
SAP Communication: CPI-C
Programming (BC-CST-GW)

H
E

L
P

.B
C

S
R

V
S

K
P

R

Re lease 4 .6C

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

2 April 2001

Copyright

© Copyright 2001 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose
without the express permission of SAP AG. The information contained herein may be changed
without prior notice.

Some software products marketed by SAP AG and its distributors contain proprietary software
components of other software vendors.

Microsoft®, WINDOWS®, NT®, EXCEL®, Word®, PowerPoint® and SQL Server® are registered
trademarks of
Microsoft Corporation.

IBM®, DB2®, OS/2®, DB2/6000®, Parallel Sysplex®, MVS/ESA®, RS/6000®, AIX®, S/390®,
AS/400®, OS/390®, and OS/400® are registered trademarks of IBM Corporation.

ORACLE® is a registered trademark of ORACLE Corporation.

INFORMIX®-OnLine for SAP and Informix® Dynamic Server
TM

 are registered trademarks of
Informix Software Incorporated.

UNIX®, X/Open®, OSF/1®, and Motif® are registered trademarks of the Open Group.

HTML, DHTML, XML, XHTML are trademarks or registered trademarks of W3C®, World Wide
Web Consortium,
Massachusetts Institute of Technology.

JAVA® is a registered trademark of Sun Microsystems, Inc.

JAVASCRIPT® is a registered trademark of Sun Microsystems, Inc., used under license for
technology invented and implemented by Netscape.

SAP, SAP Logo, R/2, RIVA, R/3, ABAP, SAP ArchiveLink, SAP Business Workflow, WebFlow,
SAP EarlyWatch, BAPI, SAPPHIRE, Management Cockpit, mySAP.com Logo and mySAP.com
are trademarks or registered trademarks of SAP AG in Germany and in several other countries
all over the world. All other products mentioned are trademarks or registered trademarks of their
respective companies.

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

April 2001 3

Icons

Icon Meaning

Caution

Example

Note

Recommendation

Syntax

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

4 April 2001

Inhalt

SAP Communication: CPI-C Programming (BC-CST-GW)..............................8
SAP Communication... 9
SAP Interfaces ... 10

Communications Basis CPI-C.. 11
Remote Function Call (RFC).. 13
Queue Application Programming Interface (Q-API)... 14

Communication in an IBM Host Environment (SNA)... 15
Communication in a BS2000 Host Environment.. 16
Communication in a TCP/IP Environment .. 17
Programming under Various Constellations.. 18
Communication Between R/3 Systems... 19
Communication Between R/3 and R/2 (MVS/VSE) ... 20

From R/3 to R/2.. 21
From R/2 to R/3.. 23

Communication Between R/3 and R/2 (BS2000) .. 25
From R/3 to R/2.. 26
From R/2 to R/3.. 28

Communication Between R/3 and an Externally Registered Program 30
From R/3 to an External Program (registered program) .. 31
From an External Program to R/3 .. 36
Registered Program ... 39

Communication Between R/2 Systems... 40
Communication Between R/2 and an Externally Registered Program 41

From R/2 to an External Program (registered program) .. 42
From an External Program to R/2 .. 46

Communication Between C Programs.. 49
CPI-C Implementation in ABAP.. 51
Agreements Between Sender and Recipient.. 53

Setting the Send/Receive Mode... 54
Synchronization.. 55
Setting the Size of Transfer Units .. 56
Selecting Data Types and Structures .. 57
Data Conversion .. 58
Remotely Attachable ABAP Program .. 59
SAP Logon Protocol for External CPI-C Programs.. 62
Establishing a Connection via an ABAP Program ... 65

CPI-C Implementation in ABAP.. 67
COMMUNICATION INIT: Initialization ... 68
COMMUNICATION ALLOCATE: Set up connection ... 70
COMMUNICATION ACCEPT: Accept connection... 72
COMMUNICATION SEND: Send Data.. 74
COMMUNICATION RECEIVE: Receive data .. 76
COMMUNICATION DEALLOCATE: Close the connection ... 78
Return Codes ... 79

CPI-C Interface in C... 82

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

April 2001 5

CPI-C Development Libraries... 83
Libraries Based on LU6.2: cpicslib... 84
Libraries Based on TCP/IP: cpictlib ... 86
Linking an SAP Development Library .. 87

Implemented CPI-C Function Calls.. 88
CPI-C Starter Set ... 89

CMINIT.. 91
CMACCP... 92
CMALLC.. 94
CMSEND... 95
CMRCV... 96
CMDEAL ... 98

Advanced Function Calls ... 99
CMCFM... 100
CMCFMD .. 101
CMCNVO .. 102
CMCVNI .. 103
CMSCSP... 104
CMSCST... 105
CMSCSU... 106
CMSPLN ... 107
CMSTPN... 108
CMSSL.. 109

SAP-Specific CPI-C Functions... 110
SAP_CMINIT .. 111
SAP_CMACCP ... 112
SAP_CMPERR ... 113
SAP_CMLOGON .. 114
SAP_CMCERR ... 116
SAP_CMLOADCONVTAB.. 117
SAP_CMMODCONVTAB ... 118
SAP_CMTIMEOUT ... 119
SAP_CMHANDLE... 120
SAP_CMGWHOST... 121
SAP_CMGWSERV ... 122
Functions for Registered CPI-C Programs ... 123

SAP_CMCANCREGTP ... 127
SNC Function Calls... 128

Define Variables for Host Types .. 130
Asynchronous Data Transfer With Q-API ... 132
Data Transfer ... 133
Queues ... 135
Queue Attributes ... 136
Queue Element .. 137
Queue Unit ... 138
Queue Interface in the R/3 System .. 139

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

6 April 2001

QUEUE_OPEN .. 140
QUEUE_PUT ... 142
QUEUE_GET ... 143
QUEUE_CLOSE .. 144
QUEUE_ERASE .. 145
QUEUE_DELETE .. 146
QUEUE_SCHEDULE... 147

Queue Interfaces in the R/2 System .. 148
Queue Interface for Release 5.0.. 149

ABAP Key Words.. 150
Queue Parameters.. 151
ABAP Statements ... 155

Transfer in BS2000 .. 156
Asynchronous Driver Communication .. 157

Recipient is not an SAP System.. 160
Recipient is not an SAP System.. 161

Queue Transfer Without Buffering .. 162
Notes on Installation ... 163
Extensions... 164

SAP ACCOUNTING Interface SAPSTEC (as of Release 4.3J, 4.4C and 5.0A) 166
Queue Interface for C Programs: RFC to R/3 ... 171
Using SAP Test Programs.. 174
Available SAP Test Programs.. 175
Specifying Program Parameters.. 177
Requirements for Starting an External Partner Program.. 178
Testing Connections... 179

Calling Program: ABAP Program in R/3 .. 180
Calling Program: ABAP Program in R/2 .. 181
Calling Program: Program Written in C.. 183

Error Analysis.. 185
Function SAP_CMPERR ... 186
Error Analysis Under OS/2 ... 187
Error Analysis Under UNIX and WindowsNT.. 189
Error Messages of the SAP Transfer Program... 191
Special Features on R/2 Hosts... 195
BS2000 R/2 Host: UTM-UTM Connection.. 196

Initiator: R/2 System... 199
Initiator: Non-SAP system.. 200

MVS/VSE R/2 Host: CICS and IMS ... 201
CICS Special Features... 202
IMS Special Features... 203

Sample Programs.. 204
Sample Program for R/3 ... 205
Sample Programs for R/2 Release 5.0... 208

Program RSAPPQ10 ... 209
Program RSAPPQ20 ... 212
Program RSAPPQ30 ... 214

APC and APQ Headers DSECT for Assembler Programs... 216

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

April 2001 7

Conversion Tables EBCIDC from/to ASCII ... 219
Creating Your Own Tables ... 220
Sample File with Conversion Tables... 221

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

SAP Communication: CPI-C Programming (BC-CST-GW)

8 April 2001

SAP Communication: CPI-C Programming (BC-CST-GW)
In this documentation, you will learn how to implement program-to-program communication
between SAP Systems (R/3 or R/2) and with external programs and systems using SAP’s CPI-C
interfaces.

CPI-C programming is only required in the following cases:

� Your program communicates with systems that do not support RFC (R/2 before Release
5.0D).

� You want to define your own protocol on the basis of CPI-C.

� You want to change an existing program which contains CPI-C calls.

The Remote Function Call interface further simplifies the implementation of communication. RFC
is an SAP interface based on CPI-C. For more details on RFC, refer to the documentation
Remote Communications [Extern].

For details on configuration, please refer to the documentation BC - SAP Communication
Configuration [Extern].

The following topics are discussed in this documentation:

SAP Communication [Seite 9]

Programming under Various Constellations [Seite 18]

CPI-C Implementation in ABAP [Seite 51]

CPI-C Interface in C [Seite 82]

Asynchronous Data Transfer With Q-API [Seite 132]

Using SAP Test Programs [Seite 174]

Error Analysis [Seite 185]

Special Features on R/2 Hosts [Seite 195]

Example Programs [Seite 204]

Conversion Tables EBCIDC from/to ASCII [Seite 219]

Special Features on R/2 Hosts [Seite 195]

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

SAP Communication

April 2001 9

SAP Communication
This chapter explains basic terms and discusses communication in various forms of the SAP
environment.

� SAP Interfaces [Seite 10]

� Communication in an IBM Host Environment (SNA) [Seite 15]

� Communication in a BS2000 Host Environment [Seite 16]

� Communication in a TCP/IP Environment [Seite 17]

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

SAP Interfaces

10 April 2001

SAP Interfaces
Purpose
SAP program interfaces simplify and standardize communication between different systems
and/or programs.

SAP communication interfaces exist at various levels. They are described in the following. The
main subject of this documentation is the SAP communication interface CPI-C.

The following SAP communications interfaces are available:

� Communications Basis CPI-C [Seite 11]

� Remote Function Call (RFC) [Seite 13]

� Queue Application Programming Interface (Q-API) [Seite 14]

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Communications Basis CPI-C

April 2001 11

Communications Basis CPI-C
Definition
The Common Programming Interface - Communications (CPI-C) is a standard call interface for
applications, which perform direct program-to-program communication.

CPI-C was first defined as a standardized communications interface by IBM in 1987, as part of
the SAA standard.

CPI-C was modified by X/Open to include additional functions. SAP's CPI-C implementations
support the X/Open Developers' Specification - CPI-C.

The main advantage of CPI-C is the easy portability of programs to various system platforms
made possible by the common interface.

Use
The CPI-C communications interface essentially fulfills the following requirements of program-to-
program communication:

� Communication setup

� Data exchange

� Data conversion (ASCII � EBCDIC)

� Communication control

� Communication close

Structure
The CPI-C interface can be split into two function groups. This division does not, however, imply
limitations in respect of possibilities to use and combine the functions. The function groups are
there merely to guide the user:

� CPI-C Starter Set

� Advanced Function Calls

CPI-C Starter Set
These basic functions represent the minimum range of functions shared by two partner
programs:

� Establishing a connection

� Data exchange

� Closing a connection

As these are the basic functions of a communication protocol, it is possible to reproduce the CPI-
C Starter Set on protocols other than LU6.2.

The SAP CPI-C development library cpictlib is an example of mapping to TCP/IP.

Advanced Function Calls
These advanced functions essentially cover the following task areas:

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Communications Basis CPI-C

12 April 2001

� Data Conversion

� Synchronization and control

� Changes in communication characteristics

� Checking of communication characteristics

� Security functions

Integration
The CPI-C interface is available for both C and ABAP programs.

CPI-C Development Libraries
Function call interfaces for the C language.

These platform-specific and protocol-dependent libraries implement a series of function calls of
the CPI-C communications interface. They also include SAP-specific function calls.

Function calls from the corresponding library enable communication between an external
program and an ABAP program or an external program.

See also CPI-C interface in C [Seite 82].

CPI-C Interface in ABAP
This is the function call interface for ABAP.

It implements some function calls of the CPI-C interface.

This interface allows an ABAP program to communicate with an ABAP program from another
SAP system (R/2 or R/3) or with a non-SAP program.

Further details are available in the section on CPI-C Implementation in ABAP [Seite 51].

A detailed description of the CPI-C interface is provided in the documentation on BC
- SAP Communication: CPI-C Programming [Extern].

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Remote Function Call (RFC)

April 2001 13

Remote Function Call (RFC)
Definition
This interface is logically above CPI-C. It simplifies the implementation of communication
processes by relieving the programmer of the task of writing his own communication routines.

Use
The RFC interface enables function calls between two SAP systems (R/3 or R/2), or between an
SAP system and an external one. The RFC library functions support the C programming
language and Visual Basic (on Windows platforms).

In the case of asynchronous RFC, calls are also transmitted to remote systems when the target
system is not active or momentarily cannot be reached (analog to Q-API).

For more details on this interface, refer to the following documentation:

Remote Communications [Extern]

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Queue Application Programming Interface (Q-API)

14 April 2001

Queue Application Programming Interface (Q-API)
Definition
Q-API is an interface for buffered data transfer. Data is transferred to the partner system using
CPI-C.

This is a set of functions, which places the data temporarily in a database queue, to be
processed later by a program running asynchronously.

Use
This SAP interface allows asynchronous data exchange between two systems (R/3, R/2 or an
non-SAP system).

As of R/3 Release 3.0 you can use the transactional RFC for buffered data transfer.

The transactional RFC is not supported in R/2.

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Communication in an IBM Host Environment (SNA)

April 2001 15

Communication in an IBM Host Environment (SNA)
Definition
A logical connection (Session [Extern]Error! No bookmark name given.) between two LUs
(Logical Unit [Extern]Error! No bookmark name given.) is necessary for communication in a
homogeneous SNA network. The SNA protocol LU6.2 is used when two application programs
are to communicate via a session of this type. Active communication is known as a conversation
[Extern].

A conversation between programs, which use different interfaces for the LU6.2 function calls, is
possible.

Examples of such interfaces are:

� CPI-C, APPC [Extern], EXEC CICS...

One of the most important characteristics of the LU6.2 [Extern] protocol is that a transaction
program [Extern] can call up a partner program on another system (Attach function). This allows
connections to be set up dynamically and event-orientated data exchange between the two
partners.

Integration
SAP offers a platform-specific development library for workstations which communicate with an
R/2 SNA system.

A platform-specific SNA communications subsystem must be installed and properly configured
on the workstation:

� SNAplusLink (HP)

� SNA Server (IBM)

� Transit (SNI)

� SNA Server (WindowsNT)

Communication between the workstation and host generally takes place via the SAP Gateway
[Extern] (CPI-C Handler).

For information on hardware and software supported, refer to the following brochure: SAP -
Supported Network Products.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Communication in a BS2000 Host Environment

16 April 2001

Communication in a BS2000 Host Environment
Definition
As in the SNA world, a session [Extern] between two network users is used as a medium for data
interchange.

In a BS2000 environment, program-to-program communication is possible with the following
constellations:

� UTM on both partner systems

A conversation [Extern] between two programs is based on UTM-D.

� DCAM with the SAP Gateway on the BS2000 host

In addition to an R/3 System, any external system can communicate with the R/2 System
via the SAP Gateway [Extern] and DCAM, providing the following requirements are met:

� TCP/IP support

� SAP communication interfaces (function libraries cpictlib or librfc)

The SAP Gateway allows communication both with an UTM R/2 System and with a
DCAM R/2 System.

For information on hardware and software supported, refer to the following brochure: SAP -
Supported Network Products.

Detailed documentation on the SAP Gateway for BS2000 is supplied with the gateway, in the
SAPGW.README file.

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Communication in a TCP/IP Environment

April 2001 17

Communication in a TCP/IP Environment
In the following constellations, program-to-program communication is based on the TCP/IP
transport protocol:

� R/3 � R/3

� R/3 � Non-SAP Program

For non-SAP programs, SAP provides the platform-specific development library cpictlib.

� R/3 (or non-SAP program) � R/2 in BS2000

The SAP Gateway runs under DCAM (from V11) with TCP/IP and the Socket interface
on the BS2000 host.

In all of these constellations, the SAP Gateway [Extern] (CPI-C Handler) is required.

For information on hardware and software supported, refer to the following brochure: SAP-
Supported Network Products

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Programming under Various Constellations

18 April 2001

Programming under Various Constellations
Various constellations are possible for communication between programs within the SAP world
(R/2 and R/3), and between SAP programs and external programs.

Communication is based on various protocols, depending on constellation:

� SNA-LU6.2

� TCP/IP

If the R/2 host is a BS2000 System, the SAP Gateway runs under DCAM in BS2000 and
communicates with R/3 or an external program on the basis of TCP/IP.

The SAP Gateway is always necessary for communication via one of the interfaces implemented
by SAP.

The individual constellations are described in the following.

R/3 � R/3 [Seite 19]

R/3 � R/2 (MVS/VSE) [Seite 20]

R/3 � R/2 (BS2000) [Seite 25]

R/3 � Non-SAP Program [Seite 30]

R/2 � R/2 [Seite 40]

R/2 � Non-SAP Program [Seite 41]

C Program � C Program [Seite 49]

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Communication Between R/3 Systems

April 2001 19

Communication Between R/3 Systems
Purpose
An ABAP program in an R/3 System uses an RFC or CPI-C call to start an ABAP program in
another R/3 System, and exchanges data with this program.

With this constellation, you must note the following guidelines:

� Using the RFC interface:

– Choose the target system using transaction SM59.

– The called function must be an ABAP function module, which has the “remote” ID in
the function library.

For more details on the RFC interface, refer to the documentation Remote
Communications [Extern].

� Using the CPI-C interface

– The calling ABAP program must build the data for the logon to the target system,
convert it to EBCDIC and receive the response (possibly a denial) from the target
system.

– The side info table TXCOM must be configured in the calling R/3 System. For this,
use transaction code SM54.

For details on the configuration of TXCOM, refer to the relevant topic in the following
documentation:

BC SAP Communication: Configuration [Extern]

– The target ABAP program must contain the form routine specified in the connect
data.

For details on CPI-C calls, refer to the topic CPI-C Implementation in ABAP [Seite 51].

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Communication Between R/3 and R/2 (MVS/VSE)

20 April 2001

Communication Between R/3 and R/2 (MVS/VSE)
Purpose
The following topics provide an overview about the prerequisites for the partner systems.

As of R/2 Release 5.0D, you can also use an RFC call instead of a CPI-C call.

The following limitation applies to an MVS/VSE host:

� CICS only as the DC system (at present)

� IMS as of Version 4.1 for complete LU6.2 support

These prerequisites depend on whether the calling system is R/3 or R/2:

From R/2 to R/3 [Seite 23] [Seite 21]

From R/3 to R/2 [Seite 21] [Seite 23]

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

From R/3 to R/2

April 2001 21

From R/3 to R/2
Purpose
An ABAP program in an R/3 System uses an RFC or CPI-C call to start an ABAP program in an
R/2 System on an MVS/VSE host, and exchanges data with this program.

The SAP Gateway builds connections to the R/2 host via LU6.2 using services of the SNA
communication subsystem. Several communications requests can be processed via one SAP
Gateway.

Prerequisites
With this constellation, you must note the following guidelines:

� Using the RFC interface:

� There must be a SAP Gateway in use that supports SNA.

� There must be an SNA communication subsystem.

� The called function must be an ABAP function module, which has the “remote” ID in
the function library.

For more details on the RFC interface, refer to the documentation Remote
Communications [Extern].

� Using the CPI-C interface

� There must be a SAP Gateway in use that supports SNA.

� There must be an SNA communication subsystem.

� The ABAP target program on the R/2 host must contain the form routine specified in
the connect data.

� The calling ABAP program must build the data for the logon to the target system,
convert it to EBCDIC and receive the response (possibly a denial) from the target
system.

� The side info table TXCOM must be configured in the calling R/3 System. For this,
use transaction code SM54.

For details on the configuration of TXCOM, refer to the relevant topic in the following
documentation:

� Using the CPI-C interface

� There must be a SAP Gateway in use that supports SNA.

� There must be an SNA communication subsystem.

� The ABAP target program on the R/2 host must contain the form routine specified in
the connect data.

� The calling ABAP program must build the data for the logon to the target system,
convert it to EBCDIC and receive the response (possibly a denial) from the target
system.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

From R/3 to R/2

22 April 2001

� The side info table TXCOM must be configured in the calling R/3 System. For this,
use transaction code SM54.

For details on the configuration of TXCOM, refer to the relevant topic in the following
documentation:

BC SAP Communication: Configuration [Extern]

Process flow
� Using the RFC interface:

Once the above requirements have been met, select the target system with the
Transaction SM59.

� Using the CPI-C interface

For details on CPI-C calls, refer to the topic CPI-C Implementation in ABAP [Seite 51].

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

From R/2 to R/3

April 2001 23

From R/2 to R/3
Purpose
An ABAP program in an R/2 System starts an ABAP program in an R/3 System and exchanges
data with this program.

You can start the target program from the R/2 host via an SAP communications program.

Prerequisites
The SAP communications program and the SAP Gateway must be on a UNIX computer known in
the SNA network. The target program, on the other hand, can be on a UNIX computer not in the
SNA network.

Side info files must be configured on the UNIX computer known in the SNA network and on the
Gateway host.

With this constellation, you must note the following guidelines:

� Using the RFC interface:

� The side info tables XCOM and RFCD must be configured.

The destination of the function call must match the corresponding entry in XCOM
and RFCD.

� The called function must exist as a function module in the ABAP function library and
have the “remote” ID.

For more details on the RFC interface, refer to the documentation Remote
Communications.

� Using the CPI-C interface

� The SAP Gateway must be in use.

� The communications program must be known to the SNA software.

� The User ID and the work directory of the program started are manufacturer-specific:

IBM: The program runs under the user ID specified in the SNA definition, in the
home directory of this user ID.

HP: The program runs under the user ID sna (ID, under which the SNA kernel
runs), in the directory containing the program.

IMS:

If you log on to an IMS security system, the session must not be closed. For this
reason, the environment variable SAP_KEEP_SESSION was introduced.

For SAP_KEEP_SESSION=1, the session is retained despite the statement
COMMUNICATION DEALLOCATE.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

From R/2 to R/3

24 April 2001

Process flow
1. The calling ABAP program reads the TP name in the XCOM table and starts the SAP

communications program gwhost (for CICS) or gwims (for IMS) under this name on a
computer known in the SNA network.

2. The communications program sets up a Conversation with the SAP Gateway.

3. The SAP Gateway starts the actual target program. The computer, on which it is located,
does not have to be known in the SNA network.

The communications program simply passes on the data during the CPI-C dialog.

For details on the configuration of side info files, refer to the following topic in the documentation
BC SAP Communication: Configuration:

� Side Information in R/2 on the MVS/VSE Host: XCOM [Extern]

� Parameters on SNA Subsystem Platform with R/2 [Extern]

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Communication Between R/3 and R/2 (BS2000)

April 2001 25

Communication Between R/3 and R/2 (BS2000)
Purpose
The following topics provide an overview about the prerequisites for the partner systems.

These prerequisites depend on whether the calling system is R/3 or R/2.

From R/2 to R/3 [Seite 28] [Seite 26]

From R/3 to R/2 [Seite 26] [Seite 28]

As of R/2 Release 5.0D, you can also use an RFC call instead of a CPI-C call.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

From R/3 to R/2

26 April 2001

From R/3 to R/2
Purpose
An ABAP program in an R/3 System uses an RFC or CPI-C call to start an ABAP program in an
R/2 System under DCAM or UTM on a BS2000 host, and exchanges data with this program.

Prerequisites
� Using the RFC interface:

� The SAP Gateway must run under DCAM in BS2000.

� The called function must be an ABAP function module, which has the “remote” ID in the
function library.

For more details on the RFC interface, refer to the documentation Remote
Communications [Extern].

Using the CPI-C interface

� The SAP Gateway must run under DCAM in BS2000.

� The target ABAP program must contain the form routine specified in the connect data.

� If you are using the CPI-C calls from ABAP, the calling ABAP program must build the
data for the logon to the target system, convert it to EBCDIC and receive the response
(possibly a denial) from the target system.

� The side info table TXCOM must be configured in the calling R/3 System. For this, use
transaction code SM54.

For details on the configuration of TXCOM, refer to the relevant topic in the following
documentation:

BC SAP Communication: Configuration [Extern]

� If there is a side info file SAPGW.DATA.SIDEINFO on the BS2000 host, an application
can only be reached if the side info file contains an entry for this application.

For details on configuration, please refer to the documentation BC - SAP
Communication: Configuration under the topic Connection Setup to the R/2 System
[Extern]

Process flow
� Using the RFC interface:

Once the above requirements have been met, select the target system with the
Transaction SM59.

For more details on the RFC interface, refer to the documentation Remote
Communications [Extern].

� Using the CPI-C interface

For details on configuration, please refer to the documentation BC - SAP
Communikation: Configuration under the topic Connection Setup to the R/2 System

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

From R/3 to R/2

April 2001 27

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

From R/2 to R/3

28 April 2001

From R/2 to R/3
Purpose
An ABAP program in an R/2 System starts an ABAP program in an R/3 System and exchanges
data with this program.

You can start the target program from the R/2 host via an SAP communications program.

Prerequisites
With this constellation, you must note the following guidelines:

� Using the RFC interface:

� The side info tables XCOM and RFCD must be configured.

The destination of the function call must match the corresponding entry in XCOM
and RFCD.

� The called function must exist as a function module in the ABAP function library and
have the “remote” ID.

For more details on the RFC interface, refer to the documentation Remote
Communications [Extern].

� Using the CPI-C interface

� The SAP Gateway must be in use.

Special Features under BS2000

The tasks SAPGWHO (program gwhost) are started by the R/2 System at
initialization. These tasks build the connection to an SAP Gateway under UNIX (not
under BS2000).

Process flow
In BS2000 the SAPGWHO jobs (program gwhost) perform the functions of the communications
program when connection is set up by the R/2 System.

The process consists of the following steps:

1. The calling ABAP program reads the TP name in table XCOM and starts the SAPGWHO
jobs.

2. The communications program sets up a Conversation with a SAP Gateway on the UNIX
computer.

3. The SAP Gateway starts the actual target program.

Side info files must be configured on the UNIX computer and on the BS2000 host.

For details on the configuration of side info files, refer to the documentation

BC SAP Communication: Configuration under the following topic: Connection Setup by the R/2
System [Extern].

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

From R/2 to R/3

April 2001 29

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Communication Between R/3 and an Externally Registered Program

30 April 2001

Communication Between R/3 and an Externally
Registered Program
Purpose
The SAP program interfaces allow an R/3 System to communicate and exchange data with an
external program.

As well as the external programs that are always started anew when they are needed, there is
also the new program type Registered Program [Seite 39].

The following topics provide an overview about the prerequisites for the partner systems.

These prerequisites depend on whether R/3 is the calling system or the called system:

From an External Program to R/3 [Seite 36] [Seite 31]

From R/3 to an External Program (registered program) [Seite 31] [Seite 36]

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

From R/3 to an External Program (registered program)

April 2001 31

From R/3 to an External Program (registered program)
Purpose
An ABAP program in an R/3 System starts a non-SAP program on another system and
exchanges data with this program.

