
BAPI Programming Guide (CA-BFA)

H
E

L
P

.C
A

B
F

A
B

A
P

IP
G

Re lease 4 .6C

BAPI Programming Guide CA-BFA) SAP AG

2 April 2001

Copyright

© Copyright 2001 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose
without the express permission of SAP AG. The information contained herein may be changed
without prior notice.

Some software products marketed by SAP AG and its distributors contain proprietary software
components of other software vendors.

Microsoft®, WINDOWS®, NT®, EXCEL®, Word®, PowerPoint® and SQL Server® are registered
trademarks of
Microsoft Corporation.

IBM®, DB2®, OS/2®, DB2/6000®, Parallel Sysplex®, MVS/ESA®, RS/6000®, AIX®, S/390®,
AS/400®, OS/390®, and OS/400® are registered trademarks of IBM Corporation.

ORACLE® is a registered trademark of ORACLE Corporation.

INFORMIX®-OnLine for SAP and Informix® Dynamic Server
TM

 are registered trademarks of
Informix Software Incorporated.

UNIX®, X/Open®, OSF/1®, and Motif® are registered trademarks of the Open Group.

HTML, DHTML, XML, XHTML are trademarks or registered trademarks of W3C®, World Wide
Web Consortium,
Massachusetts Institute of Technology.

JAVA® is a registered trademark of Sun Microsystems, Inc.

JAVASCRIPT® is a registered trademark of Sun Microsystems, Inc., used under license for
technology invented and implemented by Netscape.

SAP, SAP Logo, R/2, RIVA, R/3, ABAP, SAP ArchiveLink, SAP Business Workflow, WebFlow,
SAP EarlyWatch, BAPI, SAPPHIRE, Management Cockpit, mySAP.com Logo and mySAP.com
are trademarks or registered trademarks of SAP AG in Germany and in several other countries
all over the world. All other products mentioned are trademarks or registered trademarks of their
respective companies.

 SAP AG BAPI Programming Guide CA-BFA)

April 2001 3

Icons

Icon Meaning

Caution

Example

Note

Recommendation

Syntax

Tip

BAPI Programming Guide CA-BFA) SAP AG

4 April 2001

Contents

BAPI Programming Guide CA-BFA)... 5
Introduction...6
Overview of the Development Process..7
Analysis...9
Describing the Scenario ..10
Defining the Scenario in the BAPI Explorer ..22
Reviewing the Scenario ...23
Designing the BAPI ..24
Conventions..25
Standardized BAPIs ...27
Standardized Parameters ..29
Design Recommendations for Interfaces ..31
Implementing a BAPI ...32
The Implementation Process ..33

Tools..35
Further Issues ...37

Actions in the ABAP Dictionary..38
Actions in the Function Builder ..41

Defining the Interface ..42
Implementing the Function Module...44

Actions in the BOR...55
Documenting the BAPI ..63
BAPI/ALE Integration ...71
Testing and Releasing ...73
Testing...74
Releasing...77

 SAP AG BAPI Programming Guide CA-BFA)

BAPI Programming Guide CA-BFA)

April 2001 5

BAPI Programming Guide CA-BFA)
The BAPI programming guide describes the development process for developing new BAPIs.
The guidelines also apply to enhancing and modifying existing BAPIs.

BAPI Programming Guide CA-BFA) SAP AG

Introduction

6 April 2001

Introduction

Business Object Types and BAPIs
Business Application Programming Interfaces (BAPIs) enable access to SAP functions across
formal, stable and dialog-free interfaces. These interfaces can be used by external applications
developed by customers and complementary software partners as well as by other SAP
applications.

BAPIs are defined as API methods of SAP Business Object Types [Ext.]. These object types are
used within the Business Framework to enable object-based communication between
components. Business objects and their BAPIs enable object orientation to be used in central
information processing in companies. For example, existing functions and data can be reused,
trouble-free technical interoperability can be achieved, and non-SAP components can be
implemented.
Applications can use BAPIs to directly access the application layer of the R/3 System and, as
clients, applications can use the business logic of the R/3 System. BAPIs provide the client with
an object-oriented view of the application objects, without needing to know the implementation
details.

BAPIs are always developed by defining scenarios. These scenarios are used to map and
implement system-wide business processes.

Target Group for Documentation
This documentation describes the guidelines SAP uses for developing and implementing BAPIs
to ensure that the development of BAPIs is as standard as possible. These standards make
BAPIs easy to use.
This programming guide is targeted at SAP developers, partners and customers who want to
implement BAPIs.

This documentation has been written for Release 4.6C. Unless stated otherwise,
these guidelines also apply to Releases back to and including 4.0.

See also:
Terminology [Ext.]Further Documentation on BAPIs [Ext.]Changes in Release 4.6C [Ext.]

 SAP AG BAPI Programming Guide CA-BFA)

Overview of the Development Process

April 2001 7

Overview of the Development Process
This section describes the process of developing new BAPIs. The guidelines also apply to
enhancing and modifying existing BAPIs.

For more information on enhancements and modifications, see:

� Customer enhancement of BAPIs [Ext.]

� BAPI Modifications [Ext.]

� SAP Enhancements to Released BAPIs [Ext.]

Prerequisites
To implement a BAPI using these programming guidelines, you need:

� Basic understanding of BAPIs

� Knowledge of the ABAP programming language

� General knowledge of the R/3 System

Process Flow
The entire development process can be divided into four phases:

Analysis

Design

Implementation

Test and Release

BAPI Programming Guide CA-BFA) SAP AG

Overview of the Development Process

8 April 2001

1. Analysis:
The analysis phase involves determining which business process is to be implemented
using the BAPI. Scenarios are defined and then the steps are identified which are to be
visible externally, (to other components), and implemented by business object types and
their BAPIs.

2. Design:
For each BAPI involved in a scenario, the structure of the BAPI's interface is defined at a
conceptual level. The purpose of the design phase is to structure the interfaces concisely
and intuitively so that the BAPIs will be easy to use. At the same time the interfaces must
comply with all technical and formal guidelines.

3. Implementation:
The implementation phase can be divided into three successive stages:

� Defining the data structures (including domains and data elements) that the BAPI
parameters are based on.

� Implementing the program logic in function modules.

� Defining the BAPI in the Business Object Repository (BOR) to ensure object-oriented
access.

4. Testing and releasing:
The documentation, as well as the functionality and usability of a BAPI are checked in the
test phase. The BAPI can be released after the test phase has been successfully
completed.

Organizational Support
Throughout the development process the BFA Application Groups provide support for:

� Designing the scenario, the business object types and the BAPIs.

� Technical implementation

� Any problems that may arise

Tool Support
The BAPI Explorer (Transaction BAPI) is the central tool as of Release 4.6A to support your
BAPI developments. The BAPI Explorer enables easy access to all the relevant information in the
BAPI environment (including general documentation as well details about special business object
types and BAPIs) . The Explorer integrates all the tools required for BAPI development and
manages all the phases of the development process in project forms.

See also:
Details on BAPI Explorer [Ext.]

 SAP AG BAPI Programming Guide CA-BFA)

Analysis

April 2001 9

Analysis
For analysis purposes the business process and the scenario implementing this business
process must be described in detail. The Business Object Types [Ext.] and their BAPIs that are
used in the scenario must also be identified. The BAPIs are atomic modules that can be used to
create different scenarios.
The main dilemma with developing BAPIs is:
On the one hand BAPIs should be developed so that they can be used in different scenarios and
on the other hand the interface must be clearly structured.

It is important that you do not stipulate in this phase exactly what the signature of the individual
BAPIs is to look like. The BAPIs required for the scenario are simply identified and their functions
and the data they require are defined.

