJECT The parameter OBJECT or the field TDOBJECT in the text header contain the name
of a text object that is not defined in table TTXOB.

194 April 2001

 SAP AG BC SAPscript: Printing with Forms
 CHECK_TEXT_NAME

CHECK_TEXT_NAME
CHECK_TEXT_NAME checks whether the name of a text module consists of valid characters
only. Valid characters are all characters of the system character set except the characters '*'
and ','. If one of these characters occurs in the field specified in the parameter NAME, the
system terminates the function module with the exception NAME.

Function call:

CALL FUNCTION 'CHECK_TEXT_NAME'
 EXPORTING NAME = ?...

 EXCEPTIONS NAME =

Export parameters:

NAME The parameter NAME contains the text name to be checked.

Reference field: THEAD-TDNAME

Exceptions:

NAME

• Field contains only blanks

The parameter NAME or the field TDNAME of the text header contain the name of a
text module that does not correspond to the SAPscript conventions.
Possible errors:

• Field contains the invalid characters '*' or ','

April 2001 195

BC SAPscript: Printing with Forms SAP AG
TEXT_SYMBOL_COLLECT

TEXT_SYMBOL_COLLECT
This function module returns a table that contains all symbols used in the text lines, which are
transferred in the table parameter LINES. For each symbol, the table specifies how often it
occurs in the text.
The table is sorted in ascending order by symbol names.

Function call:

CALL FUNCTION 'TEXT_SYMBOL_COLLECT'

 TABLES LINES = ?...
 SYMBOLS = ?...

Table parameters:

Structure: TLINE
LINES Enter the table whose text lines you want to search for symbols.

SYMBOLS The table contains the names of all symbols used in the specified text. The system
enters these names without the escape symbol &.
Structure: ITCST

196 April 2001

 SAP AG BC SAPscript: Printing with Forms
 TEXT_SYMBOL_PARSE

TEXT_SYMBOL_PARSE
This function module analyses whether a character string in SAPscript format within a text line is
a SAPscript symbol.
Pass the text line you want to analyze in LINE. The parameter START_OFFSET specifies the
position of the start symbol & that is required for SAPscript symbols.

The system analyses the character string. If it is a symbol, it returns all information on this symbol
in the parameters SYMBOL_....
If it is no SAPscript symbol, the system returns the exception NO_SYMBOL.

Function call:

 START_OFFSET = ?...

 SYMBOL_DICTLEN =

 SYMBOL_NAME =

 SYMBOL_RIGHT =

 SYMBOL_TEXT1 =
 SYMBOL_TEXT1_LENGTH =

CALL FUNCTION 'TEXT_SYMBOL_PARSE'
 EXPORTING LINE = ?...

 IMPORTING CONTINUE_OFFSET =
 SYMBOL_CONDENSED =
 SYMBOL_DECIMALS =

 SYMBOL_EXPONENT =
 SYMBOL_FILLCHAR =
 SYMBOL_LDATE =
 SYMBOL_LENGTH =

 SYMBOL_NOCONVERT =
 SYMBOL_NOINIT =
 SYMBOL_NOSIGN =
 SYMBOL_NOZERO =
 SYMBOL_OFFSET =

 SYMBOL_SIGNLEFT =
 SYMBOL_SIGNRIGHT =

 SYMBOL_TEXT2 =
 SYMBOL_TEXT2_LENGTH =
 SYMBOL_SEPARATOR_THOUSAND =
 SYMBOL_INCREMENT =
 SYMBOL_DECREMENT =
 EXCEPTIONS NO_SYMBOL =

April 2001 197

BC SAPscript: Printing with Forms SAP AG
TEXT_SYMBOL_PARSE

Export parameters:

LINE Contains the text line in SAPscript format (structure TLINE), whose contents
you want to analyze.
Structure: TLINE

START_OFFSET Define the offset with reference to TLINE, where the character string to be
analyzed starts. The offset must point to the start symbol & of the possible
symbol.

Import parameters:

CONTINUE_OFFSET CONTINUE_OFFSET points to the first character after the
SAPscript symbol, provided it is a syntactically correct
symbol.
If the value is >= 134, the end symbol & of the symbol is
positioned at the end of the line.

SYMBOL_CONDENSED The parameter specifies whether for the analyzed symbol the
formatting option C is set (compress blanks).
Possible values:
'X' option set
' ' option not set

SYMBOL_DECIMALS The parameter returns the number of decimal places set as
option. If the parameter is empty, the option was not set for
the analyzed symbol.

SYMBOL_DICTLEN The parameter specifies whether the formatting option * is
set for the analyzed symbol (output length according to
Dictionary definition).
Possible values:
'X' option set
' ' option not set

SYMBOL_EXPONENT The parameter returns the exponent specified as option. If
the parameter is empty, the option was not set for the
analyzed symbol. If only the option E without any further
digits was specified, the parameter contains the return value
0.

SYMBOL_FILLCHAR The parameter specifies whether for the analyzed symbol the
formatting option F is set (fill character for leading blanks).
Possible values:
' ' no fill character or fill character
SPACE
other specified fill character

198 April 2001

 SAP AG BC SAPscript: Printing with Forms
 TEXT_SYMBOL_PARSE

SYMBOL_LDATE The parameter specifies whether for the analyzed symbol the
formatting option L is set (local date evaluation).
Possible values:
'X' option set
' ' option not set

SYMBOL_LENGTH The parameter returns the length set as option. If the
parameter is empty, no length was specified for the analyzed
symbol.

SYMBOL_NAME The parameter contains the name of the symbol without
escape symbol &.
Independent of the case used in the text line, the system
always returns the name in uppercase.

SYMBOL_NOCONVERT

'X' option set

The parameter specifies whether for the analyzed symbol the
formatting option K is set (ignore conversion routine from
Dictionary).
Possible values:

' ' option not set

SYMBOL_NOINIT The parameter specifies whether for the analyzed symbol the
formatting option I is set (suppress initial value).
Possible values:
'X' option set
' ' option not set

SYMBOL_NOSIGN The parameter specifies whether for the analyzed symbol the
formatting option S is set (suppress sign).
Possible values:
'X' option set
' ' option not set

SYMBOL_NOZERO The parameter specifies whether for the analyzed symbol the
formatting option Z is set (suppress leading zeroes).
Possible values:
'X' option set
' ' option not set

SYMBOL_OFFSET The parameter returns the offset set as option. If the
parameter is empty, no offset was specified for the analyzed
symbol.

SYMBOL_RIGHT The parameter specifies whether for the analyzed symbol the
formatting option R is set (output right-justified).
Possible values:
'X' option set
' ' option not set

April 2001 199

BC SAPscript: Printing with Forms SAP AG
TEXT_SYMBOL_PARSE

SYMBOL_SIGNLEFT The parameter specifies whether for the analyzed symbol the
formatting option < is set (sign on the left).
Possible values:
'X' option set
' ' option not set

SYMBOL_SIGNRIGHT The parameter specifies whether for the analyzed symbol the
formatting option > is set (sign on the right).
Possible values:

' ' option not set
'X' option set

SYMBOL_TEXT1 The parameter specifies which prefix text is specified for the
analyzed symbol.
You must interpret the contents of the parameter in
connection with the parameter SYMBOL_TEXT1_LENGTH.

SYMBOL_TEXT1_LENGTH The parameter specifies the length of the prefix text. The
contents is specified in the parameter SYMBOL_TEXT1.
If the value is 0, no prefix text is specified.

SYMBOL_TEXT2 The parameter specifies which suffix text is specified for the
analyzed symbol.
You must interpret the contents of the parameter in
connection with the parameter SYMBOL_TEXT2_LENGTH.

SYMBOL_TEXT2_LENGTH The parameter specifies the length of the suffix text. The
contents is specified in the parameter SYMBOL_TEXT2.
If the value is 0, no suffix text is specified.

SYMBOL_SEPARATOR_
THOUSAND

The parameter specifies whether for the analyzed symbol the
formatting option T is set (no separator between thousands).
Possible values:
'X' option set
' ' option not set

SYMBOL_INCREMENT The parameter specifies whether for the analyzed symbol the
formatting option '+' is set. This means that before outputting
the value the system increases the value of the
corresponding counter SAPSCRIPT-COUNTER_x (x = 0.. 9)
by 1.
Possible values:
'X' option set
' ' option not set

200 April 2001

 SAP AG BC SAPscript: Printing with Forms
 TEXT_SYMBOL_PARSE

SYMBOL_DECREMENT The parameter specifies whether for the analyzed symbol the
formatting option '-' is set. This means that before outputting
the value the system decreases the value of the
corresponding counter SAPSCRIPT-COUNTER_x (x = 0.. 9)
by 1.
Possible values:
'X' option set
' ' option not set

Exceptions:

NO_SYMBOL

• The name of the symbol contains blanks.

• An invalid formatting option was entered.

The character string that starts at the specified position is not a symbol of the
SAPscript syntax.
Possible errors:

• The symbol was not closed by the character ‘&’.

• The symbol extends over the end of a SAPscript editor line.
• Additional formatting options are not enclosed in parentheses.
• The key letters of the formatting options are not written in uppercase.

• The offset specification does not follow the symbol name directly.
• Previous and/or subsequent texts are not enclosed in inverted commas.

April 2001 201

BC SAPscript: Printing with Forms SAP AG
TEXT_SYMBOL_REPLACE

TEXT_SYMBOL_REPLACE
The function module replaces the symbols contained in the text lines with their respective values.
The text is not formatted for printing, but the symbols are replaced in the ITF format. Symbols
that occur on comment or raw lines remain unchanged, as well as symbols enclosed by the
character formats <(> and <)>.
The system interprets DEFINE statements in text lines and changes the values of text symbols
accordingly. It also executes the control statements SET DATE MASK, SET TIME MASK, SET
SIGN LEFT, and SET SIGN RIGHT.

Function call:

CALL FUNCTION 'TEXT_SYMBOL_REPLACE'
 EXPORTING

 NEWHEADER =

 ENDLINE = 99999
 HEADER =
 INIT = ' '
 OPTION_DIALOG = ' '
 PROGRAM = SPACE
 REPLACE_PROGRAM = 'X'
 REPLACE_STANDARD = 'X'
 REPLACE_SYSTEM = 'X'
 REPLACE_TEXT = 'X'
 STARTLINE = 1
 IMPORTING
 CHANGED =

 TABLES
 LINES =

Export parameters:

ENDLINE Enter the index of the last text line on which to execute the function
module. If you omit the parameter or specify an invalid value, the
system ends with the last text table line.
Reference field: SY-TABIX
Default value: 99999

HEADER The parameter contains the header of the text module whose
symbols you want to replace.
Structure: THEAD

202 April 2001

 SAP AG BC SAPscript: Printing with Forms
 TEXT_SYMBOL_REPLACE

INIT Use INIT to specify whether you want to initialize the symbol
administration of SAPscript before replacing.
Possible values:
'X' initialize
' ' do not initialize
Default value: ' '

OPTION_DIALOG The parameter determines whether to display a dialog box before
replacing, where the user can select the symbol types to be replaced.
Possible values:
'X' display dialog box
' ' do not display dialog box
Default value: ' '

PROGRAM Use this parameter to determine the program whose work areas the
system uses to replace the values of the program symbols. If you
omit this parameter, the system uses the first program called to
search for the field values (SY-CPROG).
This assignment is valid for the current call of the funtion module
only.
Reference field: SY-REPID
Default value: SPACE

REPLACE_PROGRAM The parameter specifies whether to resolve program symbols during
replacing.
Possible values:
'X' replace program symbols
' ' do not replace program symbols
Default value: 'X'

REPLACE_STANDARD This parameter specifies whether to resolve standard symbols during
replacing.
Possible values:
'X' replace standard symbols
' ' do not replace standard symbols
Default value: 'X'

REPLACE_SYSTEM The parameter specifies whether to resolve system symbols during
replacing. The system symbols &PAGE& and &NEXTPAGE& are not
replaced, since the text is not formatted for printing.
Possible values:
'X' replace system symbols
' ' do not replace system symbols
Default value: 'X'

April 2001 203

BC SAPscript: Printing with Forms SAP AG
TEXT_SYMBOL_REPLACE

REPLACE_TEXT The parameter specifies whether to resolve text symbols during
replacing.
Possible values:
'X' replace text symbols
' ' do not replace text symbols
Default value: 'X'

STARTLINE Enter the index of the table line from which to start the function
module. If you omit the parameter or specify an invalid value, the
system starts on the first text table line.
Reference field: SY-TABIX
Default value: 1

Import parameters:

CHANGED The parameter indicates whether the symbols were replaced with their
respective values, thus changing the contents of the text table.
Possible values:
'X' symbols replaced
' ' symbols not replaced

NEWHEADER The parameter returns the text header with the fields changed according to the
executed action.
Structure: THEAD

Table parameters:

LINES The table contains the text lines, in which to replace the SAPscript symbols.
Structure: TLINE

204 April 2001

 SAP AG BC SAPscript: Printing with Forms
 TEXT_SYMBOL_SETVALUE

TEXT_SYMBOL_SETVALUE
Use the function module TEXT_SYMBOL_SETVALUE to assign a value to a SAPscript symbol.
However, you can change only the values of text symbols. System symbols, standard symbols,
and program symbols cannot receive new values.
The system keeps the new value until you initialize the symbol administration tables in SAPscript.
To do this, you can use, for example, OPEN_FORM or TEXT_SYMBOL_REPLACE with the
parameter INIT = ´X´.