The external program may also be a Registered Program [Seite 39].

Communication is possible with the following external target programs:

� ANSI-C programs on UNIX platforms by RFC or CPI-C call

� Visual Basic programs on Windows and WindowsNT platforms by RFC

Prerequisites / Process flow
With this constellation, you must note the following guidelines:

� Using the RFC interface:

� Choose the target system using transaction SM59.

� The called function must be an ABAP function module, which has the “remote” ID in
the function library.

� A C target program must have the following structure:
:
 #include "saprfc.h"
 :
 main(int argc,char **argv)
 {
 :
 Rfc_Handle handle;
 handle=RfcAccept(argv)
 :
 }

To link the C program, use the RFC library librfc.a.

� A Visual Basic target program must be structured as follows:
:
 Sub Main()
 gCommand$ = Command$
 :
 hRfc = RfcAcceptExt(gCommand$)
 :
 End Sub

To link the Visual Basic program, use the librfc.lib (Windows) or ntlibrfc.lib libraries.

The following DLLs are used:

� librfc.dll

� librfc2.dll

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

From R/3 to an External Program (registered program)

32 April 2001

� nidll.dll (for Windows only)

For more details on the RFC interface, refer to the documentation Remote
Communications [Extern].

� Using the CPI-C interface

� Table TXCOM in the calling R/3 System must contain the following parameter
values:

Symbolic destination

Logical unit of the partner: Host name

Transaction program of the partner

Communication types

E Partner is an external program

R Partner is a registered program

DEST1 is0001 cpict2 E

Use transaction code SM54 to maintain TXCOM.

For details on the configuration of TXCOM, refer to the relevant topic in the following
documentation:

BC SAP Communication: Configuration [Extern]

� A C target program must have the following structure.

Non-registered program Registered program

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

From R/3 to an External Program (registered program)

April 2001 33

 .
 .
< poss. host type
define, see Define
Variables for Host Types
[Seite 130] >
 .
 .
 #define SOCK 1
 #include
"cpic.h"
 .
 .
 main(int
argc,char **argv)
 {
 .
 .

SAP_CMACCP(argv);
 .
 .
 CMACCP(..);
 .
 .
 }

.
 .
<poss. computer
type define >
 :
 .
 #define
SOCK 1
 #include
"cpic.h"
 .
 .
 main(int
argc,char
**argv)
 {

SAP_CMREGTP(arg
v);
 .
 .

SAP_CMACCPTP(ar
gv);
 .
 .

CMACCP(..);
 .
 .
 }

To link the C program, use the function library pictlib.o.

The function SAP_CMACCP [Seite 112] is used to pass the parameters needed to
establish the connection to the CPI-C interface.

If an error occurs, SAP_CMALLC gives a return code not equal to CM_OK. After
calling SAP_CMACCP, you can use CPI-C programming as usual.

The pointer passed when SAP_CMACCP is called cannot point to data in the stack.

This is because the pointer is also used in the subsequent CPI-C functions.

� If the gateway host and the target host are the same:

UNIX:
The program must be in the search path of the of the User ID of the SAP Gateway and
be startable with the User ID. (HP-UX: Gateway host and target host must always be the
same.)

WindowsNT:

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

From R/3 to an External Program (registered program)

34 April 2001

The program must be in the work directory of the SAP Gateway.

OS/2:
The program is in the work directory of the SAP Gateway or it is defined in the
configuration file config.sys via the PATH variable.

� If the gateway host and the target host are not the same:

The SAP Gateway starts the C program on the target host. The following conditions must
be met:

UNIX:
The file.rhosts must be available in the HOME directory of the User ID of the SAP
Gateway..rhosts must contain the name of the gateway host.

The User ID, under which the SAP Gateway is running, must be known on the target
host.

The target program or a link to it must be available in the HOME directory.

CPI-C: limited to 8 characters

RFC: no limitation, relative or explicit path

OS/2:
The IP address of the respective partner computer must exist in the hosts file on both
computers.

The program is in a path defined in the configuration file config.sys via the PATH
variable.

� The started program can also be a shell script or a command procedure, which calls the
actual CPIC-C program. In this case, all parameters of the shell script must be passed to
the C program.

Example:

Command file for OS/2:
@REM ***********************
@REM * CPICPGM.CMD for OS/2
@REM ***********************
@SETLOCAL

@REM set up environment
@SET CPIC_TRACE=1
 :
@REM start Remote Partner Program
D:\CPIC\CPICPGM.EXE %1 %2 %3
 :
@ENDLOCAL

C shell script for UNIX:
#!/bin/csh
.
<Shell commands>
.

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

From R/3 to an External Program (registered program)

April 2001 35

<cpic-c program> $argv
.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

From an External Program to R/3

36 April 2001

From an External Program to R/3
Purpose
A non-SAP program uses an RFC or CPI-C call to start an ABAP program in an R/3 System, and
exchanges data with the ABAP program.

Prerequisites / Process flow
With this constellation, you must note the following guidelines:

� Using the RFC interface:

� A calling C program (ANSI-C) must be structured as follows:
:
 #include "saprfc.h"
 :
 main(int argc,char **argv)
 {
 :
 Rfc_Handle handle;
 handle=RfcOpen(RFC_OPTIONS *options????)
 :
 }

To link the C program, use the RFC library librfc.a.

� A calling Visual Basic program must be structured as follows:
:
 Sub Main()
 gCommand$ = Command$
 :
 hRfc = RfcOpenExt(gCommand$)
 :
 End Sub

To link the Visual Basic program, use the librfc.lib (Windows) or ntlibrfc.lib libraries.

The following DLLs are used:

� librfc.dll

� librfc2.dll

� nidll.dll (for Windows only)

� The called function must be an ABAP function module, which has the “remote” ID in
the function library.

For more details on the RFC interface, refer to the documentation Remote
Communications [Extern].

� Using the CPI-C interface

� The SAP Gateway must be in use.

� The calling program (ANSI-C) must be structured as follows:

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

From an External Program to R/3

April 2001 37

:
< poss. host type define, see Define Variables for Host Types [Seite 130]
>
 :
 #define SOCK 1
 #include "cpic.h"
 :
 main(int argc,char **argv)
 {
 :
 SAP_CMINIT(argv,<P2>,<P3>,<P4>);
 :
 CMINIT(..);
 :
 }

To link the C program, use the function library cpictlib.o.

� Parameterization

Via SAP_CMINIT [Seite 111]:

For communication with the gateway, you must use the function SAP_CMINIT to
pass the following parameters to the CPI-C interface:

P2: Gateway host

P3: Gateway service

P4: Protocol type/topology of the target program: C, I or E

C: Partner is the R/2 program

I: Partner is the R/3 program and can be reached via TCP/IP

E: Partner is an external program and can be reached via TCP/IP

The necessary constants are defined in the C header cpic.h.

If an error occurs, SAP_CMINIT delivers a return code not equal to CM_OK.

Side Info File:

You can also maintain these parameters in the side information file. In this case,
call the function SAP_CMINIT as follows:
SAP_CMINIT(argv,(PCPIC_CHAR)0,(PCPIC_CHAR)0,NO_PROTOCOL);

After calling SAP_CMINIT you can use CPI-C programming as usual.

You can also specify some parameters with SAP_CMINIT and read some from the
side information file.

� You must include target system and platform-dependent entries in the side
information file.

For details on the configuration of the side information file, refer to the relevant topic
in the following documentation:

BC SAP Communication: Configuration [Extern]

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

From an External Program to R/3

38 April 2001

� If timeouts occur when establishing a connection, you can use the environment
variable CPIC_TIMEOUT to extend the wait time. CPIC_TIMEOUT specifies the time
in seconds, which the gateway waits for the external program logon.

The pointer passed when SAP_CMACCP is called cannot point to data in the stack.

This is because the pointer is also used in the subsequent CPI-C functions.

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Registered Program

April 2001 39

Registered Program
Definition
A registered program is an external program that logs on to the Gateway once (registration); the
Gateway then starts a process and sets up a TCP/IP line. The program is then executed, if
required.

Use
Using a registered program is particularly advantageous for performance if it is a program that is
used very frequently. It avoids having to repeatedly start a new process.

Integration
A registered program can be stopped by another program with the CANCEL call (i.e. registration
is cancelled), if it is not active at that moment.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Communication Between R/2 Systems

40 April 2001

Communication Between R/2 Systems
Purpose
Between R/2 Systems, program-to-program communication is possible with the following
restrictions:

Restrictions for MVS/VSE hosts
Communication is only possible on MSE/VSE hosts when CICS is used as the data
communications system. Local communication in R/2 is not possible because CICS does not
support a local conversation via SNA-LU6.2.

Restrictions for BS2000 hosts
Communication between R/2 Systems on BS2000 is possible if both systems are operated under
UTM.

Prerequisites
With this constellation, you must note the following guidelines:

� When using the RFC interface (from 5.0D):

� The side info tables XCOM and RFCD must be configured.

The destination of the function call must match the corresponding entry in XCOM
and RFCD.

� The called function must be an ABAP function module, which has the “remote” ID in
the function library.

� Using the CPI-C interface

� The calling ABAP program must build the data for the logon to the target system,
convert it to EBCDIC and receive the response (possibly a denial) from the target
system.

� The table XCOM must be configured in the calling R/2 System.

For details on the configuration of XCOM, refer to the relevant topic in the following
documentation:

BC SAP Communication: Configuration [Extern]

� The target ABAP program must contain the form routine specified in the connect
data.

Process flow
For more details on the RFC interface, refer to the documentation Remote Communications
[Extern].

For details on CPI-C calls, refer to the topic CPI-C-Implementation in ABAP [Seite 51].

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Communication Between R/2 and an Externally Registered Program

April 2001 41

Communication Between R/2 and an Externally
Registered Program
Purpose
Communication between the R/2 System and external programs is also supported by the SAP
program interfaces.

The following topics provide an overview about the prerequisites for the R/2 host and the partner
computer.

These prerequisites depend on whether R/2 is the calling system or the called system:

From R/2 to an External Program (registered program) [Seite 42]

From an External Program to R/2 [Seite 46]

As of R/2 Release 5.0D, you can also use an RFC call instead of a CPI-C call.

The following limitation applies to an MVS/VSE host:

� CICS only as the DC system (at present)

� IMS as of Version 4.1 for complete LU6.2 support

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

From R/2 to an External Program (registered program)

42 April 2001

From R/2 to an External Program (registered program)
Purpose
An ABAP program in an R/2 System starts an ABAP program in an R/3 System or an non-SAP
program, and exchanges data with this program.

You can start the target program from the R/2 host via an SAP communications program.

Communication is possible with the following external target programs:

� ANSI-C programs on UNIX platforms by RFC or CPI-C call

� Visual Basic programs on Windows and WindowsNT platforms by RFC

Prerequisites
With this constellation, you must note the following guidelines:

� Using the RFC interface:

� The side info tables XCOM and RFCD must be configured.

The destination of the function call must match the corresponding entry in XCOM
and RFCD.

� The called function must exist as a function module in the ABAP function library and
have the “remote” ID.

� A C target program must have the following structure:
:
 #include "saprfc.h"
 :
 main(int argc,char **argv)
 {
 :
 Rfc_Handle handle;
 handle=RfcAccept(argv)
 :
 }

To link the C program, use the RFC library librfc.a.

� A Visual Basic target program must be structured as follows:
:
 Sub Main()
 gCommand$ = Command$
 :
 hRfc = RfcAcceptExt(gCommand$)
 :
 End Sub

To link the Visual Basic program, use the librfc.lib (Windows) or ntlibrfc.lib libraries.

The following DLLs are used:

� librfc.dll

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

From R/2 to an External Program (registered program)

April 2001 43

� librfc2.dll

� nidll.dll (for Windows only)

For more details on the RFC interface, refer to the documentation Remote
Communications [Extern].

� Using the CPI-C interface

� The SAP Gateway must be in use.

� The target program must have exactly the same structure as described in the
previous section.

� A C target program must have the following structure:

Non-registered program Registered Program
 .
 .
< poss. host type
define, see Define
Variables for Host Types
[Seite 130] >
 .
 .
 #define SOCK 1
 #include
"cpic.h"
 .
 .
 main(int
argc,char **argv)
 {
 .
 .

SAP_CMACCP(argv);
 .
 .
 CMACCP(..);
 .
 .
 }

.
 .
<poss. host
type define >
 :
 .
 #define
SOCK 1
 #include
"cpic.h"
 .
 .
 main(int
argc,char
**argv)
 {

SAP_CMREGTP(arg
v);
 .
 .

SAP_CMACCPTP(ar
gv);
 .
 .

CMACCP(..);
 .
 .
 }

� To link the C program, use the function library cpictlib.o.

The function SAP_CMACCP [Seite 112] is used to pass the parameters needed to
establish the connection to the CPI-C interface.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

From R/2 to an External Program (registered program)

44 April 2001

If an error occurs, SAP_CMACCP [Seite 112] gives a return code not equal to
CM_OK. After calling SAP_CMACCP, you can use CPI-C programming as usual.

The pointer passed when SAP_CMACCP is called cannot point to data in the stack.

This is because the pointer is also used in the subsequent CPI-C functions.

� The communications program must be known to the SNA software.

� The User ID and the work directory of the program started are manufacturer-specific:

IBM: The program runs under the user ID specified in the SNA definition, in the
home directory of this user ID.

HP: The program runs under the user ID sna (ID, under which the SNA kernel
runs), in the directory containing the program.

Special Features under BS2000

The tasks SAPGWHO (program gwhost) are started by the R/2 System at
initialization. These tasks build the connection to an SAP Gateway under UNIX (not
under BS2000).

IMS:

If you log on to an IMS security system, the session must not be closed. For this
reason, the environment variable SAP_KEEP_SESSION was introduced.

For SAP_KEEP_SESSION=1, the session is retained despite the statement
COMMUNICATION DEALLOCATE.

Process flow
The communication process depends on the host you are using:

� R/2 System on MVS/VSE Host

� R/2 System on BS2000 Host

R/2 System on MVS/VSE Host
The SAP communications program and the SAP Gateway must be on a UNIX host known in the
SNA network. The target program, on the other hand, can be on a UNIX host not in the SNA
network.

The process consists of the following steps:

1. The calling ABAP program reads the TP name in the XCOM table and starts the SAP
communications program gwhost (for CICS) or gwims (for IMS) under this name on a
host known in the SNA network.

2. The communications program sets up a Conversation with the SAP Gateway.

3. The SAP Gateway starts the actual target program. The host, on which it is located, does
not have to be known in the SNA network.

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

From R/2 to an External Program (registered program)

April 2001 45

The communications program simply passes on the data during the CPI-C dialog.

Side info files must be configured on the UNIX host known in the SNA network and on the
Gateway host.

For details on the configuration of side info files, refer to the following topic in the documentation
BC SAP Communication: Configuration:

� Side Information in R/2 on the MVS/VSE Host: XCOM [Extern]

� Parameters on SNA Subsystem Platform with R/2 [Extern]

R/2 System on BS2000 Host
In BS2000 the SAPGWHO jobs (program gwhost) perform the functions of the communications
program when connection is set up by the R/2 System.

The process consists of the following steps:

1. The calling ABAP program reads the TP name in table XCOM and starts the SAPGWHO
jobs.

2. The communications program sets up a Conversation with a SAP Gateway on the UNIX
host.

3. The SAP Gateway starts the actual target program.

Side info files must be configured on the UNIX host and on the BS2000 host.

For details on the configuration of side info files, refer to the following topic in the documentation
BC SAP Communication: Configuration: under the topic:

Connection Setup by the R/2 System.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

From an External Program to R/2

46 April 2001

From an External Program to R/2
Purpose
A non-SAP program uses an RFC or CPI-C call CMINIT/CMALLC [Seite 89] to start an ABAP
program in an R/3 System, and exchanges data with the ABAP program.

Prerequisites / Process flow
With this constellation, you must note the following guidelines:

� Using the RFC interface:

The RFC interface is available for R/2 as of Release 5.0D.

� A calling C program (ANSI-C) must be structured as follows:
:
 #include "saprfc.h"
 :
 main(int argc,char **argv)
 {
 :
 Rfc_Handle handle;
 handle=RfcOpen(RFC_OPTIONS *options????)
 :
 }

To link the C program, use the RFC library librfc.a.

� A calling Visual Basic program must be structured as follows:
:
 Sub Main()
 gCommand$ = Command$
 :
 hRfc = RfcOpenExt(gCommand$)
 :
 End Sub

To link the Visual Basic program, use the librfc.lib (Windows) or ntlibrfc.lib libraries.

The following DLLs are used:

� librfc.dll

� librfc2.dll

� nidll.dll (for Windows only)

� The called function must be an ABAP function module, which has the “remote” ID in
the function library.

For more details on the RFC interface, refer to the documentation Remote
Communications [Extern].

� Using the CPI-C interface

� The SAP Gateway must be in use.

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

From an External Program to R/2

April 2001 47

� The calling program (ANSI-C) must be structured as follows:
:
< poss. host type define, see Define Variables for Host Types [Seite 130]
>
 :
 #define SOCK 1
 #include "cpic.h"
 :
 main(int argc,char **argv)
 {
 :
 SAP_CMINIT(argv,<P2>,<P3>,<P4>);
 :
 CMINIT(..);
 :
 }

To link the C program, use the function library cpictlib.o.

� Parameterization

Via SAP_CMINIT [Seite 111]:

For communication with the gateway, you must use the function SAP_CMINIT to
pass the following parameters to the CPI-C interface:

P2: Gateway host

P3: Gateway service

P4: Protocol type/topology of the target program: C, I or E

C: Partner is the R/2 program

I: Partner is the R/3 program and can be reached via TCP/IP

E: Partner is an external program and can be reached via TCP/IP

The necessary constants are defined in the C header cpic.h.

If an error occurs, SAP_CMINIT delivers a return code not equal to CM_OK.

Side Info File:

You can also maintain these parameters in the side information file. In this case,
call the function SAP_CMINIT as follows:
SAP_CMINIT(argv,(PCPIC_CHAR)0,(PCPIC_CHAR)0,NO_PROTOCOL);

After calling SAP_CMINIT you can use CPI-C programming as usual.

You can also specify some parameters with SAP_CMINIT and read some from the
side information file.

You must include target system and platform-dependent entries in the side
information file.

For details on the configuration of the side information file, refer to the relevant topic
in the following documentation:

BC SAP Communication: Configuration [Extern]

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

From an External Program to R/2

48 April 2001

If timeouts occur when establishing a connection, you can use the environment variable
CPIC_TIMEOUT to extend the wait time. CPIC_TIMEOUT specifies the time in seconds, which
the gateway waits for the external program logon.

The pointer passed when SAP_CMACCP is called cannot point to data in the stack.

This is because the pointer is also used in the subsequent CPI-C functions.

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Communication Between C Programs

April 2001 49

Communication Between C Programs
Purpose
A C program uses a CPI-C call CMINIT/CMALLC [Seite 89] to start a C program on another host,
and exchanges data with this program via CPI-C.

RFC is not supported for this constellation.

Prerequisites / Process flow
With this constellation, the following requirements must be met:

� The SAP Gateway must be in use.

� If no local side information file was maintained, you must make the following entries in
the side information file on the gateway host:
DEST=<symbolic destination>

LU=<name of the target host>

TP=<name of the target host>

� The target program (ANSI-C) must be structured as follows:
:
< poss. host type define, see Define Variables for Host Types [Seite 130] >
 .
 #define SOCK 1
 #include "cpic.h"
 :
 main(int argc,char **argv)
 {
 :
 CMACCP(..);
 :.
 }

To link the C program, use the function library cpictlib.o.

� The calling program (ANSI-C) must be structured as follows:
:
< poss. host type define, see Define Variables for Host Types [Seite 130] >
 :
 #define SOCK 1
 #include "cpic.h"
 :
 main(int argc,char **argv)
 {
 :
 CMINIT(..);
 :
 }

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Communication Between C Programs

50 April 2001

To link the C program, use the function library cpictlib.o.

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

CPI-C Implementation in ABAP

April 2001 51

CPI-C Implementation in ABAP
Purpose
Communication statements of the CPI-C Starter Set are implemented in the ABAP programming
language. They are suitable for setting up simple communication.

This allows an ABAP program to actively set up a connection to one or more external application
programs in order to send data directly to these programs.

Conversely, an external program can set up a connection to an SAP System and send a start
request for an ABAP program. A correct logon to the SAP System is necessary for this type of
connection setup.

The ABAP statements are initiated by the key word COMMUNICATION. The key word is followed
by a function statement, which determines the communication operation to be performed. The
function statement is followed by further parameters.

Features
CPI-C calls and their meaning

CPI-C Call in C CPI-C Call in ABAP Explanation

CMINIT COMMUNICATION INIT Initialize connection

CMALLC COMMUNICATION ALLOCATE Set up connection

CMACCP COMMUNICATION ACCEPT Accept connection

CMSEND COMMUNICATION SEND Send Data

CMRCV COMMUNICATION RECEIVE Receive data

CMDEAL COMMUNICATION DEALLOCATE Close the connection

� The return code of the statement in the field SY-SUBRC is made available for all variants.

As of R/2 Release 5.0 and in R/3, the parameter RETURNCODE <rc> is
supported as an option. With this, you receive a return value.

� Symbolic values (constants, return codes) are defined in the INCLUDE member
RSCPICDF (hexadecimal).

� Only the most important return values (return codes) are listed in the description of the
statements.

If you want to perform a detailed problem analysis, you should also analyze the
entries in the system log and the system-specific traces.

See also:
Agreements Between Sender and Recipient [Seite 53]

CPI-C Implementation in ABAP [Seite 67]

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

CPI-C Implementation in ABAP

52 April 2001

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Agreements Between Sender and Recipient

April 2001 53

Agreements Between Sender and Recipient
The information exchange process is controlled by both communications partners. All the
necessary agreements concerning type, method and the contents of the information flow must be
agreed:

� Send/Receive Mode [Seite 54]

� Synchronization [Seite 55]

� Size of Transfer Units [Seite 56]

� Data Types and Structures [Seite 57]

� Data Conversion [Seite 58]

� Remotely Attachable ABAP Program [Seite 59]

� SAP Logon Log for External CPI-C Programs [Seite 62]

� Establishing a Connection via an ABAP Program [Seite 65]

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Setting the Send/Receive Mode

54 April 2001

Setting the Send/Receive Mode
Purpose
CPI-C works in two-way-alternate mode. This means that at any one time, only one of the
communications partners is authorized to send data. Both communications partners must
therefore agree on how to alternate between send and receive (possibly depending on the DC
system).

Process flow
The program, which builds the conversation [Extern], has send authorization at first. It can call
the following functions:

� COMMUNICATION SEND

Send Data

� COMMUNICATION RECEIVE

Return the send authorization and wait for data from the partner

� COMMUNICATION DEALLOCATE

Close the connection

By calling the receive command, you can pass the send authorization to the partner program, for
example, to request an acknowledgement. The receiving program should therefore always check
whether it has received the send authorization (see parameter STATUSINFO under
COMMUNICATION RECEIVE: Receive Data [Seite 76]).

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Synchronization

April 2001 55

Synchronization
Purpose
The ABAP communications interface (based on the CPI-C Starter Set) has no explicit functions
for synchronization of both partners. The Advanced Function Calls CMCFM/CMCFMD are not
implemented in ABAP.

Both communications partners must perform the synchronization with send and receive
commands on the application level.

Synchronization is necessary because a send request does not necessarily trigger the immediate
sending of data.

Process flow
Different communications subsystems buffer data first and only send it physically when certain
bufer limits are exceeded, a status change is made or the connection is closed.

Synchronization means:

� Sending as yet unsent data to the partner (flush)

� Requesting an acknowledgement from the partner

� The partner sending an acknowledgement

� Waiting for the acknowledgement to be received

The easiest method involves passing the send authorization to the partner program after sending
one or more data blocks in order to request an acknowledgement. It is recommendable to use a
RECEIVE call after no more than 7 SEND calls. The larger the data blocks, the less SEND calls
you should use before the next RECEIVE call. The partner can return the send authorization
(acknowledgement) immediately. In addition, a response (data) can be sent in order to
differentiate between positive and negative acknowledgements.

Certain restrictions apply for setting up communication via LU6.2 from IMS (up to Version 3.1).

When changing from COMMUNICATION SEND to COMMUNICATION RECEIVE, any unsent
data is transferred to the communications partner.

For each COMMUNICATION SEND there must be at least one COMMUNICATION RECEIVE in
the partner system.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Setting the Size of Transfer Units

56 April 2001

Setting the Size of Transfer Units
You must define the size of the send/receive buffer within the application program in accordance
with the size of the data to be transmitted. If you have agreed to use different buffer sizes, this
may result in data loss if the receiver buffer is too small. The CPI-C implementation in ABAP in
R/2 does not allow remaining data to be collected with receive commands. R/3 does not have
this restriction.

To achieve optimum performance, the transfer unit size you choose should be as
large as possible (parameter LENGTH under COMMUNICATION SEND: Send Data
[Seite 74]).

After you have received data, you should check whether the data in the buffer is complete (see
parameter DATAINFO under COMMUNICATION RECEIVE: Receive Data [Seite 76]).

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Selecting Data Types and Structures

April 2001 57

Selecting Data Types and Structures
The receive program must be able to recognize which type of data it can receive and whether
this data is complete and correct.

An additional logon log can also be agreed between the sender and the receiver, for example, in
order to request data again, to provide notification of a processing problem, or simply to send an
acknowledgement to the partner. This type of control sequence must be distinguishable from
pure data, for example, by defining a special log header (type, record type, number...).

When organizing communication between heterogeneous systems, please note that
representation of one data type can be different in each system, and the receiver of this format
may not be able to process the format directly. Examples of this are whole numbers, packed
numbers and floating point numbers.

In this case, you should consider defining a common transfer format. The simplest form of this
would be conversion of data into a character string.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Data Conversion

58 April 2001

Data Conversion
Between communications systems, which work with the ASCII character set and systems using
the EBCDIC character set, data conversion must normally be performed by the application
program, unless the partner system is used only for archiving binary data.

It may be necessary to make special considerations for country-specific code pages. You can
build your own conversion tables within an ABAP program and access them using the
TRANSLATE command.

TRANSLATE <buffer> USING <tab>.

TRANSLATE <buffer> FROM CODEPAGE <code_1>
 TO CODEPAGE <code_2>.

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Remotely Attachable ABAP Program

April 2001 59

Remotely Attachable ABAP Program
Prerequisites
To process an external communications request, it is necessary to establish a connection to a
service transaction of the SAP Basis system.

In the R/2 System, this connection is established to transaction X1SA (BS2000, CICS) or
xxxX1SA (IMS).

In the R/3 System, the connection is established to the SAP dispatcher via the SAP Gateway.

The Service transaction needs a logon sequence to identify the client, the user and the ABAP
program. The SAP Basis system then starts the ABAP program. The activated ABAP program
must be executable (type 1 or M) and have at least one FORM routine.

This logon is part of the SAP logon protocol CPI-C. If logon is performed incorrectly, the SAP
Basis system closes the connection with an appropriate error message.