The analysis can be divided into three phases:

Describing the Scenario

 [Page 10]Definition of the Scenario in the BAPI Explorer

 [Page 22]Review of the Scenario

 [Page 23]

BAPI Programming Guide CA-BFA) SAP AG

Describing the Scenario

10 April 2001

Describing the Scenario
The Business Process
A business process consists of a series of individual business functions. The content of the
business process should be described separately from any technical details.

Creating a sales order in an affiliate with a credit standing check in the central
organization.

To define a business process you have to:

Define the purpose and the scope of the business process

Identify the individual steps in the business process. To do this you can use a process
model or the tool "Use Cases".

The Scenario
A scenario is the computerized implementation of a business process. It describes the
distribution and interaction of the tasks between the participating components. So there may be
several scenarios that implement the same business process.

Creating sales orders and credit standing checks in different R/3 Systems (central
accounting, decentralized sales and distribution).

The process of defining the scenario involves:

 SAP AG BAPI Programming Guide CA-BFA)

Describing the Scenario

April 2001 11

I
d
e
n
ti
f
y
i
n
g
t
h
e
r
e
l
e
v
a
n
t
c
o
m
p
o
n
e
n
t
s
a
n
d
t
h
e
t
a
s
k
s
t
h
e
y
p
e
rf
o
r
m
.

BAPI Programming Guide CA-BFA) SAP AG

Describing the Scenario

12 April 2001

D
e
t
e
r
m
i
n
i
n
g
w
h
e
t
h
e
r
a
p
p
li
c
a
ti
o
n
s
y
s
t
e
m
s
a
r
e
t
o
b
e
i
n
t
e
g
r
a
t
e
d
i
n
t
h
e
s
c
e
n
a

 SAP AG BAPI Programming Guide CA-BFA)

Describing the Scenario

April 2001 13

D
e
t
e
r
m
i
n
i
n
g
t
h
e
i
n
f
o
r
m
a
ti
o
n
a
n
d
p
r
o
c
e
s
s
fl
o
w
s
.
H
e
r
e
y
o
u
h
a
v
e
t
o
:

BAPI Programming Guide CA-BFA) SAP AG

Describing the Scenario

14 April 2001

Determine which steps are to be processed system-wide and which steps are to be processed
within a single component.

Define which data is exchanged between which components and who initiates this exchange.

Determine the sequence in which the individual steps are processed.

Identify the steps belonging to a single transaction (LUW).

Example: Developers must ask themselves whether it makes sense to create a
customer in one LUW and then create a sales order in the same LUW .
Transaction Model for Developing BAPIs [Ext.]

Error handling must be much more precise and comprehensive than with local applications.

 SAP AG BAPI Programming Guide CA-BFA)

Describing the Scenario

April 2001 15

Y
o
u
h
a
v
e
t
o
d
e
c
i
d
e
w
h
e
t
h
e
r
s
y
s
t
e
m

c
o
u
p
li
n
g
s
h
o
u
l
d
b
e
n
a
rr
o
w

o
r
l
o
o
s
e
f
o
r
t

BAPI Programming Guide CA-BFA) SAP AG

Describing the Scenario

16 April 2001

A
ll
s
t
e
p
s
c
ri
ti
c
a
l
t
o
p
e
rf
o
r
m
a
n
c
e
m
u
s
t
b
e
i
d
e
n
ti
fi
e
d
.

 SAP AG BAPI Programming Guide CA-BFA)

Describing the Scenario

April 2001 17

Y
o
u
s
h
o
u
l
d
a
l
s
o
c
o
n
s
i
d
e
r
w
h
i
c
h
R
/
3
R
e
l
e
a
s
e
s
a
r
e
t
o
b
e
s
u
p
p
o
rt
e
d
w
it
h
i
n
t
h
e
s

BAPI Programming Guide CA-BFA) SAP AG

Describing the Scenario

18 April 2001

F
o
r
e
a
c
h
s
c
e
n
a
ri
o
y
o
u
m
u
s
t
i
d
e
n
ti
f
y
a
p
e
r
s
o
n
r
e
s
p
o
n
s
i
b
l
e
f
o
r
e
n
s
u
ri
n
g
t
h
a
t
t

 SAP AG BAPI Programming Guide CA-BFA)

Describing the Scenario

April 2001 19

Business Object Types and BAPIs
Each component in the scenario must provide services so that the cross-component steps can
be carried out. You have to work out how to distribute responsibility for the services between the
business object types and their BAPIs. For example, the BAPI CreateFromData of business
object type SalesOrder is used to create a sales order in the R/3 System from an external
application.

For more information see also: Business Object Types [Ext.].

For each component you have to first determine the business object types required. You should
consider the following issues:

Encapsulation of the required functions in business object types. This involves breaking
down the whole system into separate responsibilities. The breakdown and encapsulation
of functions must be explicit and disjunctive.

Do business object types already exist for these responsibilities?

Do design patterns already exist?

Find out whether any problems have already been dealt with.

Example: Header/item pattern, for example, for SalesOrder, PurchaseOrder,
etc.

Delimit the responsibility for other business object types.

Determine the services provided based on the defined responsibility.

For more information see also: Design Criteria for Business Objects [Ext.].

For each business object type you have identified, you have to determine how the services
assigned to it can be implemented using BAPIs.
You should consider the following issues:

Each service is implemented by one or more BAPIs (= method of business object type).

BAPIs make available the functions of a business object type. You should be able to use
them independently of individual scenarios and also in different scenarios.

To make it easier to use a BAPI in different scenarios, the BAPI signature
should be created so that the BAPI's parameters and fields are assigned
separately according to the application.

BAPI Programming Guide CA-BFA) SAP AG

Describing the Scenario

20 April 2001

However, this type of scenario can affect the granularity of the BAPI. Application systems
are integrated differently from the integration of alternative frontends:

1. Integrating application systems

� The integration of application systems typically involves program-to-program
communication, loose asynchronous coupling and the exchange of larger volumes of
data.

� The main requirement of the business object types and BAPIs used in these scenarios
is that performance is high, for example, by minimizing the number of calls.

� The result is a rough granularity of the application that is implemented by more
extensive BAPIs.

� Example: A program to create a sales order automatically.
The program uses the business object type SalesOrder with the BAPI
CreateFromData. The complete sales order is created in the sending system and then
sent to the receiving system.

2. Integrating alternative frontends

� Scenarios with alternative frontends represent human-to-machine communication and
can be implemented synchronously as well as asynchronously .

� Business object types and BAPIs must be structured to ensure flexibility,
configurability and minimal error situations.

� The result is a finer granularity of the application that should correspond to the dialog
processing in R/3.

� Example: Customer sales order is created interactively in the Internet.
The sales order is can be created using the two methods CreateFromData and
AddItem of the business object type SalesOrder. In this case the method
CreateFromData simply creates the sales order header, whilst the method AddItem
can add new sales order items.

SAP Internal:
Wherever possible, a BAPI should be created so that it can be used for both
purposes. The most important objective is to develop a range of standardized
BAPIs for each business object type which can be used universally.

The scenario must be structured so that it is possible to get all the information required for
a BAPI call from the R/3 System from other BAPIs beforehand.

If there are any BAPIs that are Customizing-dependent, BAPIs must be provided that can
export these Customizing settings.

 SAP AG BAPI Programming Guide CA-BFA)

Describing the Scenario

April 2001 21

 SAP Internal
The scenario, the link to the application's object model and the design of new
business object types is agreed with one of the BFA Application Groups.