Function call:

CALL FUNCTION 'TEXT_SYMBOL_SETVALUE'
 EXPORTING NAME = ?...
 VALUE = ?...
 VALUE_LENGTH = 0
 REPLACE_SYMBOLS = ' '

Export parameters:

NAME The parameter contains the name of the symbol to which you want to
assign a new value.
You must enter only the symbol name, without the texts or any
formatting options. You can include the escape symbols &...&.

VALUE Define the value of the symbol. The system can use up to 80
characters as symbol value.

VALUE_LENGTH If you omit this parameter or specify 0, the system automatically
determines the length of the symbol value. The system then includes
all characters up to the last blank into the value.
If you want to include trailing blanks into the assignment, specify the
desired length of the symbol value here.
Reference field: SY-TABIX
Default value: 0

REPLACE_SYMBOLS The value 'X' in this parameter means that symbols contained in the
field VALUE are replaced immediately with their current values; the
assigned value no longer contains SAPscript symbols.
If the parameter is empty, the system includes the contents of the
VALUE field without change. Any symbols occurring within are
replaced with their current value only after the symbol specified in the
parameter NAME is called in the text.
Default value: ' '

April 2001 205

BC SAPscript: Printing with Forms SAP AG
TEXT_CONTROL_REPLACE

TEXT_CONTROL_REPLACE
The system interprets the statement lines IF, ELSE, ELSEIF, ENDIF, CASE, WHEN, OTHERS,
ENDCASE in the transferred text table LINES and returns the resulting text into the table.

Function call:

CALL FUNCTION 'TEXT_CONTROL_REPLACE'
 EXPORTING HEADER = ?...
 PROGRAM = SPACE
 REPLACE_COMMENT = 'X'
 IMPORTING NEWHEADER =
 CHANGED =
 TABLES LINES = ?...

Export parameters:

HEADER The parameter contains the header of the text module whose control
statements you want the system to interpret.
Structure: THEAD

PROGRAM When interpreting control statements, SAPscript must determine the
values of program symbols. To do this, it must know which active
program contains the work areas for the values to be passed.
If you omit the parameter, the system searches for the field values in
the program that was called first (SY-CPROG).
If you enter a program name, the system replaces the program
symbols with the values from this program. This applies only for the
current call of the function module.
Reference field: SY-REPID
Default value: SPACE

REPLACE_COMMENT Use this parameter to determine whether to delete any comment lines
from the text lines.
Possible values:
'X' delete comment lines
' ' keep comment lines
Default value: 'X'

Import parameters:

206 April 2001

 SAP AG BC SAPscript: Printing with Forms
 TEXT_CONTROL_REPLACE

NEWHEADER The parameter returns the text header with the fields changed according to the
executed action.
Structure: THEAD

CHANGED The parameter indicates whether the system interpreted control statements
and thus changed the contents of the text table.
Possible values:
'X' statements interpreted
' ' no statements found

Table parameters:

LINES The table contains the text lines in which to resolve the SAPscript statements.
Structure: TLINE

April 2001 207

BC SAPscript: Printing with Forms SAP AG
TEXT_INCLUDE_REPLACE

TEXT_INCLUDE_REPLACE
Use this function module to resolve the INCLUDE statements that occur in the text lines, that is,
to replace them with the respective lines of the text to be included. If a text module does not exist
or if the user has no authorization, the system keeps the INCLUDE statement.

Function call:

CALL FUNCTION 'TEXT_INCLUDE_REPLACE'
 EXPORTING HEADER = ?...
 STARTLINE = 1
 ENDLINE = 99999
 PROGRAM = SPACE
 ALL_LEVEL = 'X'
 IMPORTING NEWHEADER =
 CHANGED =
 ERROR_TYPE =
 TABLES LINES = ?...

Export parameters:

HEADER The parameter contains the header of the text module whose INCLUDE
statements you want to resolve.
Structure: THEAD

STARTLINE Enter the index of the table line where you want the function module to start. If
you omit the parameter or enter an invalid value, the system starts from the first
table line.
Reference field: SY-TABIX
Default value: 1

ENDLINE Enter the index of the table line where you want the function module to end. If
you omit the parameter or enter an invalid value, the system ends with the last
table line.
Reference field: SY-TABIX
Default value: 99999

208 April 2001

 SAP AG BC SAPscript: Printing with Forms
 TEXT_INCLUDE_REPLACE

PROGRAM When interpreting control statements, SAPscript must determine the values of
program symbols. To do this, it must know which active program contains the
work areas for the values to be passed.
If you omit the parameter, the system searches for the field values in the
program that was called first (SY-CPROG).
If you enter a program name, the system replaces the program symbols with the
values from this program. This applies only for the current call of the function
module.
Reference field: SY-REPID
Default value: SPACE

ALL_LEVEL ALL_LEVEL determines whether to resolve only the INCLUDE statements in the
text table or whether to resolve any new INCLUDE statements, which appear
after resolving, as well.

Possible values:
' ' resolve only existing INCLUDEs
'X' resolve all INCLUDEs
Default value: 'X'

Import parameters:

NEWHEADER The parameter returns the text header with the fields changed according to
the executed action.
Structure: THEAD

CHANGED The parameter indicates whether the system resolved INCLUDEs and thus
changed the contents of the text table.
Possible values:
'X' INCLUDEs resolved
' ' no INCLUDEs resolved

ERROR_TYPE At present, the parameter does not yet return error messages.
Reference field: SY-TABIX

Table parameters:

LINES The table contains the text lines in which to resolve the INCLUDE statements.
Structure: TLINE

April 2001 209

BC SAPscript: Printing with Forms SAP AG
PRINT_TEXT

PRINT_TEXT
Use this function module to prepare the text module specified in the parameters HEADER and
LINES for an output device and to output it. The system takes the required style and form
specifications from the fields TDSTYLE or TDFORM of the text header.
Use the parameter OPTIONS to set different formatting and printing options. You specify the
options in a structure like ITCPO by entering the desired values. The user can change some of
these options on the optional print parameter screen (parameter DIALOG). This print parameter
screen also appears, if no or invalid values for the required print options are specified in the
parameter OPTIONS or the user master record.
Before printing a text, you can display it on the screen in the print format (from within the
program, use field TDPREVIEW in the parameter OPTIONS; or the user can explicitly call the
function on the print control screen).
If the field TDFORMAT in the text header contains SPACE, the SAPscript composer prepares the
text for output by calling the function module PRINT_TEXT_FORMAT_xxx, where xxx is the
contents of field TDFORMAT. This function module then calls the word processing program
designed for that text format to prepare the text for printing. Which of the parameters passed with
PRINT_TEXT the system finally evaluates, depends on the interface function module and on the
word processing program.

Function call:

CALL FUNCTION 'PRINT_TEXT'
 EXPORTING HEADER = ?...
 DEVICE = 'PRINTER'
 DIALOG = 'X'
 OPTIONS = SPACE
 APPLICATION = 'TX'
 ARCHIVE_INDEX = SPACE
 ARCHIVE_PARAMS = SPACE
 IMPORTING RESULT =
 NEW_ARCHIVE_PARAMS =
 TABLES LINES = ?...
 OTFDATA = ?...
 EXCEPTIONS CANCELED =
 DEVICE =
 FORM =
 OPTIONS =
 UNCLOSED =
 UNKNOWN =
 FORMAT =
 TEXTFORMAT =
 COMMUNICATION =

210 April 2001

 SAP AG BC SAPscript: Printing with Forms
 PRINT_TEXT

Export parameters:

HEADER The parameter contains the header of the text module which you want to
prepare for printing. For print formatting, the system uses only the
contents of the fields TDSTYLE and TDFORM of the header.
Structure: THEAD

DEVICE SAPscript can format a text for output on different device types. Enter
the desired device type here.
Possible values:
'PRINTER' print output
'TELEX' telex output
'TELEFAX' telefax output
'ABAP' screen output as ABAP list
 (interface of the calling program)
'SCREEN' screen output as ABAP list
 (interface controlled by SAPscript,
 can be set with parameter
APPLICATION)
The user can display output formatted for PRINTER, TELEX, or
TELEFAX as print view on the screen. From within the program, you can
set the field TDPREVIEW in the parameter OPTIONS, or the user can
call the function on the print control screen.
Default value: 'PRINTER'

DIALOG Use parameter DIALOG to determine whether to display a dialog box
before printing, in which the user can set several spool parameters for
print formatting.
Possible values:
' ' display no print parameter screen
'X' display print parameter screen
Default value: 'X'

OPTIONS Use parameter OPTIONS to set several options for print formatting. The
parameter has the structure ITCPO. The user can change some of the
defined settings on the print control screen.
Structure: ITCPO
Default value: SPACE

April 2001 211

BC SAPscript: Printing with Forms SAP AG
PRINT_TEXT

APPLICATION For the device type SCREEN, the system displays the text formatting on
the screen. This requires an interface in which the different menu entries
are defined. The same applies if the user chooses to display a print view
on the screen for the other device types.
Enter one of the interface names provided by SAPscript. You usually
use the interface that is assigned to the respective text object in table
TTXOB.
Reference field: TTXOB-TDAPPL
Default value: 'TX'

ARCHIVE_INDEX Enter the index information for the print output you want to archive. This
information (DARA line) is stored in the archive together with the print
output. Thus, you can use the index information to access the print
output directly in the archive.
Structure: TOA_DARA
Default value: SPACE

ARCHIVE_PARAMS The system interprets the settings passed in this parameter when
archiving the output. The archive parameters have the ABAP Dictionary
structure ARC_PARAMS.
Structure: ARC_PARAMS
Default value: SPACE

Import parameters:

RESULT The parameter contains results of the print formatting process. By
comparing the corresponding fields of parameter OPTIONS with
those of parameter RESULT, you can determine whether the user
made changes to any settings on the print control screen.
Structure: ITCPP

NEW_ARCHIVE_PARAMS The parameter contains results of the archiving process, including
the archive parameters the user changed on the print control
screen. The parameter has the ABAP Dictionary structure
ARC_PARAMS.
Structure: ARC_PARAMS

Table parameters:

LINES Enter the table that contains the text lines you want to print.
Structure: TLINE

212 April 2001

 SAP AG BC SAPscript: Printing with Forms
 PRINT_TEXT

OTFDATA If in the parameter OPTIONS the field TDGETOTF contains 'X', the optional table
parameter OTFDATA returns the formatted output in the OTF format.
In this case, the system does not output the text on printer, screen or
fax/telex/teletex devices.
Structure: ITCOO

Exceptions:

CANCELED When starting SAPscript print formatting, the system displayed a selection
screen, on which the user can enter settings for the output, such as:

The subsequent actions allowed on this screen were not called, but the
output formatting was canceled instead. The function module was ended
without further action. No form is open for output anymore.

DEVICE The parameter DEVICE contains an invalid device type.

FORM The parameter FORM contains the name of a form that the system could
not find.
Possible reasons:

SAPscript first searches for the form in the current client and in the
specified language. If the form does not exist there, it tries the original
language of the form. If the form is still not found, it searches in client 0,
first in the specified language, than in the original form language.

FORMAT Within a print output defined between OPEN_FORM and CLOSE_FORM,
you must use forms of the same page format. The page format of the
current form differs from that of the previously called forms.
Include only those forms into one spool request that have the same
format (for example, DINA4). Page orientation is of no consequence; that
means, you can mix pages in landscape and portrait format.

OPTIONS The parameter OPTIONS contains invalid values for the formatting
options.
Possible errors:

• Printer name
• Information on the cover page
• Page selection
• Number of copies

• The form does not exist.
• There is no active version of this form.

• The output device specified in field TDDEST does not exist.
• The field TDPAGESLCT for selecting the pages to be printed contains

invalid characters.

April 2001 213

BC SAPscript: Printing with Forms SAP AG
PRINT_TEXT

UNCLOSED The system was told to open a new form even though an old form is still
active. The old form must be closed first (CLOSE_FORM or
END_FORM).

TEXTFORMAT The text lines passed to the function module have a format that cannot be
processed by the current environment. The format is stored in the text
header in the field TDTEXTTYPE.
Possible reasons:

COMMUNICATION The field TDTEXTTYPE of the text header is not empty, that is, it contains
a text format which requires an external word processing program to be
called. When calling this program, an error occurred.
Possible reasons:

When processing texts in a non-SAPscript format, the system internally
calls the function modules EDIT_TEXT_FORMAT_xxx or
PRINT_TEXT_FORMAT_xxx, where xxx is the contents of field
TDTEXTTYPE. These function modules ended with the exception
COMMUNICATION. SAPscript passes this message to the print program
without any further analysis.