Procedure
A subroutine (FORM routine), which is specified in the program start request, must be defined in
an ABAP program. This routine is triggered automatically. Within the FORM routine, PERFORM
can be used to call further subroutines (including external ones) or to establish communications
links with other partners.

The main part of an ABAP program is not executed for CPI-C connections. It can therefore
contain a different processing logic for normal online operation.

An activated FORM routine can only perform one ACCEPT command, after which it is in receive
status.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Remotely Attachable ABAP Program

60 April 2001

PROGRAM <ABAP-ID>.

<FORM-ID1>.FORM
. .

. .
. .

COMMUNICATION ACCEPT . . .

ENDFORM.

COMMUNICATION RECEIVE . . .

External Start Request

An ABAP program can contain several such subroutines, which can be accessed via different
logon sequences. This allows you to build up a function library for CPI-C processing.

Special Features of ABAP in R/2
If you want to create a remotely attachable ABAP CPI-C program in an R/2 System, you must
know that some ABAP key words are not permitted or are processed differently than in normal
online operation. This is because no online terminal is available for screen output, as for an
update program. You must note the following:

Screen change
A session or screen change cannot be initiated within an SAP system during a conversation
[Extern]. This means that you cannot call subsequent key words in the remote ABAP program,
because this causes the conversation and the program to terminate.

� CALL MENU...

� CALL SCREEN...

� CALL DIALOG...

� CALL TRANSACTION... (without USING...) (zulässig with Zusatz "USING
<Dynprotabelle> Mode 'S'/'N' ", Zusatz verfügbar ab R/2 5.0)

� SUBMIT REPORT... (permitted from R/2 Release 5.0)

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Remotely Attachable ABAP Program

April 2001 61

TRANSFER
You can use the TRANSFER command to write data to the SAP spool component (from R/2
Release 5.0)

WRITE
The key word WRITE is ignored or redirected to a spool member if the statement NEW-PAGE
PRINT ON NO DIALOG is specified first (from R/2 Release 4.3J, 4.4D, 5.0).

BREAK-POINT
The statement BREAK-POINT writes log informatin to the SAP system log (from R/2 Release
4.3J, 4.4D, 5.0).

MESSAGE
Messages of type S, I or W are ignored. Messages of type E or A cause a program termination
and an entry in the system log.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

SAP Logon Protocol for External CPI-C Programs

62 April 2001

SAP Logon Protocol for External CPI-C Programs
Definition
The information exchanged between an external program and the transaction program (R/2:
X1SA, R/3: Dispatcher service) for the logon is determined in the SAP system.

The SAP logon protocol consists of the protocol header (12 bytes) and the actual logon to the
SAP System.

Structure
General Protocol Header
The protocol header, the first 12 bytes of the logon sequence, has the following structure:

Header of The SAP Logon Protocol

1CPIC

1 5 9 12 13

Logon or reply string

Type (4)
ModeNo (1)
Reserved (1)
Reserved (1)
Reserved (1)

Request ID (4): CONN
APPC
FREE

Protocol header description:

External logon description: Description

RequestID Request ID for internal SAP
communications administration
CONN = Logon/start request
APPC = Positive acknowledgement
FREE = negative acknowledgement
/termination message

Type Logon protocol type
CPIC = for ABAP CPI-C
communication

ModeNo Mode number within the SAP system
1 = Default value

Reserved ' ' = Default value

CONNCPIC1

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

SAP Logon Protocol for External CPI-C Programs

April 2001 63

External Logon to the SAP System
For a correct logon, a CONNECT message must be sent to the transaction program in the
desired SAP target system. This logon/start request must always be sent in EBCDIC code.

Logging on to The SAP System

Example:

Bytes

001 MYABAP00D SCONN 1CPIC MYPASSUSER

13 36 37 754616 28 381 5 9 10 11 12

CONN 1CPIC

Form routine
(30)

ABAP/4 program
(8)

Reserved (1)

Language code
(1)
Password (8)

User name
(12)
Client (3)

MYFORM..

External logon to the SAP system

External logon
description:

Description No. of characters Example

Protocol header 12 CONNCPIC1���

Client Client in the SAP System 3 001

User name 12 USER

Password User password
(PASS not permitted)

 8 MYPASS��

Language For messages from the
SAP system
D = German
E = English
.

 1 D

Reserved Not used for CPI-C 1

ABAP program Partner program 08 MYABAP00

ABAP form Subroutine 30 MYFORMABC

CONNCPIC1���001USER��������MYPASS��D�MYABAP00MYFORMABC..

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

SAP Logon Protocol for External CPI-C Programs

64 April 2001

� If you are using an external security system (RACF, ACF2, TOP SECRET..),
transfer of user and client ID via SAP SignOn Exit (SONEX) for CPI-C
connections is not supported. A valid user/password combination must therefore
be available
in the SAP system.

� From R/2 Release 5.0 and in R/3, only specific user IDs
are permitted (user master record type CPIC).

Messages From the SAP System
After a CONNECT request is sent from an external system, the SAP system sends a response.
The type of message depends on whether the logon was correct or not.

Positive response
After a connection request (CONN...) is sent with valid logon data, the SAP system returns the
request to start CPI-C data transfer. This acknowledgement is always sent in EBCDIC format.

Within the SAP system, the specified ABAP FORM routine has already been activated and
performed up to the first RECEIVE statement. This routine then waits for data from the partner.

Positive response: APPCCPIC1���

Negative response
After a connection request (CONN...) is sent with invalid logon data, the SAP system termintes
the conversation and sends an error message if the request had a valid format.

The negative response from the SAP system consists of the general protocol header beginning
with FREE..., an error number and an error text (see the second example in the above
illustration).

Negative response:

External logon description: Description Example

Protocol header (12) FREE���1���

Error number SAP error number
from table 100 (5)

38110

Error message SAP error text
from table 100 (5)

ABAP program... not found

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Establishing a Connection via an ABAP Program

April 2001 65

Establishing a Connection via an ABAP Program
Purpose
You can activate one or more connections from an ABAP program, and start an external
(transaction)program, in the same way as you start an ABAP program from an external system.
Certain restrictions apply for setting up communication via LU6.2 from IMS (up to Version 3.1).

Process flow
An external partner program is accessed in accordance with the CPI-C standard as a symbolic
name (symbolic destination). This name is used during the initialization call (INIT) to determine
the communications parameters, which are needed to establish the connection (ALLOCATE).
You must maintain these parameters in the side information table (R/2 host: XCOM, R/3:
TXCOM). Amongst other things, they contain system-specific information.

Once the connection is established, the program has send status. Data can now be sent to the
partner.

Parallel Connections
If you want to establish several parallel connections, you must ensure that the following call
sequence is adhered to:
COMMUNICATION INIT

COMMUNICATION ALLOCATE

...

COMMUNICATION INIT

COMMUNICATION ALLOCATE

...

The sequence COMMUNICATION INIT... COMMUNICATION INIT... COMMUNICATION
ALLOCATE... COMMUNICATION ALLOCATE is not permitted because it causes the first defined
communications parameters to be overwritten.

Restricted Use of Key Words (R/2)
The ABAP key words listed below cannot be called during a communications session because
this causes the conversation to be terminated. The reason for this lies in the internal SAP
administration for mode and screen changes.

� CALL MENU

� CALL DIALOG

� CALL SCREEN

� CALL TRANSACTION... (without USING...)

� SUBMIT REPORT

� LEAVE

� MESSAGE

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Establishing a Connection via an ABAP Program

66 April 2001

Debugging (R/2)
When a BREAKPOINT is reached, field contents can be displayed, but the connection is also
broken so that a screen change can take place.

Debugging is not permitted under UTM because it violates the UTM rules for distributed
transaction processing and causes the task to be terminated with 83Z/KS01.

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

CPI-C Implementation in ABAP

April 2001 67

CPI-C Implementation in ABAP
Purpose
The following statements are available for implementing communication at the CPI-C level in
ABAP:

COMMUNICATION INIT: Initialization [Seite 68]

COMMUNICATION ALLOCATE: Set Up Connection [Seite 70]

COMMUNICATION ACCEPT: Accept Connection [Seite 72]

COMMUNICATION SEND: Send Data [Seite 74]

COMMUNICATION RECEIVE: Receive Data [Seite 76]

COMMUNICATION DEALLOCATE: Close Connection [Seite 78]

They are explained here individually.

The Return Codes [Seite 79] in ABAP are then listed.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

COMMUNICATION INIT: Initialization

68 April 2001

COMMUNICATION INIT: Initialization
Use
The statement COMMUNICATION INIT initializes a connection. You must specify a symbolic
name to identify the partner.

Integration
The statement COMMUNICATION INIT must always be followed by the statement
COMMUNICATION ALLOCATE.

Activities
Syntax
COMMUNICATION INIT ID <conv_id>
 DESTINATION <dest>
 [RETURNCODE <rc>]

Parameter Values
<conv_id>

Conversation ID (output, type C(8))

An ID is returned to identify the conversation. You must specify the this ID in all subsequent
communications statements for this conversation.
<dest>

Conversation ID (output, type C(8)

This name must also be in the side information file.
<rc>

Return code (output, type X(2))

Alternatively, you can check the value directly via SY-SUBRC.

Return Codes

Value Explanation

CM_OK

CM_PROGRAM_PARAMETER_CHECK Entry in side info table incorrect

CM_PRODUCT_SPECIFIC_ERROR � LU is not defined

� SAP transaction is in long-running status

� (UTM, additional system log message 818)

� No further ID available

DATA: CONV_ID(8) TYPE C,

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

COMMUNICATION INIT: Initialization

April 2001 69

 DEST(8) TYPE C VALUE 'PARTNER',

 RC LIKE SY-SUBRC.

 :

COMMUNICATION INIT ID CONV_ID

 DESTINATION DEST

 RETURNCODE RC.

IF RC <> CM_OK....

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

COMMUNICATION ALLOCATE: Set up connection

70 April 2001

COMMUNICATION ALLOCATE: Set up connection
Use
COMMUNICATION ALLOCATE builds a conversation [Extern] with the partner defined in the
statement COMMUNICATION INIT. A session to the partner system is built and a start request
for the partner program (for example, X1SA) is sent.

Activities
Syntax
COMMUNICATION ALLOCATE ID <conv_id>

 [RETURNCODE <rc>]

Parameter Values
<conv_id>

Conversation ID (input, type C(8))
<rc>

Return code (output, type X(2))
Alternatively, you can check the value directly via SY-SUBRC.

Return Codes

Value Explanation

CM_OK

CM_ALLOCATE_FAILURE_NO_RETRY Resource or configuration problem (UTM: Also
system log message 781)

CM_ALLOCATE_FAILURE_RETRY Temporary problem (for example,: partner is not
active)

CM_PROGRAM_PARAMETER_CHECK Invalid conversation ID

CM_PROGRAM_STATE_CHECK COMMUNICATION INIT call was not made

DATA: CONV_ID(8) TYPE C,

 DEST(8) TYPE C VALUE 'PARTNER',

 RC LIKE SY-SUBRC.

COMMUNICATION INIT ID CONV_ID

 DESTINATION DEST

 RETURNCODE RC.

:

COMMUNICATION ALLOCATE ID CONV_ID

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

COMMUNICATION ALLOCATE: Set up connection

April 2001 71

 RETURNCODE RC.

IF RC <> CM_OK....

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

COMMUNICATION ACCEPT: Accept connection

72 April 2001

COMMUNICATION ACCEPT: Accept connection
Use
COMMUNICATION ACCEPT accepts the requested connection. Initializations are performed
internally and an ID for the conversation is returned.

Integration
COMMUNICATION ACCEPT is only permitted within an ABAP FORM routine and can only be
called once. After the function call, the program is in receive status.

Activities
Syntax

COMMUNICATION ACCEPT ID <conv_id> [RETURNCODE <rc>]

Parameter Values
<conv_id>

Conversation [Extern]ID (output, type C(8))

To identify the conversation, an ID is returned. This ID must be specified in all subsequent
communications statements for this conversation.
<rc>

Return code (output, type X(2))

Alternatively, you can check the value directly via SY-SUBRC.

Return Codes

Value Explanation

CM_OK

CM_PROGRAM_STATE_CHECK � No connection request from a partner.

� Statement is not coded in a FORM routine.

DATA: CONV_ID(8) TYPE C,

 DEST(8) TYPE C VALUE 'PARTNER',

 RC LIKE SY-SUBRC.

FORM TEST

 COMMUNICATION ACCEPT ID CONV_ID

 RETURNCODE RC.

IF RC <> CM_OK....

 :

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

COMMUNICATION ACCEPT: Accept connection

April 2001 73

ENDFORM.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

COMMUNICATION SEND: Send Data

74 April 2001

COMMUNICATION SEND: Send Data
Use
Data is sent to the communications partner. The type and structure of the data can be agreed
upon with the communications partner. The length of the CPI-C buffer is restricted to 32000
Bytes (maximum).

Due to this restriction, it is recommendable to work with a buffer of 28000 Bytes.

Integration
The program, which builds the conversation [Extern], has send authorization at first. If a program
has send authorization, it can call the following functions:

� COMMUNICATION SEND

Send Data

� COMMUNICATION RECEIVE

Return the send authorization and wait for data from the partner

� COMMUNICATION DEALLOCATE

Close the connection

Prerequisites
For CPI-C communication in an R/2 IMS environment via the LU6.1 Adapter, the length of the
send buffer should not be greater than the LONG MESSAGE in IMS. (Recommendation: Send
buffer length <= LONG MESSAGE - 100)

To achieve optimum performance, the transfer unit you choose should be as large as possible
(see LENGTH parameter).

Activities
Syntax
COMMUNICATION SEND ID <conv_id>

 BUFFER <buf>

 [LENGTH <slen>]

 [RETURNCODE <rc>]

Parameter Values
<conv_id>

Conversation ID (input, type C(8)
<buf>

Data buffer (input, type C(?) or structure): Range of the data to be sent
<slen>

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

COMMUNICATION SEND: Send Data

April 2001 75

No. of characters to be sent (entry, type P)

If the length is not specified explicitly, the defined buffer length is used internally and filled with
X'00' or blanks depending on the data type.
<rc>

Return code (output, type X(2))

Alternatively, you can check the value directly via SY-SUBRC.

Return Codes

Value Explanation

CM_OK

CM_PROGRAM_STATE_CHECK Program is not in send status

CM_DEALLOCATED_ABEND Partner has closed/interrupted the connection (UTM: Also
SYSLOG message 781)

DATA: CONV_ID(8),

 BUF(72),

 SLEN TYPE P,

 RC LIKE SY-SUBRC.

 :

BUF = 'Hello World'.

LEN = 11.

COMMUNICATION SEND ID CONV_ID

 BUFFER BUF

 LENGTH SLEN

 RETURNCODE RC.

IF RC <> CM_OK....

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

COMMUNICATION RECEIVE: Receive data

76 April 2001

COMMUNICATION RECEIVE: Receive data
Use
The statement COMMUNICATION RECEIVE causes the program to wait for data from the
partner. Incoming data is placed in the available buffer. In addition to the data, information on the
completeness of the data and the communication status is reported.

If a program has send status and transmits COMMUNICATION RECEIVE, it passes the send
authorization to the partner. The communications direction can be changed several times.

Activities
Syntax
COMMUNICATION RECEIVE ID <conv_id>

 BUFFER <buf>

 DATAINFO <di>

 STATUSINFO <si>

 [HOLD]

 [RECEIVED <n>]

 [LENGTH <rlen>]

 [RETURNCODE <rc>]

Parameter Values
<conv_id>

Conversation ID (input, C(8))
<buf>

Data buffer (output, type C(?) or structure): Data range/structure, which contains the received
data
<di>

Data information (output, type X(4))

Data fully buffered, or not fully buffered if the buffer defined is too small.

CM_NO_DATA_RECEIVED

CM_COMPLETE_DATA_RECEIVED

CM_INCOMPLETE_DATA_RECEIVED
<si>

Status information (output, type X(4))

Send authorization received or not (IMS: Always set)

CM_SEND_RECEIVED

CM_NO_STATUS_RECEIVED

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

COMMUNICATION RECEIVE: Receive data

April 2001 77

HOLD

If you use COMMUNICATION RECEIVE with parameter HOLD (as of R/3 Release 2.1), no roll-
out and roll-in will be performed for RECEIVE. The previously requested task will be held instead.
<n>

Data length (output, type X(4))

Number of received characters in the buffer
<rlen>

Maximum length of the receivable buffer (input, type P)

If none is defined, the length of the buffer is used internally.
<rc>

Return code (output, type X(2))

Alternatively, you can check the value directly via SY-SUBRC.

Return Codes

Value Explanation

CM_OK

CM_DEALLOCATED_ABEND Partner has closed the connection UTM

CM_DEALLOCATED_NORMAL Partner has closed the connection normally

DATA: CONV_ID(8) TYPE C,

 BUF(255),

 DI(4) TYPE X,

 SI(4) TYPE X,

 RL(4) TYPE X,

 RC LIKE SY-SUBRC.

COMMUNICATION RECEIVE ID CONV_ID

 BUFFER BUF

 DATAINFO DI

 STATUSINFO SI

 HOLD

 RECEIVED RLEN

 RETURNCODE RC.

IF RC <> CM_OK....

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

COMMUNICATION DEALLOCATE: Close the connection

78 April 2001

COMMUNICATION DEALLOCATE: Close the connection
Use
A conversation [Extern] with a communications partner is closed and system resources in use
are released. This statement can only be called in send status.

Activities
Syntax
COMMUNICATION DEALLOCATE ID <conv_id>

 [RETURNCODE <rc>]

Parameter Values
<conv_id>

Conversation ID (input, type C(8))
<rc>

Return code (output, type X(2))

Return Codes

Value Explanation

CM_OK

CM_PROGRAM_STATE_CHECK Program is not in send status

CM_PROGRAM_PARAMETER_CHECK Invalid conversation ID

DATA: CONV_ID(8) TYPE C,

 RC LIKE SY-SUBRC.

COMMUNICATION DEALLOCATE ID CONV_ID RETURNCODE RC.

IF RC <> CM_OK....

Only the ABAP program, not the external partner program, can close the connection.

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Return Codes

April 2001 79

Return Codes
**
* Defines for ABAP CPI-C Communication
*
* Note(s):
*
* 1) ABAP supports CPI-C Starter Set only
* Standard Values marked with "< are used
* 2) Values are in hexadecimal representation
*

* reference fields
DATA: INT2(2) TYPE X,
 INT4(4) TYPE X.

* return_code (LIKE SY-SUBRC.
DATA: CM_OK LIKE INT2 VALUE '0000',

CM_ALLOCATE_FAILURE_NO_RETRY LIKE INT2 VALUE
'0001',

CM_ALLOCATE_FAILURE_RETRY LIKE INT2 VALUE
'0002',

CM_CONVERSATION_TYPE_MISMATCH LIKE INT2 VALUE
'0003',

CM_SECURITY_NOT_VALID LIKE INT2 VALUE
'0006',

CM_SYNC_LVL_NOT_SUPPORTED_PGM LIKE INT2 VALUE
'0008',

CM_TPN_NOT_RECOGNIZED LIKE INT2 VALUE
'0009',

CM_TP_NOT_AVAILABLE_NO_RETRY LIKE INT2 VALUE
'000A',

CM_TP_NOT_AVAILABLE_RETRY LIKE INT2 VALUE
'000B',

CM_DEALLOCATED_ABEND LIKE INT2 VALUE
'0011',

CM_DEALLOCATED_NORMAL LIKE INT2 VALUE
'0012',

CM_PARAMETER_ERROR LIKE INT2 VALUE
'0013',

CM_PRODUCT_SPECIFIC_ERROR LIKE INT2 VALUE
'0014',

CM_PROGRAM_ERROR_NO_TRUNC LIKE INT2 VALUE
'0015',

CM_PROGRAM_ERROR_PURGING LIKE INT2 VALUE
'0016',

CM_PROGRAM_ERROR_TRUNC LIKE INT2 VALUE
'0017',

CM_PROGRAM_PARAMETER_CHECK LIKE INT2 VALUE
'0018',

CM_PROGRAM_STATE_CHECK LIKE INT2 VALUE
'0019',

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Return Codes

80 April 2001

CM_RESOURCE_FAILURE_NO_RETRY LIKE INT2 VALUE
'001A',

CM_RESOURCE_FAILURE_RETRY LIKE INT2 VALUE
'001B',

CM_UNSUCCESSFUL LIKE INT2 VALUE
'001C'.

* data_received
DATA: CM_NO_DATA_RECEIVED LIKE INT4 VALUE '00000000',

CM_DATA_RECEIVED LIKE INT4 VALUE
'00000001',

CM_COMPLETE_DATA_RECEIVED LIKE INT4 VALUE
'00000002',

CM_INCOMPLETE_DATA_RECEIVED LIKE INT4 VALUE
'00000003'.

* status_received
DATA: CM_NO_STATUS_RECEIVED LIKE INT4 VALUE '00000000',

CM_SEND_RECEIVED LIKE INT4 VALUE
'00000001',

CM_CONFIRM_RECEIVED LIKE INT4 VALUE
'00000002',

CM_CONFIRM_SEND_RECEIVED LIKE INT4 VALUE
'00000003',

CM_CONFIRM_DEALLOC_RECEIVED LIKE INT4 VALUE
'00000004'.

* request_to_send_received
DATA: CM_REQ_TO_SEND_NOT_RECEIVED LIKE INT4 VALUE '00000000',

CM_REQ_TO_SEND_RECEIVED LIKE INT4 VALUE
'00000001'.

* conversation_type
DATA: CM_BASIC_CONVERSATION LIKE INT4 VALUE '00000000',

CM_MAPPED_CONVERSATION LIKE INT4 VALUE
'00000001'. "<

* deallocate_type
DATA: CM_DEALLOCATE_SYNC_LEVEL LIKE INT4 VALUE '00000000', "<

CM_DEALLOCATE_FLUSH LIKE INT4 VALUE
'00000001',

CM_DEALLOCATE_CONFIRM LIKE INT4 VALUE
'00000002',

CM_DEALLOCATE_ABEND LIKE INT4 VALUE
'00000003'.

* error_direction
DATA: CM_RECEIVE_ERROR LIKE INT4 VALUE '00000000',

CM_SEND_ERROR LIKE INT4 VALUE
'00000001'.

* fill
DATA: CM_FILL_LL LIKE INT4 VALUE '00000000',

CM_FILL_BUFFER LIKE INT4 VALUE
'00000001'.

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Return Codes

April 2001 81

* prepare_to_receive_type
DATA: CM_PREP_TO_RECEIVE_SYNC_LEVEL LIKE INT4 VALUE '00000000',

CM_PREP_TO_RECEIVE_FLUSH LIKE INT4 VALUE
'00000001',

CM_PREP_TO_RECEIVE_CONFIRM LIKE INT4 VALUE
'00000002'.

* receive_type
DATA: CM_RECEIVE_AND_WAIT LIKE INT4 VALUE '00000000', "<

CM_RECEIVE_IMMEDIATE LIKE INT4 VALUE
'00000001'.

* return_control
DATA: CM_WHEN_SESSION_ALLOCATED LIKE INT4 VALUE '00000000', "<

CM_IMMEDIATE LIKE INT4 VALUE
'00000001'.

* send_type
DATA: CM_BUFFER_DATA LIKE INT4 VALUE '00000000', "<

CM_SEND_AND_FLUSH LIKE INT4 VALUE
'00000001',

CM_SEND_AND_CONFIRM LIKE INT4 VALUE
'00000002',

CM_SEND_AND_PREP_TO_RECEIVE LIKE INT4 VALUE
'00000003',

CM_SEND_AND_DEALLOCATE LIKE INT4 VALUE
'00000004'.

* sync_level
DATA: CM_NONE LIKE INT4 VALUE '00000000', "<

CM_CONFIRM LIKE INT4 VALUE
'00000001'.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

CPI-C Interface in C

82 April 2001

CPI-C Interface in C
The CPI-C interface in C can be split into the following areas:

CPI-C Development Libraries [Seite 83]

Implemented CPI-C Function Calls [Seite 88]

Define Variables for Computer Types [Seite 130]

Linking an SAP Development Library [Seite 87]

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

CPI-C Development Libraries

April 2001 83

CPI-C Development Libraries
Purpose
SAP provides optional platform-specific CPI-C libraries (CPI-C Subsets) for workstations, which
you can use for the development of communications programs in the C language.

You can use these libraries to create "more portable" communications programs. This allows
communication between SAP systems and external systems, which support CPI-C. The following
communications options are available:

� R/3 � C program

� R/2 � C program

Features
These libraries implement the calls of the CPI-C Starter Set, parts of the Advanced Function
Calls and SAP-specific calls.

The file cpic.readme contains up-to-date information on the delivered files and using the example
programs.

The following files are available:

� Header file for CPI-C

� Development libraries:

– cpicslib for SNA communication, see Libraries Based on LU6.2: cpicslib [Seite 84]

– cpictlib for TCP/IP communication, see Libraries Based on TCP/IP: cpictlib [Seite 86]

� Test programs for CPI-C communication, a calling program and a callable program:

– in ABAP

– in C

(See Working with the Test Programs in the documentation SAP Communication:
Configuration)

� Example of a side info file

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Libraries Based on LU6.2: cpicslib

84 April 2001

Libraries Based on LU6.2: cpicslib
Definition
SAP-CPI-C development libraries based on the communications protocol SNA-LU6.2 have the
name cpicslib and a platform-specific extension.

The CPI-C functions of cpicslib are mapped directly to LU6.2 level.

Use
For communication with an R/3 System, you need a communications subsystem on both
computers and the SAP Gateway on the R/3 computer.

Depending on your requirements, you can alternatively use the manufacturer-specific interface
(for example, LU6.2/APPC) directly for communication with the R/2 host.

In both cases the application program communicates via the communications subsystem with the
ABAP program on the R/2 host (without the SAP Gateway).

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Libraries Based on LU6.2: cpicslib

April 2001 85

Communications Subsystem

SNA/LU 6.2

SAP Gateway
Communications
 Subsystem SNA/LU 6.2

TCP/IP

Non-SAP
CPI-C

Program

cpicslib

R/3R/3
ABAP/4ABAP/4

CPI-CCPI-C

R/3R/3
ABAP/4ABAP/4

CPI-CCPI-C

R/3 R/2
ABAP/4 ABAP/4

CPI-C CPI-C
SNA Host

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Libraries Based on TCP/IP: cpictlib

86 April 2001

Libraries Based on TCP/IP: cpictlib
The respective SAP-CPI-C development library based on the communications protocol TCP/IP
has the name cpictlib and a platform-specific extension.

These libraries are based on the available TCP/IP implementations of different manufacturers.

This is the library that communicates with partner programs (R/2, R/3 ABAP program, external
program) via the SAP Gateway.

TCP/IP TCP/IP
(BS2000)

 SNA
Subsystem

R/3R/3
ABAP/4ABAP/4

CPI-CCPI-C

R/3R/3
ABAP/4ABAP/4

CPI-CCPI-C

R/3
ABAP/4

CPI-C

TCP/IP

cpictlib
Non-SAP
Program

SAP Gateway

SNA/LU6.2

ABAP/4

CPI-C

R/2

Host

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Linking an SAP Development Library

April 2001 87

Linking an SAP Development Library
Prerequisites
If you use functions of one of the two SAP development libraries in your C program, link the
library with your program.