If business object types that do not yet exist are identified during the analysis
phase, these object types can only be created by the BFA AGs. You have to
create a request for a new business object type in the BAPI Explorer [Ext.].

For examples of BAPI scenarios refer to Overview of ALE Integration Scenarios [Ext.] in the
Library of ALE Business Processes.

BAPI Programming Guide CA-BFA) SAP AG

Defining the Scenario in the BAPI Explorer

22 April 2001

Defining the Scenario in the BAPI Explorer
Prerequisites
The scenario is fully described.

Process Flow
Define a project form in the BAPI Explorer:

1. Start the BAPI Explorer in the relevant development system using Transaction BAPI (as of
Release 4.6A).

2. Select the tab page Project and create a project to implement new BAPIs.

3. A project form guides you through the entire procedure for creating a BAPI. In the first
section the basic data can be created for the defined scenario .

See also:
BAPI Explorer [Ext.]

 SAP AG BAPI Programming Guide CA-BFA)

Reviewing the Scenario

April 2001 23

Reviewing the Scenario
Before the scenario can be converted and started with a concrete definition and implementation
of the BAPI, the scenario should be reviewed.
All persons involved in the BAPI development and those responsible for quality control should be
involved in this review.

Features
The following questions should be answered:

Does the scenario make sense as it is planned?

Have all the tasks required for the scenario description been properly completed?

Do all the BAPIs in the scenario work smoothly together?

You should only start developing the BAPI, once you have successfully completed the review.

See also:
Designing the BAPI [Page 24]

BAPI Programming Guide CA-BFA) SAP AG

Designing the BAPI

24 April 2001

Designing the BAPI
After the scenario and the business object types and BAPIs used in it have been identified in the
analysis, the BAPI signature is defined conceptionally within the design phase. The content
should be described and the parameter names and the parameter structure must be defined.

Because BAPIs are business interfaces and not technical interfaces, when you develop a BAPI,
you must fulfil the central requirement that:
A user must be able to implement a BAPI call correctly in an external application, using only their
knowledge of the application and the BAPI documentation. Users are not expected to have any
knowledge of R/3, so that they can view the R/3 System as a "black box".

In this phase you also have to decide from the BAPI's functions whether the BAPI is an instance
method or a class method and whether it can be implemented as a Standardized BAPI [Page
27].

Instance methods refer to a specific instance of a business object type, for example, the BAPI
SalesOrder.GetDetail retrieves the details of precisely one sales order. These methods are
defined as instance-dependent in the BOR.
Class methods do not refer to a specific instance of a business object type, for example, the
BAPI SalesOrder.GetList supplies a list of all the existing sales orders that match specific criteria.
Standardized create methods also belong to class methods. A create method creates a new
instance, for example, the BAPI SalesOrder.Create creates a new sales order in the R/3 System.
These methods are defined as instance-independent in the BOR.

The specific instances of a business object type are identified by their key fields, which is why
they play a special role in this context. In the design phase, the keys of instance-dependent
BAPIs should be identified as special parameters. For more details see Defining the Interface
[Page 42].

When designing the BAPI signature you should keep in mind:

1. The design of the method (BAPI) and the parameters must comply with certain conventions
See also Conventions [Page 25].

2. There are a range of standard methods and parameters that provide basic functions. If the
BAPIs and their parameters fall into this category, they must be structured according to
specified rules. For an overview see Standardized BAPIs [Page 27] and Standardized
Parameters [Page 29].

3. So that the signature is clearly structured and easy to use, you should follow the Design
Recommendations [Page 31].

 SAP AG BAPI Programming Guide CA-BFA)

Conventions

April 2001 25

Conventions

The following conventions apply to BAPI methods.

If the BAPI to be implemented is a standardized BAPI, use the generic names, for
example, GetList, GetDetail.

The method name must be in English (maximum 30 characters).

The individual components of a BAPI name are separated by the use of upper and lower
case.

Example: GetList

Underscores ("_") are not allowed in BAPI names.

Each BAPI has a return parameter that is either an export parameter or an export table.

So that customers can enhance BAPIs, each BAPI must have an ExtensionIn and an
ExtensionOut parameter. See also Customer Enhancements to BAPIs [Ext.].

See also: Standardized BAPIs [Page 27]

The following conventions apply to parameters:

If standardized parameters are used, you have to use the names specified for
standardized parameters.

BAPI parameter names should be as meaningful as possible.
Poorly chosen names include abbreviations and technical names (e.g. "flag", table names,
etc.).

The parameter and field names must be in English with a maximum of 30 characters.

The components of a parameter name in the BOR are separated by upper and lower case
letters to make them easier to read.

Example: CompanyCodeDetail

Values that belong to each other semantically should be grouped together in one
structured parameter, instead of using several scalar parameters.

For ISO-relevant fields (country, language, unit of measure, currency), additional fields for
ISO codes are provided.

Unit of measure fields must accompany all quantity fields and currency identifiers must
accompany currency amount fields.

BAPI Programming Guide CA-BFA) SAP AG

Conventions

26 April 2001

See also: Standardized Parameters [Page 29]

 SAP AG BAPI Programming Guide CA-BFA)

Standardized BAPIs

April 2001 27

Standardized BAPIs

Use
Some BAPIs provide basic functions and can be used for most SAP business object types.
These BAPIs should be implemented the same for all business object types. Standardized BAPIs
are easier to use and prevent users having to deal with a number of different BAPIs. Whenever
possible, a standardized BAPI must be used in preference to an individual BAPI.

Features
The following standardized BAPIs are provided:

Reading instances of SAP business objects

� GetList ()
With the BAPI GetList you can select a range of object key values, for example, company
codes and material numbers. The BAPI GetList() is a class method.
For more information see Programming GetList() BAPIs [Ext.].

� GetDetail ()
With the BAPI GetDetail() the details of an instance of a business object type are retrieved
and returned to the calling program. The instance is identified via its key. The BAPI
GetDetail() is an instance method.
For more information see Programming GetDetail() BAPIs [Ext.].

BAPIs that can create, change or delete instances of a business object type
The following BAPIs of the same object type have to be programmed so that they can be called
several times within one transaction. For example, if, after sales order 1 has been created, a
second sales order 2 is created in the same transaction, the second BAPI call must not affect the
consistency of the sales order 2. After completing the transaction with a COMMIT WORK, both
the orders are saved consistently in the database.

� Create() and CreateFromData()
The BAPIs Create() and CreateFromData() create an instance of an SAP business object
type, for example, a purchase order. These BAPIs are class methods.
For more information see Programming Create() BAPIs [Ext.].

� Change()
The BAPI Change() changes an existing instance of an SAP business object type, for
example, a purchase order. The BAPI Change () is an instance method.
 For more information see Programming Change() BAPIs [Ext.].

� Delete() and Undelete()
The BAPI Delete() deletes an instance of an SAP business object type from the database or
sets a deletion flag.
The BAPI Undelete() removes a deletion flag. These BAPIs are instance methods.
For more information see Programming Delete() BAPIs [Ext.].

BAPI Programming Guide CA-BFA) SAP AG

Standardized BAPIs

28 April 2001

� Cancel ()
Unlike the BAPI Delete(), the BAPI Cancel() cancels an instance of a business object type.
The instance to be cancelled remains in the database and an additional instance is created
and this is the one that is actually canceled. The Cancel() BAPI is an instance method.
For more information see Programming Cancel() BAPIs [Ext.].

� Add<subobject> () and Remove<subobject> ()
The BAPI Add<subobject> adds a subobject to an existing object instance and the BAPI and
Remove<subobject> removes a subobject from an object instance. These BAPIs are
instance methods.
 For further information see Programming Methods for Sub-Objects [Ext.].