UNKNOWN An unknown error occurred. This exception is used only by the function
module PRINT_TEXT, which, at former releases, passed all errors using
this one exception. In the meantime, the exceptions of PRINT_TEXT were
enhanced, so that the relevant error messages are covered by the
module's own exceptions.

• The text format is not supported.
• The text format cannot be processed on the current front-end, since

the required word processing program is not installed.
• The text format cannot be processed under batch input conditions,

since the required word processing program cannot be used for batch
input.

• The text format cannot be used in background processing, since the
required word processing program cannot be called from within
background processes.

• The external word processing program is not or not correctly installed
on the front-end.

• Word processing could not be started.
• During communication with this word processing program, an error

occurred.
• During text data transfer, an error occurred.

214 April 2001

 SAP AG BC SAPscript: Printing with Forms
 PRINT_TEXT_ITF

PRINT_TEXT_ITF
The function module prints the SAPscript text passed in table LINES in ITF format, which means
that it prints the text lines in the ways they appear in the lines table. The printout thus resembles
the representation in the SAPscript Editor.
The system outputs the text into the form SAPSCRIPT_ITF. The form can output up to 76
characters per line. This means that the contents of a SAPscript text line fits into such a form line
only up to column 72. If a text line is longer, the system splits it in two. In the format line, the
system inserts the '..' character to indicate that this line contains the columns 73 to 132 of the
previous text line.

Function call:

CALL FUNCTION 'PRINT_TEXT_ITF'
 EXPORTING HEADER = ?...
 OPTIONS = ?...
 IMPORTING RESULT =
 TABLES LINES = ?...

Export parameters:

HEADER The parameter contains the header of the text module whose lines you want to
print.
Structure: THEAD

OPTIONS Use parameter OPTIONS to set different options for print formatting. The
parameter has the structure ITCPO. The user can change some of the defined
settings on the print control screen.
Structure: ITCPO
Default value: SPACE

Import parameters:

RESULT The parameter contains results of the print formatting process.
Structure: ITCPP

Table parameters:

LINES Enter the table that contains the text lines you want to print.
Structure: TLINE

April 2001 215

BC SAPscript: Printing with Forms SAP AG
PRINT_TEXT_ITF

216 April 2001

 SAP AG BC SAPscript: Printing with Forms
 OPEN_FORM

OPEN_FORM
The function module OPEN_FORM opens form printing. You must call this function module
before you can use any other form function (WRITE_FORM, START_FORM,
CONTROL_FORM...).
You need not specify a form name. If you omit the name, you must use the function module
START_FORM to open a form before starting the output.
You must end form printing by using the function module CLOSE_FORM. Otherwise, the system
does not print or display anything.
Within a program, you can use several OPEN_FORM.. CLOSE_FORM pairs. This allows you to
write output to several different spool requests from within one program.

Function call:

CALL FUNCTION 'OPEN_FORM'
 EXPORTING FORM = SPACE
 LANGUAGE = SY-LANGU
 DEVICE = 'PRINTER'
 DIALOG = 'X'
 OPTIONS = SPACE
 APPLICATION = 'TX'
 ARCHIVE_INDEX = SPACE
 ARCHIVE_PARAMS = SPACE
 IMPORTING LANGUAGE =
 RESULT =
 NEW_ARCHIVE_PARAMS =
 EXCEPTIONS CANCELED =
 DEVICE =

 FORM =
 OPTIONS =
 UNCLOSED =

Export parameters:

Default value: SPACE

FORM You can enter the name of a form here, which then controls output
formatting. After calling OPEN_FORM, you can immediately output texts
to the form using other function modules.
If you leave the parameter blank, you must call START_FORM with a
valid form name before starting any output functions.

April 2001 217

BC SAPscript: Printing with Forms SAP AG
OPEN_FORM

LANGUAGE Forms are language-dependent. Enter the desired language. If a form
does not exist in this language, the system tries to call the form in its
original language.
Reference field: THEAD-TDSPRAS
Default value: SY-LANGU

DEVICE SAPscript can format a text for output on different device types. Enter
the desired device type here.
Possible values:
'PRINTER' print output
'TELEX' telex output
'TELEFAX' telefax output
'ABAP' screen output as ABAP list
 (interface of the calling program)
'SCREEN' screen output as ABAP list
 (interface controlled by SAPscript,
 can be set with parameter
APPLICATION)
The user can display output formatted for PRINTER, TELEX, or
TELEFAX as print view on the screen. From within the program, you can
set the field TDPREVIEW (structure ITCPO) in the parameter OPTIONS,
or the user can call the function on the print control screen.
The fields TDSENDTIME and TDSENDDATE designed for fax output
(structure ITCPO) will be used for future enhancements; they are not
used at present.
Default value: 'PRINTER'

DIALOG Use parameter DIALOG to determine whether to display a dialog box
before printing, in which the user can set several spool parameters for
print formatting.
Possible values:
' ' display no print parameter screen
'X' display print parameter screen
Default value: 'X'

OPTIONS Use parameter OPTIONS to set several options for print formatting. The
parameter has the structure ITCPO. The user can change some of the
defined settings on the print control screen.
Structure: ITCPO
Default value: SPACE

218 April 2001

 SAP AG BC SAPscript: Printing with Forms
 OPEN_FORM

APPLICATION For the device type SCREEN, the system displays the text formatting on
the screen. This requires an interface in which the different menu entries
are defined. The same applies if the user chooses to display a print view
on the screen for the other device types.
Enter one of the interface names provided by SAPscript. You usually
use the interface that is assigned to the respective text object in table
TTXOB.
Reference field: TTXOB-TDAPPL
Default value: 'TX'

ARCHIVE_INDEX Enter the index information for the print output you want to archive. This
information (DARA line) is stored in the archive together with the print
output. Thus, you can use the index information to access the print
output directly in the archive.
Structure: TOA_DARA
Default value: SPACE

ARCHIVE_PARAMS The system interprets the settings passed in this parameter when
archiving the output. The archive parameters have the ABAP Dictionary
structure ARC_PARAMS.
Structure: ARC_PARAMS
Default value: SPACE

Import parameters:

LANGUAGE The parameter tells you which language variant of the form the
system actually used.
Reference field: THEAD-TDSPRAS

RESULT The parameter contains results of the print formatting process. By
comparing the corresponding fields of parameter OPTIONS with
those of parameter RESULT, you can determine whether the user
made changes to any settings on the print control screen.
Structure: ITCPP

NEW_ARCHIVE_PARAMS The parameter contains results of the archiving process, including
the archive parameters the user changed on the print control
screen. The parameter has the ABAP Dictionary structure
ARC_PARAMS.
Structure: ARC_PARAMS

Exceptions:

April 2001 219

BC SAPscript: Printing with Forms SAP AG
OPEN_FORM

CANCELED When starting SAPscript print formatting, the system displayed a selection
screen, on which the user can enter settings for the output, such as:

The user did not call any subsequent actions allowed on this screen, but
canceled the output formatting instead. The function module was ended without
further action. No form is open for output anymore.

DEVICE The parameter DEVICE contains an invalid device type.

FORM

SAPscript first searches for the form in the current client and in the specified
language. If the form does not exist there, it tries the original language of the
form. If the form is still not found, it searches in client 0, first in the specified
language, than in the original form language.

OPTIONS The parameter OPTIONS contains invalid values for the formatting options.
Possible errors:

UNCLOSED The system was told to open a new form even though an old form is still active.
The old form must be closed first (CLOSE_FORM or END_FORM).

• Printer name
• Information on the cover page
• Page selection
• Number of copies

The parameter FORM contains the name of a form that the system could not
find.
Possible reasons:
• The form does not exist.
• There is no active version of this form.

• The output device specified in field TDDEST does not exist.
• The field TDPAGESLCT for selecting the pages to be printed contains invalid

characters.

220 April 2001

 SAP AG BC SAPscript: Printing with Forms
 CLOSE_FORM

CLOSE_FORM
The function module closes the form opened using OPEN_FORM. The system executes any
terminating processing steps for the last opened form.
You must use this function module to close form printing. Otherwise, no output appears on printer
or screen.

Function call:

CALL FUNCTION 'CLOSE_FORM'
 IMPORTING RESULT =
 TABLES OTFDATA = ?...
 EXCEPTIONS UNOPENED =

Import parameters:

RESULT The parameter contains results of the print formatting process. By comparing the
corresponding fields of parameter OPTIONS with those of parameter RESULT, you
can determine whether the user made changes to any settings on the print control
screen.
Structure: ITCPP
Among others, the structure ITCPP contains a field with the name of USEREXIT.
This field tells you how the user left the print view:
Characters E, B, or C:
EXIT <-> E
BACK <-> B
CANCEL <-> C

Table parameters:

OTFDATA If in the parameter OPTIONS the field TDGETOTF contains 'X', the system returns
the formatted output in the OTF format in the optional table parameter OTFDATA.
In this case, the system does not output anything to printer, screen or
fax/telex/teletex.
Structure: ITCOO

Exceptions:

UNOPENED The system could not execute the current form function, since the form output
was not yet initialized using OPEN_FORM.

April 2001 221

BC SAPscript: Printing with Forms SAP AG
CLOSE_FORM

222 April 2001

 SAP AG BC SAPscript: Printing with Forms
 START_FORM

START_FORM
In-between the function modules OPEN_FORM and CLOSE_FORM, you can use different
forms. This allows you to combine several different forms into one print output. However, you can
combine only those forms that have the same page format.
To switch forms, use the function module START_FORM. If another form is still open, you must
close it first using END_FORM.
If you specify no form name when calling START_FORM, the system restarts the last open form.
If after OPEN_FORM no form was activated yet, the system leaves the function module with the
exception UNUSED.

Function call:

CALL FUNCTION 'START_FORM'
 EXPORTING FORM = SPACE

 UNOPENED =

 LANGUAGE = SPACE
 STARTPAGE = SPACE
 PROGRAM = SPACE
 ARCHIVE_INDEX = SPACE
 IMPORTING LANGUAGE =
 EXCEPTIONS FORM =
 FORMAT =
 UNENDED =

 UNUSED =

Export parameters:

FORM The parameter contains the name of the form you want to use for printing.
If you specify no form here, the system restarts the last active form.
Default value: SPACE

LANGUAGE Forms are language-dependent. Enter the desired language here. If the
form does not exist in this language, the system tries to call the form in its
original language. If the parameter LANGUAGE is empty, the system uses
the language of the last active form.
Reference field: THEAD-TDSPRAS
Default value: SY-LANGU

STARTPAGE Usually, SAPscript starts with the page specified as start page in the form
definition. If you want to start output with another form page, enter the
name of the desired form page here. If the desired page is not defined, the
system uses the start page defined in the form.
Default value: SPACE

April 2001 223

BC SAPscript: Printing with Forms SAP AG
START_FORM

PROGRAM To replace program symbols, SAPscript must know which active program
contains the work areas for the values to be passed.
If you omit the parameter, the system searches for the field values in the
program that was specified in the parameter OPTIONS (field
TDPROGRAM) of OPEN_FORM.
If you enter a program name, the system replaces the program symbols
with the values from this program up to the next END_FORM.
Reference field: SY-REPID
Default value: SPACE

ARCHIVE_INDEX Enter index information for the print output you want to archive. The system
stores this information (DARA line) together with the print output in the
archive. You can then access this special print output in the archive using
the index information.
Structure: TOA_DARA
Default value: SPACE

Import parameters:

Reference field: THEAD-TDSPRAS

LANGUAGE The parameter tells you which language variant of the form the system actually
used.

Exceptions:

FORM The parameter FORM contains the name of a form which could not be found.
Possible reasons:

SAPscript first searches for the form in the current client and in the specified
language. If the form does not exist there, it tries the original language of the
form. If the form is still not found, it searches in client 0, first in the specified
language, than in the original form language.

FORMAT Within a print output defined between OPEN_FORM and CLOSE_FORM, you
must use forms of the same page format. The page format of the current form
differs from that of the previously called forms.
Include only those forms into one spool request that have the same format (for
example, DINA4). Page orientation is of no consequence; that means, you can
mix pages in landscape and portrait format.

UNENDED The last form opened is still open. It must first be closed using END_FORM or
the form output must be closed using CLOSE_FORM.

• The form does not exist.
• There is no active version of this form.

224 April 2001

 SAP AG BC SAPscript: Printing with Forms
 START_FORM

UNOPENED The current form function could not be executed, since the form output was no
yet initialized using OPEN_FORM.

UNUSED One of the parameters FORM or LANGUAGE contains only blanks and no form
has been opened yet whose name or language could be used as defaults.

April 2001 225

BC SAPscript: Printing with Forms SAP AG
WRITE_FORM

WRITE_FORM
The system outputs the form element specified in parameter ELEMENT into the currently opened
form.
In the parameter WINDOW you can specify the name of a window for the output. Remember that
the form element must be defined in this window. The parameter FUNCTION specifies how to
merge the text lines to be output with any existing contents in the window. In this case, there are
differences between the different window types or areas.