If you have not specified the computer type in your program with the statement define, you must
specify it when you compile the program. The define variables are described in Define Variables
for Host Types [Seite 130].

Procedure
Under UNIX, you link an SAP development library with your program as follows:
cc -D<Define variable> <Program name> <SAP library> -o <Executable
file>

cc -DSAPonHP_UX cpict1.c cpictlib.o -o cpict1

With SNC support (as of Release 3.1G) you must specify the dynamic link option on
certain platforms.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Implemented CPI-C Function Calls

88 April 2001

Implemented CPI-C Function Calls
Definition
Implemented CPI-C function calls are available for programming a conversation between
different programs (on different systems).

The following categories of CPI-C function calls are implemented in the libraries:

CPI-C Starter Set [Seite 89]

Advanced Function Calls [Seite 99]

SAP-Specific CPI-C Functions [Seite 110]

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

CPI-C Starter Set

April 2001 89

CPI-C Starter Set
Definition
These are the basic functions required for a simple conversation.

Use
Communication between two partner programs via the calls of the CPI-C Starter Set runs as
follows:

1. Establish connection (session/conversation)

– Initialization of the communications parameters (via the side information)

– Build a logical connection (session):

– Start request from the remote transaction program

– Both partners are given a conversation ID.

2. Send/receive information

– Send data

– Receive data/status messages

3. Close connection

Close conversation

Structure
The CPI-C Starter Set consists of the following function calls:

Call Task

CMINIT [Seite 91] Initialize connection

CMALLC [Seite 94] Allocate conversation

CMACCP [Seite 92] Accept conversation

CMSEND [Seite 95] Send data

CMRCV [Seite 96] Receive data

CMDEAL [Seite 98] Deallocate conversation

These functions are all of type CM_RETCODE.

CPI-C works in Two Way Alternate Mode (half-duplex mode).

Only one of the programs has send authorization at any one time. This authorization can be
transferred to the partner (status).

The program, which builds communication, has send authorization first.

The send authorization is transferred by transmitting a receipt acknowledgement (CMRCV) in
send status. Then, the partner program is authorized to send. Multiple change of communications
direction is possible.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

CPI-C Starter Set

90 April 2001

The program with the send authorization can call the following functions:

� CMSEND Send data

� CMRCV from the partner

� CMDEAL Close the connection

A side information table with connection parameters must be available in the calling system.
CMINIT needs these connection parameters.

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

CMINIT

April 2001 91

CMINIT
The call CMINIT initializes values for a connection. A unique value (conversation ID) is returned
to the program. This value must be specified in all subsequent calls. A symbolic address must
also be specified.

Syntax
CMINIT (conv_id, dest, rc)

Parameters
conv_id
Conversation ID A unique value returned by the routine.

dest
Symbolic name This input value must match an entry in the side info table.

The entry contains parameters to build the connection.

rc
Return code CM_OK : Routine was executed without errors.

The return code contains the same value as rc.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

CMACCP

92 April 2001

CMACCP
Use
Before a program can connect with a target program, the target program must already be active
and the call CMACCP must have been made. This also sets initial values. However, beforehand
the logical name SAPCPICSYMDEST has to be defined that corresponds to the symbolic
address for CMINIT. A unique value (conversation ID) is returned to the program. This value
must be specified in all subsequent calls.

Activities
Syntax
CMACCP (conv_id, rc)

Parameters
conv_id
This unique value is returned by the routine.

rc
Return code (output value)

CM_OK: Routine was executed without errors.

The return code contains the same value as rc.

Registering Programs at the SAP Gateway Without Changing the Source Code
If you specify relevant parameters when calling the target program, the program is registered at
the gateway with the CMACCP call.

The CMACCP call analyzes the arguments passed. CMACCP then performs the calls
SAP_CMREGTP and SAP_CMACCTP (see SAP_CMREGTP, SAP_CMACCPTP,
SAP_CMUNACCPTP, SAP_CMUNREGTP und SAP_CMNOREGTP [Seite 123]).

This means you can use registered programs without makting changes to the source code. You
must link such programs with the most recent library.

Transfer parameters:

TP: Transaction program name

GWHOST Gateway platform

GWSERV Gateway service

TIMEOUT Time limit in seconds (optional) If you do not specify this parameter, no timeout
occurs and the program waits until the next request.

Calling the program:
cpict2 TP=cpict2 GWHOST=hs0011 GWSERV=sapgw00

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

CMACCP

April 2001 93

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

CMALLC

94 April 2001

CMALLC
Use
This call builds a connection with the partner program.

Activities
Syntax
CMALLC (conv_id, rc)

Parameters
conv_id
The conversation ID is the input value for an initialized conversation.

rc
Return code (output value)

CM_OK: Routine was executed without errors.

The return code contains the same value as rc.

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

CMSEND

April 2001 95

CMSEND
Use
This call sends data to the partner program. The maximum number of characters, which can be
sent with one call is limited to 32000.

If a program has send authorization, it can call the following functions:

� CMSEND Send data

� CMRCV Pass send authorization and wait for data from the
partner

� CMDEAL Close the connection

Activities
Syntax
CMSEND (conv_id, buffer, send_length, request_to_send_received, rc)

Parameters
conv_id
ID of the conversation, via which data is to be sent (input value)

buffer
Buffer to be sent

send_length
The number of characters to be sent (input value)

request_to_send_received
Variable indicating whether the partner wants to send data (return code). This variable can have
two possible values:

� CM_REQ_TO_SEND_NOT_RECEIVED

� CM_REQ_TO_SEND_RECEIVED

rc
Return code (output value)

CM_OK: Routine was executed without errors.

The return code contains the same value as rc.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

CMRCV

96 April 2001

CMRCV
Use
The call CMRCV prepares a program to receive data from its partner program.

If a program passes CMRCV in send mode, the program passes the send authorization to the
partner program. The communications direction can be changed several times.

Activities
Syntax
CMRCV (conv_id, buffer, requested_length, data_received,

 received_length, status_received,

 request_to_send_received, rc)

Parameters
conv_id
ID of the conversation, via which data is to be received (input value)

buffer
Buffer, to which the received data is written (input value)

requested_length
Maximum number of characters that can be received (input value)

data_received
This variable (return code) indicates whether the program has received data.

If the program has received data, the variable contains information on the data received. The
variable can have the following values:

� CM_NO_DATA_RECEIVED

� CM_DATA_RECEIVED (nur Basic Conversation)

� CM_COMPLETE_DATA_RECEIVED

� CM_INCOMPLETE_DATA_RECEIVED

received_length
Variable containing the number of characters received (return code)

status_received
This variable indicates whether the program has received status information (return code).

If the program has received status information, the variable contains information on the status of
the conversation. The variable can have the following values:

� CM_NO_STATUS_RECEIVED

� CM_SEND_RECEIVED

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

CMRCV

April 2001 97

� CM_CONFIRM_RECEIVED

� CM_CONFIRM_SEND_RECEIVED

� CM_CONFIRM_DEALLOC_RECEIVED

request_to_send_received
Variable indicating whether the partner wants to send data (return code). This variable can have
two possible values:

� CM_REQ_TO_SEND_NOT_RECEIVED

� CM_REQ_TO_SEND_RECEIVED

rc
Return code (output value)

CM_OK: Routine was executed without errors.

CM_DEALLOCATE_NORMAL: Connection was closed correctly by the partner program.

The return code contains the same value as rc.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

CMDEAL

98 April 2001

CMDEAL
Use
The call CMDEAL closes the connection with the partner program and releases system
resources. This call can only be used if the local program is in send status.

Activities
Syntax
CMDEAL (conv_id, rc)

Parameters
conv_id
ID of the conversation to be closed (input value)

rc
Return code (output value)

CM_OK: Routine was executed without errors.

The return code contains the same value as rc.

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Advanced Function Calls

April 2001 99

Advanced Function Calls
Definition
In addition to the calls of the CPI-C Starter Set, the following Advanced Function Calls are also
available (with platform-specific restrictions):

Use
Available Advanced Function Calls

Function Task

CMCFM [Seite 100] Requests receipt acknowledgement from partner

CMCFMD [Seite
101]

Sends receipt acknowledgement to partner

CMCNVO [Seite
102]

Converts data buffer from ASCII to EBCDIC

CMCVNI [Seite 103] Converts data buffer from EBCDIC to ASCII

CMSCSP [Seite 104] Sets the Conversation Security Password

CMSCST [Seite 105] Sets the Conversation Security Type

CMSCSU [Seite 106] Sets the Conversation Security User ID

CMSPLN [Seite 107] Sets the logical unit (LU) of the partner LU

CMSTPN [Seite 108] Sets the transaction program name

CMSSL [Seite 109] Sets the synchronization level

All functions are of type CM_RETCODE.

The syntax of the Advanced Function Calls is described in the following topics.

The functions CMCFM and CMCFMD are not available in cpictlib.

CMCNVO and CMCNVI are necessary because the R/2 System on the host only expects data in
EBCDIC format, whereas the workstation generally only processes ASCII data.

CMSCST, CMSCSU, CMSCSP and CMSTPN (only for IMS) are necessary, if the LU6.2 partner
system uses an external security system (for example, RACF on the host).

The standard definition of the SAP-CPI-C interface and the return codes of the individual CPI-C
calls are defined in the file cpic.h.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

CMCFM

100 April 2001

CMCFM
Use
The call CMCFM requests the partner program to acknowledge the receipt of data.

Activities
Syntax

CMCFM (conv�id, request_to_send_received, rc)

Parameters
conv_id
ID of the conversation to be acknowledged (input value)

request_to_send_received
Variable indicating whether the partner wants to send data (return code).

This variable can have two possible values:

� CM_REQ_TO_SEND_NOT_RECEIVED

� CM_REQ_TO_SEND_RECEIVED

rc
Return code

CM_OK: Routine was executed without errors.

The return code contains the same value as rc.

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

CMCFMD

April 2001 101

CMCFMD
Use
The call CMCFMD sends a receipt acknowledgement to the partner.

Activities
Syntax
CMCFMD (conv_id, rc)

Parameters
conv_id
ID of the conversation to be acknowledged (input value)

rc
Return code

CM_OK: Routine was executed without errors.

The return code contains the same value as rc.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

CMCNVO

102 April 2001

CMCNVO
Use
The call CMCNVO converts a data buffer from ASCII to EBCDIC. It uses the library function
LIB$TRAASCEBC.

Activities
Syntax
CMCNVO (buffer, length, rc)

Parameters
buffer
Buffer to be converted

length
Number of characters to be converted (input value)

rc
Return code

CM_OK: Routine was executed without errors.

The return code contains the same value as rc.

(for UNIX)

Under UNIX, you can define your own conversion table. The SAP standard tables
are contained in Conversion Tables EBCIDC � ASCII [Seite 219].

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

CMCVNI

April 2001 103

CMCVNI
Use
The call CMCVNI converts a data buffer from EBCDIC to ASCII. It uses the library function
LIB$TRAEBCASC.

Activities
Syntax
CMCNVI (buffer, length, rc)

Parameters
buffer
Buffer to be converted (input value)

length
Number of characters to be converted (input value)

rc
Return code

CM_OK: Routine was executed without errors.

The return code contains the same value as rc.

(for UNIX)

Under UNIX, you can define your own conversion table. The SAP standard tables
are contained in Conversion Tables EBCIDC � ASCII [Seite 219].

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

CMSCSP

104 April 2001

CMSCSP
Use
The call CMSCSP sets the password for conversation security.

Activities
Syntax
CMSCSP (conv_id, security_password, security_password_length, rc)

Parameters
conv_id
ID of the conversation, for which the password is to be set (input value)

security_password
Conversation security password (input value)

security_password_length
Length of the password (input value)

Possible values: 0 to 8

rc
Return code

CM_OK: Routine was executed without errors.

The return code contains the same value as rc.

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

CMSCST

April 2001 105

CMSCST
Use
The call CMSCST sets the conversation security type.

Activities
Syntax
CMSCST (conv_id, security_type, rc)

Parameters
conv_id
ID of the conversation, for which the conversation security type is to be set (input value)

security_type
indicates which user information the program sends to its partner (input value)

Possible values are:

� CM_SECURITY_NONE:

Neither the user ID nor the password are sent to the partner program.

� CM_SECURITY_SAME:

The user ID is sent to the partner.

� CM_SECURITY_PROGRAM:

The user ID and the password are sent to the partner.

rc
Return code

CM_OK: Routine was executed without errors.

The return code contains the same value as rc.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

CMSCSU

106 April 2001

CMSCSU
Use
The call CMSCSU sets the user ID for the conversation.

Activities
Syntax
CMSCSU (conv_id, user_id, user_id_length, rc)

Parameters
conv_id
ID of the conversation, for which the user ID is to be set (input value)

user_id
User ID (input value)

user_id_length
Length of the user ID (input value)

Possible values: 0 to 8

rc
Return code

CM_OK: Routine was executed without errors.

The return code contains the same value as rc.

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

CMSPLN

April 2001 107

CMSPLN
Use
The call CMSPLN sets the Logical Unit (LU) of the partner Logical Unit.

Activities
Syntax
CMSPLN (conv_id, partner_lu, partner_lu_len, rc)

Parameters
conv_id
ID of the conversation, for which the Logical Unit of the partner is to be set (input value)

partner_lu
Name of the Logical Unit of the partner system (input value)

partner_lu_len
Length of the Logical Unit (input value)

Possible values: 1 to 8.

rc
Return code

CM_OK: Routine was executed without errors.

The return code contains the same value as rc.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

CMSTPN

108 April 2001

CMSTPN
Use
The call CMSTPN sets the name of the remote transaction program.

Activities
Syntax
CMSTPN (conv_id, tpname, tpname_len, rc)

Parameters
conv_id
ID of the conversation, for which the name of the remote transaction program is to be set (input
value)

tpname
Name of the remote transaction program (input value)

tpname_len
Length of the name

rc
Return code

CM_OK: Routine was executed without errors.

The return code contains the same value as rc.

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

CMSSL

April 2001 109

CMSSL
Use
This call sets the synchronization level.

Activities
Syntax
CMSSL (conv_id, sync_level, rc)

Parameters
conv_id
ID of the conversation, for which the synchronization level is to be set (input value)

sync_level
Synchronization level to be set (input value)

Possible values are:

� CM_NONE: No synchronization

� CM_CONFIRM: Sync_level CONFIRM

rc
Return code

CM_OK: Routine was executed without errors.

The return code contains the same value as rc.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

SAP-Specific CPI-C Functions

110 April 2001

SAP-Specific CPI-C Functions
Definition
The SAP-specific CPI-C functions pass additional parameters to the SAP-CPI-C interface, which
cannot be mapped to the standard CPI-C parameters.

Use
The following SAP-specific CPI-C functions are provided:

Via SAP_CMINIT [Seite 111]: Passes on gateway parameters

SAP_CMACCP [Seite 112] Passes on accept parameters

SAP_CMPERR [Seite 113]: Displays error information

SAP_CMLOGON [Seite 114] Creates logon string

SAP_CMCERR [Seite 116]: Identifies error information

SAP_CMLOADCONVTAB [Seite 117]: Loads the conversion table specified

SAP_CMMODCONVTAB [Seite 118]: Modifies the current conversion table

SAP_CMTIMEOUT [Seite 119]: Specifies a timeout value

SAP_CMHANDLE [Seite 120] Returns the socket handle

SAP_CMGWHOST [Seite 121]: Determines the gateway host

SAP_CMGWSERV [Seite 122]: Determines the gateway service

Functions for Registered CPI-C
Programs [Seite 123]
SAP_CMREGTP
SAP_CMACCPTP
SAP_CMUNACCTP
SAP_CMUNREGTP
SAP_CMNOREGTP
SAP_CMCANCREGTP

Registers the program with the SAP-Gateway
Ready for connection setup
No longer ready for connection setup
Deregisters the program
Determines the number of registered programs
Logs registered program off Gateway

SNC Function Calls [Seite 128]

SAP_CMSNCMODE
SAP_CMSNCNAME
SAP_CMACLKEY
SAP_CMNAMETOACLKEY
SAP_CMACLKEYTONAME

Only relevant if you use the Secure Network
Communications interface to third-party security
systems

SNC status of a connection
(SNC_ON/SNC_OFF)
Returns the SNC name of the partner
Returns the ACL key of the partner
Converts the SNC name to an ACL key
Converts the ACL key to an SNC name

SAP_CMGETVERSION Returns the internal version of the CPI-C-
development library

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

SAP_CMINIT

April 2001 111

SAP_CMINIT
Use
SAP_CMINIT passes the following additional parameters to the SAP-CPI-C interface:

� Host, on which the SAP Gateway is running

� Service, to which the SAP Gateway responds

� Protocol type of the connection to be built

These values are needed to build the connection to the SAP Gateway.

The header file cpic.h indicates the prototypes.

In the following cases, SAP_CMINIT delivers a return code not equal to CM_OK:

� The specified service is too long.

� The specified host name is too long.

� None of the values C, I, E or G was specified for the protocol.

Integration
� You do not need to use the call SAP_CMINIT if you have defined all the parameters in

the side information table.

For reasons of compatibility, you should always define the parameters in this table.

� The above parameters are not needed for the CPI-C development library cpicslib, which
is based on SNA.

The function SAP_CMINIT always returns the value CM_OK in this environment.

Activities

main (argv, argc)

..

 SAP_CMINIT(argv, "compu01", "sapgw00", INT_SOCK_COMM);

..

The SAP Gateway runs on the host compu01 and responds to the service sapgw00. An internal
communication is built. The partner program is therefore an ABAP program in an R/3 System.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

SAP_CMACCP

112 April 2001

SAP_CMACCP
Use
The parameters needed in the called program to build the connection are passed as call
parameters with both cpicslib and cpictlib. For this reason, the CPI-C interface needs to access
the argument vector. By calling the function SAP_CMACCP, the address of the argument vector
is passed to the CPI-C interface.

The header file cpic.h indicates the prototypes. SAP_CMACCP always returns the value CM_OK.

main (argv, argc)
..
 SAP_CMACCP(argv);
..

Integration
Registering Programs at the SAP Gateway Without Changing the Source Code
If you specify relevant parameters when calling the target program, the program is registered at
the gateway with the SAP_CMACCP call.

The SAP_CMACCP call analyzes the arguments passed. SAP_CMACCP then performs the calls
SAP_CMREGTP and SAP_CMACCTP (see Functions for Registered CPI-C Programs [Seite
123]).

This means you can use registered programs without makting changes to the source code. You
must link such programs with the most recent library.

Transfer parameters:

TP Transaction program name

GWHOST Gateway platform

GWSERV Gateway service

TIMEOUT Time limit in seconds (optional) If you do not specify this parameter, no timeout
occurs and the program waits until the next request.

Calling the program:
cpict2 TP=cpict2 GWHOST=hs0011 GWSERV=sapgw00

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

SAP_CMPERR

April 2001 113

SAP_CMPERR
Use
If you are using the SAP-specific function SAP_CMPERR and an error occurs, a short
description of the error is output.

CM_RETCODE return_code;

 ..

 CMALLC(conv_id,&return_code);

 if (return_code != CM_OK)

 {

 printf("SAP-INFO: %s\n", SAP_CMPERR());

 }
 ..

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

SAP_CMLOGON

114 April 2001

SAP_CMLOGON
Use
The function SAP_CMLOGON builds the logon sequence (connect string), which is needed to log
on to an R/2 or an R/3 System. When the connection is built (allocate), this character sequence
must be the first data sent to the target system.

Features
Parameters of the function SAP_CMLOGON:

Buffer Pointer to the buffer of the calling program

len Length of the user buffer

reqid From { "CONN", "FREE", "APPC",.. }

reqtype From { "DYNP", "RDIA", "RODC", "CPIC", "GRAF",.. }

amode No. of the alternative mode, from { 1,.., 6 }

mand Client

name User name

code Password

lang Logon language

prog Program to be started

modn Form to be started

rc Return code

To build the connect string, you have two alternatives:

� In the calling program:

The calling program must specify a valid pointer as the parameter buffer, which points to
a sufficiently large buffer.

� In a static area of the function SAP_CMLOGON:

The parameter buffer must have the value 0.

Activities

CPIC_CHAR buf[200];
 CPIC_INT len;
..
 len = sizeof(buf);

 SAP_CMLOGON(buf,
 &len,
 "CONN",

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

SAP_CMLOGON

April 2001 115

 "CPIC",
 '1',
 "000",
 "SMITH",
 "SECRET",
 'E',
 "EXAMPLE",
 "TEST",
 &return_code);
..

The logon character string for user "SMITH" with the password "SECRET" in client "000" is built
in the buffer buf. In alternative mode "1", the ABAP form "TEST" is started in program
"EXAMPLE". After the call, the parameter len contains the length of the generated logon
seqence. This character string can then be sent using CMSEND.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

SAP_CMCERR

116 April 2001

SAP_CMCERR
Use
SAP_CMCERR checks whether the data received from the R/2 or R/3 System constitutes an
error message. If it does, the message is formatted for output and a pointer is returned to the
error text. If the data does not contain an error message, SAP_CMCERR returns the value 0.

PCPIC_CHAR s;

..
<Build connect string and send to R/2 or R/3>
..
CMRCV(conv_id, input, &requested_length, &data_received,
 &received_length, &status_received,
 &request_to_send_received, &return_code);

if ((return_code != CM_OK) &&
 (return_code != CM_DEALLOCATED_NORMAL))
{
 printf("CMRCV: %d\n",return_code);
 printf("SAP-INFO: %s\n", SAP_CMPERR());
 exit(1);
}

if (return_code == CM_DEALLOCATED_NORMAL)
{
 if ((s = SAP_CMCERR(input, &received_length)) !=
(PCPIC_CHAR *)0)
 {
 printf("CPIC-Login-Error: %s\n", s);
 exit(1);
 }
 else
 {
 printf("CMRCV: %d\n",return_code);
 printf("SAP-INFO: %s\n", SAP_CMPERR());
 exit(1);
 }
}
..

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

SAP_CMLOADCONVTAB

April 2001 117

SAP_CMLOADCONVTAB
Use
SAP_CMLOADCONVTAB loads the specified conversion table and overwrites the previous
conversion table. All subsequent CMCNVI and CMCNVO calls work with the new conversion
table.

CM_RETCODE return_code;
..
SAP_CMLOADCONVTAB("my_conv_table", &return_code);
..

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

SAP_CMMODCONVTAB

118 April 2001

SAP_CMMODCONVTAB
Use
You can use SAP_CMMODCONVTAB to modify a contiguous area in the current conversion
table. This allows you to change the conversion of individual characters. You can only change
either the ASCII � EBCDIC table or the EBCDIC � ASCII table.

CM_RETCODE return_code;
..
SAP_CMMODCONVTAB(EBCDIC_TABLE, 193, "4243", &return_code);
..

The above modification results in the following (not very useful) conversion:

EBCDIC character � ASCII character

A � B

B � C

All subsequent CMCNVI and CMCNVO calls work with the modified conversion table.

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

SAP_CMTIMEOUT

April 2001 119

SAP_CMTIMEOUT
Use
SAPCMTIMEOUT controls the behaviour of the “blocking” CPI-C functions.

Blocking CPI-C functions are functions, which normally only return to the caller if the return code
was sent by the SAP Gateway.

This can sometimes take a long time. In environments such as WINDOWS, this would cause the
whole PC to be blocked. You can use SAP_CMTIMEOUT to specify a time in milliseconds, after
which the function returns. If a timeout is set, CM_SAP_TIMEOUT_RETRY is returned as a
return code. The function must then be called again (see also function SAP_CMHANDLE [Seite
120]).

CM_RETCODE return_code;
 CPIC_INT timeout;

 ..
 timeout = 10;
 SAP_CMTIMEOUT(timeout, &return_code);
 ..

Possible values for timeout:

� SAP_CMBLOCK:

No timeout

CPI-C functions wait "indefinitely" for the return code (default setting)

� Value >= 0 :

Timeout in milliseconds; The value zero caused an immediate timeout.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

SAP_CMHANDLE

120 April 2001

SAP_CMHANDLE
Use
SAP_CMHANDLE returns the socket handle, via which the CPI-C interface reads the return
codes and data from the SAP Gateway. This handle and the function SAP_CMTIMEOUT (see
above) allow the CPI-C interface to be operated without blocking. The handle can, for example,
be used for the function Select. This makes it possible to wait for more than one event. An event
is the arrival of CPI-C data.

Integration
The function SAP_CMHANDLE can only be used in connection with the function CMINIT or
CMACCP.

CM_RETCODE return_code;
CPIC_INT gwhandle;

..
SAP_CMHANDLE(&gwhandle, &return_code);
..

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

SAP_CMGWHOST

April 2001 121

SAP_CMGWHOST
Use
For CPI-C programs, which are started by the CPI-C interface, this function checks the argument
vector to find the gateway host computer.

Integration
You can only use this function after calling the function SAP_CMACCP.

Example: CM_RETCODE return_code;
CPIC_CHAR *gwhost, *gwserv;

SAP_CMACCP(argv);
..
SAP_CMGWHOST (&gwhost,&return_code);
..
SAP_CMGWSERV (&gwserv,&return_code);
..

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

SAP_CMGWSERV

122 April 2001

SAP_CMGWSERV
Use
For CPI-C programs, which are started by the CPI-C interface, this function checks the argument
vector to find the gateway service.

Integration
You can only use this function after calling the function SAP_CMACCP.

Example: CM_RETCODE return_code;
CPIC_CHAR *gwhost, *gwserv;

SAP_CMACCP(argv);
..
SAP_CMGWHOST (&gwhost,&return_code);
..
SAP_CMGWSERV (&gwserv,&return_code);
..

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Functions for Registered CPI-C Programs

April 2001 123

Functions for Registered CPI-C Programs
Use
You can use these functions to write a CPI-C program which, unlike “normal” CPI-C programs, is
not started after the connection is established but which starts and then waits for a connection to
be established.

This means that a single run of the program can accept several connections. This is particularly
useful for programs which are executed very frequently, since it avoids the repeated overhead of
starting up.

Features
The following SAP-specific functions are available for registered programs:

� SAP_CMREGTP

� SAP_CMACCPTP

� SAP_CMUNACCPTP

� SAP_CMUNREGTP

� SAP_CMNOREGTP

� SAP_CMCANCREGTP

For a short description refer to the chapter SAP-Specific CPI-C Functions [Seite 110].

The process consists of the following steps:

1. Registering the program

The SAP_CMREGTP function registers a program with a TP name with the SAP
Gateway. A socket handle is then returned.

The TP name is the name of the program that waits for a connection setup.

2. Accept connection

The SAP_CMACCPTP function waits for the connection to be established. You can
specify a timeout period for the function.

If the function times out without establishing a connection, then it terminates with the
return code CM_SAP_TIMEOUT_RETRY.

The return code CM_DEALLOCATED_NORMAL indicates that the registered program
was terminated by the Gateway. Possible causes are:

– The Gateway itself terminated.

– Another program executed the call SAP_CMCANCREGTP().

If the connection is successfully established then the Conversation ID is returned, and
this is used in the subsequent CPI-C communication.