BAPIs for Mass Data Processing
The BAPIs listed above for creating and changing data can also be used for mass processing.
For more information see BAPIs for Mass Data Transfer [Ext.]

BAPIs for Replicating Business Object Instances

� Replicate() and SaveReplica()
The BAPIs Replicate() and SaveReplica() are implemented as methods of replicable
business object types. They enable specific instances of an object type to be copied to one
or more different systems. These BAPIs are used mainly to transfer data between distributed
systems within the context of Application Link Enabling (ALE). These BAPIs are class
methods.
For more information see Programming Replicate()/SaveReplica() BAPIs [Ext.].

Other Less Used Standardized BAPIs
� Programming GetStatus() BAPIs [Ext.]

� Programming ExistenceCheck() BAPIs [Ext.]

 SAP AG BAPI Programming Guide CA-BFA)

Standardized Parameters

April 2001 29

Standardized Parameters

Use
There are some parameters that can be created for various BAPIs because they contain the
same or the equivalent data in all BAPIs. They should be implemented the same in all BAPIs.

Features
Address parameters
Specific reference structures are defined for address parameters in BAPIs. You should copy
these structures to use in your BAPI, especially if the underlying object type uses the central
address management (CAM).
For more information see Address Parameters [Ext.].

Change Parameters
In BAPIs that cause database changes (for example, Change() and Create() BAPIs) you must be
able to distinguish between parameter fields that contain modified values and parameter fields
that have not been modified. This distinction is made through the use of standardized
parameters.
For more information see Change Parameters [Ext.].

Extension parameters
The parameters ExtensionIn and ExtensionOut provides customers with a mechanism that
enables BAPIs to be enhanced without modifications.
For further information see Extension Parameters [Ext.] and Customer Enhancements to BAPIs
[Ext.]

Return Parameters
Each BAPI must have an export return parameter for returning messages to the calling
application. To provide application programmers with a consistent error handling process for
BAPI calls, all return parameters must be implemented in the same, standardized way.
For further information see Return Parameters [Ext.].

Selection Parameters
Standardized selection parameters are used in BAPIs that can be used to search for specific
instances of a business object type (e.g. in GetList()). These parameters enable the BAPI caller
to specify the relevant selection criteria.
For more information see Selection Parameters [Ext.].

Test Run Parameters
The parameter TestRun is used in write BAPIs (Create() and Change()), to check the entries for
the object instance in the database before actually creating the object instance. The creation of
the object instance is only simulated and data is not updated.
For further information see Test Run Parameters [Ext.].

BAPI Programming Guide CA-BFA) SAP AG

Standardized Parameters

30 April 2001

Text Transfer Parameters
To transfer BAPI documentation texts (e.g. the documentation of a business object type), you
have to create standardized text transfer parameters.
For more information see Text Transfer Parameters [Ext.].

 SAP AG BAPI Programming Guide CA-BFA)

Design Recommendations for Interfaces

April 2001 31

Design Recommendations for Interfaces
So that BAPIs can be used intuitively, you should follow the design recommendations below:

Parameter data should be grouped together according to business criteria.

The inbound interface should be clearly structured and intuitive. Parameters should in the
first instance be structured in accordance with the application.

Example: Structured parameters should be structured so that they contain all
the fields required for the most simple application in one logical block.
Additional fields required for special cases should be grouped by application
and attached to the "main block".

The interface must not contain any fields that external users would not be able to interpret.
You must also try to remove any internal details specific to R/3.

Whenever possible, input help (F4 help) should be provided for parameters and
parameter fields. This enables the client to easily determine all the possible input values
for a field by calling the BAPI Helpvalues.GetList.
See also: Providing Input Help (F4 Help) [Ext.]

Dependencies between data fields and between parameters must be included in the
documentation.

All the information supplied with a BAPI should be able to be used easily without having to
change any of the data. So export structures should be able to be reused as the input of a
different BAPI.

All key fields in GetDetail() and GetList() BAPIs must be displayed as text fields.

If there are several texts for one key field, these texts must be stored in a
separate table.

When you are structuring the interface, you should consider what the BAPI is used for.

� With BAPIs used for batch processing performance is the most important
consideration in the design.

� BAPIs used for alternative front-ends require a more flexible interface as they tend to
be used in more complex processes.

See also: Example [Ext.] of the conceptual design of a BAPI.

BAPI Programming Guide CA-BFA) SAP AG

Implementing a BAPI

32 April 2001

Implementing a BAPI
Once you have completed the conceptual design of the BAPI, information specific to SAP must
now be considered in the implementation phase. For example, the SAP data structures are
determined and the program logic is implemented for the BAPI parameters.

The following documentation provides an overview of the implementation process and the
relevant components and tools for the BAPIs are introduced. Each work step is then described in
detail.

See also:
The Implementation Process [Page 33]

Actions in the ABAP Dictionary [Page 38]

Actions in the Function Builder [Page 41]

Actions in the BOR [Page 55]

BAPI Documentation [Page 63]

BAPI/ALE Integration [Page 71]

 SAP AG BAPI Programming Guide CA-BFA)

The Implementation Process

April 2001 33

The Implementation Process
A BAPI is defined in the Business Object Repository (BOR) as an API method of an SAP
business object type. Business object types and their BAPIs are described and created in the
BOR. A BAPI is usually implemented as an RFC-enabled function module. These function
modules are created and described in the Function Builder. The definitions and descriptions of
the data structures used by the BAPI are defined in the ABAP Dictionary.

The graphic below illustrates the relationships between the components:

Business Object
Repository

Business object type:

 Method 1 = M1

 Method 2 = M2

ABAP Workbench

Function
Builder

Function module
BAPI_BO_M2

Function module
BAPI_BO_M1

Definition and
description of
data structures

ABAP
Dictionary

Process Flow
The structure of the tools in the ABAP Workbench determine how the BAPI is implemented.

1. Defining the Data Structures [Page 38] (including domains and data elements) in the ABAP
Dictionary.

2. Implementing the Function Module [Page 41] in the Function Builder

3. Defining the Business Object Type and Its Methods [Page 55] in the BOR

BAPI Programming Guide CA-BFA) SAP AG

The Implementation Process

34 April 2001

All three phases have accompanying documentation [Ext.] that is created in the corresponding
tools.

All the required work steps can be started from the BAPI Explorer.

See also :
Tools [Page 35].

Further Issues [Page 37]

 SAP AG BAPI Programming Guide CA-BFA)

Tools

April 2001 35

Tools
The most important tools used for developing BAPIs are the BAPI Explorer, the ABAP Dictionary,
the Function Builder and the Business Object Repository.

The BAPI Explorer
As of Release 4.6A the BAPI Explorer [Ext.] is the central tool for developing BAPIs. To start it,
you can enter Transaction code BAPI or, from the SAP Easy Access menu select � Tools �
Business Framework � BAPI Explorer. As the central access point into the BAPI world, the BAPI
Explorer provides access to all the relevant information by way of context-sensitive links to all the
required tools and transactions. Project forms guide you step by step through the development
process. The project forms contain checkboxes with important information and details about the
tools provided. You can also log the progress of your project.

The ABAP Dictionary
All the data definitions used in the system can be described and managed in the central ABAP
Dictionary. New or modified information is automatically made available to all system
components. This ensures data integrity, data consistency and data security.

For more information see Documentation on the ABAP Dictionary. [Ext.].

The Function Builder
With the Function Builder function modules can be created, implemented, tested and
documented within a function group. The Function Builder contains a Function Library that serves
as the central storage for all function modules.

For more information about the Function Builder see the documentation on the
Function Builder [Ext.].