Function call:

CALL FUNCTION 'WRITE_FORM'

 WINDOW = 'MAIN'

 TYPE = 'BODY'
 IMPORTING PENDING_LINES =

 UNOPENED =

 EXPORTING ELEMENT = SPACE

 FUNCTION = 'SET'

 EXCEPTIONS ELEMENT =
 FUNCTION =
 TYPE =

 UNSTARTED =
 WINDOW =

Export parameters:

ELEMENT Specify the name of the text element you want to output into the form window
specified in the parameter WINDOW. The element must be defined in that form
window. If you specify no element, the system uses the default element, if one is
defined in the form.
Default value: SPACE

WINDOW Specify the name of the window into which you want to output the form element
specified in the parameter ELEMENT.
Default value: 'MAIN'

226 April 2001

 SAP AG BC SAPscript: Printing with Forms
 WRITE_FORM

FUNCTION The parameter determines how to output the text element into the respective
window. The output type depends on the window type and area:

Window type MAIN, areas TOP and BOTTOM;
all other windows:

Window type MAIN, area BODY:
'SET' append to previous output
'APPEND' same as SET
'DELETE' no effect

'SET' delete old window or area contents and
 output the element
'APPEND' append the element to the existing elements 'DELETE'
 delete the specified element from the window
 or area

DELETE in the TOP area (headings) takes effect only on the next
page. You can no longer delete any heading from the TOP area after
outputting text to the BODY area.

Default value: 'SET'

TYPE The system interprets this parameter only for output to the main window.
The parameter determines the area of the main window into which you want to
output the element.
Possible values:
'TOP' header area
'BODY' main area
'BOTTOM' footer area
Default value: 'BODY'

Import parameters:

PENDING_LINES If a text is output to the BOTTOM area of the main window (TYPE =
'BOTTOM'), there may be not enough space left on the current output
page. The system then internally flags this text for output into the BOTTOM
area of the next page. The actual output is pending.
If output is pending, the parameter PENDING_LINES contains 'X', and the
print program can react accordingly. For example, an explicit page break at
the text end (NEW-PAGE) could implicitly trigger the pending BOTTOM
output on the next page.

Exceptions:

April 2001 227

BC SAPscript: Printing with Forms SAP AG
WRITE_FORM

ELEMENT The parameter ELEMENT contains the name of a form element that the system
could not find.
Possible reasons:

An element refers to a window, and the specified window does not contain the
element. If no window is specified, the system searches for the element in the
main window.

For this parameter, the following values are allowed:
SET

DELETE

TYPE The type of window area specified in parameter TYPE is invalid.

• BOTTOM: only for the main window

Depending on the window type, these entries are valid:

UNOPENED The current form function could not be executed, since the form output was no
yet initialized using OPEN_FORM.

UNSTARTED No form was opened yet.

• The element does not exist.

• The specified element is not defined in the form.
• The form version that contains the text element in the specified form

window is not active.

FUNCTION The function specified in parameter FUNCTION is unknown.

APPEND

• BODY: for all windows
• TOP: only for the main window

Possible reasons:
• The form processing was started using OPEN_FORM without specifying a

form name, but no form was opened yet using START_FORM.
• The last used form was closed using END_FORM, but no new form was

opened using START_FORM.
• The last filled page of the current form has no subsequent page. In this

case, the system automatically terminates form printing after this page. You
need no explicit END_FORM call.

• In the current form, no page contains a main window, but a text element
shall be output in the main window.

228 April 2001

 SAP AG BC SAPscript: Printing with Forms
 WRITE_FORM

WINDOW The form window specified in parameter WINDOW does not exist in the current
form.
Possible reasons:
• A wrong window name was specified.
• The form version, which contains the specified window, is not active.

April 2001 229

BC SAPscript: Printing with Forms SAP AG
WRITE_FORM_LINES

WRITE_FORM_LINES
The function module outputs the text lines in table LINES into the specified form window. The text
lines must have the SAPscript ITF format. From the data in the text header, the system uses only
the field TDSTYLE to apply the formatting attributes defined in the specified style for this text. If
the field is empty, the system uses the identically named formatting attributes (character and
paragraph formats) of the form.
Use parameter WINDOW to specify into which of the windows defined in the form you want to
output the text. You can specify any window used in the form. The parameter FUNCTION
determines how to merge the text lines to be output with any existing contents in the window.
There are differences between the different window types or areas.

Function call:

CALL FUNCTION 'WRITE_FORM_LINES'
 EXPORTING HEADER = ?...
 WINDOW = 'MAIN'

 UNOPENED =

 FUNCTION = 'SET'
 TYPE = 'BODY'
 IMPORTING PENDING_LINES =
 FROMPAGE =
 TABLES LINES = ?...
 EXCEPTIONS FUNCTION =
 TYPE =

 UNSTARTED =
 WINDOW =

Export parameters:

HEADER The parameter contains the header of the text module you want to output in the
current form. For the formatting process, the system uses only the entries in the
header fields TDSTYLE and TDFORM.
Structure: THEAD

WINDOW Enter the name of the window into which you want to output the form element
specified in parameter ELEMENT.
Default value: 'MAIN'

230 April 2001

 SAP AG BC SAPscript: Printing with Forms
 WRITE_FORM_LINES

FUNCTION The parameter determines how to output the text element into the respective
window. The output type depends on the window type and area:
Window type MAIN, area BODY:
'SET' append to previous output
'APPEND' same as SET
'DELETE' no effect
Window type MAIN, areas TOP and BOTTOM;
all other windows:
'SET' delete old window or area contents and
 output the element
'APPEND' append the element to the existing elements
'DELETE' no effect
Default value: 'SET'

TYPE The system interprets this parameter only for output to the main window.
The parameter determines the area of the main window into which you want to
output the element.
Possible values:
'TOP' header area
'BODY' main area
'BOTTOM' footer area
Default value: 'BODY'

Import parameters:

PENDING_LINES If a text is output to the BOTTOM area of the main window (TYPE =
'BOTTOM'), there may be not enough space left on the current output
page. The system then internally flags this text for output into the BOTTOM
area of the next page. The actual output is pending.
If output is pending, the parameter PENDING_LINES contains 'X', and the
print program can react accordingly. For example, an explicit page break at
the text end (NEW-PAGE) could implicitly trigger the pending BOTTOM
output on the next page.

FROMPAGE Use FROMPAGE to determine on which form page the output of the text
starts.

Table parameters:

LINES Enter the name of the table that contains the text lines you want to print.
Structure: TLINE

April 2001 231

BC SAPscript: Printing with Forms SAP AG
WRITE_FORM_LINES

Exceptions:

FUNCTION The function specified in parameter FUNCTION is unknown.
For this parameter, the following values are allowed:
SET
APPEND
DELETE

TYPE The type of window area specified in parameter TYPE is invalid.
Depending on the window type, these entries are valid:

UNOPENED The current form function could not be executed, since the form output was no
yet initialized using OPEN_FORM.

UNSTARTED No form was opened yet.
Possible reasons:

WINDOW The form window specified in parameter WINDOW does not exist in the current
form.
Possible reasons:

• BODY: for all windows
• TOP: only for the main window
• BOTTOM: only for the main window

• The form processing was started using OPEN_FORM without specifying a
form name, but no form was opened yet using START_FORM.

• The last used form was closed using END_FORM, but no new form was
opened using START_FORM.

• The last filled page of the current form has no subsequent page. In this
case, the system automatically terminates form printing after this page. You
need no explicit END_FORM call.

• In the current form, no page contains a main window, but a text element
shall be output in the main window.

• A wrong window name was specified.
• The form version, which contains the specified window, is not active.

232 April 2001

 SAP AG BC SAPscript: Printing with Forms
 END_FORM

END_FORM
END_FORM ends the currently open form and executes the required termination processing.
After calling this function module, no more form is active. For further output, you must start a new
form using START_FORM.

END_FORM does not replace CLOSE_FORM, that is, you must always close any
SAPscript output using CLOSE_FORM.

Function call:

CALL FUNCTION 'END_FORM'
 IMPORTING RESULT =
 EXCEPTIONS UNOPENED =

Import parameters:

RESULT The parameter contains results of the print formatting process. By comparing the
corresponding fields of parameter OPTIONS with those of parameter RESULT, you
can determine whether the user made changes to any settings on the print control
screen.
Structure: ITCPP

Exceptions:

UNOPENED The current form function could not be executed, since the form output was no
yet initialized using OPEN_FORM.

April 2001 233

BC SAPscript: Printing with Forms SAP AG
CONTROL_FORM

CONTROL_FORM
Use CONTROL_FORM to pass SAPscript control statements to the form.

Function call:

CALL FUNCTION 'CONTROL_FORM'

 EXPORTING COMMAND = ?...
 EXCEPTIONS UNOPENED =
 UNSTARTED =

Export parameters:

COMMAND Enter the SAPscript statement you want to execute in ITF format, but without the
statement paragraph attribute '/:'.

Exceptions:

UNOPENED The current form function could not be executed, since the form output was no
yet initialized using OPEN_FORM.

UNSTARTED No form was opened yet.
Possible reasons:

• The form processing was started using OPEN_FORM without specifying a
form name, but no form was opened yet using START_FORM.

• The last used form was closed using END_FORM, but no new form was
opened using START_FORM.

• The last filled page of the current form has no subsequent page. In this
case, the system automatically terminates form printing after this page. You
need no explicit END_FORM call.

• In the current form, no page contains a main window, but a text element
shall be output in the main window.

234 April 2001

 SAP AG BC SAPscript: Printing with Forms
 READ_FORM_ELEMENTS

READ_FORM_ELEMENTS
The function module fills a table with all text elements that appear in one form.
If you specify no form name, the system includes all elements of the currently open form. If you
specify a form, the system uses the information about the active version of the form, retrieved
from the database.

Function call:

CALL FUNCTION 'READ_FORM_ELEMENTS'
 EXPORTING FORM = SPACE

 LANGUAGE = SPACE
 TABLES ELEMENTS = ?...
 EXCEPTIONS FORM =
 UNOPENED =

Export parameters:

FORM Specify the name of the form whose element list you want to create. If you leave
the field blank, the system uses the currently active form.
Default value: SPACE

LANGUAGE Specify the desired form language.
Default value: SPACE

Table parameters:

ELEMENTS The table contains all windows defined in a form together with the corresponding
text elements. For each text element, the system specifies the number of text
lines (editor lines) it consists of.
Structure: ITCWE

Exceptions:

April 2001 235

BC SAPscript: Printing with Forms SAP AG
READ_FORM_ELEMENTS

FORM The parameter FORM contains the name of a form which could not be found.
Possible reasons:

SAPscript first searches for the form in the current client and in the specified
language. If the form does not exist there, it tries the original language of the
form. If the form is still not found, it searches in client 0, first in the specified
language, than in the original form language.

UNOPENED The current form function could not be executed, since the form output was no
yet initialized using OPEN_FORM.

• The form does not exist.
• There is no active version of this form.

236 April 2001

 SAP AG BC SAPscript: Printing with Forms
 READ_FORM_LINES

READ_FORM_LINES
Use this function module to transfer the lines of a form element into an internal table.
If you specify no form name, the system transfers the text lines of the currently open form. If you
specify a form, the system uses the text lines of the active version of the form from the database.

Function call:

CALL FUNCTION 'READ_FORM_LINES'
 EXPORTING FORM = SPACE
 LANGUAGE = SPACE
 WINDOW = 'MAIN'
 ELEMENT = SPACE

 TABLES LINES = ?...
 EXCEPTIONS ELEMENT =
 FORM =
 UNOPENED =

Export parameters:

FORM Specify the name of the form whose element list you want to create. If you leave
the field blank, the system uses the currently active form.
Default value: SPACE

LANGUAGE Specify the desired form language.
Default value: SPACE

WINDOW Enter the name of the window in which to find the form element. If you leave the
field blank, the system searches for the form element in the main window.
Default value: 'MAIN'

ELEMENT Enter the name of the form element whose text lines you want to read. If you
leave the field blank, the system searches for the 'nameless' element.
Default value: SPACE

Table parameters:

LINES The table receives the lines of the specified element.
Structure: TLINE

Exceptions:

April 2001 237

BC SAPscript: Printing with Forms SAP AG
READ_FORM_LINES

ELEMENT The parameter ELEMENT contains the name of a form element which the
system could not find.
Possible reasons:

FORM The parameter FORM contains the name of a form which could not be found.
Possible reasons:
• The form does not exist.
• There is no active version of this form.
SAPscript first searches for the form in the current client and in the specified
language. If the form does not exist there, it tries the original language of the
form. If the form is still not found, it searches in client 0, first in the specified
language, than in the original form language.

UNOPENED The current form function could not be executed, since the form output was no
yet initialized using OPEN_FORM.

• The element does not exist. An element refers to a window, and the
specified window does not contain the element. If no window is specified, the
system searches for the element in the main window.

• The specified element is not defined in the form.
• The form version that contains the text element in the specified form window

is not active.