After the connection has been broken, SAP_CMACCPTP() can be called again. The
program does not need to be restarted each time.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Functions for Registered CPI-C Programs

124 April 2001

If there is data at the socket handle, then you just need to call SAP_CMACCPTP(). The
SELECT function can be used to check for this.

If the program is to perform other tasks without being interrupted, you can reset the
registration status using the function SAP_CMUNACCPTP. The program will then not be
addressed by the gateway. Calling SAP_CMACCPTP changes the status from INIT to
WAITING, and makes the programm wait for a new connection setup.

3. Terminating the program

The SAP_CMUNREGTP function deregisters the program and cancels the connection to
the SAP Gateway.

You can use the function SAP_CMCANCREGTP [Seite 127] to cause the Gateway to
terminate a registered program. In contrast to the function SAP_CMUNREGTP the
program to be terminated does not have to be logged on the Gateway by you
(SAP_CMREGTP). Instead you can stop any program.

Both functions will only terminate programs that have the status INIT or WAITING.

 CM_RETCODE return_code;
 CPIC_CHAR *tpname;
 CPIC_CHAR *gwhost;
 CPIC_CHAR *gwserv;
 PCONVERSATION_ID convid;
 CPIC_INT handle;
 CPIC_INT timeout;

SAP_CMREGTP(tpname,gwhost,gwserv,&handle,&return_code);
for(;;)
{
SAP_CMACCPTP(handle,timeout,convid,&return_code);
 CMRCV(...);
 CMSEND(...);
 CMDEAL(...);
}
SAP_CMUNREGTP(handle,&return_code);

Note the contrast to “normal” CPI-C programs which are started after the connection has
been established:
main (int argv, char ** argc)

CM_RETCODE return_code;

CONVERSATION_ID convid;

..
SAP_CMACCP(argv);
CMACCP(convid,&return_code);
CMRCV(...);
CMSEND(...);
CMDEAL(...);

Example program which resets the registration status:

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Functions for Registered CPI-C Programs

April 2001 125

SAP_CMREGTP(tpname, gwhost, gwserv, &handle, &return_code);
SAP_CMACCPTP(handle, timeout, convid, &return_code);

If (return_code == CM_SAP_TIMEOUT_RETRY)
{

 /* timeout, some other action not */
 /* to be interrupted */

SAP_CMUNACCPTP(handle,&return_code);

…

 SAP_CMACCPTP(handle, timeout, convid, &return_code);

}

…

Determining the Number of Programs Registered at the Gateway
You can use the function SAP_CMNOREGTP() to find out how often a program has been
registered with a specific name at the SAP Gateway. The total number and the program status
are returned:

total Number of registered programs (total of programs in INIT,WAITING und
RUNNING status)

init Number of registrations in INIT status, which means, not waiting for tasks

waiting Number of registrations in WAIT status, which means, available for new
tasks

running Number of registrations in RUNNING status, which means, currently working
on tasks

CM_RETCODE return_code;
 CPIC_CHAR *tpname;
 CPIC_CHAR *gwhost;
 CPIC_CHAR *gwserv;
 CPIC_INT total;
 CPIC_INT init;
 CPIC_INT waiting;
 CPIC_INT running;

SAP_CMNOREGTP(tpname,gwhost,gwserv,
 &total,&init,&waiting,&running,
 &return_code);

The function module GWY_GET_NO_REG_PROGRAMS provides the same functionality in the
R/3 System.

Changing Statuses of Registered Programs
SAP_CMREGTP(2): INIT

SAP_CMACCPTP (call): INIT � WAITING

SAP_CMACCPTP (rc=timeout): WAITING � RUNNING

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Functions for Registered CPI-C Programs

126 April 2001

SAP_CMACCPTP (connection setup): WAITING � RUNNING

SAP_CMUNACCPTP WAITING � INIT

CMDEAL: RUNNING � INIT

Communication with a registered program requires protocol type R.

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

SAP_CMCANCREGTP

April 2001 127

SAP_CMCANCREGTP
Use
You can use the function SAP_CMCANCREGTP() to cause the Gateway to terminate a
registered program. Both functions will only terminate programs that have the status INIT or
WAITING. Running programs are not affected. The return code CM_DEALLOCATED_NORMAL
is sent to the registered program in the SAP_CMACCPTP call.

Syntax
SAP_CMCANCREGTP(tpname,gwhost,gwserv,&total,&canceled,&returncode);

Parameters
tpname Transaction program name

gwhost Gateway host

gwserv Gateway service

total Total no. of registrations

canceled No. of terminated programs

returncode Return code

Integration
The function module GWY_CANCEL_REG_PROGRAMS provides the same functionality in the
R/3 System.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

SNC Function Calls

128 April 2001

SNC Function Calls
Use
Secure communication via the CPI-C interface is provided through SAP’s SNC interface (Secure
Network Communication).

SNC supports third-party security systems (such as Kerberos, SECUDE, etc.). This provides for
a secure Authentification of the partners and secure data transfer.

You can activate the SNC functions via environment variables or entries in the side information
file (see the side information basics in the documentation SAP Communication: Configuration
[Extern]).

Features
The following SNC function calls are available:

� SAP_CMSNCMODE

Returns the SNC status of a connection.

Possible values: SNC_ON

SNC_OFF
SAP_CMSNCMODE(convid, &snc_mode, &return_code);

� SAP_CMSNCNAME

Returns the SNC name of the partner that has set up the connection.
SAP_CMSNCNAME(convid, sncname, sncname_len, &return_code);

� SAP_CMACLKEY

Returns the SNC ACL key of the partner that has set up the connection.
SAP_CMACLKEY(convid, aclkey, aclkey_len, &return_len,
&return_code);

� SAP_CMNAMETOACLKEY

Converts the SNC name to an ACL key.
SAP_CMNAMETOACLKEY(snclib, sncname, aclkey, len, &return_len,
&return_code);

� SAP_CMACLKEYTONAME

 Converts the ACL key to an SNC name.
SAP_CMACLKEYTONAME(snclib, aclkey, aclkey_len, sncname,
&return_code);

� SAP_CMINIT3

 Analog to SAP_CMINIT [Seite 111], but with SNC data

� SAP_CMREGTP2

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

SNC Function Calls

April 2001 129

Analog to SAP_CMREGTP, but with SNC data (see Functions for Registered CPI-C
Programs [Seite 123]). Converts the ACL key to an SNC name.
SAP_CMACLKEYTONAME(snclib, aclkey, aclkey_len, sncname,
&return_code);

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Define Variables for Host Types

130 April 2001

Define Variables for Host Types
Use
The header file cpic.h is host-independent. So that the target-host-specific parameter type is
used, you must specify the host type before including the header file.

You can specify the host type in one of two ways:

� Statement define in the C program (see the example below)

� Parameter specification in the compiler call

(see Linking an SAP Development Library [Seite 87])

Features
Supported host systems:

Define variable Host

SAPonBULLDPX2 BULL DPX/2 300 with B.O.S.

SAPonMIPS DEC Station 3100 with ULTRIX

Magnum3000 with RISC BOS

SAPonHP_UX HP/9000-400 with HP-UX

HP/9000 (PA-RISC) with HP-UX

SAPonRS6000 IBM RS6000 AIX

SAPonAS400 AS/400 with OS/400

SAPonMVS IMS with MVS

SAPonOS2_2x PS/2 with OS/2

SAPonMX3I MX 300 (INTEL) with SINIX V5.4 in System V mode

SAPonMX3N MX 300 with SINIX V5.2 in System V mode

SAPonMX5I MX 500 (INTEL) with SINIX V5.4 in System V mode

SAPonRM600 RM600 (MIPS) with SINIX V5.4 in System V mode

SAPonWX2I WX 200 with SINIX Open Desktop V1.0

SAPonBS2 BS2000

SAPonVMS OpenVMS

HP/9000-400 with HP-UX:
#define SAPonHP-UX 1

...

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Define Variables for Host Types

April 2001 131

#define SOCK 1

#include "cpic.h"

...

main(..)

..

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Asynchronous Data Transfer With Q-API

132 April 2001

Asynchronous Data Transfer With Q-API
Asynchronous Data Transfer is based on various queue interfaces.

Queue Interface in the R/3 System [Seite 139]

Queue Interfaces in the R/2 System [Seite 148]

Queue Interface for C Programs: RFC to R/3 [Seite 171]

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Data Transfer

April 2001 133

Data Transfer
Definition
Synchronous Data Transfer
Data is transferred directly (simultaneously, synchronously) from program to program via CPI-C
communication.

Both communications partners must be available at the same time. Because the central SAP
system in a typical SAP installation does not run round the clock, but the linked systems are
frequently in operation 24 hours a day, asynchronous data transfer is necessary.

Synchronous data transfer has the following disadvantages:

� Transfer is not possible is the partner system or the line is not available.

� A data backlog in the reciever system causes a data backlog in the sender system.
Processing in the application is delayed.

� If a connection is broken, it may be necessary to perform a recovery in both systems.

Asynchronous Data Transfer
With asynchronous, or buffered, data transfer, data is temporarily stored in a sequential queue.

Asynchronous transfer has the following advantages:

� Wait times in the sender system are avoided.

� A recovery is automatically performed in the sender system.

� Transfer need not be performed during online time. This avoids placing unnecessary load
on the system and thus helps to reduce costs.

The Queue Application Programming Interface (Q-API) is an SAP interface for asynchronous
data transfer.

Data is buffered sequentially and processed immediately or later by an asynchronously running
process.

One possible processing method is to send data to an external partner system via CPI-C. Data
units that belong together can be stored in accordance with transaction and sent to a
communications partner.

Data is buffered in queues before it is transferred to the target system.

In an R/3 System, the queues are stored in a relational database. All R/3 database systems are
supported.

The ABAP interface is implemented as follows:

� In R/3: ABAP Function Modules

� In R/2:

Release 4.3H - 4.4: ABAP calls to Assembler routines

Release 5.0: ABAP key words

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Data Transfer

134 April 2001

The C interface to R/3 is implemented as a library which uses R/3 function modules through a
Remote Function Call (RFC).

Integration
The following topics explain the basic terms and concepts of the SAP interface Q-API.

� Queues [Seite 135]

� Queue Attributes [Seite 136]

� Queue Element [Seite 137]

� Queue Unit [Seite 138]

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Queues

April 2001 135

Queues
Definition
Data elements from an application program are stored for transfer in a queue.

A queue is identified uniquely by a name, which is either defined by the application program or
assigned automatically by the queue administration (time stamp) if you do not specify a name
explicitly.

The attributes of a queue are determined when the queue is first opened via Queue Attributes
[Seite 136].

Integration
Two tables are relevant for internal database administration.

� Table APQI

This table is used as a queue directory. Each queue has one table entry, which contains
its attributes and administration data.

� Table APQD

This table is used as a data pool, in which the actual data objects are stored.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Queue Attributes

136 April 2001

Queue Attributes
Definition
The attributes and parameters of a queue are set by the queue attributes when it is opened for
the first time in write mode. The queue directory entry is created automatically.

Structure
Within an R/3 System, the queue parameters can be displayed and administered via queue
administration (SM38).

� Queue name

A maximum of 20 characters or a time stamp

� Can be described: Unique or multiple/parallel

� Data object and processing type recognition

� SAP-specific parameters for the logon protocol

� Client

� User password

� ABAP program/form

� Processing parameters

� Program

� Start mode

� Date/time

� User password for Express Mail

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Queue Element

April 2001 137

Queue Element
Definition
A queue element (block) consists of a fixed header for queue administration and a variable data
section.

_____________________________//___________________
|______________|______________//___________________|

Header Variable data section

Application data are stored transparently in the variable data section, so that any data objects
can be stored in the queue.

Segmenting is supported for data structures, which exceed the maximum length of the variable
data section. This data is stored, in a form that the application can recognize, divided into several
logical storage blocks, and passed on complete to the application when it is called again. The
application program makes available a sufficiently large reciever buffer.

Note on ABAP:

� The maximum data object size is defined via the Data Dictionary field APQD-VARDATA.

� The maximum buffer size is restricted to the ABAP data range.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Queue Unit

138 April 2001

Queue Unit
Definition
If several data elements belong to the same processing unit, this unit is known as a transaction-
oriented data unit or Queue unit.

Each relevant data element must retain a specific sequence ID:

Q_SINGLE (S) Individual element

Q_FIRST (F) First element

Q_MIDDLE () Not first/last element

Q_LAST (L) Last element

A processing program, which is active at a later time, can only delete the data in a
queue unit, if the last data object has been acknowledged as processed.

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Queue Interface in the R/3 System

April 2001 139

Queue Interface in the R/3 System
Definition
The R/3 System provides ABAP function modules as an interface for asynchronous data transfer.
Before it is transferred, the data is stored temporarily in a relational database in queues.

As of R/3 Release 3.0 you can use the transactional RFC for buffered data transfer.

For more information, refer to the documentation Remote Communications [Extern].

Use
Depending on how you use the parameters, the transfer program starts automatically or must be
started manually via System � Services � Queue (transaction code SM38). Transaction
code SM38 administers and displays queues and their processing logs.

A driver program transfers data at a particular time. The name of the driver program is
RSQAPI20.

You must include the file RSQAPIDF in your program. It contains data definitions which enhance
the readability of ABAP queue transfer programs.

The sample program for R/3 [Seite 205] shows how data is written in a queue.

Structure
You can use the following function modules with their relevant parameter values.

ABAP Function Modules

� QUEUE_OPEN [Seite 140] Open a queue

� QUEUE_PUT [Seite 142] Place data in a queue

� QUEUE_GET [Seite 143] Read data from a queue

� QUEUE_DELETE [Seite 146] Delete data from a queue

� QUEUE_CLOSE [Seite 144] Closing a queue

� QUEUE_ERASE [Seite 145] Delete queue

� QUEUE_SCHEDULE [Seite 147] Schedule queue processing

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

QUEUE_OPEN

140 April 2001

QUEUE_OPEN
Use
To open a queue, call the function module QUEUE_OPEN with a sequence of EXPORTING
parameters:
CALL FUNCTION 'QUEUE_OPEN'

 EXPORTING NAME = name

 TYPE = type

 ...

Parameters
Assign a value to each of the folowing parameters:

Parameters Type Explanation

NAME C(20) Queue name
TYPE C(1) Queue attribute

' ': Unique: A new queue will be generated, even if a queue with the
same name already exists.

A : Appendable: An appendable queue is generated or opened
(default)

OPENMODE C(1) Queue mode:

W : Open a queue to write (default)

R : Open a queue to read; explicit delete

D : Open a queue to read and delete

O : Open a queue to read only

DESTINATION C(8) Symbolic name of the target system (Table TXCOM)

DATATYPE C(4) Data type/processing log:

CPIC

XTAB

' ' (binary)
CLIENT C(3) Client in the SAP target system
USERID C(12) User in the SAP target system
PASSWORD C(8) User password
PROGRAM C(8) Program in the SAP target system
FORM C(30) Form routine in the ABAP partner program
DRIVER C(8) Name of the driver program

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

QUEUE_OPEN

April 2001 141

START C(1) Start mode

A: Automatic (in Online mode only)

M: Manual

E: Event-oriented

P: Periodically event-oriented
DATE D(8) Queue processing date
TIME T(6) Processing time
ERASE C(1) Delete ID

If you set a character other than a blank, the queue is deleted after
processing.

QSTATE C(1) Queue status

‘ ': No status

C: Queue will be created

F: Queue has been finished

E: Queue error

If you do not specify a name for a queue, you can retrieve a name by extending the
call to the function module QUEUE_OPEN.
CALL FUNCTION 'QUEUE_OPEN'

 EXPORTING...

 IMPORTING NAME = QUEUE.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

QUEUE_PUT

142 April 2001

QUEUE_PUT
Use
To write to a queue, call the function module QUEUE_PUT with a sequence of EXPORTING
parameters:

CALL FUNCTION 'QUEUE_PUT'

 EXPORTING NAME = name

 STATE = state

 LENGTH = length

 BUFFER = buffer.

Parameters
Assign a value to each of the folowing parameters:

Parameters Type Explanation

NAME C(20) Name of the queue to write to

STATE C(1) Start/end of a Queue unit

 S : Only a single element is written to the queue

 F : First element in the queue

Element is not the first, only or last

 L : Last element in the queue

LENGTH I(4) No. of bytes in the buffer to pass

BUFFER Buffer to pass (like DDIC field APQD-VARDATA)

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

QUEUE_GET

April 2001 143

QUEUE_GET
Use
To read data from a queue, you must first call the function module QUEUE_GET with a
sequence of parameter. The data buffer must have the same type and length as the DDIC field
APQD-VARDATA. Larger data objects cannot currently be imported using this module.

FUNCTION 'QUEUE_GET'

 EXPORTING

 NAME = Queue Name

 OPENMODE= Open Mode

 UNIT = Queue Unit

 POS = Queue Element

 IMPORTING

 BUFFER = User Data

 LENGTH = Length of Data

 STATE = State of Unit/Message

 UNIT = Unit

 POS = Element

 EXCEPTIONS

 EOQ

 BUFFER_ERROR

 INVALID_PARAMETER

 MEMORY_ERROR

 Q_ERROR

 SQL_ERROR.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

QUEUE_CLOSE

144 April 2001

QUEUE_CLOSE
Use
To close a queue, call the function module QUEUE_CLOSE with the EXPORTING parameter
NAME.

 CALL FUNCTION 'QUEUE_CLOSE'

 EXPORTING NAME = name

 OPENMODE = 'W'.

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

QUEUE_ERASE

April 2001 145

QUEUE_ERASE
Use
You delete a queue by calling the QUEUE_ERASE function module with the EXPORTING
parameter NAME.

 CALL FUNCTION 'QUEUE_ERASE'

 EXPORTING NAME = name.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

QUEUE_DELETE

146 April 2001

QUEUE_DELETE
Use
You can use the function module QUEUE_DELETE to delete data (unit) from a queue. This is
done typically after processing is complete. End the call for this module with COMMIT WORK.

 CALL FUNCTION 'QUEUE_DELETE'

 EXPORTING

 NAME = Name of Queue

 UNIT = Unit

 EXCEPTIONS

 INVALID_PARAMETER

 Q_ERROR

 SQL_ERR.

COMMIT WORK.

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

QUEUE_SCHEDULE

April 2001 147

QUEUE_SCHEDULE
Use
You can use the function module QUEUE_SCHEDULE to schedule the queue processing
program in R/3 background processing. This module is called internally at QUEUE_CLOSE, if
you select the processing mode Q_AUTOSTART and if the queue has been opened in write
mode.

Automatic processing of a queue is handled by scheduling the assigned ABAP program (driver)
in the R/3 background job scheduling system.

Start mode A is not possible from an update task. Here, you must call the function
module explicitly from the dialog task.

 CALL FUNCTION 'QUEUE_SCHEDULE'

 EXPORTING

 NAME = Name of Queue

 PROGRAM = Name of processing Program

 START = Start Mode

 DATE = Date of Processing

 TIME = Time of processing

 COMMITX = implicit Commit of Logical Unit of Work (LUW)

 EXCEPTIONS

 INVALID_PARAMETER

 SCHEDULE_PROBLEM.

Integration
Queue processing
Automatic queue processing is handled by scheduling of the assigned ABAP program (driver) in
the R/3 background scheduling system (transaction code SM36), where it can be monitored.
Messages are logged in the background processing environment.

You can call a queue processing program manually via queue administration or directly.

For event-oriented processing, SAP_QEVENT is internally triggered by event parameter Name of
Queue.

A scheduled batch job is required which starts a variant of the processing program and waits for
this event.

These actions are largely performed automatically when creating a queue via the queue
transaction SM38.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Queue Interfaces in the R/2 System

148 April 2001

Queue Interfaces in the R/2 System
Definition
On the R/2 host, the queues are stored in a file called DOUT.

Q-API is integrated into the ABAP language and available in the Assembler environment.

Depending on what parameters you set for the Q-API functions, the transfer program is started
automatically or must be started manually using the SAP transaction TMQD.

Use
For queue administration, you can use the following transactions:

TMQD:
Use this transaction (Queue display) to display an overview of the queues available in the system
and start asynchronous transfer programs with a manual start ID.

TMQM:
This transaction (Queue maintenance) is for the system administrator and should only be
available to a limited group. You can use this transaction to change and delete queues.

A queue is treated as a file. It can be opened, written to and closed:

� Opening a queue

When a queue is opened, the queue attributes are set.

� Writing to a queue

An important feature of the queue write function is that control is returned to the
executing program without data transfer having been required to take place. This allows
data to be passed to queues from the SAP system online and in update mode.

� Closing a queue

When all the data is entered in the queue, the queue is closed.

Asynchronous data transfer is implemented in different ways in R/2 Systems. For more details,
refer to the following sections:

� Queue Interface for Release 5.0 [Seite 149]:

ABAP key words

� Queue Interface for Release 4.3H / 4.4 :

ABAP CALLs to Assembler routines

� Special Features in BS2000 [Seite 156]

� Error Messages of the SAP Transfer Program [Seite 191]

� SAP ACCOUNTING Interface SAPSTEC (as of Release 4.3J, 4.4C and 5.0A) [Seite 166]

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Queue Interface for Release 5.0

April 2001 149

Queue Interface for Release 5.0
Definition
In R/2 Release 5.0, some functions in the Q-API library are implemented by specific ABAP key
words.

For more information, refer to the following topics:

� ABAP Key Words [Seite 150]

� Queue Parameters [Seite 151]

� ABAP Statements [Seite 155]

� Sample Programs for R/2 Release 5.0 [Seite 208]

The ABAP sample programs contain functions and parameters which are dependent on
the transfer data type.

� Data transfer in RODC format

� Data transfer from the SAP spool in CPIC format

� Data transfer in CPIC format

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

ABAP Key Words

150 April 2001

ABAP Key Words
The ABAP program interface for asynchronous communication via queues (DOUT queues)
contains key words (functions) to open, close and write to DOUT queues.

� OPEN QUEUE <qparm>,

� TRANSFER <record> TO QUEUE <qparm>,

� CLOSE QUEUE <qparm>

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Queue Parameters

April 2001 151

Queue Parameters
Definition
Before you perform the functions, you must fill the queue parameter string <qparm>. The
structure of <qparm> is defined in the Data Dictionary as a table without database QPARM.

Use
The queue parameter string can be considered as a reference to an open queue (command
OPEN QUEUE) in the buffer file DOUT. If you want to write to several DOUT queues, you can
select which queue to write to.

Structure
The parameter string <qparm> consists of the following groups:

� Parameters for the Queue Name

� Parameters for the Transfer Program

� SAP-specific Parameters

The following topics list these parameters.

Parameters for the Queue Name
The following parameters determine the queue name:

� QDEST CHAR(8):

Target system, for which you want to build the CPIC connection.

� QAPPL CHAR(8):

Transaction program in the target system, which is started via the CPI-C connection (for
example, the CICS transaction X1SA if the target system is an R/2 System).

� QDTYP CHAR(4):

The types of data to be transferred.

The transfer program delivered by SAP supports the following data types:

RODC: data is in Remote ODC format.

CPIC: data is unformatted and user-defined.

SPLD: Corresponds to the CPIC format where data is stored intermediately in an SAP
spool file instead of the queue.

� QMAND CHAR(3):

Client in the target system

Use this parameter only if the target system is an SAP system.

� QABAP CHAR(8):

Name of the ABAP/4 program, in which the form routine to be performed is defined.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Queue Parameters

152 April 2001

Use this parameter only if the target system is an SAP system and the transfer data type
is CPIC or SPLD.

� QMODU CHAR(30):

Name of the form routine to be performed.

Use this parameter only if the target system is an SAP system and the transfer data type
is CPIC or SPLD.

Parameters for the Transfer Program
The following parameters control the transfer program Y1SA.

� QMODE CHAR(1):

Queue open mode:

I: open queue for input

O: open queue for output (default)

U: open queue for update

If you do not specify an open mode (blank), the queue is opened for output (default
setting).

Currently only this default setting is supported.

� QSTRT CHAR(1):

Start mode of the transfer programs:

A: Automatic

The transfer program is started after each queue unit. The queue unit is controlled
with the parameters QFIRS and QLAST.

M: Manual

You start the transfer program interactively using the start function of the SAP
transaction TMQD or TMQM.

� QCORR CHAR(1):

Responsibility for correction of a transfer error:

S: Sender

R: Receiver

Currently only receiver correction responsibility is supported.

� QUPTA CHAR(1):

Synchronous/asynchronous update in the SAP system

S: Synchronous

A: Asynchronous

The values are only permitted if the target system is an SAP system and data type
RODC is used:

� QSTDA DATE(8):

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Queue Parameters

April 2001 153

Start date of the transfer programs
for automatic start in format "YYYMMDD"

� QSTTI TIME(6):

Start time of the transfer programs
for automatic start in format "HHMMSS"

You can start the transfer program manually or automatically as well as at a specified
start date and time. If the specified start time is before the automatic start time, the SAP
transfer program is started immediately.

� QFIRS CHAR(1):

ID for the first record in a queue unit.

� QLAST CHAR(1):

ID for the last record in a queue unit.

Transfer data can be grouped into queue units.

The transfer data in a queue unit is only deleted from the
queue after all the transfer data in the queue unit
has been sent and acknowledged.

If an error occurs, transfer begins with the first unit of the queue unit. A queue unit is
identified by the values of the two parameter fields QFIRS, QLAST:

QFIRS QLAST Y N First transfer record
 Y Y Only transfer record
 N N Middle transfer record
 N Y Last transfer record

You must ensure that the queue unit control entries are always closed correctly (with
QLAST). An incorrectly identified queue unit will result in data being transferred
incorrectly several times.

� QTREI CHAR(8):

Name of the transfer program

If no name is specified (blank), the name of the SAP transfer program is automatically
used (for example, in CICS environment: Y1SA, in a BS2000 environment RSDRIVER).

If you specify a name, it will be interpreted as the name of a user-defined transfer
program.

User-defined transfer programs can be started automatically or manually.

SAP-specific Parameters
It is a good idea to use the SAP-specific parameters if the target system is an SAP system.

� QDUSR CHAR(12):

User ID in the SAP system.

Enter a user name here in accordance with the data type (RODC/CPIC).

� QDPAS CHAR(8):

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Queue Parameters

154 April 2001

Password for user ID in the SAP system.

The following parameters can be used if the data type RODC is also used.

� QDTRC CHAR(4):

SAP transaction code

Transaction code of the SAP transaction to be started via RODC (for example, TS02).

� QDPGM CHAR(8):

Program name of the corresponding transaction
(for example, SAPPG02).

� QDDYN CHAR(4):

Screen number of the corresponding transaction
(for example, 0041, the first screen in transaction TS02)

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

ABAP Statements

April 2001 155

ABAP Statements
Use
The following ABAP statements are relevant for data transfer:

� COMMIT WORK

This statement is used to save all database changes. It corresponds to the Q-API
function QCOMMIT. The transfer data is placed, related to transaction, in the queue as a
queue unit.

� ROLLBACK WORK

The function ROLLBACK WORK resets a queue transaction. It corresponds to the Q-API
function QROLLBACK.