The Business Object Repository (BOR)
The Business Object Repository (BOR) contains the SAP business object types and SAP
interface types as well as their components, such as methods, attributes and events. A BAPI is
defined in the BOR as a method of an SAP business object type.
The BOR has the following functions for SAP business object types and their BAPIs:

� Enables an object-oriented view of the R/3 System data and processes.
R/3 application functions are accessed using methods (BAPIs) of SAP business object types.
Implementation information is encapsulated; only the interface functionality of the method is
visible to the user.

� Arranges the various interfaces in accordance with the component hierarchy. Functions can
be searched and retrieved quickly and simply.

� Manages BAPIs in release updates.
BAPI interface enhancements made by adding parameters are recorded in the BOR.
Previous interface versions can thus be reconstructed at any time. When a BAPI is created,
the release version of the new BAPI is recorded in the BOR. The same applies when any

BAPI Programming Guide CA-BFA) SAP AG

Tools

36 April 2001

interface parameter is created.
The version control of the function module that a BAPI is based on is managed in the
Function Builder.

� Ensures interface stability.
Any interface changes that are carried out in the BOR are automatically checked for syntax
compatibility against the associated development objects in the ABAP Dictionary.

For further information about the BOR see the documentation on the Business
Object Builder [Ext.].

Outlook
You first have to define the names, parameters, and characteristics of the BAPI and determine
the structures in the ABAP Dictionary that the BAPI will be based on. Only once you have done
this can the BAPI be implemented in the Function Builder and the required programming objects
be created in the BOR.

 SAP AG BAPI Programming Guide CA-BFA)

Further Issues

April 2001 37

Further Issues

Before you start the implementation phase, you should keep in mind:

Releasing BAPIs

When you release a BAPI, it becomes available as a fully implemented method of a
business object type. Releasing also prevents anyone making incompatible changes to
the BAPI, because all changes made to a released BAPI are automatically checked for
compatibility in the BOR and the ABAP Dictionary, and incompatible changes are rejected.

SAP Internal
If the BAPI is only to be used internally, and therefore not for release to
customers, the status of the function module must be set to Released
internally.
The BAPI must be released in cooperation and agreement with the BFA AGs
and with persons responsible for quality control in the development
department concerned.

Enhancements and Modifications of BAPIs

If you are enhancing or modifying a BAPI, rather than creating a new BAPI, keep in mind
the requirements below. For more information see Further Enhancements, Modifications
[Ext.].

BAPIs Used for Outbound Processing

Up to and including Release 4.0 BAPIs could only be implemented as function modules in
the same system that they were defined in.
As of Release 4.5A BAPIs can also describe interfaces that are implemented in a non-
SAP system but that can be called from R/3 Systems. These BAPIs are known as
outbound BAPIs and are defined in the BOR as API methods of SAP interface types.
There are always separate systems for defining (client) and for implementing (server)
BAPIs Used for Outbound Processing [Ext.].

BAPI Programming Guide CA-BFA) SAP AG

Actions in the ABAP Dictionary

38 April 2001

Actions in the ABAP Dictionary
The first step of the implementation phase is to define all the data structures (including domains
and data elements) in the ABAP Dictionary. These data structures are required for the
parameters of the BAPI to be implemented. You can access the ABAP Dictionary from the
project form in the BAPI Explorer.

The conventions below are important:

Conventions for BAPI Data Structures
Each parameter must refer to a data structure in the ABAP Dictionary. In the case of
structured parameters this is always to the whole BAPI data structure. If the parameter
consists of only one field, it must refer to a field in a BAPI structure.

You have to create separate data structures for BAPIs, which are independent of the data
structures generally, used in the R/3 application.
Reason: When the BAPI is released the underlying structures of the BAPI are frozen and
restrictions apply if you want to later change the structures. See also Enhancements to
released BAPIs [Ext.].

Existing internal structures can be mapped to existing BAPI structures with a
field mapping function module that is automatically generated by a mapping
tool (Transaction BDBS).
For more information see Converting Between Internal and External Data
Formats [Ext.].

All data structure names must begin with <namespace>BAPI.

BAPI structure names should be as meaningful as possible.

You must not use APPENDs and INCLUDEs in BAPI data structures.

Reason: APPENDs and INCLUDEs can cause Incompatibilities [Ext.], if BAPI data
structures are changed.

Always try to use existing central data elements and domains for fields.

The Example [Ext.] of the BAPI CompanyCode.GetDetail shows how data structures
should be defined.

 SAP AG BAPI Programming Guide CA-BFA)

Actions in the ABAP Dictionary

April 2001 39

Conventions for Field Names
The fields in structures must have meaningful English names with a maximum of 30
characters.

 SAP Internal
Use report BAPIFELD to create a list of English field name proposals for an
ABAP Dictionary structure. Refer to the report documentation to find out how
to use the report.

A meaningful English default field name with a maximum of 30 characters should be
defined for each data element.

 SAP Internal
In the future the default name will always be proposed by the SAP internal
report BAPIFELD.

Procedure: You can take data objects that still need to be edited from the
report BAPIFELD. In the ABAP Dictionary you can define the default field
name of the data element by choosing Definition � Default field name.

Conventions for Input Help
You may have to define single values or a value table for the domain so that F4 help is
available for use.

All the useful Possible entries [Ext.] (which can be used in the service BAPI
Helpvalues.GetList) must be defined for the data structures/data elements. To do this a
foreign key must be specified in the fields of a BAPI structure. If a value table has been
defined in a field domain, a foreign key must also be defined.

Technical Conventions
The internal data format is used for all parameter fields.
See also Mapping Between Internal and External Data Formats [Ext.].

If an external key as well as an internal key has been defined in the database, the external
key must always be used in the BAPI interface.

For fields relevant to ISO (country, language, unit of measure, currency), additional fields
are provided for ISO-Codes.

All currency fields use the domain BAPICURR. In special cases the domain BAPICUREXT
can also be used.

You must always use a period for the decimal point.

BAPI Programming Guide CA-BFA) SAP AG

Actions in the ABAP Dictionary

40 April 2001

All currency amounts and units of measure must have the decimal point in the correct
place.

Reason: The BAPI always uses a standard amount format with commas. So when
converting currency amounts use the function modules:
BAPI_CURRENCY_CONV_TO_EXTERNAL and
BAPI_CURRENCY_CONV_TO_INTERNAL.

With quantity fields the reference field/reference table must be correctly set to the unit of
measure field.

All the data elements for date fields must have the format YYYYMMDD.

Conventions for BAPI/ALE Integration
So that an IDoc for asynchronous communication can be generated from a BAPI, the following
conditions must be satisfied:

BAPI structure names must not be longer than 27 characters, otherwise the automatically
generated name for the associated segment will be too long and will have to be changed
manually later.

Reason: The segment is generated following the convention <BAPI structure name> +
<three digit number>.

Single fields in a data structure can only be a maximum of 250 bytes.

Conventions for Customer Developments
If IBUs, partners and customers are creating data structures (domains or data elements),
the Namespaces [Ext.] provided by SAP must be complied with.

 SAP AG BAPI Programming Guide CA-BFA)

Actions in the Function Builder

April 2001 41

Actions in the Function Builder
Once the parameters have been defined, the function module underlying the BAPI is created in
the Function Builder (Transaction SE37). Transaction SE37 can be accessed from within the
project form in the BAPI Explorer.

When Creating the Function Module [Ext.] you must follow the rules below:

All function modules must have the naming convention:

<Name space>BAPI_<business object>_<method>.

A maximum of 30 characters is allowed.
If required, you can abbreviate the name but still following the above convention. You
must still be able to recognize the business object type assignment.