238 April 2001

 SAP AG BC SAPscript: Printing with Forms
 CONVERT_TEXT

CONVERT_TEXT
The function module CONVERT_TEXT provides the following format conversions:
ITF text in table ITF_LINES → RTF text in table FOREIGN
ITF text in table ITF_LINES → ASCII text in table FOREIGN
RTF text in table FOREIGN → ITF text in table ITF_LINES
ASCII text in table FOREIGN → ITF text in table ITF_LINES
For conversions within the SAPscript format ITF, use the function module EXCHANGE_ITF.

DIRECTION = 'EXPORT' FORMAT_TYPE = 'RTF'

In CODEPAGE, enter the character set numbers from the spool administration. For RTF
conversion, you can select the character sets 1103, 1110, or 1133. The system ignores any
other entries and uses the default character set 1133 instead. If you want to read the RTF
text into WinWord, we recommend to use character set 1133.

In short, you must specify DIRECTION and FORMAT_TYPE; the only import parameters for
which entries are useful, are CODEPAGE, FORMATWIDTH, and TABLETYPE.

DIRECTION = 'IMPORT' FORMAT_TYPE = 'RTF'

You must enter the following specifications:

Since the system prefixes the result table with information on author, creation date, etc., you
must fill the parameter HEADER, especially the fields specifying style and form of the text
(HEADER-TDSTYLE and HEADER-TDFORM).
In FORMATWIDTH, you can enter the line width of the result text.

TABLETYPE contains the type of table FOREIGN. If you want to compress the table, that is, give
it a file-like structure, use the entire width of 134 characters, and separate the individual logical
lines with carriage return and line feed, you must use TABLETYPE = 'BIN'. If you use
TABLETYPE = 'ASC', you get a normal lines table.
WORD_LANGU has no effect; SSHEET and WITH_TAB are explained at the 'Format
conversion'.

DIRECTION = 'EXPORT' FORMAT_TYPE = 'ASCII'
All ITF information is lost with this conversion; the only formats are Newline and Tab. By
choosing the line width FORMATWIDTH accordingly, you can achieve a certain page formatting.
You can convert the ITF text into an ASCII text of any character set CODEPAGE (number form
spool administration).
TABLETYPE contains the type of table FOREIGN. If you want to compress the table, that is, give
it a file-like structure, use the entire width of 134 characters, and separate the individual logical
lines with carriage return and line feed, you must use TABLETYPE = 'BIN'. If you use
TABLETYPE = 'ASC', you get a normal lines table.

For WORD_LANGU enter the language of the MS Word version you use to allow the system to
interpret language-dependent elements in the RTF text. The default is the R/3 system language.
TABLETYPE contains the type of table FOREIGN. If you created this table, for example, by
uploading a local file in binary format, which means that all lines except the last are filled
completely and the lines may contain carriage return and line feed, you must use TABLETYPE =
'BIN'. If the table is a normal lines table, use TABLETYPE = 'ASC'.
The parameters FORMATWIDTH and CODEPAGE have no effect; SSHEET and WITH_TAB
are explained at the 'Format conversion'.

April 2001 239

BC SAPscript: Printing with Forms SAP AG
CONVERT_TEXT

HEADER is used only in connection with a print format conversion (WITH_TAB = 'X'). In this
case, the system fills the parameter NEWHEADER with the new current values.

DIRECTION = 'IMPORT' FORMAT_TYPE = 'ASCII'
The table containing the ASCII text is converted line by line. In the ITF target text, the system
separates the individual ITF lines with NEWLINE. The ASCII tab is converted to the ITF tab (',,').
In CODEPAGE, you must enter the character set of the source text (that is, its number in the
spool administration); the system then converts the characters to the system character set. If you
leave CODEPAGE blank, no character conversion occurs.
TABLETYPE contains the type of table FOREIGN. If you created this table, for example, by
uploading a local file in binary format, which means that all lines except the last are filled
completely and the lines may contain carriage return and line feed, you must use TABLETYPE =
'BIN'. If the table is a normal lines table, use TABLETYPE = 'ASC'.
The system ignores the parameters FORMATWIDTH, SSHEET, WITH_TAB, WORD_LANGU,
and HEADER.

Format conversion
If you set the parameter WITH_TAB = 'X', the system triggers a format conversion for
FORMAT_TYPE = 'ITF' and FORMAT_TYPE = 'RTF'. Beforehand, you must use transaction
SE74 (Format conversion) to specify which character and paragraph names or Word templates
to map on other character and paragraph names or Word templates.
The system converts for
ITF → RTF:
HEADER-TDSTYLE or HEADER-TDFORM into SSHEET
RTF → ITF:
SSHEET into HEADER-TDSTYLE or HEADER_TDFORM
ITF → ITF (in both directions)
In this case, the parameter SSHEET must contain 'S' for style or 'F' for form as prefix.

To an ITF text, the style 'STYLE1' and the form 'FORM1' are allocated. You want to
format it using the form 'FORM2'. In this case:
HEADER-TDSTYLE = 'STYLE1', HEADER-TDFORM = 'FORM1' and SSHEET =
'FFORM2'.

Function call:

CALL FUNCTION 'CONVERT_TEXT'
 EXPORTING CODEPAGE = SPACE
 DIRECTION = 'EXPORT'
 FORMATWIDTH = 72
 FORMAT_TYPE = 'RTF'
 HEADER = SPACE
 SSHEET = SPACE
 WITH_TAB = SPACE
 WORD_LANGU = SY-LANGU

240 April 2001

 SAP AG BC SAPscript: Printing with Forms
 CONVERT_TEXT

 TABLETYPE = 'ASC'
 IMPORTING NEWHEADER =
 TABLES FOREIGN = ?...
 ITF_LINES = ?...

Export parameters:

CODEPAGE Character set number from the spool administration. If DIRECTION =
‘EXPORT’, CODEPAGE contains the target character set, if DIRECTION =
‘IMPORT’ the source character set.
Reference field: TCP02-CPCODEPAGE
Default value: SPACE

DIRECTION ‘IMPORT’ or ‘EXPORT’

Default value: 72

FORMAT_TYPE The parameter can have the values of the following text formats:
RTF (RichTextFormat)
ASCII
Default value: 'RTF'

HEADER Text header of the source text.
The text header contains the description of a text module, such as short text,
creator, and so on.
Structure: THEAD
Default value: SPACE

SSHEET Name of a template (*.dfv or *.dot).
To trigger a format conversion, you must enter the symbolic name for which
you maintained a conversion to the respective SAPscript style or form in
transaction SE74.
In addition, you must set the parameter WITH_TAB to 'X'.
Default value: SPACE

WITH_TAB If WITH_TAB = 'X' and the parameter SSHEET is filled, the system converts
character and paragraph formats. Source and target formats can be a
SAPscript style, a SAPscript form, or an MS Word template. Using
transaction SE74 (Format conversion), you must specify which character or
paragraph names or Word templates match.
Default value: SPACE

FORMATWIDTH

WORD_LANGU Only for RTF conversion: language of the word processing program that
created the RTF file.
Default value: SY-LANGU

April 2001 241

BC SAPscript: Printing with Forms SAP AG
CONVERT_TEXT

TABLETYPE DIRECTION = 'IMPORT'
TABLETYPE contains the type of table FOREIGN. If you created this table,
for example, by uploading a local file in binary format, which means that all
lines except the last are filled completely and the lines may contain carriage
return and line feed, you must use TABLETYPE = 'BIN'. If the table is a
normal lines table, use TABLETYPE = 'ASC'.
DIRECTION = 'EXPORT'
TABLETYPE contains the type of table FOREIGN. If you want to compress
the table, that is, give it a file-like structure, use the entire width of 134
characters, and separate the individual logical lines with carriage return and
line feed, you must use TABLETYPE = 'BIN'. If you use TABLETYPE =
'ASC', you get a normal lines table.
Default value: 'ASC'

Import parameters:

NEWHADER Text header of the SAPscript result text
Structure: THEAD

Table parameters:

FOREIGN Foreign text table
Structure: TLINE

ITF_LINES SAPscript ITF table
Structure: TLINE

LINKS_TO_CONVERT Not implemented!

242 April 2001

 SAP AG BC SAPscript: Printing with Forms
 EXCHANGE_ITF

EXCHANGE_ITF
The function module EXCHANGE_ITF is interactive. You use it to convert the character and
paragraph names of a style or form into those of another style or form. You specify the desired
new style or form allocation in a dialog box. To specify which original names match which new
names, use transaction SE74 (Format conversion), column "Format conversion in SAPscript
texts".

Function call:

CALL FUNCTION 'EXCHANGE_ITF'
 EXPORTING FORMATWIDTH = 72
 HEADER = ?...
 IMPORTING NEWHEADER =
 TABLES ITF_LINES = ?...
 EXCEPTIONS CANCELED =

Export parameters:

FORMATWIDTH Maximum line width of the result text.
If table TTXOB contains an entry for the current text object, the system
overwrites the parameter FORMATWIDTH with this value. Statement lines
are never split.
Default value: 72

HEADER Text header of the source text.
Structure: THEAD

Import parameters:

NEWHEADER Text header of the result text.
Structure: THEAD

Table parameters:

ITF_LINES The system reads the text to be converted from table ITF_LINES, processes it and
returns it in the same table.
Structure: TLINE

Exceptions:

April 2001 243

BC SAPscript: Printing with Forms SAP AG
EXCHANGE_ITF

CANCELED Conversion canceled by user

244 April 2001

 SAP AG BC SAPscript: Printing with Forms
 IMPORT_TEXT

IMPORT_TEXT
The function module IMPORT_TEXT uploads a local file into the R/3 system and then executes
one of the following conversions, depending on the file format FORMAT_TYPE:
• Local ITF file FILE → ITF text in table ITF_LINES
• Local RTF file FILE → ITF text in table ITF_LINES
• Local ASCII file FILE → ITF text in table ITF_LINES
You must enter the following specifications:

FORMAT_TYPE = 'ITF'
Here, you can use ITF files with header information (for more information on this file type, see
documentation of the report RSTXLITF) as well as ITF texts without a preface. If header
information exists, it is written to the export parameter NEWHEADER and the system formats
the text: The line width is set to the value defined in table TTXOB for the current text object.
The parameters HEADER, FORMATWIDTH, CODEPAGE, WORD_LANGU, SSHEET, and
WITH_TAB have no effect.

FORMAT_TYPE = 'RTF'
In WORD_LANGU, specify the language of the MS Word version used to enable the
system to interpret language-dependent elements in the RTF file. The default is the R/3
system language. The parameters FORMATWIDTH and CODEPAGE have no effect, for a
description of SSHEET and WITH_TAB, see "Format conversion" below. HEADER is used
only in connection with a format conversion (WITH_TAB = 'X'), when the system fills the
parameter NEWHEADER with new, current values.

FORMAT_TYPE = 'ASCII'
The system converts carriage return (x0D) and line feed (x0A) into newline ('/ ') and matches
form feed (x0c) with the statement '/: NEW-PAGE' and the ASCII tab with the ITF tab (',,').
In CODEPAGE, you must specify the character set of the source file (that is, its number in
the spool administration); the system then converts the characters into the system character set.
If you specify no value in CODEPAGE, no character set conversion occurs.
The system does not evaluate the parameters FORMATWIDTH, SSHEET, WITH_TAB,
WORD_LANGU, and HEADER.

Format conversion
If the parameter WITH_TAB = 'X', the system starts a format conversion, provided that
FORMAT_TYPE = 'RTF'. Beforehand, you must use transaction SE74 (Format conversion) to
specify which Word templates to match with which character and paragraph formats of different
names. The system converts

 HEADER-TDSTYLE

SS i or

HE n HEADER-TDFORM

ET

Function call:

CALL FUNCTION 'IMPORT_TEXT'

April 2001 245

BC SAPscript: Printing with Forms SAP AG
IMPORT_TEXT

 EXPORTING CODEPAGE = ?...
 FILE = ?...
 FORMAT_TYPE = 'ITF'
 HEADER = SPACE
 SSHEET = SPACE
 WITH_TAB = SPACE
 WORD_LANGU = SY-LANGU
 IMPORTING NEWHEADER =
 TABLES ITF_LINES = ?...
 EXCEPTIONS FILE_OPEN_ERROR =
 FILE_READ_ERROR =
 UPLOAD_ERROR =

Export parameters:

CODEPAGE Character set of the source file. You must enter the character set numbers
from the spool administration.
Reference field: TCP02-CPCODEPAGE

FILE Name of the file to be uploaded.
If this file does not exist or is unreadable, the system triggers the respective
exceptions.

Make sure to use the correct case for the file name.
Fully specify the file directory.