If a system failure occurs, the data elements of a queue unit, which were not closed with
COMMIT WORK, are removed from the database and database locks are reset. This
ensures that a queue can never contain incomplete queue units.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Transfer in BS2000

156 April 2001

Transfer in BS2000
Definition
In a BS2000 environment the driver program is an ABAP program named RSDRIVER. In the
following, it is referred to as the driver. The driver can only work in a running SAP online system.
An external driver is not available.

Use
You can start the driver in one of the following ways:

1. Automatically after the message queue has been created

2. Manually via the administrative transactions TMQD and TMQM

3. Manually by calling up the program in dialog

4. Remotely from another application (via a free CPI-C connection)

UTM Special Features
In cases 1 and 2 processing is asynchronous,while in cases 3 and 4 it is synchronous.

Asynchronous processing requires special prommamming, because distributed transaction
processing within an asynchronous UTM transaction is possible only with UTM V3.3/UTM-D
V2.0.

With earlier versions, distributed transaction processing can be simulated with asynchronous
messages.

See also:
BS2000 R/2 Host: UTM-UTM Connection

Structure
You will find more information in the following topics:

� Asynchronous Driver Communication [Seite 157]

� Extensions [Seite 164]

� Notes on Installation [Seite 163]

� Queue Transfer Without Buffering [Seite 162]

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Asynchronous Driver Communication

April 2001 157

Asynchronous Driver Communication
Purpose
For transfer in BS2000 [Seite 156] you can start the driver in such a way that processing runs
asynchronously. This has the advantage of avoiding blocking.

Two cases can be identified:

� Recipient is not an SAP System [Seite 160]

� Recipient is an SAP System [Seite 161]

Process flow
Each communication message from the driver is initiated by a special header message, which
must be read with a separate FGET. This header is to be kept and sent unchanged as a separate
message (the first message) when responding to the SAP driver (FPUT header).

The driver report begins communication with an SAP logon message (CONN message) when
logging on to to another SAP system. If the application addressed is not a SAP system, then this
logon must be acknowledged by the message 'APPCCPIC1 '. This logon can be suppressed
from 5.0E if user and password are not specified when creating the queue.

Then the driver sends the first message of the first LUW (that has not yet been completely
dispatched) and waits for an acknowledgement of receipt. Each message received with a length
greater than zero is taken to be an acknowledgement. However, it has become customary to use
the character string ‘OK’ for an acknowledgement. If there are other messages, the driver now
sends the next message. When all the messages of an LUW have been sent and individually
acknowledged by the partner system, the LUW in the file DOUT is deleted. If there is another
LUW available, transfer is continued with the first data record of the next LUW.

The following diagram illustrates the communication process asynchronous driver - receiving
program.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Asynchronous Driver Communication

158 April 2001

SAP-System External System

INIT

FGET startinfo
FGET queuename

APRO AM Ipap, Itac
FPUT header
FPUT 'CONNCPIC1...'

PEND FI

INIT

FGET header
FGET 'CONNCPIC1...'

APRO AM Ipap, Itac
FPUT header
FPUT 'APPCCPIC1...'

PEND FI

INIT

FGET header
FGET APPCCPIC1

APRO AM Ipap, Itac
FPUT header
FPUT first data record

PEND FI

INIT

FGET header
FGET 'OK'

APRO AM Ipap, Itac
FPUT header
FPUT second data record

PEND FI

INIT

FGET header
FGET 'OK'

APRO AM Ipap, Itac
FPUT header
FPUT last data record

PEND FI

INIT

FGET header
FGET 'OK'

APRO AM Ipap, Itac
FPUT header
FPUT 'FREECPIC1'

PEND FI

INIT

FGET header
FGET last data record

APRO AM lpap, ltac
FPUT header
FPUT 'OK'

PEND FI

INIT

FGET header
FGET 'FREECPIC'

PEND FI

INIT

FGET header
FGET second data record
 Processing data record
APRO AM Ipap, Itac
FPUT header
FPUT 'CONNCPIC1...'

PEND FI

INIT

FGET header
FGET first data record
 Processing data record
APRO AM Ipap, Itac
FPUT header
FPUT 'OK'

PEND FI

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Asynchronous Driver Communication

April 2001 159

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Recipient is not an SAP System

160 April 2001

Recipient is not an SAP System
Purpose
If the receiving application is not an SAP System, the asynchronous driver requires an additional
message header containing address information. The SAP APC protocol must also be observed.

Process flow
Message Header Structure

Field Type/Length Explanation

UTMDAIND C8 Indicator for message header (set by the SAP-System)

UTMDPAPPL C8 Application name of the SAP System (set by the SAP-System)

UTMDPPROC C8 Processor name of the SAP application (set by the SAP-
System)

UTMDPCNVD X4 CONVID of the driver in the SAP System (set by the SAP-
System)

UTMDSAPPL C8 Application name of the partner application (set only if the SAP
System is also the receiving system, otherwise not used)

UTMDSPROC C8 Processor name of the partner application (set only if the SAP
System is also the receiving system, otherwise not used)

UTMDSCNVD X4 CONVID in the receiving system (set only if the SAP System is
also the receiving system, otherwise not used)

If the partner application receives a message with this message header from the SAP driver, it
must use this header at the beginning of each APC confirmation message.

The message header is not part of the driver message. It must be removed before any further
processing is made. Therefore, the message header is sent as a separate UTM partial message.
The first FGET receives the message header, while the second FGET receives the driver
message.

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Recipient is not an SAP System

April 2001 161

Recipient is not an SAP System
Purpose
If an SAP System is the recipient of an APPQ transfer, you must make an entry in the XCOM
table for the argument UTMPPROC,UTMPAPPL. Thus, the sender can be addressed (as PLU in
this case) via its LPAP and LTAC names.

Prerequisites
The driver can only transfer an LUW (Logical Unit of Work) correctly if both systems remain
active until the driver stops.

Process flow
You cannot continue with a transfer in a later session. If you do not observe this, you may receive
confirmation messages from the partner by a driver that is no longer active. These messages
cannot be addressed and thus are lost. As a DOUT LUW is considered as transferred only after
all messages have been confirmed, the LUW continues to exist. If the driver for this queue is
started again, the LUW is transferred again beginning with the first element. The recipient has to
take this into account.

You should also consider that a check is made for a related XCOM entry as soon as a queue is
opened. They key fields are the fields QPARM-QDEST (R/2 Release 5.0) and the corresponding
field of the NAME Parameter of the ABAP/4 call using CALL (Releases 4.3 and 4.4).

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Queue Transfer Without Buffering

162 April 2001

Queue Transfer Without Buffering
If you are using UTM-D, you can send messages via Q-API to other UTM applications without
buffering them in the DOUT file.

UTM-D makes sure that a message is received once only. An LUW is sent as a series of UTM
partial messages of an asynchronous UTM-D transaction.

The partner application is addressed via the LPAP and LTAC names contained in the XCOM
table. To choose this procedure, set the communication type (CType) in the XCOM table to D.

� You cannot use this procedure in a separate update task using Q-API, as this
task is not a UTM task.

� If table XCOM exists in several clients (not recommendable in BS2000), all
entries not equal to 0 in one client must also exist in Client 0.

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Notes on Installation

April 2001 163

Notes on Installation
In Client 0, you must create an SAP user record as follows:

Name: RSDRIVER

Password: DOUT

Transaction authorization TM39

If spool files are to be sent from SPOOL, the same user must exist in all clients in which there are
spool files. This is due to the fact that the driver is started in the corresponding client.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Extensions

164 April 2001

Extensions
Definition
Extensions are available for the following R/2 Releases:

� Release 5.0D

� Release 5.0E

� Release 5.0F

� Release 5.0G

These extensions are described in the following topics.

Release 5.0D
If you are using UTM Version 3.3, your system assumes that you are also using UTM-D V2.0. In
this case, the driver operates synchronously without the additional protocol.

If you do not want to use the synchronous procedure due to the changes involved, you can keep
the asynchronous procedure by stating communication type A in the XCOM table.

On system startup, any activity indicators still existing in the queues are reset. Queues are
deleted if all of their LUWs have been transferred. New driver processes are started for queues
that were started automatically and still contain LUWs to be transferred. These actions are
performed before the APLZ restart.

Normally, a driver process stops as soon as the all queue elements have been transferred.
However, queue elements are often inserted at the end of the queue while queue elements at the
beginning are read out by the driver and sent to the recipient at the same time.

If the transfer is not continuous, it often happens that there are no more queue elements in the
queue and the driver process stops. Fractions of a second later, new elements are placed in the
queue. A new driver process has to started. This requires considerable time and resources
(setting up a connection, creating a mode, performing user authorization checks, providing ABAP
runtime environment, etc.).

It may be me more efficient to not letting the driver stop as a queue gets empty but to inform the
partner program about the state of the queue. The partner program can go into a waiting state
and then try to receive more queue elements. In this processing mode, waiting only occurs with
the partner program.

To change the driver to this procedure, you must set the NONSTOP variable to 1.

You can use the non-stop procedure only if you start the driver remotely. Message SU031
reports that the queue is empty.

Release 5.0E
If a connection or a driver process abnormally ends, the queue activity indicator is automatically
reset. No manual intervention with Transaction TMQM is required. The partner application can
thus continue reading out elements from the queue at a later point of time.

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Extensions

April 2001 165

Release 5.0F
Asynchronous communication can be set up from an SAP report to an UTM partner, and
messages can be sent. Here, the report only makes an ALLOCATE call and any SEND calls
required. RECEIVE calls, of course, are not permitted.

Release 5.0G
You can use the communications type in table XCOM to control whether the UTM transaction is
to be exited by SAP when communication is started (PEND RE is the standard) or to be kept
open (PEND KP). The communications type K controls PEND KP. Keeping the transaction open
has advantages with regard to error handling.

If you are using UTM-D V2.0, synchronous communication can be started even when the SAP
transaction already has the long-running status. To do this, you simply have to assign transaction
code Y2SA to transaction class 10. If the DOUT driver is also working synchronously, you must
also assign Y1SA to class 10.

To disentangle asynchronous driver communication from general asynchronous communication
(which can considerably hinder driver processes), an additional transaction code (Y3SA) and a
new class (14) were defined for general asynchronous communication.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

SAP ACCOUNTING Interface SAPSTEC (as of Release 4.3J, 4.4C and 5.0A)

166 April 2001

SAP ACCOUNTING Interface SAPSTEC (as of Release
4.3J, 4.4C and 5.0A)
Definition
ACCOUNTING data is transferred via the SAP ACCOUNTING interface SAPSTEC. The SAP
transfer program writes an ACCOUNTING record before it terminates.

The two topics below cover the following subjects:

� Data structure

In which structure is data passed to the SAPSTEC interface?

� Fields

What meaning and value ranges do the fields have?

Structure
Data structure

* *
* S T C D U M M Y *
* *
* THIS DUMMYSECTION DESCRIBES THE LAYOUT OF THE *
* S A P - STATISTIC RECORD IN CICS ENVIRONMENT. *
* *

 SPACE 1
 RAPPL OPSYS=BS2
 AIF (&APPLOK).$STCD01
DFHEISTG DSECT
.$STCD01 ANOP
STCBEG DS 0A
STCLEN DS H LENGTH OF RECORD
 DS XL2 RESERVED (V RECORD)
STCTASK DS CL2 SAP TASK TYPE:
* D1, D2,... DIALOG
* V1, V2,... POSTING TASK
* N1, N2,... ODC TASK
* L1, L2,... BACKGROUND TASK
* X1, X2,... LU6.2 COMMUNICATION
* S1, SS SPOOL TASK
STCFLAG1 DS X FLAG BYTE 1
STC1DIA EQU X'80' RECORD OF DIALOG TASK
STC1VBT EQU X'40' RECORD OF VB-TASK
STC1SPL EQU X'20' RECORD OF SPOOL TASK
STC1SYS EQU X'10' SYSTEM RECORD
STC1BDC EQU X'08' BATCH INPUT
STC1SCD EQU X'04' SCHEDULED TRANSACTION
STCMANDT DS XL1 MANDANT
STCDATE DS PL4 DATE (PACKED), ZCSADATP

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

SAP ACCOUNTING Interface SAPSTEC (as of Release 4.3J, 4.4C and 5.0A)

April 2001 167

STCTIME DS PL4 END TIME OF TRANSACTION (PACKED)
STCTIMTR DS PL4 START TIME OF TRANSACTION(EIB,PACK)
STCRESP DS XL4 RESPONSE TIME OF TRANSACTION(MS)
STCCTIM DS XL4 CPU TIME OF TRANSACT (BS2000 ONLY)
STCATIM DS XL4 TIME, TASK WORK AREA IS USED (MS)
STCTCODE DS CL4 SAP TRANSACTION CODE
STCREPID DS CL8 IF ABAP: REPORT ID
STCLTERM DS CL8 TERMINAL ID
STCACCT DS CL12 ACCOUNT NUMBER
*

*........CALL STATISTICS, NUMBER OF CALLS.....................
*
STCREADU DS F READ FOR UPDATE
STCREAD DS F READ
STCSET DS F SET
STCGET DS F GET
STCWRITE DS F REWRITE
STCINSRT DS F INSERT
STCDELET DS F DELETE
STCLOAD DS F PGM LOAD
STCSYNC DS F SYNCPOINT
STCROLLB DS F ROLLBACK
STCCALL DS F OTHER CALLS
*

*........TIMER, I/O COUNTER...................................
*
STCEXDA DS H DATA EXCP'S * TRACE -
STCEXIN DS H INDEX EXCP'S * STATISTICS

STCEXES DS H ESDS EXCP'S, DLI ONLY * ONLY
STCPLOAD DS H PHYSICAL LOADS
STCEXTI DS F TIME OF EXCP'S (10**-6 S)
STCPLOTI DS F LOAD TIME (10**-6 S)
STCZWAIT DS F ZTTA WAIT TIME (10**-3 S)
STCSWAIT DS F SGOC WAIT TIME (10**-3 S)
STCMILN DS F LENGTH OF INPUT MESSAGE (BYTES)
STCMOLN DS F LENGTH OF OUTPUT MESSAGE (BYTES)
STCPOLN DS F LENGTH PRINTER OUTPUT MESS. (BYTES)
STCROLAL DS F MAX. ALLOCATED ROLL AREA (BYTES)
STCRULEN DS F MAX. USED ROLL AREA (BYTES)
STCRCLEN DS F MAX. USED ROLL AREA AFTER COMPRESS.
STCPRLEN DS F MAX. SIZE OF LOADED PROGRAMS
*
*........DB CALL STATISTICS FOR TRACE.........................
*
STCDB1 DS F APPENDAGE 1:
STCDB1D DS F DIRECT ACCESS
STCDB1S DS F SEQUENTIAL ACCESS
*
STCDB2 DS F APPENDAGE 2:
STCDB2D DS F DIRECT ACCESS
STCDB2S DS F SEQUENTIAL ACCESS

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

SAP ACCOUNTING Interface SAPSTEC (as of Release 4.3J, 4.4C and 5.0A)

168 April 2001

*
STCDB3 DS F APPENDAGE 3:
STCDB3D DS F DIRECT ACCESS
STCDB3S DS F SEQUENTIAL ACCESS
*
STCDB4 DS F APPENDAGE 4:
STCDB4D DS F DIRECT ACCESS
STCDB4S DS F SEQUENTIAL ACCESS
*
STCDB5 DS F APPENDAGE 5:
STCDB5D DS F DIRECT ACCESS
STCDB5S DS F SEQUENTIAL ACCESS
*

*........QUEUE NAME IN DOUT..................................
 ORG STCPRLEN
STCDTQNA DS CL64
*
*........TIMER FOR ALL SAP DB CALLS (8*10**-6 S)..............
*
STCRUT DS F READ/UPDATE TIMER
STCROT DS F READ/ONLY TIMER
STCST DS F SET TIMER
STCGT DS F GET TIMER
STCWRT DS F REWRITE TIMER
STCINT DS F INSERT TIMER
STCDET DS F DELETE TIMER
STCCALT DS F OTHER CALLS
*
*........TASK RELATED INFORMATION.............................
*
STCVWAIT DS F WAIT ON SYNCHRONOUS UPDATE (MS)
STCTWAIT DS F CPIC: WAIT ON TERMINAL INPUT (MS)
STCDNR DS F DYNPRO NO. OF DIALOG STEP
STCETIM DS F CREATION TIME OF APLZ RECORD
STCROLL DS F ROLL KEY
STCRTABS DS F RTAB CALLS SEQUENTIAL
STCRTABD DS F RTAB CALLS DIRECT
STCNRTC DS F NO. OF RTC/RTN'S
STCLRTC DS F LONGEST INTERVAL BETWEEN RTC'S (MS)
STCIMOD DS F # CREATED INTERNAL MODI
STCTCPU DS XL8 TIME STAMP CPU MEASUREMENT
STCEND EQU *
STCLENG EQU *-STCBEG

Fields
The fields have the following meaning and value ranges for SAP-ACCOUNTING-EXIT:

STCTASK
‘QM’ identifies the ACCOUNTING records written by the SAP transfer program

STCFLAG1:
not significant

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

SAP ACCOUNTING Interface SAPSTEC (as of Release 4.3J, 4.4C and 5.0A)

April 2001 169

STCMANDT
not significant

STCDATE
Date on which the transfer program was started (packed date format 'DDMMYY')

STCTIME
Time at which the transfer program was ended (packed time format 'HHMMSS')

STCTIMTR
Time at which the transfer program was started (Release 4.3: packed time format 'HHMMSS'
Release 5.0: ms after midnight)

STCRESP
Period for which the transfer program was activated (time between the start time and end time of
the transfer program in ms)

STCCTIM
not significant

STCATIM
not significant

STCTCODE
not significant

STCREPID
not significant

STCLTERM
Conversation identifier that the transfer program uses for identifying the LU6.2 connection to the
target system

STCACCT
not significant

STCREADU
No. of ‘read for update’ operations

STCREAD
No. of ‘read’ operations

STCSET
not significant

STCGET
not significant

STCWRITE
No. of ‘rewrite’ operations

STCINSRT

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

SAP ACCOUNTING Interface SAPSTEC (as of Release 4.3J, 4.4C and 5.0A)

170 April 2001

No. of ‘insert’ operations

STCDELET
No. of ‘delete’ operations

STCLOAD
No. of ‘PGM load’ operations

STCSYNC
No. of ‘syncpoint’ operations

STCROLLB
No. of ‘rollback’ operations

STCCALL
No. of ‘other calls’

STCMOLN
Total no. of bytes transferred by the SAP transfer program (sum of bytes from the transferred
SAP protocol information and the user data)

STCDTQNA
Name of the transferred DOUT queue

STCTWAIT
Total wait time of the transfer program in ms (consists of the wait time for the connection set up
and the wait time when receiving transfer buffers)

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Queue Interface for C Programs: RFC to R/3

April 2001 171

Queue Interface for C Programs: RFC to R/3
Definition
You can use the SAP interface Remote Function Call (RFC) to call the function modules of the
queue interface in R/3 from external C programs to place data in - or read data from - a queue.
The necessary functions are provided by the RFC library.

Use
For details of the SAP interface RFC, see the documentation Remote Communications [Extern].

For details of the Q-API function modules, see Queue Interface in the R/3 System [Seite 139].

An ABAP program calls a queue function module in another R/3 System (C11) as
follows:
CALL FUNCTION 'QUEUE_OPEN'
 DESTINATION 'C11'
 EXPORTING NAME = 'TESTQUEUE'
 OPENMODE = 'W'
 TYPE = 'A'.

Accordingly, a C program calls the same queue function module in the R/3 System
as follows:
 /***
 */

 #include "saprfc.h"

 char queue[20] = 'TESTQUEUE';
 char openmode = 'W';
 char qtype = 'A';
 int rc;
 char *exception ;
 RFC_OPTIONS rfc_options;
 RFC_PARAMETER exporting[5],importing[5];
 RFC_HANDLE handle = RFC_HANDLE_NULL;

 :
 rfc_options.destination = "C11";
 handle = RfcOpen(&rfc_options); /* link to RFC Partner
*/
 :

 exporting[0].name = "NAME";
 exporting[0].nlen = 4;
 exporting[0].type = TYPC;
 exporting[0].addr = queue;
 exporting[0].leng = 20;

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Queue Interface for C Programs: RFC to R/3

172 April 2001

 exporting[1].name = "OPENMODE";
 exporting[1].nlen = 8;
 exporting[1].type = TYPC;
 exporting[1].addr = &openmode;
 exporting[1].leng = 1;

 exporting[2].name = "TYPE";
 exporting[2].nlen = 4;
 exporting[2].type = TYPC;
 exporting[2].addr = &qtype;
 exporting[2].leng = 1;

 exporting[3].name = (char *)0; /* no more export parameters
*/

 importing[0].name = NULL; /* no import parameter(s)
*/
 tables[0].name = NULL; /* no internal table(s)
*/
 exception = NULL; /* default exception
handling*/

 rc = RfcCallReceive(handle,
 "QUEUE_OPEN",
 exporting,
 importing,
 tables,
 &exception);
 ...
 ...

An ABAP/4 program calls a queue function module in another R/3 System
(C11) as follows:

CALL FUNCTION 'QUEUE_OPEN'
 DESTINATION 'C11'
 EXPORTING NAME = 'TESTQUEUE'
 OPENMODE = 'W'
 TYPE = 'A'.

Accordingly, a C program calls the same queue function module in the
R/3 System as follows:

 /***
 */

 #include "saprfc.h"

 char queue[20] = 'TESTQUEUE';
 char openmode = 'W';
 char qtype = 'A';
 int rc;
 char *exception ;
 RFC_OPTIONS rfc_options;
 RFC_PARAMETER exporting[5],importing[5];

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Queue Interface for C Programs: RFC to R/3

April 2001 173

 RFC_HANDLE handle = RFC_HANDLE_NULL;

 :
 rfc_options.destination = "C11";
 handle = RfcOpen(&rfc_options); /* link to RFC Partner */
 :

 exporting[0].name = "NAME";
 exporting[0].nlen = 4;
 exporting[0].type = TYPC;
 exporting[0].addr = queue;
 exporting[0].leng = 20;

 exporting[1].name = "OPENMODE";
 exporting[1].nlen = 8;
 exporting[1].type = TYPC;
 exporting[1].addr = &openmode;
 exporting[1].leng = 1;

 exporting[2].name = "TYPE";
 exporting[2].nlen = 4;
 exporting[2].type = TYPC;
 exporting[2].addr = &qtype;
 exporting[2].leng = 1;

 exporting[3].name = (char *)0; /* no more export parameters */

 importing[0].name = NULL; /* no import parameter(s) */
 tables[0].name = NULL; /* no internal table(s) */
 exception = NULL; /* default exception handling*/

 rc = RfcCallReceive(handle,
 "QUEUE_OPEN",
 exporting,
 importing,
 tables,
 &exception);
 ...
 ...

Data objects which are read from a queue by an ABAP program must not exceed the
field length of field APQD-VARDATA, which is defined in the Data Dictionary.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Using SAP Test Programs

174 April 2001

Using SAP Test Programs
In the following topics, you will learn how to test your CPI-C communication with the SAP test
programs.

Available SAP Test Programs [Seite 175]

Specifying Program Parameters [Seite 177]

Requirements for Starting an External Partner Program [Seite 178]

Testing Connections [Seite 179]

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Available SAP Test Programs

April 2001 175

Available SAP Test Programs
Definition
The following test programs are available:

Test programs

Programs Programs Written in C ABAP programs

Calling ccpict1 acpict1

Callable ccpict2 acpict2

Use
The test programs undertake CPI-C communication.

Each calling program (C or ABAP) can call one of the callable programs (C or ABAP).

These test programs therefore let you check program-to-program communication for all
constellations.

ABAP test programs in R/2:

The SAP test programs are delivered with the CPI-C development libraries. The
ABAP programs are directly available in new Releases of R/2 Systems. Otherwise
you must upload these programs in your R/2 System.

Structure
There are some special features for ABAP programs and programs written in C.

Programs Written in C
The names of the C programs end with t or s. These letters specify which protocol the
communication is based on.

ccpict1s SNA is the protocol

ccpict1t TCP/IP is the protocol

You must create a side info file in your work directory before starting the calling C program (see
section “Side Information Tables” in the documentation BC - SAP Communication: Configuration
[Extern]).

The calling C program records the program activities on the screen (stdout). The C program
called creates the trace file cpict2t.trc.

You can activate the CPI-C trace function before the start of the calling C program as follows:

� CPIC_TRACE=2 in the side info file

� Environment variable CPIC_TRACE=2

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Available SAP Test Programs

176 April 2001

Program-to-program communication normally takes place via the SAP gateway. You do not need
the SAP gateway if the platform of each partner program supports the SNA protocol LU6.2. This
is possible with the following constellations:

� C program � R/2 program

� C program � C program

Here, use the SNA-specific C programs.

ABAP programs
Both the calling and callable ABAP programs can be found in an R/2 or R/3 System.

The calling ABAP program records the program activities on the screen.

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Specifying Program Parameters

April 2001 177

Specifying Program Parameters
Explanation You must specify parameters for the calling program. The calling program can be an
ABAP or C program.

ABAP program
When executing the ABAP program, you must specify the following program parameters:

DEST <destination> destination according to TXCOM/XCOM

ABAP <' '/X> X, if the partner is acpict2

CONVERT <' '/X> X, if conversion is required

USER <user> SAP user name

PWD <Password> password

Testing a Connection [Seite 179] only details those program parameters which require an entry.

Program Written in C
When executing a program written in C, you must specify the following program parameters:

dest <destination> destination according to sideinfo

abap if the partner is acpict2

conv if conversion is required

usr <user> SAP user name

pwd <Password> password

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Requirements for Starting an External Partner Program

178 April 2001

Requirements for Starting an External Partner Program
There may be several reasons why a called CPI-C program cannot be started.

First decide what type of program it is:

� A local program

� A remote program started via Remote Shell

Starting a Local Target Program
The SAP Gateway starts a local CPI-C program via fork/exec.

To avoid errors, ensure the following two conditions are met:

� The program is located in the search path of the Gateway ID.

� It is executable for the Gateway ID.

Log on with the Gateway ID and check whether the program to be started is in the search path of
the Gateway ID:

UNIX: which <program>

Starting the Target Program via Remote Shell

A program is started on a remote computer via Remote Shell. For this, the following requirements
must be met on the remote computer.

� The Gateway ID must exist.

� The Gateway compter must be entered in the.rhosts file. The.rhosts file must be located
in the HOME directory or in the path of the Gateway ID.

� The program to be started must be installed in the HOME directory of the Gateway ID.

Log on with the Gateway ID and check, using Remote Shell, whether the authorizations
necessary for calling a remote program exist, and that this is in the search path of the Gateway
ID:

UNIX: remsh <host> date

which <program>

The Gateway processes in BS2000 are used exclusively for switching connections to
R/2 Systems.

You cannot, for example, start programs outside the R/2 System in the BS2000 host
via the SAP Gateway.

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Testing Connections

April 2001 179

Testing Connections
When testing connections, you must specify various parameters, depending on whether the
calling program is an ABAP/4 program or a C program:

You will find more information in the following topics:

Calling Program: ABAP Program in R/3 [Seite 180]

Calling Program: ABAP Program in R/2 [Seite 181]

Calling Program: C Program [Seite 183]

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Calling Program: ABAP Program in R/3

180 April 2001

Calling Program: ABAP Program in R/3
You call the test program acpict1 with transaction SE38.