All the BAPIs belonging to one SAP business object type should be created in one
function group. You should only deviate from this rule in exceptional cases.

BAPIs belonging to different SAP business object types must not be put in the same
function group.

The next steps:
Defining the Interface [Page 42]

Implementing the Function Module [Page 44]

BAPI Programming Guide CA-BFA) SAP AG

Defining the Interface

42 April 2001

Defining the Interface
A BAPI parameter must be defined in the method of the business object type in the BOR as well
as in the function module. In both cases the definition must be identical except for the key fields
of the business object type.
The Key Fields [Ext.] of a business object type are used to identify a business object type at a
semantic and technical level. The whole key, rather than parts of it is always used (fully defined
key). This has semantic reasons (an instance is identified by the key) as well as technical
reasons (keys are generated in the BOR and various checks are made against existing key
fields).

If a BAPI refers to a specific instance of a business object type, together with other parameters,
the key fields of the business object type are transferred to the method in the BOR to identify the
instance. In this case the key fields are not listed again under the method parameters in the
BOR. This distinction cannot be made in the function module, which is why the key fields must be
listed here as parameters.

The following conventions apply to key fields for function module interfaces:

With instance methods all the BOR key fields are mandatory import parameters in the
function module. BOR key fields must not be defined as export parameters in the function
module.

With class methods BOR key fields must not be defined as export parameters in the
function module (exception: Create methods) Neither are BOR key fields allowed to be
defined as import parameters in the function module.

With create methods all the BOR key fields of the method are defined as export
parameters in the function module. BOR key fields must not be defined as import
parameters in the function module (this applies to all class methods). Create methods are
classified as instance-independent in the BOR.

If, in accordance with the above guidelines, key fields are defined as parameters in the function
module, the conventions below apply:

The fully defined key is used and not a partial key.

There is a parameter in the function module for each key field of the business object type.

The parameter in the function module and the BOR key field have the same name.

In the above explanation a key field means a parameter that is used to identify a
runtime instance (in the OO sense) and that has the same name as the key field of
the business object type. It is of course possible to use other parameters to display
the required business information represented by the key.

Example: In accordance with the above guidelines, a Create BAPI of the business
object type CompanyCode (key CompanyCodeID) must not have an import

 SAP AG BAPI Programming Guide CA-BFA)

Defining the Interface

April 2001 43

parameter CompanyCodeID. The name of the company code to be created could
instead be transferred, for example, as field ID in the parameter CompanyCodeData.

Function module interfaces must also satisfy the conventions below:

The structure BAPIPAREX must be used for the parameters ExtensionIn and
ExtensionOut.

The Return Parameter [Ext.] is based on the structure BAPIRET2.

The function module must be RFC-enabled.

Underscores ("_") are not allowed in parameter names.

Only upper case letters can be used in the Function Builder, so here the
components of parameter names cannot be separated by the use of upper
and lower case letters.

BAPI Programming Guide CA-BFA) SAP AG

Implementing the Function Module

44 April 2001

Implementing the Function Module

When programming the function module a range of BAPI-specific requirements must be met.

Transaction Model Requirements
As of Release 4.0 BAPIs must not execute 'COMMIT WORK' commands.

Reason: The caller should have control of the transaction. Several BAPIs should be able
to be combined within one LUW. For more information see Transaction Model for
Developing BAPIs [Ext.].

The following commands must not be used:

� CALL TRANSACTION

� SUBMIT REPORT

� SUBMIT REPORT AND RETURN

Database changes can only be made through updates.

Reason: The RFC executes an implicit database commit.

The global memory must not be used to transfer values.

Reason: This should avoid any side effects and support the encapsulation of the
functionality.

If a COMMIT WORK is not executed after a BAPI has been called, you have to delete the
lock that has been set.

All tables that are not protected by SAP internal locks must always be updated in the
same order to prevent a deadlock.

Requirements of the Remote Capability of BAPIs
BAPIs must not produce any screen output. This means that lists, queries and dialog
boxes must not be created. This is true for the BAPI itself and for all function modules that
may be indirectly called by the BAPI.

Reason: An external client cannot respond to output on the screen. In the worst possible
case, the connection in the client program could be broken.

If required every BAPI must be able to carry out its own authorization checks. In particular
Input Help [Ext.] should contain authorization checks.

 SAP AG BAPI Programming Guide CA-BFA)

Implementing the Function Module

April 2001 45

Error Handling Requirements

BAPI Programming Guide CA-BFA) SAP AG

Implementing the Function Module

46 April 2001

N
o
e
x
c
e
p
ti
o
n
s
a
r
e
u
s
e
d
i
n
B
A
P
I
s
.
I
n
s
t
e
a
d
a
ll
e
rr
o
r
m
e
s
s
a
g
e
s
a
r
e
r
e
p
o
rt
e
d
b
a
c
k

 SAP AG BAPI Programming Guide CA-BFA)

Implementing the Function Module

April 2001 47

B
A
P
I
s
m
u
s
t
n
o
t
c
a
u
s
e
t
h
e
p
r
o
g
r
a
m

t
o
t
e
r
m
i
n
a
t
e
.
A
n
a
b
o
rt
m
e
s
s
a
g
e
(
m
e
s
s
a
g
e

BAPI Programming Guide CA-BFA) SAP AG

Implementing the Function Module

48 April 2001

E
rr
o
r
h
a
n
d
li
n
g
p
l
a
y
s
a
m
o
r
e
i
m
p
o
rt
a
n
t
r
o
l
e
h
e
r
e
t
h
a
n
it
d
o
e
s
w
it
h
n
o
r
m
a
l
f
u
n
c
ti
o

 SAP AG BAPI Programming Guide CA-BFA)

Implementing the Function Module

April 2001 49

The meaning of error numbers that are used must not be changed.

Error messages must be able to be understood by users in external applications. For example,
they should not contain table names.

The error message must specify whether the cause of the error is business (content) related or
due to missing import data.

Example of an inappropriate error message: "Mandatory field not filled". The error message
must specify which mandatory fields have not been filled.

BAPI Programming Guide CA-BFA) SAP AG

Implementing the Function Module

50 April 2001

Performance Requirements

 SAP AG BAPI Programming Guide CA-BFA)

Implementing the Function Module

April 2001 51

T
h
e
B
A
P
I
m
u
s
t
p
e
rf
o
r
m

w
e
ll
.
T
h
e
f
o
ll
o
w
i
n
g
g
u
i
d
e
li
n
e
s
s
h
o
u
l

BAPI Programming Guide CA-BFA) SAP AG

Implementing the Function Module

52 April 2001

T
h
e
f
u
n
c
ti
o
n
m
o
d
u
l
e
o
n
w
h
i
c
h
a
B
A
P
I
i
s
b
a
s
e
d
c
a
n
b
e
a
c
c
e
s
s
e
d
fr
o
m

e
x
t
e
r
n
a
l
p

 SAP AG BAPI Programming Guide CA-BFA)

Implementing the Function Module

April 2001 53

Handling Large Data Volumes
Mass data is treated differently in ABAP programs, which use the SAPGUI as a front end, and
in programs developed on external development platforms such as Visual Basic.
If large volumes of data are read in the R/3 System, for example a list containing many entries,
the majority of the data remains on the application server. Only the data that is actually
displayed is sent to the frontend. In contrast, if you are programming with Visual Basic, all the
data will be sent from the application server to the client system. This increases the load on the
network and the amount of memory required in the client system.
You need to cover the situation when your BAPI has to read mass data. For example, you
could specify a limit so that only the first n data records are read. Alternatively your BAPI could
return a message to the calling program indicating that the amount of data has exceeded a
certain limit and that a new selection should be made.