Reference field: RLGRAP-FILENAME

FORMAT_TYPE File format ('ITF', 'RTF', or 'ASCII')
Default value: 'ITF'

HEADER Structure: THEAD
Default value: SPACE

SSHEET Name of a template (*.dfv or *.dot).
To trigger a format conversion, you must enter the symbolic name for which
you maintained a conversion to the respective SAPscript style or form in
transaction SE74.
In addition, you must set the parameter WITH_TAB to 'X'.
Default value: SPACE

WITH_TAB If WITH_TAB = 'X' and the parameter SSHEET is filled, the system converts
character and paragraph formats. Source and target formats can be a
SAPscript style, a SAPscript form, or an MS Word template. Using
transaction SE74 (Format conversion), you must specify which character or
paragraph names or Word templates match.
Default value: SPACE

246 April 2001

 SAP AG BC SAPscript: Printing with Forms
 IMPORT_TEXT

WORD_LANGU Only for RTF conversion: language of the word processing program that
created the RTF file.
Default value: SY-LANGU

Import parameters:

NEWHEADER Text header of the SAPscript result text.
The text header contains a description of a text module, such as short text,
creator, and so on. The structure is determined in table THEAD.
Structure: THEAD

Table parameters:

ITF_LINES Text table of the result text.
Structure: TLINE

Exceptions:

FILE_OPEN_ERROR File cannot be opened.

FILE_READ_ERROR File cannot be read (completely).
Possible reason:

UPLOAD_ERROR Other errors when uploading the file.

• Read error of the operating system (no SAP error) or upload
incomplete due to incorrect GUI installation (work directory write-
protected).

April 2001 247

BC SAPscript: Printing with Forms SAP AG
EXPORT_TEXT

EXPORT_TEXT
The function module EXPORT_TEXT converts an ITF text into the desired format
FORMAT_TYPE and then saves it in a local file:
• ITF text in table ITF_LINES → local ITF file FILE
• ITF text in table ITF_LINES → local RTF file FILE
• ITF text in table ITF_LINES → local ASCII file FILE
When exporting the formats ASCII and RTF, the system resolves text includes and control
structures (/: IF, /: ELSE, /: ENDIF, /: CASE, /: WHEN, /: ENDCASE) and replaces text, standard,
and system symbols.
You must enter the following specifications:

FORMAT_TYPE = 'ITF'
Since the result file is provided with text header information (for more details on this file type, see
documentation of report RSTXSITF), you should fill the parameter HEADER.
The parameters FORMATWIDTH, CODEPAGE, SSHEET, and WITH_TAB have no effect.

FORMAT_TYPE = 'RTF'
Since the result file is provided with information on author, creation date, and so on, you should
fill the HEADER parameter. In any case, you must specify style and form of the text (HEADER-
TDSTYLE and HEADER-TDFORM).
In FORMATWIDTH, specify the line width of the result text. In CODEPAGE, you must enter
the characters set numbers from the spool administration. For RTF conversion, you can
choose between the character sets 1103, 1110, or 1133. The system ignores all other
assignments and uses the character set 1133 instead. If you want to read the created RTF
text using WinWord, we recommend the character set 1133. SSHEET and WITH_TAB are
explained in 'Format conversion' below.

FORMAT_TYPE = 'ASCII'
All ITF information is lost with this conversion; the only formats are newline and tab. By choosing
the line width FORMATWIDTH accordingly, you can achieve a certain page formatting. You can
convert the ITF text into an ASCII text of any character set CODEPAGE (number form spool
administration).
In short, you must specify FORMAT_TYPE; the only import parameters for which entries are
useful, are CODEPAGE and FORMATWIDTH.

Format conversion
If you set the parameter WITH_TAB = 'X', the system triggers a format conversion for
FORMAT_TYPE = 'RTF'. Beforehand, you must use transaction SE74 (Format conversion) to
specify which character and paragraph names or Word templates to match which other character
and paragraph names or Word templates.
The system converts

HEADER-TDSTYLE

or in SSHEET

HEADER-TDFORM

248 April 2001

 SAP AG BC SAPscript: Printing with Forms
 EXPORT_TEXT

Function call:

CALL FUNCTION 'EXPORT_TEXT'
 EXPORTING CODEPAGE = SPACE
 FILE = ?...
 FORMATWIDTH = 72
 FORMAT_TYPE = 'RTF'
 HEADER = SPACE
 SSHEET = SPACE
 WITH_TAB = SPACE
 TAB_SUBSTITUTE = 'X09 '
 TABLES ITF_LINES = ?...
 EXCEPTIONS DOWNLOAD_ERROR =
 FILE_OPEN_ERROR =
 FILE_WRITE_ERROR =

Export parameters:

CODEPAGE Specify the character set numbers from the spool administration.
Reference field: TCP02-CPCODEPAGE
Default value: SPACE

FILE Name of the file you want to create on the presentation server (if
necessary, with leading directory name). If the directory does not exist or
if the system cannot open the file for writing, it triggers the respective
exceptions.
Reference field: RLGRAP-FILENAME

FORMATWIDTH Line width of the target file.
Default value: 72

FORMAT_TYPE Format of the target file ('ITF', 'RTF', or 'ASCII').
Default value: 'RTF'

HEADER Text header of the source text.
The text header contains a description of a text module, such as short
text, creator, and so on.
Structure: THEAD

SSHEET Name of a template (*.dfv or *.dot).
To trigger a format conversion, you must enter the symbolic name for
which you maintained a conversion to the respective SAPscript style or
form in transaction SE74.
In addition, you must set the parameter WITH_TAB to 'X'.
Default value: SPACE

April 2001 249

BC SAPscript: Printing with Forms SAP AG
EXPORT_TEXT

WITH_TAB If WITH_TAB = 'X' and the parameter SSHEET is filled, the system
converts character and paragraph formats. Source and target formats can
be a SAPscript style, a SAPscript form, or an MS Word template. Using
transaction SE74 (Format conversion), you must specify which character
or paragraph names or Word templates match.
Default value: SPACE

TAB_SUBSTITUTE Substitution value for the SAPscript tab.
The parameter is used only for a conversion from ITF to ASCII. You
define the substitution value in a character field of length 5. The first
character defines the type of substitution:
'C' substitutes the tab with a character string of up to four characters.

TAB_SUBSTITUTE = 'C<<>>'
"before tab,,after tab " in SAPscript becomes
"before tab <<>>after tab " in the ASCII file.

'X' substitutes the tab with one or two binary characters.

TAB_SUBSTITUTE = 'X09_ _'.
The SAPscript tab ",," becomes the hexadecimal value 09.

‘_' A blank substitutes the tab with 1 to 99 blanks.

TAB_SUBSTITUTE = '_ 8_ _ _'.
"before tab,,after tab " in SAPscript becomes
"before tab_ _ _ _ _ _ _ _after tab " in the ASCII file.

Default value: 'X09_ _'

Table parameters:

ITF_LINES SAPscript text table you want to export.
Structure: TLINE

Exceptions:

FILE_OPEN_ERROR File cannot be opened.

FILE_WRITE_ERROR File cannot be written.

DOWNLOAD_ERROR Other errors when downloading file.

250 April 2001

 SAP AG BC SAPscript: Printing with Forms
 EXPORT_TEXT

April 2001 251

BC SAPscript: Printing with Forms SAP AG
TRANSFER_TEXT

TRANSFER_TEXT
The function module TRANSFER_TEXT is interactive. It calls either the function module
IMPORT_TEXT with the parameter ITF_LINES = TABLE_IMP or the function module
EXPORT_TEXT with the parameter ITF_LINES = TABLE_EXP.
The parameter CHFORMAT determines whether you can select style and form for the result text
for ITF and RTF imports. If such a selection is not possible (CHFORMAT = ' '), the system uses
HEADER-TDSTYLE and HEADER-TDFORM.

Function call:

CALL FUNCTION 'TRANSFER_TEXT'
 EXPORTING CHFORMAT = 'X'

 HEADER = SPACE
 DIRECTION = SPACE
 IMPORTING NEWHEADER =
 TABLES TABLE_EXP = ?...
 TABLE_IMP = ?...
 EXCEPTIONS CANCELED =

Export parameters:

CHFORMAT

The parameter determines whether you are allowed to change the style and
form allocation.
Possible values:
' ' changes allowed
'X' changes not allowed
Default value: 'X'

HEADER Text header of the source text.
Structure: THEAD
Default value: SPACE

DIRECTION 'IMPORT', 'EXPORT', or SPACE.
For DIRECTION = SPACE, you can choose in a dialog box between file import
(from local file) and file export (to local file) and between different text formats. If
you specify ‘IMPORT’ or ‘EXPORT’, you can determine only the text format.
Default value: SPACE

Import parameters:

NEWHEADER Text header of the result text.
Structure: THEAD

252 April 2001

 SAP AG BC SAPscript: Printing with Forms
 TRANSFER_TEXT

Table parameters:

TABLE_EXP Table to be exported.
Structure: TLINE

TABLE_IMP Table containing import result.
Structure: TLINE

Exceptions:

CANCELED Transfer canceled by user.

April 2001 253

BC SAPscript: Printing with Forms SAP AG
CONVERT_TEXT_R2

CONVERT_TEXT_R2
The function module converts texts from SAP R/2 text format to SAPscript format of the R/3
system.
Apart form converting the format structure of the text lines, the function module considers the
following attributes of R/2 texts:

• line attributes
• control statements
• symbols

During the conversion, several incompatibilities can occur. These incompatibilities are grouped
into levels. The parameter ERRORLEVEL returns the level number of the most serious
incompatibility.

Line format
The line format of R/2 texts is similar to that of R/3 texts. Both lines consist of a field that contains
the line format and a field with the actual line contents. Conversion of line formats is described
under 'Line attributes'.
A text line in R/2 can consist of up to 220 characters; in SAPscript, the line contents is limited to
132 characters. If an R/2 text line consists of more than 132 characters, the system transfers the
remainder into a subsequent line with no paragraph format.

Line attributes
SAPscript does not distinguish between fixed and variable lines, but knows only what R/2 calls
variable lines. To convert the R/2 line formats, the following rules apply:

• At lines with the attributes A and F always a new SAPscript paragraph starts.
• Adjacent lines with the attribute V are considered as one paragraph. If before the first V

line a line with attribute F appears, then the first V line is the beginning of a new
SAPscript paragraph. If the line before the V block has the attribute A, the V lines are
considered as continuation of the A line and no new paragraph is started.

• By default, all paragraphs receive the SAPscript standard paragraph format '*'. To specify
a different paragraph format, use the parameters PARAGRAPH_AV and
PARAGRAPH_F.

Control statements
The system does not convert the following control statements, since they have no equivalents in
R/3:
.nlf print the next two lines on top of each other
.psz set the number of lines per page
.lpi define line distance
.prn output control statement for printer
.off set left margin for lines with V attribute
.nam determine name of spool file
.set define value for number and chapter variable
The other R/2 control statements are converted to SAPscript statements as follows:

.ifi &symbol /: I'F &symbol(I)& EQ '

254 April 2001

 SAP AG BC SAPscript: Printing with Forms
 CONVERT_TEXT_R2

.ifn &symbol I/: 'F &symbol& NE '

.abs <n> /:PROTECT
contents of the next <n> lines from R/2 text
/: ENDPROTECT

.def &symbol=<value> /: DEFINE &symbol& = '<value>

.pct=<value> /: DEFINE &pct& = '<value>'

.top <text no> /: TOP
/: INCLUDE <text no>
/: ENDTOP

.bot <text no> /: BOTTOM
/: INCLUDE <text no>
/: ENDBOTTOM

Symbols
On one hand, symbols are converted to the different syntax of SAPscript; on the other hand, the
names of R/2 database symbols that consist of table name/segment ID and field name must be
converted to the different table and field names of R/3.
As for the syntax, you can use SAPscript for all formatting options (offset, length, prefix text),
except converting a symbol value using a table.
To assign the symbol names of R/2 database symbols to the corresponding R/3 names, use the
function module RS3L_CONVERT_FIELDNAME. For more information, see the documentation
of this function module.
The system passes the parameters SOURCE_SYSTEM, SOURCE_RELEASE,
SOURCE_OBJECT, DESTINATION_TABLE, and IGNORE_ALIASNAMES without further
interpretation to this function module.
The R/2 symbols for chapter variables (p0..p3) are not transferred to SAPscript.

Function call:

CALL FUNCTION 'CONVERT_TEXT_R2'
 EXPORTING HEADER_R2 = ?...
 HEADER = ?...
 DIRECTION = 'IMPORT'
 PARAGRAPH_AV = '* '
 PARAGRAPH_F = '* '
 INCLUDE_ID = 'ST '
 INCLUDE_ZEROS = 'X'
 INCLUDE_PREFIX = SPACE
 COMMENT_LINES = 'X'
 SOURCE_SYSTEM = 'SAP'
 SOURCE_RELEASE = SPACE

April 2001 255

BC SAPscript: Printing with Forms SAP AG
CONVERT_TEXT_R2

 SOURCE_OBJECT = SPACE
 DESTINATION_TABLE = SPACE
 IGNORE_ALIASNAMES = SPACE
 ERROR_COMMENTS = SPACE
 IMPORTING NEWHEADER_R2 =

 NEWHEADER =
 NEWSTYLE =
 ERRORLEVEL =
 TABLES LINES_R2 = ?...

 LINES = ?...