Partner: ABAP Program in R/3
Define the following program parameters:

DEST <dest> ABAP X USER <user name> PWD <Password>

You must define the following parameters in the TXCOM side info table.
DEST LU TP Prot <dest> <R/3 host>

<Dispatcher service> I

Partner: ABAP Program in R/2
Define the following program parameters:

DEST <destination> ABAP X CONVERT X USER
<user name> PWD <Password>

In the TXCOM side info table, you only have to define the DEST and Prot parameters (LU and
TP are ignored):
DEST LU TP Prot <dest> - - C

You must define the following parameters in the side info table on the gateway platform:
DEST =<dest>
LU =<Logical unit>
TP =X1SA

Partner: Program Written in C
Define the following program parameter:

DEST <destination according to TXCOM>

You must define the following parameters in the TXCOM table:
DEST LU TP Prot <dest> <partner host>

ccpict2t E

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Calling Program: ABAP Program in R/2

April 2001 181

Calling Program: ABAP Program in R/2
You call the acpict1 test program with transaction TM38.

Partner: ABAP Program in R/3
Define the following program parameters:

DEST <destination>

ABAP X

CONVERT X

USER <user name>

PWD <Password>

Here, the SAP communications programs gwhost for CICS or gwims for IMS are required for
communication. Details on this can be found under “Parameters on the SNA Subsystem” in the
documentation BC SAP Communication: Configuration [Extern].

In a BS2000 host, gwhost is required (Job SAPGWHO). For more information, see the section
“Connection Setup by the R/2 System” in the documentation BC SAP Communication:
Configuration [Extern].

You must define the following parameters in the XCOM side info table:

DEST LU TP

 <dest> <LU> <Alias for gwhost or gwims>

You must define the following parameters in the side info table on the gateway platform:

DEST =<Alias for gwhost or gwims>

GWHOST =<SAP gateway host>

GWSERV =<SAP gateway service>

PROTOCOL =I

LU =<R/3 host>

TP =<SAP dispatcher service>

Partner: ABAP Program in R/2
Define the following program parameters:

DEST <destination>

ABAP X

CONVERT X

USER <user name>

PWD <Password>

You must define the following parameters in the XCOM side info table:

DEST LU TP

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Calling Program: ABAP Program in R/2

182 April 2001

 <dest> <LU> X1SA

� Communication between R/2 Systems is only possible on IBMhosts when CICS
is used as the data communications system.

� Local communication on an R/2 IBM host is not possible. CICS does not support
a local Conversation via SNA-LU6.2.

� A local Conversation is possible for SNI UTM systems.

Partner: Program Written in C
As the partner is not an SAP program, you only have to specify the following program parameter:

DEST <destination>

Here, the SAP communications programs gwhost for CICS or gwims for IMS are required for
communication. Details on this can be found under “Parameters on the SNA Subsystem Platform
with R/2” in the documentation BC - SAP-Communication: Configuration [Extern].

In a BS2000 host, gwhost is required (Job SAPGWHO). For more information, see the section
“Connection Setup by the R/2 System” in the documentation BC - SAP Communication:
Configuration [Extern].

You must define the following parameters in the XCOM side info table:

DEST LU TP

 <dest> <LU> <Alias for gwhost or gwims>

You must define the following parameters in the side info table on the gateway platform:
DEST=<Alias for gwhost or gwims>
GWHOST=<SAP gateway host>
GWSERV=<SAP gateway service>
PROTOCOL=E
LU=<partner host>
TP=ccpict2t

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Calling Program: Program Written in C

April 2001 183

Calling Program: Program Written in C
Call the ccpict1t C program with the appropriate parameters.

Partner: ABAP Program in R/3
You must define the following parameters in the sideinfo file for the calling program:

DEST =<user defined destination>

LU =<R/3 host, on which acpict2 is running>

TP =<SAP dispatcher service>

GWHOST =<SAP gateway host>

GWSERV =<SAP gateway service>

PROTOCOL =I

You call the ccpict1t test program as follows:

ccpict1t -dest <DEST according to sideinfo> -abap -usr <SAP user name>
-pwd <password>

Partner: ABAP Program in R/2
You must define the following parameters in the sideinfo file for the calling program:

DEST =<user defined destination>

GWHOST =<SAP gateway host>

GWSERV =<SAP gateway service>

PROTOCOL = C

You must define the following parameters in the sideinfo file for the SAP gateway:

DEST =<user defined destination>

LU = <Logical unit>

TP = X1SA

 PROTOCOL =C

Note the platform-specific special features of side info entries (see BC - SAP Communication:
Configuration [Extern]).

You call the ccpict1t test program as follows:
ccpict1t -dest <DEST in sideinfo> -abap -conv -usr <SAP user name> -pwd
<password>

Partner: Program Written in C
You must define the following parameters in the sideinfo file for the calling program:

DEST =<user defined destination>

LU =<host, on which ccpict2 is to run>

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Calling Program: Program Written in C

184 April 2001

TP = ccpict2

GWHOST =<SAP gateway host>

GWSERV =<SAP gateway service>

PROTOCOL =E

You call the ccpict1t test program as follows:
ccpict1t -dest <user defined destination>

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Error Analysis

April 2001 185

Error Analysis
Error analysis is described in the following topics:

Function SAP_CMPERR [Seite 186]

Error Analysis Under OS/2 [Seite 187]

Error Analysis Under UNIX and WindowsNT [Seite 189]

Error Messages of the SAP Transfer Program [Seite 191]

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Function SAP_CMPERR

186 April 2001

Function SAP_CMPERR
Use
If you use the function SAP_CMPERR in the SAP development library for your C program, you
get a short error description if an error occurs.

CM_RETCODE return_code;
 ..
 CMALLC(convid,&return_code);
 if (return_code != CM_OK)
 {
 printf("SAP-INFO: %s\n", SAP_CMPERR());
 }
 ..

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Error Analysis Under OS/2

April 2001 187

Error Analysis Under OS/2
Purpose
CPI-C Trace
You can run an SAP trace while programs communicate via the CPIC interfaces.

You can activate and deactivate the trace via the environment variable:
CPIC_TRACE = [1,2,3]

For each process that the SAPCPIC interface uses, a log file with the name CPxxxxx.TRC is
created. xxxxx is the number of the process.

Error Log File
If an error occurs during communication, this error is logged in the file CPxxxxx.ERR with xxxxx =
number of the process, in which the error occurred.

Error Messages
If an error occurs during communication, the error is logged. The error messages are output as
described in the APPC/LU6.2 guide. In addition, SAP has defined a series of error messages,
which are listed below.

These error messages are not CPI-C return codes, and cannot therefore be
intercepted in the program.

They simply provide additional information in the trace or error log, which should
facilitate error recovery.

SAP_TABLE_NOT_FOUND:
The file SAPCPIC.TBL was not found (CMINIT) or SAPCPIC.TBL cannot be accessed.

SAP_INVALID_DESTINATION:
The specified symbolic destination was not found in SAPCPIC.TBL (CMINIT, CMACCP).

SAP_TOO_FEW_ARGUMENTS:
Not all fields in SAPCPIC.TBL are filled for a particular symbolic destination sind.

SAP_NO_FREE_SIDE_TABLE_SLOT:
An attempt was made to exceed the maximum number of simultaneously active SNA
conversations.

SAP_CANT_GET_LOCAL_PGM_NAME:
The attempt to determine the name of the local program failed. The corresponding OS/2 return
code is in the error log.

SAP_INVALID_CPIC_CV_ID:
An invalid conversation ID was passed to a SAPCPIC interface function.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Error Analysis Under OS/2

188 April 2001

SAP_CANT_GET_SIDE_INFO_SEM, SAP_CANT_LOCK_SIDE_INFO_SEM,
SAP_CANT_RELEASE_SIDE_INFO_SEM:
SAP's CPI-C interface works internally with system semaphores. These three errors indicate that
either the creation, locking or release of a system semaphore failed. The interface cannot
continue to work correctly.

The corresponding OS/2 return code is in the error log.

SAP_CANT_GET_PROCESS_PID:
The attempt to determine the number of a process failed. The corresponding OS/2 return code is
in the error log.

SAP_CANT_GET_INFOSEG:
The attempt to get OS/2 system information failed. The corresponding OS/2 return code is in the
error log.

SAP_TOO_MANY_CPIC_TBL_ENTRIES:
More connections are defined in SAPCPIC.TBL than the SAPCPIC interface can administer. The
current maximum value = 100 connections.

SAP_CANT_GET_SIDE_INFO_SHM, SAP_CANT_GET_DISPLAY_INFO_SHM:
The SAPCPIC interface works internally with shared memory. These two errors indicate that the
creation of shared memory areas failed. The interface cannot continue to work correctly. The
corresponding OS/2 return code is in the error log.

SAP_NO_FREE_SESSION_AVAILABLE:
All SNA connections defined for a particular symbolic destination are in use, i.e., all SNA
sessions have conversations.

SAP_INVALID_LU_NAME:
An invalid local SNA Logical Unit name was entered in SAPCPIC.TBL for a particular symbolic
destination.

SAP_INVALID_PLU_NAME:
An invalid local SNA Partner Logical Unit name was entered in SAPCPIC.TBL for a particular
symbolic destination.

SAP_INVALID_MODE_NAME:
An invalid SNA mode name name was entered in SAPCPIC.TBL for a particular symbolic
destination.

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Error Analysis Under UNIX and WindowsNT

April 2001 189

Error Analysis Under UNIX and WindowsNT
Purpose
CPI-C Trace
If the function SAP_CMPERR is not sufficient for error analysis, you must activate the CPI-C
trace. You have several options:

� Set the shell variable CPIC_TRACE

� Entry in the side information file

� Via the target program for R/2 host-to-workstation communication

These options are described below.

0: No trace

1: Error trace

2: Trace flow and shortened data trace

3: Trace flow and complete data trace

The trace will be in a trace file (CPICTRC<PID>) in the current work directory.

The trace function for the called program can only be activated via the shell variable
CPIC_TRACE.

If you want to check a configuration file, you can use the CPI-C test programs cpict1 and cpict2.

Activation via Environment Variable
The environment variable has priority over an entry in the side information file.

You can use the environment variable CPIC_TRACE to activate a trace function, as in the
following:

UNIX: setenv CPIC_TRACE 3

Activation via the Side Information File
If, for example, you want to record an error trace, make the following entry in the side information
file:
CPIC_TRACE=2

Activation via the Target Program
If you want to start an R/3 or C program on a remote workstation from an R/2 host, you normally
set the trace level using the environment variable CPIC_TRACE. If this is not possible, (for
example, if.login or.cshrc are not processed), define the trace level in the side information file
using the variable CPIC_TRACE.

The trace level set in this way can be activated via the called program using the following
function:
CMSetCPICTrace()

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Error Analysis Under UNIX and WindowsNT

190 April 2001

main()
 {
 .
 CMSetCPICTrace();
 .
 SAP_CMACCP();
 .
 CMACCP();
 .
 .
 }

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Error Messages of the SAP Transfer Program

April 2001 191

Error Messages of the SAP Transfer Program
Definition
Error messages are sent by the receiving program to the transfer program. The transfer program
enters the messages in the corresponding fields of the queue administration information record.

In addition to these error messages, these fields also contain messages regarding local errors of
the transfer program.

Structure
If local error situations occur with the transfer program, the following error messages are entered
in the queue administration information record:

'AKCS PARTNER DOES NOT RESPOND '
When establishing a connection (for example, EXEC CICS ALLOCATE), the wait for the
connection is terminated after a certain wait time because the target system is not active (for
example, the Communications Manager is not started on the workstation).

'ATCV INVALID FUNCTION FOR CURRENT LU6.2 STATE '
The LU6.2 function called by the transfer program cannot be executed with the current status of
the connection to the target system (for example, the target application is not adhering to the
send and receive sequence defined by the transfer data type).

'AISS LU6.2 SECURTITY ERROR '
The target application, to which the transfer program is to build a connection, is performing an
authorization check, which is not met by the transfer program (for example, in the
Communication Manager on the workstation, conversation security is active for the started
transaction program ('remotely attachable transaction program')).

'E001 CANNOT ALLOCATE LU6.2 SESSION '
The attempt to establish a connection is rejected by the network (for example, the specified
target system is not known).

'E002 CANNOT CONNECT PROCESS '
The connection to the transaction program in the target system is rejected (for example, the
specified transaction program is not defined as a startable transaction program).

'E003 CANNOT SEND BUFFER WITH INVITE '
Error sending data to the target transaction program.

'E004 CANNOT RECEIVE BUFFER '
Error receiving data from the target transaction program (for example, the specified transaction
program is not defined as a startable transaction program).

'E005 CANNOT FREE LU6.2 SESSION '
Error establishing a connection with the target transaction program.

'E006 CANNOT SEND BUFFER '
Error sending data to the target transaction program.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Error Messages of the SAP Transfer Program

192 April 2001

'E007 FREE SESSION INDICATOR RECEIVED '
The target transaction has already established the connection although the transfer program has
not yet completed processing. The target application is not adhering to the send and receive
sequence defined by the transfer data type or an error situation has occurred, in which it can no
longer communicate the error with an error message buffer.

'E008 CANNOT SEND BUFFER WITH LAST WAIT '
Error sending data to the target transaction program.

'E009 CONVERSATION PARTNER DO NOT INVITE TO SEND '
The target transaction is not returning the send authorization to the transfer program. The target
application is not adhering to the send and receive sequence defined by the transfer data type.

'E014 EIBERRCD RECEIVED '
The transfer program has received an error message from the LU6.2 function that was
performed. The EIBERRCD error is displayed as an 8-digit number after the string 'E014'. The
cause of the error is described in the CICS/OS/VS Intercommunications Facilities Guide.

'E021 CANNOT RECEIVE RETURN BUFFER '
Error receiving data from the target transaction program.

'E025 ACCESSING DOUT TO GET DATA TO BE SEND '
Internal error accessing the queue to update send data or status information.

'E034 ACCESSING DOUT TO SET PROCESS INACTIVE INDICATOR'
Internal error during access to update status information.

'E039 CANNOT UPDATE APQI/APQD RECORD '
Internal error accessing the queue

 to update send data or status information.

'E040 CANNOT DELETE APQD RECORDS '
Internal error accessing the queue to update send data.

'E304 CANNOT UNLOCK/ENDBR DOUT AFTER RETRIEVING PARAM '
Internal error during access to update status information.

'E305 WARNING NO INPUT PARAMETER RECEIVED '
The transfer program was not started by a
 'EXEC CICS START' command.

'E306 CANNOT RETRIEVE COMMAREA '
The transfer program was started interactively instead of by a 'EXEC CICS START' command.
The name of the queue to be started was not received.

'E310 ACCESSING DOUT TO SET PROCESS ACTIVE INDICATOR '
Internal error during access to update status information.

'E315 RETRIEVED KEY FIELD IS TOO SHORT '
The queue name passed during startup does not have the correct length.

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Error Messages of the SAP Transfer Program

April 2001 193

'E320 NOT SUPPORTED DRIVER TYPE '
The transfer program was started for a transfer data type, which it does not support.

'E325 ACCEPT ONLY RECEIVER CORRECTION RESPONSIBILITY '
The transfer program can only run if the target transaction program performs the error correction.

'E330 OUTPUT PROCESS IS ALREADY ACTIVE '
A transfer program is already active for this queue.

'E340 NO RECORD FOUND TO SEND TO THE TARGET SYSTEM '
The transfer program was started for the queue, but has not found any transfer data to be sent in
the queue.

'E530 START BROWSE SPLD DATASET '
Internal error accessing the queue to update send data to be read from the SAP spool.

'E550 NO SPOOL CONTROL RECORD FOUND '
Internal error accessing the queue to update send data to be read from the SAP spool.

'E555 WRONG SPOOL FILE PASSWORD '
The SAP spool file, from which the transfer data was to be read, is password protected. The SAP
spool password in the queue entry does not match the password of the referenced SAP spool
file.

'E560 SPOOL RECORD WITH ZERO FIELD LENGTH '
Internal error accessing the queue to update send data to be read from the SAP spool.

'UNDEFINED ERROR CODE IN DRIVER TASK '
Internal error

In addition to the error text, an error code is output with the error message. As with the error
message texts, there is a difference between the local error codes and the error codes sent by
the partner transaction program. Below is a list of local error message codes of the SAP transfer
program in a CICS environment. The error message codes represent the CICS condition codes,
which can occur during error recognition by the SAP transfer program. The local error message
codes are listed opposite the corresponding CICS condition codes.
 +---------------------+---------------------+
 ! Local error code ! CICS condition code !
 +---------------------+---------------------+
 ! CBID ! CBIDERR !
 ! DSDI ! DISABLED !
 ! DSID ! DSIDERR !
 ! DUPK ! DUPKEY !
 ! DUPR ! DUPREC !
 ! ENDF ! ENDFILE !
 ! ILLO ! ILLOGIC !
 ! INVR ! INVREQ !
 ! IO ! IOERR !
 ! ISCI ! ISCINVREQ !
 ! ITEM ! ITEMERR !
 ! LENG ! LENGERR !

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Error Messages of the SAP Transfer Program

194 April 2001

 ! NOST ! NOSTG !
 ! NOSP ! NOSPACE !
 ! NOAL ! NOTALLOC !
 ! NOAU ! NOTAUTH !
 ! NOTF ! NOTFND !
 ! NOTO ! NOTOPEN !
 ! QID ! QIDERR !
 ! SESS ! SESSBUSY !
 ! SIGN ! SIGNAL !
 ! SYID ! SYSIDERR !
 ! TERM ! TERMERR !
 ! DSID ! DISABLED !
 ! DUPK ! DUPKEY !
 ! NOSP ! NOSPACE !
 ! NOTA ! NOTAUTH !
 ! NOTF ! NOTFND !
 ! NOTO ! NOTOPEN !
 +---------------------+---------------------+

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Special Features on R/2 Hosts

April 2001 195

Special Features on R/2 Hosts
Special features on various R/2 hosts are explained in the following chapters:

BS2000 R/2 Host: UTM-UTM Connection [Seite 196]

MVS/VSE R/2 Host: CICS and IMS [Seite 201]

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

BS2000 R/2 Host: UTM-UTM Connection

196 April 2001

BS2000 R/2 Host: UTM-UTM Connection
Purpose
No CPI-C interface is available in BS2000. Alternatively, you can use program-to-program
communication between ABAP programs and UTM subprograms based on UTM-VTV. This
means that two R/2 Systems under UTM are connected.

Implementation considerations
Communication can be initiated by both sides. As UTM does not support calls equivalent to the
CPI-C calls Initalize, Allocate, Accept and Deallocate, these calls need not be used or must be
simulated as follows:

CPI-C call in ABAP UTM call

COMMUNICATION ALLOCATE APRO

COMMUNICATION SEND MPUT

COMMUNICATION RECEIVE MGET

To create UTM-D subprograms, you will require the corresponding UTM guides.

The rules for distributed transaction processing must be adhered to.

The following examples are discussed:

Initiator: R/2 System [Seite 199]

Initiator: Non-SAP System [Seite 200]

Features
� UTM-D allows communication within the same application.

Both the sending and the receiving program can be run for test purposes in the same
SAP system. For the test, you do not need a second application (see the generation
notes).

� Asynchronous CPI-C communication

A special feature contained only in UTM implementation is the possibility of
asynchronous communication. Unlike synchronous communication, which always
involves sending a message (CMSEND) and then waiting for a reply (CMRECEIVE),
asynchronous communication only involves sending.

This offers a series of advantages:

– When sending, the partner application need not be active.

– It is possible to send from asynchronous UTM transactions, i.e. from stations not
operated.

– Easier programming

– No problems with UTM error handling

Up to now, the asynchronous procedure has been used predominantly for sending
messages to the SAP system. The procedure is based on a special feature of UTM-D,

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

BS2000 R/2 Host: UTM-UTM Connection

April 2001 197

that is asynchronous partial messages from the sender can be presented to the receiver
as individual messages. Asynchronous communication from the external system to the
SAP system is operated as follows:

SAP SystemExternal System

INIT

FGET / MGET

APRO AM Ipap, Itac
FPUT 'CONNCPIC1...'
FPUT first data record
FPUT second data

dFPUT third data record
FPUT n-th data record

PEND RE/FI
ACCEPT

RECEIVE first data
RECEIVE second data
RECEIVE third data

dRECEIVE n-th data

You send a logon message (in which you specify the receiving report), and can then
send as many data messages as required up to the maximum number of partial
messages possible (around 32000 Bytes). The requirements here are simply large
enough page pools in the KDCFILEs of sender and receiver.

Constraints
� No debugging mode in the ABAP program

ABAP programs, which contain the COMMUNICATION statements, cannot run in
debugging mode.

Possible intermediate dialogs in this mode violate the rules for distributed transaction
processing with UTM-D. Violation results in a PEND ER and task termination.

� No character string with FREE

Free communication is restricted in that no message can begin with the string FREE
because this is used for the DEALLOCATE simulation.

� Normally, the initiator (PLU) of communication must also end communication.

As the statement DEALLOCATE is not supported in UTM, it must be simulated. From the
point of view of the SAP system on the host, there are two synchronous processing
scenarios:

1. DEALLOCATE statement in the PLU
(Primary Logical Unit)

 If the PLU performs a DEALLOCATE statement, which follows a RECEIVE, this must
be made known to the SLU. A FREE message is created in the service routine
Deallocate and sent to the SLU. At the same time, terminal output from the PLU is
delayed until the response required by the UTM protocol is received from the SLU.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

BS2000 R/2 Host: UTM-UTM Connection

198 April 2001

2. DEALLOCATE statement in SLU
(Secondary Logical Unit)

If, for example, an SLU encounters an error situation, in which it is preferable to
continue communication, the SLU must end communication using DEALLOCATE.

The SLU has two possible courses of action:

� Send a FREE message to the PLU
(possibly with an error message)

� Perform a DEALLOCATE call

If DEALLOCATE is called, the FREE message is generated automatically. You
cannot send a message and then perform a DEALLOCATE call.

If the SLU is not an SAP System, a process termination by PEND FI of the SLU is
interpreted as DEALLOCATE by the SAP System.

A PLU can only close itself (PEND FI) after all its SLUs are closed. Otherwise, this would cause a
UTM task termination with 87Z and KS01 (see bottom-up strategy in the UTM documentation).

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Initiator: R/2 System

April 2001 199

Initiator: R/2 System
In the example below, the calling program is an ABAP program.

ABAP program UTM subprogram

COMMUNICATION INIT ID convid
 DESTINATION sym_dest.

COMMUNICATION ALLOCATE ID convid.

COMMUNICATION SEND ID convid
 BUFFER sendarea
 LENGTH sendlen.

INIT MGET message from SAP
MPUT message to SAP PEND RE

COMMUNICATION RECEIVE ID convid
 BUFFER rcvarea
 LENGTH reqlen
 RECEIVED rcvlen
 DATAINFO datai
 STATUSINFO stati.

COMMUNICATION DEALLOCATE ID convid.

INIT MGET Deallocate
simulation MPUT Deallocate
acknowledgement PEND FI

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Initiator: Non-SAP system

200 April 2001

Initiator: Non-SAP system
In the example below, the calling program is part of a non-SAP system.

UTM subprogram ABAP program

INIT
MGET Terminal
message
APRO SAP
system
MPUT to SAP
system
PEND RE/KP

COMMUNICATION ACCEPT ID convid.

COMMUNICATION RECEIVE ID convid
BUFFER rcvarea
LENGTH reqlen
RECEIVED rcvlen
DATAINFO datai
STATUSINFO stati.

COMMUNICATION SEND ID convid
BUFFER sendarea
LENGTH sendlen.

INIT
MGET message
from SAP
MPUT to SAP
system
(Deallocate
simulation)
PEND RE/KP

COMMUNICATION RECEIVE ID convid
BUFFER rcvarea
LENGTH reqlen
RECEIVED rcvlen
DATAINFO datai
STATUSINFO stati.

INIT
MGET
Deallocate
acknowledgemen
t from SAP
MPUT Terminal
message
PEND RE/FI

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

MVS/VSE R/2 Host: CICS and IMS

April 2001 201

MVS/VSE R/2 Host: CICS and IMS
Purpose
Make note of the following special features in the DC systens CICS and IMS when using an
MVS/VSE R/2 host:

CICS Special Features [Seite 202]

IMS Special Features [Seite 203]

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

CICS Special Features

202 April 2001

CICS Special Features
ABAP supports the CPI-C Starter Set. When using the LU6.2 program interface for CICS, this
means:

� Mapped Conversation

� SYNCLEVEL 0 (NONE)

The table below contains a list of the CPI-C functions and the corresponding calls of the LU6.2
program interface (API) in CICS.

CPI-C calls and CICS calls

CPI-C in ABAP CICS LU6.2 API

INIT

ALLOCATE

ACCEPT

SEND

RECEIVE

DEALLOCATE

EXEC CICS ALLOCATE + EXEC CICS CONNECT

EXEC CICS RECEIVE

EXEC CICS SEND

EXEC CICS RECEIVE

EXEC CICS SEND LAST + EXEC CICS FREE

You must always analyze the internal CICS EIB fields to check the return codes (for example,
EIBERRCD). If errors occur, you must check the entries in the SAP system log.

If you transfer large data volumes, you should use frequent RECEIVE calls to ensure that data
transfer has physically taken place and the control of the SAP Basis system is returned.

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

IMS Special Features

April 2001 203

IMS Special Features
The individual parameters required for LU6.2 communication are listed in the description of the
IBM LU6.1 adapter for LU6.2 applications.

SAP is subject to all the restrictions of the LU6.1 adapter for LU6.2 applications.

For communication with an R/2 System in IMS environment, the following parameters are
particularly important:

Active connection:

� The active establishment of a connection from the SAP system is only possible to the
partner program IMSASYNC in asynchronous mode.

Here, asynchronous means that a RECEIVE statement is not permitted, but the
conversation must be acknowledged using CONFIRMED (Status =
CM_CONFIRM_DEALLOC_RECEIVED).

� An IMSASYNC program should always be defined to receive and acknowledge data to
be processed asynchronously from the IMS Message Queue.

Remotely attachable ABAP program:

� The SAP service transaction xxxX1SA is conversational.

� Several RECEIVE calls in sequence are not permitted. There must be at least one SEND
call between two RECEIVE calls. The program status is displayed in the status field.

� The length of a transferred message must always be larger than zero.

� If several SEND statements are sent in succession, or very long messages are sent,
segmentation will occur in the IMS receiver system.

Only the first segment of a message is processed (up to 5.0C), so that data can be cut
off.

From R/2 Release 5.0D, the individual segments are concatenated and passed to the
SAP application as a complete message.

� An external DEALLOCATE or a termination of the partner program are not passed on to
the SAP system. For this reason, DEALLOCATE must always be called in the ABAP
program in the IMS system.

� External security systems are not supported directly.

Alternatively, you can call the command /SIGN. Use SEND to send the USERID/PWD to
IMS. Use RECEIVE to get the corresponding IMS message: DFSxxx....