To reduce the duration of database locks, you should not assign numbers to them
individually. Instead, make use of the buffers. Read the numbers to a buffer and assign the
numbers directly from the buffer.

Lock periods can be minimized by updating the database as close as possible to the COMMIT
WORK command. This reduces the duration of database locks and the risk of blocking other
processes.

The less specific the (partial) key of a modified data record is, the more likely it is that the data
record will be accessed by multiple BAPIs, causing the record to be locked. For example,
running a statistic on plant level will have a negative impact on the performance of the BAPI,
whereas a statistic based on plant and material will cause fewer locks because it will apply to
fewer BAPIs.

Minimize the use of read transactions which depend on a previous database COMMIT
(committed read). These read transactions have to wait for the COMMIT WORK command of
the update transaction to be processed.

Further Requirements
You must carry out a refresh for tables for which no input is expected.

Do not use get and set parameters.

Reason: This should avoid any side effects and support the encapsulation of the
functionality.

BAPIs should be independent from Customizing settings. In particular, values relevant for
Customizing are not allowed to be changed.

BAPI Programming Guide CA-BFA) SAP AG

Implementing the Function Module

54 April 2001

Customer exits must be provided so that customers can enhance BAPIs:

Each BAPI function module must contain two extra exits in addition to the customer exits
provided by the application.
The first customer exit should enable the customer to check all the data passed to the
BAPI. In particular, check the content of the ExtensionIn parameter before it is written to
the table extensions.
The second customer exit is provided so that the customer can make enhancements (e.g.
writing additional tables). If the customer has enhanced the export parameter of the BAPI,
the second customer exit should be used to fill the ExtensionOut Parameter [Ext.].

See also Customer Enhancements to BAPIs [Ext.]

 SAP AG BAPI Programming Guide CA-BFA)

Actions in the BOR

April 2001 55

Actions in the BOR

After the function module has been created, you have to define the BAPI as a method of a
business object type. By storing the BAPI in the central Business Object Repository (BOR), you
enable object oriented access to the BAPI and the ALE distribution model may be able to be
connected to (with asynchronous communication).

The BOR can be accessed from within the project form in the BAPI Explorer.

Process Flow
To define the BAPI:

1
.

I
d
e
n
ti
f
y
t
h
e
S
A
P
B
u
s
i
n
e
s
s
O
b
j
e
c
t
T
y
p
e
[
E
x
t.
].

BAPI Programming Guide CA-BFA) SAP AG

Actions in the BOR

56 April 2001

2
.

A
p
p
e
n
d
t
h
e
B
A
P
I
a
s
a
n
A
P
I
m
e
t
h
o
d
t
o
t
h
e
b
u
s
i
n
e
s
s
o
b
j
e
c
t
t
y
p
e
.

Y
o
u
c
a
n
u
s
e
t
h

 SAP AG BAPI Programming Guide CA-BFA)

Actions in the BOR

April 2001 57

Upper case/lower case (each new word must be in upper case). See also: Example [Ext.].

The import and export behavior of the table parameters must be correctly defined in the BOR.

Reason: Unlike the function module, in the BOR you can differentiate between import and
export tables. You should therefore only select the standard option Import/export, if the table is
actually going to be imported and exported.

The return parameter is always defined as an export parameter.

BAPI Programming Guide CA-BFA) SAP AG

Actions in the BOR

58 April 2001

A
s
w
e
ll
a
s
m
a
k
i
n
g
t
h
e
t
a
s
k
m
u
c
h
e
a
s
i
e
r,
t
h
e
W
i
z
a
r
d
a
l
s
o
e
n
s
u
r
e
s
t
h
a
t
t
h
e
B
A
P
I

 SAP AG BAPI Programming Guide CA-BFA)

Actions in the BOR

April 2001 59

�

BAPI Programming Guide CA-BFA) SAP AG

Actions in the BOR

60 April 2001

�

 SAP AG BAPI Programming Guide CA-BFA)

Actions in the BOR

April 2001 61

�

BAPI Programming Guide CA-BFA) SAP AG

Actions in the BOR

62 April 2001

The following Example [Ext.] shows the relationship between the definition of the
BAPI method in the BOR and the function module.

If you cannot use the BAPI Wizard (e.g. to change the BAPI later or to redefine a
method), you can change the method in the BOR itself. Make sure that the above
points are complied with.

For developments undertaken by IBUs, customers and partners the additional points below are
important:

Read the documentation on Customer Enhancements and Modifications of BAPIs [Ext.]

As a customer you can create your own BAPIs for your own business object types or you
can define a Subtype [Ext.] of an existing SAP business object type. We strongly advise
you NOT to define new BAPIs of SAP business object types because this involves
modifications.

All development objects (business object types, BAPIs, parameters) have to be created in
their own Namespace [Ext.].

 SAP AG BAPI Programming Guide CA-BFA)

Documenting the BAPI

April 2001 63

Documenting the BAPI
Principles
The quality of your BAPI documentation depends on the following principle:

The documentation must be in sufficient detail so that an external developer familiar with the
business background but not with the R/3 System, can use the BAPI.

Features
The documentation for the BAPI covers four areas:

BAPI Programming Guide CA-BFA) SAP AG

Documenting the BAPI

64 April 2001

1
.

T
h
e
S
A
P
B
u
s
i
n
e
s
s
O
b
j
e
c
t
T
y
p
e
D
o
c
u
m
e
n
t
a
ti
o
n
[
E
x
t.
].

 SAP AG BAPI Programming Guide CA-BFA)

Documenting the BAPI

April 2001 65

2
.

T
h
e
M
e
t
h
o
d
D
o
c
u
m
e
n
t
a
ti
o
n
[
E
x
t.
]
s
h
o
u
l
d
a
n
s
w
e
r
t
h
e
f
o
ll
o
w
i
n
g
q
u
e
s
ti
o
n
s
:

BAPI Programming Guide CA-BFA) SAP AG

Documenting the BAPI

66 April 2001

What is the business function of the BAPI and what is it used for?

What do the BAPI functions actually do?

Are there any important limitations, that is, are there functions that this BAPI cannot perform?

What must you pay particular attention to with this BAPI? (e.g. authorization checks)
What other prerequisites apply to the BAPI?

Are there any Customizing dependencies?

What dependencies are there between this BAPI and other BAPIs, and between individual
method parameters?

Is it a BAPI with buffering?

If it is, the BAPI must be explicitly identified as such.

Does the BAPI contain a COMMIT WORK command?

If it does, it must be documented.

 SAP AG BAPI Programming Guide CA-BFA)

Documenting the BAPI

April 2001 67

3
.

T
h
e
B
A
P
I
P
a
r
a
m
e
t
e
r
D
o
c
u
m
e
n
t
a
ti
o
n
[
E
x
t.
]
a
n
s
w
e
r
s
t
h
e
f
o
ll
o
w
i
n
g
q
u
e
s
ti
o
n
s
:

BAPI Programming Guide CA-BFA) SAP AG

Documenting the BAPI

68 April 2001

What is the parameter used for?

Which fields of a parameter must be filled, that is, what are the mandatory fields?

What are the dependencies between fields?
Are there parameter dependencies and field dependencies within a structure?

Are there any fixed values and what do they do?

What are the default values of the parameter?
All the fields that are assigned default values by Customizing and are therefore write-protected,
must be documented.

Does the documentation of the return parameter comply with the guidelines and does it contain
all the relevant error messages?

If there is a termination, is a database rollback executed as an exception within the BAPI?