Export parameters:

HEADER_R2 You must enter the text header of the R/2 text.
Structure: TEXTH

HEADER You must enter the text header of the R/3 text.
Structure: THEAD

DIRECTION Specify the conversion direction. At present, the SAP system
supports only conversions from R/2 texts to the SAPscript format,
that is, the value IMPORT.
Default value: 'IMPORT'

PARAGRAPH_AV Enter the R/3 paragraph format you want to use at the beginning of
an R/2 line block with the attributes A or V. If you leave the field
empty or if it contains blanks, the system uses the standard
paragraph format '*'.
Reference field: TLINE-TDFORMAT
Default value: '*'

Reference field: TLINE-TDFORMAT
Default value: '*'

INCLUDE_ID If the R/2 texts include standard texts, the system converts them into
a SAPscript INCLUDE statement. Use this parameter to specify the
ID of the R/3 text.
Reference field: THEAD-TDID
Defaultwert 'ST'

PARAGRAPH_F Enter the R/3 paragraph format you want to use for each R/2 line
with the line attribute F. If you leave the field empty or if it contains
blanks, the system uses the standard paragraph format '*'.

256 April 2001

 SAP AG BC SAPscript: Printing with Forms
 CONVERT_TEXT_R2

INCLUDE_ZEROS When converting texts from the SAP R/2 system, the system
transfers the numbers of the included standard texts with a length of
eight digits, thus including leading zeroes.
Use the parameter to influence the conversion of the leading zeroes
in the standard text number.
Possible values:
'X' include leading zeroes
' ' delete leading zeroes
Default value: 'X'

The R/2 text includes the standard text 33. The
respective text line looks like this:
S 00000033

In SAPscript, this text line is represented by the INCLUDE
statement:
/: INCLUDE '00000033' OBJECT 'TEXT' ID 'ST'
If the parameter INCLUDE_ZEROS contains SPACE, the generated
INCLUDE statement looks like this:
/: INCLUDE '33' OBJECT 'TEXT' ID 'ST'

INCLUDE_PREFIX If the R/2 text modules you want to convert include standard texts,
you can enter a prefix here, which the system will place before the
text number in the INCLUDE statement:
Default value: SPACE

INCLUDE_PREFIX = 'R2_'
R/2 line: S 00001234
R/3 line: /: INCLUDE 'R2_00001234'....

COMMENT_LINES The parameter determines how to treat R/2 command lines that
SAPscript no longer supports.
Possible values:
'X' include lines as comment lines
' ' leave out lines
Default value: 'X'

SOURCE_SYSTEM Enter the name of the system from which the text module originates.
Usually, it is 'SAP'.
Default value: 'SAP'

The function module CONVERT_TEXT_R2 directly passes this
parameter to the parameter SOURCE_SYSTEM of the internally
called function module RS3L_CONVERT_FIELDNAME, which
converts the field name. For more information, see the parameter
documentation of that function module.

April 2001 257

BC SAPscript: Printing with Forms SAP AG
CONVERT_TEXT_R2

SOURCE_RELEASE Enter the release of the R/2 text module. The system needs the
entry to convert the database symbols of the R/2 text.
Default value: SPACE
The function module CONVERT_TEXT_R2 directly passes this
parameter to the parameter with the same name of the internally
called function module RS3L_CONVERT_FIELDNAME, which
converts the field name. For more information, see the parameter
documentation of that function module.

SOURCE_OBJECT Enter the migration object within which the field name is converted.
Default value: SPACE

The function module CONVERT_TEXT_R2 directly passes this
parameter to the parameter BMIG_OBJECT of the internally called
function module RS3L_CONVERT_FIELDNAME, which converts the
field name. For more information, see the parameter documentation
of that function module.

DESTINATION_TABLE Enter the R/3 table to which the converted text belongs.
Default value: SPACE

The function module CONVERT_TEXT_R2 directly passes this
parameter to the parameter R3_TABLE of the internally called
function module RS3L_CONVERT_FIELDNAME, which converts the
field name. For more information, see the parameter documentation
of that function module.

IGNORE_ALIASNAMES Use the parameter to control the alias name check during the
conversion.
Possible values:
'X' ignore check
' ' execute check
Default value: SPACE
The function module CONVERT_TEXT_R2 directly passes this
parameter to the parameter with the same name of the internally
called function module RS3L_CONVERT_FIELDNAME, which
converts the field name. For more information, see the parameter
documentation of that function module.

258 April 2001

 SAP AG BC SAPscript: Printing with Forms
 CONVERT_TEXT_R2

ERROR_COMMENTS Use the parameter to define whether to include certain errors, which
occur during the conversion, as comments into the SAPscript text.
The messages usually refer to an error that was detected when
converting the subsequent text line.
Possible values:
'X' include error message as comment
' ' do not include error messages
For each message line, a prefix specifies where the error message
originates. For more information, see the respective documentation.

CTR2 error message from text conversion routine
 -> function module CONVERT_TEXT_R2
RS3L error message from field name conversion
 -> function module RS3L_CONVERT_FIELDNAME
If for an error no error text exists, the system displays after the prefix
the character chain '?..'.
Default value: SPACE

Import parameters:

NEWHEADER_R2 Changed header of the R/2 text.
Since at present only the conversion R/2 to R/3 is supported, the system
places the text header specified in the parameter HEADER_R2 without
changes into this parameter.

Structure: TEXTH

The parameter returns the text header with the fields changed according to
the executed actions.
Structure: THEAD

NEWSTYLE Not filled at present.
Reference field: THEAD-TDSTYLE

NEWHEADER

April 2001 259

BC SAPscript: Printing with Forms SAP AG
CONVERT_TEXT_R2

ERRORLEVEL When converting R/2 texts to R/3 format, several problems may occur.
The parameter returns the highest level of the encountered problems.
ERRORLEVEL = 0:
No problems detected.

• The R/2 text contained functions that SAPscript no longer or not yet
supports.

• R/2 commands:.nlf,.psz,.lpi,.prn,.off,.nam
• Conversion of symbol values using a table &symbol(Txxxx)
• Chapter counters: &p0... &p3

In the R/2 text, a line with line format S occurs whose line contents is no
valid text number.
• The internal call of function module RS3L_CONVERT_FIELDNAME

returned error level 4 or higher when converting a field name.

ERRORLEVEL = 1:

ERRORLEVEL = 2:

*) These errors can occur only if the function module
RS3L_CONVERT_FIELDNAME does not exist.

ERRORLEVEL = 3:

ERRORLEVEL = 4:

The line length of the R/3 text module is shorter than a converted
command. The system truncated the remainder of the line. SAPscript
cannot or not correctly interpret the statement.

The meaning of the error levels concerning function module
RS3L_CONVERT_FIELDNAME is described in the
documentation of that function module.

• Smaller problems detected, which concern formatting. The actual text
is converted without changes.

• Character for default separator deleted.
• Words split by line feeds concatenated (only for lines with attributes A

or V).
• The internal call of function module RS3L_CONVERT_FIELDNAME

returned error level 1 when converting the field name.

• The system did convert text elements, but cannot ensure that the R/3
system can interpret these texts.

• The converted text contained symbols, for which the system cannot
ensure that they can be replaced by the respective values in the R/3
system:

– symbols that refer to table fields *)
– symbols that refer to segment fields *)
– symbols converted using the R/2 table 164V

• The internal call of function module RS3L_CONVERT_FIELDNAME
returned error level 2 when converting a field name.

• The internal call of function module RS3L_CONVERT_FIELDNAME
returned error level 3 when converting a field name.

• Conversion error
• Statement line truncated:

• Invalid reference to standard text:

• The internal call of function module RS3L_CONVERT_FIELDNAME
triggered one of the exceptions DOUBLE_TUMLE, DOUBLE_TUMLA
or INTERNAL_ERROR when converting a field name.

260 April 2001

 SAP AG BC SAPscript: Printing with Forms
 CONVERT_TEXT_R2

Table parameters:

LINES_R2 The table contains the text lines of the text in R/2 format.
Structure: TEXTL

LINES The table contains the text lines of the text in the R/3 SAPscript format.
Structure: TLINE

April 2001 261

BC SAPscript: Printing with Forms SAP AG
CONVERT_OTF_MEMORY

CONVERT_OTF_MEMORY
If you use the function module OPEN_FORM with the parameter DEVICE=OTF_MEM, the
system outputs the SAPscript text into a buffer instead of creating a spool request. The system
then formats the text internally for the pseudo device SCREEN and stores the result in the buffer.
To read the buffer, use function module CONVERT_OTF_MEMORY, which returns the contents
in the table parameter LINES. The parameter FORMAT determines the format of the text in this
table. The maximum line width used in the table in the field LINES-TDLINE is controlled by the
parameter MAX_LINEWIDTH.

Function call:

The only value supported at present for the FORMAT parameter is 'ASCII'.
With format ASCII, the table LINES contains in the field LINES-TDLINE the text to be output
(without any control characters), formatted according to the specified maximum line width. The
field LINES-TDFORMAT contains the flag for a SAPscript long line with line feed (/=), if you want
to indicate the beginning of the line. Lines that contain only the long line flag (=) in this field, are
continuation lines of the previous line. In the ASCII format, page breaks are not indicated.
You can use the text returned with format ASCII as SAPscript text by interpreting the field LINES-
TDFORMAT as SAPscript format column. Or, you can use the text as RAW text by ignoring the
field LINES-TDFORMAT and interpreting each line of the table LINES (field LINES-TDLINE) as
one text line.

 ERR_FORMAT =

CALL FUNCTION 'CONVERT_OTF_MEMORY'
 EXPORTING FORMAT = 'ASCII'
 MAX_LINEWIDTH = 132
 IMPORTING BIN_FILESIZE =
 TABLES LINES = ?...
 EXCEPTIONS MEMORY_EMPTY =
 ERR_MAX_LINEWIDTH =

 ERR_CONV_NOT_POSSIBLE =

Export parameters:

FORMAT

Define the format into which you want to convert the SAPscript OTF
output. At present, you can use only the ASCII format.
Default value: 'ASCII'

MAX_LINEWIDTH Enter the maximum line width a converted text line may have in table
LINES.
The maximum line width must be between 2 and 132.
Default value: 132

262 April 2001

 SAP AG BC SAPscript: Printing with Forms
 CONVERT_OTF_MEMORY

Import parameters:

BIN_FILESIZE For binary format: number of bytes in LINES

Table parameters:

LINES The table returns the converted text lines.
Structure: TLINE

Exceptions:

MEMORY_EMPTY The memory was empty.
Possible reasons:

ERR_MAX_LINEWIDTH The line width specified in parameter MAX_LINEWIDTH is not
between 2 and 132.

ERR_FORMAT The parameter FORMAT contains a target format into which
SAPscript cannot convert the OTF output.

ERR_CONV_NOT_POSSIBLE During conversion of the text from SAPscript OTF format into
the specified target format, an error occurred. The conversion
process is canceled.

• During formatting, an error occurred and the memory was
not filled.

• When reading the memory, an error occurred.

April 2001 263

	Copyright
	Icons
	Inhalt
	BC SAPscript: Printing with Forms
	BC - SAPscript: Printing with Forms
	Overview
	Printing Texts Using Forms
	
	Structure of a Form [Seite 13]
	Text Elements of a Form [Seite 26]
	Using Print Programs [Seite 32]
	Window Types [Seite 35]
	How the Composer Works [Seite 43]
	Form Control [Seite 48]
	Printing Text Lines and Text Elements [Seite 53]

	Structure of a Form
	Header Data
	Layout Example
	Text Element
	Paragraph and Character Formats
	Windows and Text Elements
	Pages
	Text Elements in the PC Editor
	Window
	Pages
	Page Window
	Page Windows
	Text Elements of a Form
	Text Elements with Names
	Text Elements Without Names
	Activate Text Elements
	Print Program
	Using Print Programs
	Example of a Print Program
	Window Types
	Constant Windows (CONST)
	Variable Windows (VAR)
	Main Windows (MAIN)
	Output Areas in the Main Window
	
	TOP, BODY, and BOTTOM Areas of a Main Window

	TOP Area
	BOTTOM Area
	How the Composer Works
	Page Control in Forms
	Defining a Subsequent Page Statically
	Defining a Subsequent Page Dynamically
	Formatting a Form Page
	Form Control
	Several Print Requests
	Starting a Form Again
	Switching Forms
	Finding Forms
	Printing Text Lines and Text Elements
	
	
	Text Lines
	Text Elements

	Output to the BODY Area of the Main Window
	Output to a Window of Type VAR or CONST
	Output to the TOP or BOTTOM Areas of the Main Window
	Calling Control Statements
	The Programming Interface
	Structure of Texts
	Text Header
	Text Lines
	ITF/OTF Format
	Grouping Texts
	Text Object
	Text ID
	Attributes of Texts
	Storage Mode
	Line Width
	Editing Interfaces
	Editor Title Line
	Text Format
	Style for Formatting Output
	Form for Formatting Output
	INCLUDE Texts
	Structure of the Text Key
	Storing Text Components
	
	STXH: Store text header
	STXL: Store text lines in ITF format
	STXB: Store text lines in other formats