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Sample Programs

204 April 2001

Sample Programs
This section contains example programs for R/3 and the R/2 Releases 5.0 and 4.3/4.4, as well as
the APC and APQ headers DSECT for assembler programs (R/2 version 4.3/4.4).

Sample Program for R/3 [Seite 205]

Sample Programs for R/2 Release 5.0 [Seite 208]

Sample Programs for R/2 Release 4.3/4.4

APC and APQ Headers DSECT for Assembler Programs [Seite 216]

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Sample Program for R/3

April 2001 205

Sample Program for R/3
PROGRAM RSQAPI10.

* This queue test program writes data into a queue. *

INCLUDE RSEBCASC. " ASCII/EBCDIC conversion table
INCLUDE RSQAPIDF. " QAPI Defines

PARAMETERS:
 QUEUE LIKE APQI-QID DEFAULT 'Q123',
 TYPE LIKE APQI-QATTRIB DEFAULT Q_APPENDABLE,
 DESTSYS LIKE APQI-DESTSYS DEFAULT ' ',
 DATATYPE LIKE APQI-DATATYP DEFAULT ' ',
 CLIENT LIKE APQI-MANDANT DEFAULT ' ',
 PROGRAM LIKE APQI-PROGID DEFAULT ' ',
 FORM LIKE APQI-FORMID DEFAULT ' ',
 DRIVER LIKE APQI-STARTPGID DEFAULT 'RSQAPI20',
 START LIKE APQI-STARTMODE DEFAULT Q_USERSTART,
 DATE LIKE APQI-STARTDATE DEFAULT ' ',
 TIME LIKE APQI-STARTTIME DEFAULT ' ',
 ASCTOEBC DEFAULT 'X',
 TESTLOOP TYPE I DEFAULT '5'.

DATA:
 COUNTER TYPE I,

 BUFFER LIKE APQD-VARDATA,
 LENGTH TYPE I,
 UNIT TYPE I,
 POS TYPE I,
 STATE,
 USERID LIKE APQI-USERID VALUE 'CPIC2',
 PASSWD LIKE APQI-PASSWD VALUE 'TEST'.

*BREAK-POINT.

* Open a Queue *

CALL FUNCTION 'QUEUE_OPEN'
 EXPORTING NAME = QUEUE " Queue ID
 TYPE = TYPE " Appendable/Unique
 OPENMODE = Q_WRITE " Write Mode
* needed if CPI-C
transfer is used
 DESTINATION = DESTSYS " TXCOM entries are
needed
* if partner is an ABAP
program
 DATATYPE = DATATYPE
 CLIENT = CLIENT

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Sample Program for R/3

206 April 2001

 USERID = USERID
 PASSWORD = PASSWD
 PROGRAM = PROGRAM
 FORM = FORM

TXCOM entry
* fields are needed if partner is a ABAP/4 program
 DATATYPE = DATATYPE
 CLIENT = CLIENT
 USERID = USERID
 PASSWORD = PASSWD
 PROGRAM = PROGRAM
 FORM = FORM
* queue processing options
 DRIVER = DRIVER
 START = START
 DATE = DATE
 TIME = TIME
* import automatic generated name, if input was space
 IMPORTING NAME = QUEUE.

* Put Data into Queue *

DO TESTLOOP TIMES.

* first msg of unit
 STATE = Q_FIRST.
 BUFFER = 'QTEST00020LINE 1 of Queue Test'.
 LENGTH = STRLEN(BUFFER).
 PERFORM QUEUE_PUT USING QUEUE STATE LENGTH BUFFER.

* middle msg of unit
 STATE = Q_MIDDLE.
 BUFFER = 'QTEST00020LINE 2 of Queue Test'.
 LENGTH = STRLEN(BUFFER).
 PERFORM QUEUE_PUT USING QUEUE STATE LENGTH BUFFER.

* last msg of unit
 STATE = Q_LAST.
 BUFFER = 'QTEST00020LINE 3 of Queue Test'.
 LENGTH = STRLEN(BUFFER).
 PERFORM QUEUE_PUT USING QUEUE STATE LENGTH BUFFER.

ENDDO.

* Close Queue *

CALL FUNCTION 'QUEUE_CLOSE'
 EXPORTING NAME = QUEUE
 OPENMODE = Q_WRITE.
COMMIT WORK.

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Sample Program for R/3

April 2001 207

* FORM: QPUT *
* ----------- *
* Put a message into specified queue *

FORM QUEUE_PUT USING QUEUE STATE LENGTH BUFFER.

 WRITE: /(72) BUFFER.

 IF ASCTOEBC = 'X'.
 TRANSLATE BUFFER TO CODE PAGE '0100'. "alternatively
 ENDIF.

 CALL FUNCTION 'QUEUE_PUT'
 EXPORTING NAME = QUEUE
 STATE = STATE
 LENGTH = LENGTH
 BUFFER = BUFFER.

 IF (STATE = Q_LAST OR STATE = Q_SINGLE).
 COMMIT WORK.
 ENDIF.
ENDFORM.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Sample Programs for R/2 Release 5.0

208 April 2001

Sample Programs for R/2 Release 5.0
The ABAP sample programs contain functions and parameters which are dependent on the
transfer data type.

� Data transfer in RODC format

Program RSAPPQ10 [Seite 209]:

� Data transfer from the SAP spool system in CPIC format

Program RSAPPQ20 [Seite 212]:

� Data transfer in CPIC format

Program RSAPPQ30 [Seite 214]:

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Program RSAPPQ10

April 2001 209

Program RSAPPQ10

* *
* Sample program for asynchronous communication via the DOUT *
* file with transfer data in Remote ODC format *
* (transfer format RODC) *

PARAMETERS:
 QDEST(8) TYPE C DEFAULT 'K44 ',
 QAPPL(8) TYPE C DEFAULT 'X1SA ',
 QUSER(12) TYPE C DEFAULT 'RODC-TEST ',
 QPASS(8) TYPE C DEFAULT 'TEST ',
 QSTDA TYPE D DEFAULT SY-DATUM,
 QSTTI TYPE T DEFAULT SY-UZEIT,
 QSTART(1) TYPE C DEFAULT 'A',
 QANZHL(5) TYPE C DEFAULT '2'.

* QDEST : Connection name of target system *
* QAPPL : Transaction program name in target system *
* (X1SA=SAP-System) *
* QUSER : Valid user account in target system *
* (QAPPL=X1SA) *
* QPASS : User password in target system *
* QSTDA : Driver start date *
* QSTTI : Driver start time *
* QSTART : A=Automatic, *
* M=Manual start of driver program *
* QANZHL : No. of TS02 transaction entries in the queue *

TABLES : QPARM.

.............Set queue name..
QPARM-QDEST = QDEST.
QPARM-QAPPL = QAPPL.
QPARM-QDTYP = 'RODC'.
QPARM-QMAND = '000'.
.............Set driver specific parameters..........................
QPARM-QSTDA = QSTDA.
QPARM-QSTTI = QSTTI.
QPARM-QSTRT = QSTART.
QPARM-QCORR = 'R'.
.............Set SAP specific data...........
QPARM-QDUSR = QUSER.
QPARM-QDPAS = QPASS.
*
.............Open the queue...................
OPEN QUEUE QPARM.
*
.............Write records in the queue.......
PERFORM WRITE-QUEUE.
*

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Program RSAPPQ10

210 April 2001

.............Close the queue..................
CLOSE QUEUE QPARM.
*

* FORM WRITE-QUEUE. *

* Insert records in the queue. *
* Sample : Remote ODC data for the transaction TS02. *

FORM WRITE-QUEUE.
*
DATA :
 TLNR(5) TYPE C VALUE '00000',
 AREA(42) TYPE C.
*
FIELD-SYMBOLS: <F>.
*
 DO QANZHL TIMES.
 ADD 1 TO TLNR.
*
* Insert first dynpro
*
 QPARM-QFIRS = 'Y'.
 QPARM-QLAST = 'N'.
 QPARM-QDTRC = 'TS02'.
 QPARM-QDPGM = 'SAPPG02'.
 QPARM-QDDYN = '0041'.
 CLEAR AREA.
 AREA = '220416 10805160108061601'.
 ASSIGN AREA(38) TO <F>.
 TRANSFER <F> TO QUEUE QPARM.
*
* Insert second dynpro
*
 QPARM-QFIRS = 'N'.
 QPARM-QLAST = 'N'.
 QPARM-QDTRC = 'TS02'.
 QPARM-QDPGM = 'SAPPG02'.
 QPARM-QDDYN = '0060'.
 CLEAR AREA.
 AREA = '221211 '.
 AREA+17(5) = TLNR.
 ASSIGN AREA(22) TO <F>.
 TRANSFER <F> TO QUEUE QPARM.
*
* Insert third dynpro
 QPARM-QFIRS = 'N'.
 QPARM-QLAST = 'Y'.
 QPARM-QDTRC = 'TS02'.
 QPARM-QDPGM = 'SAPPG02'.
 QPARM-QDDYN = '0062'.
 CLEAR AREA.
 AREA = '180762123456789012'.

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Program RSAPPQ10

April 2001 211

 ASSIGN AREA(18) TO <F>.
 TRANSFER <F> TO QUEUE QPARM.
 ENDDO.
*
ENDFORM.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Program RSAPPQ20

212 April 2001

Program RSAPPQ20

* *
* Sample program for asynchronous communication via the DOUT *
* file with transfer data taken from the SAP spool file *
* (transfer format SPLD) *

*
PARAMETERS:
 QDEST(8) TYPE C DEFAULT 'K43 ',
 QAPPL(8) TYPE C DEFAULT 'X1SA ',
 QUSER(12) TYPE C DEFAULT 'RODC-TEST ',
 QPASS(8) TYPE C DEFAULT 'TEST ',
 QSTDA TYPE D DEFAULT SY-DATUM,
 QSTTI TYPE T DEFAULT SY-UZEIT,
 QSTART(1) DEFAULT 'A',
 QSPLNR(5) DEFAULT '0'.
* *

* QDEST : Connection name of target system *
* QAPPL : Transaction program name in target system *
* (X1SA=SAP-System) *
* QUSER : Valid user account in target system *
* (QAPPL=X1SA) *
* QPASS : User password in target system *
* QSTDA : Driver start date *
* QSTTI : Driver start time *
* QSTART : A=Automatic, *
* M=Manual start of driver program *
* QSPLNR : No. of the valid local spool file *

*
TABLES :
 QPARM.
*
DATA :
 SPNR TYPE P,
 BEGIN OF SPOOL,
 SPMD LIKE APQD-SPMD VALUE '000',
 SPNR LIKE APQD-SPNR VALUE '0000',
 SPPW LIKE APQD-SPPW VALUE 'PASS',
 END OF SPOOL.
*
FIELD-SYMBOLS : <F>.
*
**
*
*.......Set queue name.... *
QPARM-QDEST = QDEST.
QPARM-QAPPL = QAPPL.
QPARM-QDTYP = 'SPLD'.

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Program RSAPPQ20

April 2001 213

QPARM-QMAND = '000'.
QPARM-QABAP = 'RSAPPQ40'.
QPARM-QMODU = 'RECEIVE'.
*
.............Set driver specific parameters.................
QPARM-QSTDA = QSTDA.
QPARM-QSTTI = QSTTI.
QPARM-QSTRT = QSTART.
QPARM-QCORR = 'R'.
*
.............Set SAP specific data...........................
QPARM-QDUSR = QUSER.
QPARM-QDPAS = QPASS.
*
*.............Open the queue..................... *
OPEN QUEUE QPARM.
*
*.............Write record in the queue.......... *
QPARM-QFIRS = 'Y'.
QPARM-QLAST = 'Y'.
SPOOL-SPNR = SPNR = QSPLNR.
ASSIGN SPOOL TO <F>.
TRANSFER <F> TO QUEUE QPARM.
*
*.............Close the queue.................... *
CLOSE QUEUE QPARM.
*

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Program RSAPPQ30

214 April 2001

Program RSAPPQ30

* *
* Sample program for asynchronous communication *
* with user-defined transfer data *
* (transfer format CPIC) *
* *

PARAMETERS:
 QDEST(8) TYPE C DEFAULT 'K43 ',
 QAPPL(8) TYPE C DEFAULT 'X1SA ',
 QUSER(12) TYPE C DEFAULT 'RODC-TEST ',
 QPASS(8) TYPE C DEFAULT 'TEST ',
 QSTDA TYPE D DEFAULT SY-DATUM,
 QSTTI TYPE T DEFAULT SY-UZEIT,
 QSTART(1) TYPE C DEFAULT 'A'.

* QDEST : Connection name of target system *
* QAPPL : Transaction program name in target system *
* (X1SA=SAP-System) *
* QUSER : Valid user account in target system *
* (QAPPL=X1SA) *
* QPASS : User password in target system *
* QSTDA : Driver start date *
* QSTTI : Driver start time *
* QSTART : A=Automatic, *
* M=Manual start of driver program *

*
TABLES :
 QPARM.
*

*
.............Set queue name..
QPARM-QDEST = QDEST.
QPARM-QAPPL = QAPPL.
QPARM-QDTYP = 'CPIC'.
QPARM-QMAND = '000'.
QPARM-QABAP = 'RSAPPQ40'.
QPARM-QMODU = 'RECEIVE'.
*
.............Set driver specific parameters..........................
QPARM-QSTDA = QSTDA.
QPARM-QSTTI = QSTTI.
QPARM-QSTRT = QSTART.
QPARM-QCORR = 'R'.
*
.............Set SAP specific data...................................
QPARM-QDUSR = QUSER.
QPARM-QDPAS = QPASS.

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Program RSAPPQ30

April 2001 215

*
.............Open the queue..
OPEN QUEUE QPARM.
*
.............Write records in the queue..............................
PERFORM WRITE-QUEUE.
*
.............Close the queue...
CLOSE QUEUE QPARM.
*
*

* FORM WRITE-QUEUE. *

* Insert records in the queue. *
* Sample : Insert three records of type char. *

FORM WRITE-QUEUE.
*
DATA :
 AREA(17) TYPE C.
*
FIELD-SYMBOLS: <F>.
*
* Insert first record
*
 QPARM-QFIRS = 'Y'.
 QPARM-QLAST = 'N'.
 CLEAR AREA.
 MOVE 'first record' TO AREA.
 ASSIGN AREA(12) TO <F>.
 TRANSFER <F> TO QUEUE QPARM.
*
* Insert second record
*
 QPARM-QFIRS = 'N'.
 QPARM-QLAST = 'N'.
 CLEAR AREA.
 MOVE 'second record' TO AREA.
 ASSIGN AREA(13) TO <F>.
 TRANSFER <F> TO QUEUE QPARM.
*
* Insert third record
*
 QPARM-QFIRS = 'N'.
 QPARM-QLAST = 'Y'.
 CLEAR AREA.
 MOVE 'third record' TO AREA.
 ASSIGN AREA(12) TO <F>.
 TRANSFER <F> TO QUEUE QPARM.
*
ENDFORM.

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

APC and APQ Headers DSECT for Assembler Programs

216 April 2001

APC and APQ Headers DSECT for Assembler Programs
Definition
 APC Header as Assembler DSECT

........APC HEADER...

APCDUMMY DSECT
APCREQID DS CL4 REQEST ID:
* SAP-CONNECT: CONN
* SAP-FREE: FREE
* SAP-APPC-COMMUNICATION: APPC
APCTYPE DS CL4 TYPE OF PROCESSING:
* BATCH INPUT: BTCI
* PRESENTATION ON IWS: DYNP
* REMOTE DIALOG CALL: RDIA
* FREE PROTOCOL: BLANK
APCMODNR DS CL1 MODE NUMBER
APCSTYPE DS CL1 START NEW TYPE (X)
APCERRCD DS CL1 ERROR-/ABEND-CODE
APCCHSET DS CL1 X'C5' = EBCDIC otherwise ASCII
APCVDATA EQU * PARAMETERS
 SPACE 1
........ERROR-MESSAGE (APCERRCD = E).................................
 ORG APCVDATA
APCEMSGN DS CL5 MESSAGE-NUMBER
APCEMSGT DS CL80 MESSAGE-TEXT
APCEMSGL EQU *-APCDUMMY MESSAGE-LENGTH
 SPACE 1
........REQUEST-ID CONN..
 ORG APCVDATA
APCMANDT DS CL3 CLIENT
APCBNAME DS CL12 BATCH-INPUT GROUPNAME (TYPE=BTCI)
* OR USERNAME
APCPASSW DS CL8 PASSWORD
APCLANGU DS CL1 LANGUAGE
APCKORRV DS CL1 CORRECTION RESPONSIBILITY
(TYPE=BTCI)
* R = RECEIVER
* S = SENDER
APCCMSGL EQU *-APCDUMMY MESSAGE-LENGTH
 SPACE 1
........REQUEST-ID CONN..
........FREIES PROTOKOLL...
APCPGMNM DS CL8 ABAP PROGRAM NAME
APCMODNM DS CL30 ABAP MODULE NAME

........REQUEST-ID APPC..

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

APC and APQ Headers DSECT for Assembler Programs

April 2001 217

........BATCH INPUT PROCESSING (TYPE = BTCI).........................
 ORG APCVDATA HOST INPUT.........................*
APCBSYNC DS CL1 SYNCPOINT INFORMATION
APCBSYNS EQU C'S' START TRANSACTION
APCBSYNM EQU C'M' BDC MESSAGE
APCBSTAT DS CL1 STATE OF PROCESSING

APCBSTAS EQU C'S' SYNCHRONOUS VB
APCBTCOD DS CL4 TRANSACTION
APCBPGMN DS CL8 PROGRAMM NAME
APCBDYNR DS CL4 DYNPRO NUMBER
APCBSEPR DS CL1 SEPERATOR
APCBCURF DS CL30 CURSOR-POSITION ON FIELD
APCBMSGL EQU *-APCDUMMY BTCI-HEADER LENGTH
 DS CL1
APCBDATA EQU * START OF BDC DATA
 SPACE 1
 ORG APCVDATA RETURN INFORMATION.................*
APCRSTAT DS CL1 STATE
APCRSTAS EQU C'S' START TRANSACTION
APCRSTAF EQU C'F' TRANSACTION FINISHED
APCRSTAE EQU C'E' TRANSACTION IN ERROR
APCRSTAN EQU C'N' GET NEXT MESSAGE
APCRSTAA EQU C'A' ABEND APC-PROCESSING

*
APCRCODE DS CL4 ABENDCODE
APCRPGMN DS CL8 PROGRAMM NAME
APCRDYNR DS CL4 DYNPRO NUMBER
APCRMSGN DS CL5 MESSAGE-NUMBER
APCRMSGT DS CL80 MESSAGE-TEXT
APCRMSGL EQU *-APCDUMMY MESSAGE-LENGTH
 SPACE 1
........REQUEST-ID APPC..
........DIALOG WITH WORKSTATION (TYPE = DYNP)........................
 ORG APCVDATA
APCDSTAT DS CL1 STATE OF PROCESSING
APCDSTAD EQU C'D' SEND DYNPRO (INITIAL OUTPUT)
APCDSTAM EQU C'M' SEND MESSAGE (DIALOGUE)
APCDTCOD DS CL4 TRANSAKTION / REPORT RJE03605
APCDDATA EQU * DATA (DYNPRO OR DIALOGUE MESSAGE)
 SPACE 1
........REQUEST-ID APPC..
........REMOTE DIALOGCALL (TYPE = RDIA)..............................
 ORG APCVDATA
APCRPROG DS CL8 PROGRAMM NAME
APCRDYNP DS CL4 DYNPRO NUMBER
APCRDATA EQU * PARAMETER

 APQ-Header als Assembler DSECT

--- I-RECORD FOR OPEN GROUP (MAPPE) -------------------------

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

APC and APQ Headers DSECT for Assembler Programs

218 April 2001

$SBG3 DS 0C
APQI$BGIN DS 0CL1

* S E G M E N T - H E A D E R *

APQILENG DC XL2'176' MAXIMUM SEGMENT LENGTH
APQIRCRES DC XL2'0'

* K E Y *

APQIRTYP DC CL1' ' RECORD TYPE ID FOR APPC DATA RECORDS
APQIQNAM DS 0CL(61)
APQIDEST DC CL8' ' SAP TARGET SYSTEM NAME
APQIAPPL DC CL8' ' APPLIKATIONSNAME
APQIDTYP DC CL4' ' DATA TYPE OF TRANSFERRED DATA UNIT
APQIMAND DC CL3' ' CLIENT IN SAP TARGET SYSTEM
APQIPROG DC CL8' ' SAP PROGRAM IN TARGET SYSTEM
APQIMODP DC CL30' '
APQITRAN DC XL4'0' APPC INTEGER
APQIRECO DC XL4'0' APPC INTEGER
APQIFIXP DS 0CL(44)
APQITREI DC CL8' ' APPC PROGRAM NAME
APQISTRT DC CL1' ' APPC STATUS
APQICORR DC CL1' ' APPC STATUS
APQICRDA DC CL8' '
APQICRTI DC CL6' '
APQIUSER DC CL12' '
APQIPASS DC CL8' ' APPC PASSWORD FOR BTCI DATA TRANSFER
APQIOUAC DC CL1' ' APPC STATUS
APQIOUSY DC CL8' ' APPC PROGRAM NAME
APQIOUAP DC CL8' ' APPC PROGRAM NAME
APQIOUID DC XL4'0' APPC INTEGER
APQIOUTR DC XL4'0' APPC INTEGER
APQIOURE DC XL4'0' APPC INTEGER
APQIOUDA DC CL8' '
APQIOUTI DC CL6' '
APQIOUEN DC CL5' ' APPC MESSAGE NUMBER
APQIOUEM DC CL80' '
APQIINAC DC CL1' ' APPC STATUS
APQIINSY DC CL8' ' APPC PROGRAM NAME
APQIINAP DC CL8' ' APPC PROGRAM NAME
APQIINID DC XL4'0' APPC INTEGER
APQIINTR DC XL4'0' APPC INTEGER
APQIINRE DC XL4'0' APPC INTEGER
APQIINDA DC CL8' '
APQIINTI DC CL6' '
APQIINEN DC CL5' ' APPC MESSAGE NUMBER
APQIINEM DC CL80' '
APQIEND EQU *

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Conversion Tables EBCIDC from/to ASCII

April 2001 219

Conversion Tables EBCIDC from/to ASCII
The functions CMCNVI and CMCNVO, used to convert between EBCIDC format and ASCII
format, work with predefined standard tables. If your application requires other tables, you can
create and include your own conversion tables.

Creating Your Own Tables [Seite 220]

Sample File with Conversion Tables [Seite 221]

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Creating Your Own Tables

220 April 2001

Creating Your Own Tables
Prerequisites
To do this, you must assign the name of a file, which contains the conversion table, to the shell
variable CONVERT before starting the corresponding CPI-C program.

Procedure
When creating a conversion table, you must know the following:

� A comment must begin with the character *.

� Blank lines are allowed.

� The ASCII->EBCDIC conversion "a" is defined first, then the EBDIC->ASCII conversion
"b".

� The function values are represented without hyphens or blanks as 2-character HEX
numbers.

� Only the function values are entered in the file. The arguments are derived from the
sequence of function values. The file has the following structure:

a(0)a(1)a(2). a(255)

(0)b(1)b(2) b(255)

There are no rules for line division.

 SAP AG SAP Communication: CPI-C Programming (BC-CST-GW)

Sample File with Conversion Tables

April 2001 221

Sample File with Conversion Tables
* @(#)convert 20.5 SAP 93/04/05
*
* SAP AG Walldorf
* Systems, Applications and Products in Data Processing
*
* (C) Copyright SAP AG 1992
*

* ASCII -> EBCDIC Conversion *

4040404040404040 * 000 - 007
4040404040404040 * 008 - 015
4040404040404040 * 016 - 023
4040404040404040 * 024 - 031
404F7F7B5B6C507D * 032 - 039
4D5D5C4E6B604B61 * 040 - 047
F0F1F2F3F4F5F6F7 * 048 - 055
F8F97A5E4C7E6E6F * 056 - 063
B5C1C2C3C4C5C6C7 * 064 - 071
C8C9D1D2D3D4D5D6 * 072 - 079
D7D8D9E2E3E4E5E6 * 080 - 087
E7E8E963ECFC5F6D * 088 - 095
7981828384858687 * 096 - 103
8889919293949596 * 104 - 111
979899A2A3A4A5A6 * 112 - 119
A7A8A943BBDC5940 * 120 - 127
4040404040404040 * 128 - 135
4040404040404040 * 136 - 143
4040404040404040 * 144 - 151
4040404040404040 * 152 - 159
41AAB0B19FB2CC7C * 160 - 167
BDB49A8ABA40AFBC * 168 - 175
908FEAFABEA0B6B3 * 176 - 183
40DA9B8BB7B8B9AB * 184 - 191
646562664A679E68 * 192 - 199
7471727378757677 * 200 - 207
AC69EDEEEBEFE0BF * 208 - 215
80FDFEFB5AAD8EA1 * 216 - 223
44454246C0479C48 * 224 - 231
5451525358555657 * 232 - 239
8C49CDCECBCF6AE1 * 240 - 247
70DDDEDBD08DAEDF * 248 - 255

* EBCDIC -> ASCII Conversion *

2020202020202020 * 000 - 007
2020202020202020 * 008 - 015
2020202020202020 * 016 - 023
2020202020202020 * 024 - 031
2020202020202020 * 032 - 039

SAP Communication: CPI-C Programming (BC-CST-GW) SAP AG

Sample File with Conversion Tables

222 April 2001

2020202020202020 * 040 - 047
2020202020202020 * 048 - 055
2020202020202020 * 056 - 063
20A0E27BE0E1E3E5 * 064 - 071
E7F1C42E3C282B21 * 072 - 079
26E9EAEBE8EDEEEF * 080 - 087
EC7EDC242A293B5E * 088 - 095
2D2FC25BC0C1C3C5 * 096 - 103
C7D1F62C255F3E3F * 104 - 111
F8C9CACBC8CDCECF * 112 - 119
CC603A23A7273D22 * 120 - 127
D861626364656667 * 128 - 135
6869ABBBF0FDDEB1 * 136 - 143
B06A6B6C6D6E6F70 * 144 - 151
7172AABAE620C6A4 * 152 - 159
B5DF737475767778 * 160 - 167
797AA1BFD0DDFEAE * 168 - 175
A2A3A5B7A940B6BC * 176 - 183
BDBEAC7CAFA8B4D7 * 184 - 191
E441424344454647 * 192 - 199
484920F4A6F2F3F5 * 200 - 207
FC4A4B4C4D4E4F50 * 208 - 215
5152B9FB7DF9FAFF * 216 - 223
D6F7535455565758 * 224 - 231
595AB2D45CD2D3D5 * 232 - 239
3031323334353637 * 240 - 247
3839B3DB5DD9DA20 * 248 - 255

If you set the shell variable CONVERT to the name convert (possibly the complete
path if not in the current directory), this file is imported when CMCNVI or CMCNVO
are first called and overwrites the standard conversion table.

You can use the SAP-specific functions SAP_CMLOADCONVTAB or
SAP_CMMODCONVTAB to make additional modifications to the conversion table.