If it is, you must describe this process in the documentation for the return parameter.

Are all the available BAPI table extensions listed in the documentation on the extension
parameters (ExtensionIn, ExtensionOut)?

 SAP AG BAPI Programming Guide CA-BFA)

Documenting the BAPI

April 2001 69

4
.

D
a
t
a
E
l
e
m
e
n
t
D
o
c
u
m
e
n
t
a
ti
o
n
[
E
x
t.
]
u
n
d
e
rl
y
i
n
g
t
h
e
fi
e
l
d
s
i
n
t
h
e
B
A
P
I
p
a
r
a
m
e
t

BAPI Programming Guide CA-BFA) SAP AG

Documenting the BAPI

70 April 2001

Finally, you must also make sure that the function module and parameter
documentation has been saved by the documentation developer in active version so
that it appears in the translator's work list.

 SAP AG BAPI Programming Guide CA-BFA)

BAPI/ALE Integration

April 2001 71

BAPI/ALE Integration
BAPIs are integrated into the ALE communication model. ALE communication is asynchronous
and message-based. ALE communication is the preferred way to integrate distributed R/3
Systems, for example, for distributing master data.

Since Release 4.0 BAPIs are the standardized interfaces for ALE-supported
communication. ALE services, such as asynchronous BAPI calls, distribution model, monitoring
and error handling can be used for BAPIs. The IDoc types required for the ALE services can be
generated from BAPIs.

See also: Using ALE Services [Ext.].
When you use BAPIs for asynchronous messaging, the application in the sending system calls
the generated ALE IDoc interface instead of the BAPI. The ALE IDoc interface performs the
following tasks:

� Creates an IDoc from the BAPI data

� Sends the IDoc to the target system

� Receives the IDoc in the target system, creates the BAPI data from the IDoc and calls the
BAPI

You can use Transaction BDBG to create the other objects required for the asynchronous
communication (message type, IDoc type, inbound and outbound function module).

See also: Maintaining the BAPI-ALE Interface [Ext.]

A BAPI should only be implemented as an asynchronous interface, if at least of the following
conditions is satisfied:
� Database changes are consistent in all systems

Data must be updated consistently on a remote system as well as on the local system.
� Looser coupling

With a synchronous interface the coupling between the client and the server system is too
narrow. If the connection is interrupted the client system would not be able to function
properly.

� Performance
The interface has a large volume of data or database operations to be carried on the server
system will take a long time. In this situation a synchronous interface cannot be used
because performance would be too low.

BAPI/ALE integration requires that:

Message types are created and IDoc types are generated for all write BAPIs.
See also: Generating the BAPI-ALE Interface [Ext.]

All IDoc types and the associated segments are released.

The BAPI interface and the IDoc interface are identical. Make sure that the message type,
IDoc type and segments are regenerated, particularly if the BAPI is changed.

BAPI Programming Guide CA-BFA) SAP AG

BAPI/ALE Integration

72 April 2001

All BAPI export parameters with the exception of the return parameter are ignored
and are not included in the IDoc type that is generated.

SAP Internal:
If the BAPI is used to integrate different SAP products, you have make the interface
information available in the relevant systems. To do this you have to move the data
structures (including data elements and domains) used by the BAPI as well as the
ALE interface, if necessary, into the application basis.

Provided that the applications involved have restricted usability (componentization,
e.g. AC/LO and HR, some R/3 New Dimensions), the BAPI function module must be
explicitly released for cross-application use.

Please consult your BFA contact person.

 SAP AG BAPI Programming Guide CA-BFA)

Testing and Releasing

April 2001 73

Testing and Releasing
To check that the BAPIs, business object types and documentation are all correct, special tests
and ToDo checks must be carried out. Once the test phase has been successfully completed, the
business object type, BOR methods and function modules can be released.

For more information see:

Testing [Page 74]

Releasing [Page 77]

BAPI Programming Guide CA-BFA) SAP AG

Testing

74 April 2001

Testing
After you have implemented the underlying function module of your BAPI, and you have defined
the BAPI as a method of an SAP business object type in the Business Object Repository (BOR),
you should test the BAPI.

Carry out the test together with the persons responsible for quality control in your
development group.

Test Phase
The following steps are carried out in the test phase:

Testing the Documentation
Check that the documentation for each business object type, each BAPI and for each
interface parameter is available and that you understand it. As the BAPI documentation is
critical for being able to use the BAPI, this test should be carried out thoroughly.

Testing the BAPI Syntax
In the test phase you must check that the BAPI meets all the conventions described
above, and that you have followed the guidelines for developing BAPIs. You can check
that the syntax is correct using the BAPI Explorer and the BAPI ToDo. An implicit check is
also carried out when the BAPI is appended in the BAPI/BOR Wizard and when it is
released in the BOR.

To test the BAPI syntax in the BAPI Explorer, position the cursor on the
relevant BAPI in the left-hand frame. Select the tab page Tools in the right-
hand frame and then the option BAPI Consistency Checks.

 SAP AG BAPI Programming Guide CA-BFA)

Testing

April 2001 75

Testing the BAPI Semantics
After you have checked that the syntax is correct, you have to check that the semantics of
the BAPI are correct (testing the functions and integrity). You have the following options:

Testing the underlying function module in the Function Builder
You can test the parameters in your function module in one test. Enter the appropriate test
values in the parameters to verify that the source code in the function module can run
without errors.

However, the test in the Function Builder has the following drawbacks:
� The tests do not update the database because a COMMIT WORK cannot be

executed.
� The tests cannot be automated.
� The test data is not transported into other systems and is lost if the function module is

changed. So, for example, no regression tests can be carried out.
Testing the function module with the Computer Aided Testing Tool (CATT)
Function modules can be tested within the SAP standard test tool using the CATT test
module type F. The CATT has the following advantages over testing in the Function
Builder:

� The tests do change the database because a COMMIT WORK is automatically
executed.

� The tests can be automated.

� The test data is transported with the test module and is therefore available in other
systems and releases for regression tests.

Tests with the CATT should be carried out in preference tests in the Function
Builder because the test runs are retained and can be optimally integrated into
the SAP quality assurance process.

For more information on using CATT for testing function modules, see CATT:
Using Function Module Tests [Ext.].

Testing the BAPI call in an external application
To use a BAPI in an external application, the following conditions must be fulfilled:
� The syntax of the BAPI is correct.

This should be tested by the BAPI developer using the BAPI Explorer.
� The communication functions without errors.

This should be checked using appropriate tests from the Middleware departments.

Testing the BAPI on different platforms
The platform tests are carried out during the final assembly. The tests can only be carried
out when the BAPI semantics have been tested with CATT, and when the CATT
procedures created in the tests can be used again in the final assembly.

BAPI Programming Guide CA-BFA) SAP AG

Testing

76 April 2001

If you find any errors in the BAPI implementation, correct them and repeat the tests
until you and the quality control team in your group are fully satisfied with the BAPI
implementation and with the documentation.

 SAP AG BAPI Programming Guide CA-BFA)

Releasing

April 2001 77

Releasing
Once all the tests have been completed, the BAPIs and all their associated development objects
can be released for customers to use. But they can only be released if the following conditions
are fulfilled:

The documentation has been fully completed.

There are no consistency errors.

The BFA AG contact person has authorized the release.

The quality manager has authorized the release.

For more information about releasing BAPIs see also Other Issues [Page 37].

Process Flow
You have to carry out the following steps:

Release the BAPI Function Module [Ext.] in the Function Builder.

Release the Business Object Type [Ext.] in the BOR.

Release the BAPI [Ext.] as a method in the BOR.

With write BAPIs release the IDoc and its segments.