	SAPscript Data Formats
	Authorization Checks
	
	Authorization Checks for Standard Texts
	Authorization Checks for Other Texts

	Storing Texts
	Storing Texts Directly
	Storing Texts in Update Task
	Renaming Texts
	Text Memory
	Structure of the Text Memory
	Naming Conventions for the Text Memory
	Text Memory and CALL Mode
	Keeping Texts in the Text Memory
	Changing the Storage Mode Dynamically
	Work Areas for Texts
	Text Header : THEAD
	
	
	TDOBJECT: application object of the text
	TDNAME: name of the text
	TDID: ID of the text
	TDSPRAS: language key of the text
	TDTITLE: short description of the text
	TDSTYLE: style including paragraph and character formats
	TDFORM: form for output
	TDVERSION: version number of the text
	TDFUSER: name of the user who created the text
	TDFRELES: release at which the text was created
	TDFDATE: creation date
	TDFTIME: creation time
	TDLUSER: name of the user who last changed the text
	TDLRELES: release at which the last change to the text occurred
	TDLDATE: date of last change
	TDLTIME: time of last change
	TDLINESIZE: line width in the editor
	TDTXTLINES: number of text lines
	TDOSPRAS: original language (only for forms and styles)
	TDTRANSTAT: translation status (only for forms and styles)
	TDMACODE1: short title 1
	TDMACODE2: short title 2
	TDREFOBJ: object of the reference text
	TDREFNAME: name of the reference text
	TDREFID: text ID of the reference text
	TDTEXTTYPE: text format
	TDOCLASS: object class
	TDHYPHENAT: not used
	TDCOMPRESS: not used

	Structure TLINE of the Lines Table
	
	
	TDFORMAT: format field
	TDLINE: text line

	Example: Creating Work Areas in the Program
	SAPscript in Detail
	Integrating Text-Processing into Application Programs
	Reading Texts
	Saving Texts
	Deleting Texts
	Calling the Editor
	
	
	Call the Editor Without Navigation
	Call the Editor with Navigation

	Finding Texts
	Copying Texts
	Inserting Text Lines into Application Screens
	Inserting Other Texts
	Including Texts
	Referring to Texts
	Processing Texts from Within Programs
	Converting SAPscript Texts
	
	RTF Files
	ASCII Files
	Programming Example

	Consistency Checks
	Printing Texts
	SAPscript Control Tables and Structures
	
	
	Control Tables

	TTXOB: Definition of the Text Objects
	
	
	TDSAVEMODE: storage mode
	TDAPPL: editor interface
	TDLINESIZE: line width of the editor
	TDSTYLE: default style
	TDFORM: default form
	TDTEXTTYPE: text format

	TTXOT: Description of the Text Objects
	TTXID: Definition of Text IDs
	
	
	TDINCLID: include ID
	TDSHOWNAME: display text name
	TDTEXTTYPE: text format
	TDKEYSTRUC: structure of the text key
	TDOBLIGAT: reserve
	TDDELPROT: reserve
	TDINCLRES: reserve

	TTXIT: Description of the Text IDs
	SAPscript Structures
	Print Output
	Controlling Print Output
	
	
	TDPAGESLCT: SAPscript: select print page
	TDPREVIEW: SAPscript: print view
	TDNOPREV: SAPscript: disable print view
	TDNOPRINT: SAPscript: disable printing from within print view
	TDTITLE: SAPscript: text for title line of print selection screen
	TDPROGRAM: SAPscript: program name for replacing symbols
	TDTEST: SAPscript: test printout
	TDIEXIT: SAPscript: return immediately after printing
	TDGETOTF: SAPscript: return the OTF table
	TDDEST: Spool: name of the output device
	TDPRINTER: Spool: name of the device type
	TDCOPIES: Spool: number of copies
	TDNEWID: Spool: new spool request
	TDIMMED: Spool: print request immediately
	TDDELETE: Spool: delete request after printing
	TDLIFETIME: Spool. retention time of the request
	TDDATASET: Spool: identification of the request
	TDSUFFIX1: Spool: suffix 1 of the request
	TDSUFFIX2: Spool: suffix 2 of the request
	TDAUTORITY: Spool: authorization for request
	TDARMOD: Spool: archiving mode
	TDCOVER: Spool: print cover page
	TDCOVTITLE: Spool: cover page: title text
	TDRECEIVER: Spool: cover page: recipient name
	TDDIVISION: Spool: cover page: division name
	TDSCHEDULE: SAPcomm: type of scheduled send time
	TDSENDDATE: SAPcomm: requested send date
	TDSENDTIME: SAPcomm: requested send time
	TDTELELAND: SAPcomm: country key for recipient country
	TDTELENUM: SAPcomm: number of telecommunications partner

	Return Parameters of the Print Output
	
	
	TDPAGESLCT: SAPscript: select print pages
	TDNOPREV: SAPscript: print view
	TDPREVIEW: SAPscript: display print view
	TDNOPRINT: SAPscript: disable print function from print view
	TDTITLE: SAPscript: title on print selection screen
	TDPROGRAM: SAPscript: program name for replacing symbols
	TDTEST: SAPscript: test printout
	TDIEXIT: SAPscript: return after printing
	TDGETOTF: SAPscript: return of OTF table; no print output
	TDSCRNPOS: SAPscript: display position for OTF on the screen
	TDAPPL: SAPscript: interface of the print view
	TDOTFCALL: SAPscript: name of driver function module
	TDOTFTYPE: SAPscript: driver type for OTF output
	TDPAGES: SAPscript: number of printed pages
	TDFORMS: SAPscript: number of used forms
	TDWARNINGS: SAPscript: warnings during formatting
	TDDEVICE: SAPscript: type of output device
	TDSCREEN: SAPscript: type of screen display
	TDSCDRIVER: SAPscript: type of screen driver
	TDSCABAP: SAPscript: ABAP list as print view
	USEREXIT: SAPscript: last executed user action
	TDRTL: SAPscript: right-to-left language in OTF
	TDDEST: Spool: name of output device
	TDPRINTER: Spool: name of device type
	TDCOPIES: Spool: number of copies
	TDNEWID: Spool: new request
	TDIMMED: Spool: print request immediately
	TDDELETE: Spool: delete request after printing
	TDLIFETIME: Spool: retention period of the request
	TDDATASET: Spool: name of the request
	TDSUFFIX1: Spool: suffix 1 of the request
	TDSUFFIX2: Spool: suffix 2 of the request
	TDARMOD: Spool: archiving mode
	TDCOVER: Spool: print cover page
	TDCOVTITLE: Spool: cover page: title text
	TDRECEIVER: Spool: cover page: recipient name
	TDDIVISION: Spool: cover page: division name
	TDAUTORITY: Spool: print authorization
	TDSPOOLID: Spool: number of the request
	TDDRIVER: Spool: name of the driver
	TDABAP: Spool: driver type
	TDPAGEFORM: Spool: page format of the request
	TDSCHEDULE: SAPcomm: type of scheduled send time
	TDSENDDATE: SAPcomm: requested send date
	TDSENDTIME: SAPcomm: requested send time
	TDTELELAND: SAPcomm: country key
	TDTELENUM: SAPcomm: number of the telecommunications partner
	TDTELENUME: SAPcomm: dialed number of the telecommunications partner

	Editor Control
	Controlling the Editor
	
	
	NOENDLINES: no blank lines at the end of the text
	SCROLLEND: position cursor at text end
	USERTITLE: suppress SAPscript status information
	SHOWTPFM: display the format of template lines
	APP_NEXT: activate menu function Next text
	APP_PREV: activate menu function Previous text
	APP_SUBID: use existing editor interfaces for own applications
	CHANGEMODE: allow switching between Create/Change

	Return Parameter of the Editor
	
	
	FUNCTION: change information on the text module
	USEREXIT: exit status of the editor

	SAPscript Function Modules
	READ_TEXT
	
	Function call:
	Export parameters:
	Import parameters:
	Table parameters:
	Exceptions:

	READ_TEXT_INLINE
	
	Function call:
	Export parameters:
	Import parameters:
	Table parameters:
	Exceptions:

	READ_REFERENCE_LINES
	
	Function call:
	Export parameters:
	Import parameters:
	Table parameters:
	Exceptions:

	SAVE_TEXT
	
	Function call:
	Export parameters:
	Import parameters:
	Table parameters:
	Exceptions:

	DELETE_TEXT
	
	Function call:
	Export parameters:
	Exceptions:

	COPY_TEXTS
	
	Function call:
	Export parameters:
	Import parameters:
	Table parameters:

	SELECT_TEXT
	
	Function call:
	Export parameters:
	Import parameters:
	Table parameters:
	Exceptions:

	REFER_TEXT
	
	
	Handling in the Editor

	Function call:
	Export parameters:
	Import parameters:
	Table parameters:
	Exceptions:

	RENAME_TEXT
	
	Function call
	Export parameters
	Exceptions

	COMMIT_TEXT
	
	Function call:
	Export parameters:
	Import parameters:

	INIT_TEXT
	
	Function call:
	Export parameters:
	Import parameters:
	Table parameters:
	Exceptions:

	EDIT_TEXT
	
	Function call
	Export parameters
	Import parameters
	Table parameters
	Exceptions

	EDIT_TEXT_INLINE
	
	Function call:
	Export parameters:
	Import parameters:
	Table parameters:
	Exceptions:

	CHECK_TEXT_AUTHORITY
	
	Function call:
	Export parameters:
	Exceptions:

	CHECK_TEXT_ID
	
	Function call:
	Export parameters:
	Import parameters:
	Exceptions:

	CHECK_TEXT_LANGUAGE
	
	Function call:
	Export parameters:
	Exceptions:

	CHECK_TEXT_OBJECT
	
	Function call:
	Export parameters:
	Import parameters:
	Exceptions:

	CHECK_TEXT_NAME
	
	Function call:
	Export parameters:
	Exceptions:

	TEXT_SYMBOL_COLLECT
	
	Function call:
	Table parameters:

	TEXT_SYMBOL_PARSE
	
	Function call:
	Export parameters:
	Import parameters:
	Exceptions:

	TEXT_SYMBOL_REPLACE
	
	Function call:
	Export parameters:
	Import parameters:
	Table parameters:

	TEXT_SYMBOL_SETVALUE
	
	Function call:
	Export parameters:

	TEXT_CONTROL_REPLACE
	
	Function call:
	Export parameters:
	Import parameters:
	Table parameters:

	TEXT_INCLUDE_REPLACE
	
	Function call:
	Export parameters:
	Import parameters:
	Table parameters:

	PRINT_TEXT
	
	Function call:
	Export parameters:
	Import parameters:
	Table parameters:
	Exceptions:

	PRINT_TEXT_ITF
	
	Function call:
	Export parameters:
	Import parameters:
	Table parameters:

	OPEN_FORM
	
	Function call:
	Export parameters:
	Import parameters:
	Exceptions:

	CLOSE_FORM
	
	Function call:
	Import parameters:
	Table parameters:
	Exceptions:

	START_FORM
	
	Function call:
	Export parameters:
	Import parameters:
	Exceptions:

	WRITE_FORM
	
	Function call:
	Export parameters:
	Import parameters:
	Exceptions:

	WRITE_FORM_LINES
	
	Function call:
	Export parameters:
	Import parameters:
	Table parameters:
	Exceptions:

	END_FORM
	
	Function call:
	Import parameters:
	Exceptions:

	CONTROL_FORM
	
	Function call:
	Export parameters:
	Exceptions:

	READ_FORM_ELEMENTS
	
	Function call:
	Export parameters:
	Table parameters:
	Exceptions:

	READ_FORM_LINES
	
	Function call:
	Export parameters:
	Table parameters:
	Exceptions:

	CONVERT_TEXT
	
	
	DIRECTION = 'EXPORT'FORMAT_TYPE = 'RTF'
	DIRECTION = 'EXPORT'FORMAT_TYPE = 'ASCII'
	DIRECTION = 'IMPORT'FORMAT_TYPE = 'RTF'
	DIRECTION = 'IMPORT'FORMAT_TYPE = 'ASCII'
	Format conversion

	Function call:
	Export parameters:
	Import parameters:
	Table parameters:

	EXCHANGE_ITF
	
	Function call:
	Export parameters:
	Import parameters:
	Table parameters:
	Exceptions:

	IMPORT_TEXT
	
	
	FORMAT_TYPE = 'ITF'
	FORMAT_TYPE = 'RTF'
	FORMAT_TYPE = 'ASCII'
	Format conversion

	Function call:
	Export parameters:
	Import parameters:
	Table parameters:
	Exceptions:

	EXPORT_TEXT
	
	
	FORMAT_TYPE = 'ITF'
	FORMAT_TYPE = 'RTF'
	FORMAT_TYPE = 'ASCII'
	Format conversion

	Function call:
	Export parameters:
	Table parameters:
	Exceptions:

	TRANSFER_TEXT
	
	Function call:
	Export parameters:
	Import parameters:
	Table parameters:
	Exceptions:

	CONVERT_TEXT_R2
	
	
	Line format
	Line attributes
	Control statements
	Symbols

	Function call:
	Export parameters:
	Import parameters:
	Table parameters:

	CONVERT_OTF_MEMORY
	
	Function call:
	Export parameters:
	Import parameters:
	Table parameters:
	Exceptions:

